Conditional Updates of Answer Set Programming and Its
Application in Explainable Planning’
Extended Abstract

Van Nguyen and Tran Cao Son
New Mexico State University
Las Cruces, NM
{vnguyen,tson}@cs.nmsu.edu

ABSTRACT

In explainable planning, the planning agent needs to explain its
plan to a human user, especially when the plan appears infeasible
or suboptimal for the user. A popular approach is called model
reconciliation, where the agent reconciles the differences between its
model and the model of the user such that its plan is also feasible and
optimal to the user. This problem can be viewed as a more general
problem as follows: Given two knowledge bases 7, and x and a
query g such that 7, entails g and 7, does not entail g, where the
notion of entailment is dependent on the logical theories underlying
7q and 7y, how to change ry, — given 7, and the support for g in
7q — so that 7, does entail q. In this paper, we study this problem
under the context of answer set programming. To achieve this goal,
we (1) define the notion of a conditional update between two logic
programs 7, and ;, with respect to a query g; (2) define the notion
of an explanation for a query q from a program 7, to a program 7,
using conditional updates; (3) develop algorithms for computing
explanations; and (4) show how the notion of explanation based on
conditional updates can be used in explainable planning.

KEYWORDS
Explainable Planning; Answer Set Programming

ACM Reference Format:

Van Nguyen and Tran Cao Son and Stylianos Loukas Vasileiou and William
Yeoh. 2020. Conditional Updates of Answer Set Programming and Its Appli-
cation in Explainable Planning. In Proc. of the 19th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2020), Auckland,
New Zealand, May 9-13, 2020, IFAAMAS, 3 pages.

1 LOGIC PROGRAMMING

Answer set programming (ASP) [10, 11] is a declarative program-
ming paradigm based on logic programming under the answer set
semantics. A logic program IT is a set of rules of the form

ap < ai,...,am, not am+1,..., not an

where 0<m<n, each a; is an atom of a propositional language, and
not represents (default) negation.Intuitively, a rule states that if all
positive literals a; are believed to be true and no negative literal
not a; is believed to be true, then ag must be true. If q¢ is omitted,

“This research is partially supported by NSF grants 1345232, 1619273, 1757207, 1829859,
1812619, and 1812628.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9-13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Stylianos Loukas Vasileiou and William Yeoh
Washington University in St. Louis
St. Louis, MO
{v.stylianos,wyeoh}@wustl.edu

the rule is called a constraint. If n = 0, it is called a fact. For a rule r,
head(r) denotes ag; pos(r) and neg(r) denote the set {ai,...,am}
and {am+1,- - .,an}, respectively. atoms(r) denotes the set of all
atoms in r, viz. { head(r)} U pos(r) U neg(r); and, atoms(II) denotes
the set of all atoms of II. heads(IT) (negs(II)) denotes the set of
atoms occurring in the head of rules of I (negative literals of II).

Let IT be a program. I C atoms(I) is called an interpretation of
II. For an atom a, a (resp. not a) is satisfied by I, denoted by I |= a
(resp. I |= not a), if a € I (resp. a ¢ I). A set of literals S is satisfied
by I (I |= S)if I satisfies each literal in S. A rule r is satisfied by I if
I | body(r) or I |= head(r). I is a model of a program if it satisfies
all its rules. An atom a is supported by I in IT if there exists r € P
such that head(r) = a and I |= body(r). The reduct of IT w.r.t. I
(denoted by T1) is the program obtained from II by deleting (i)
each rule r such that neg(r) N I # 0, and (ii) all negative literals in
the bodies of the remaining rules. I is an answer set [5] of ITif I is
the least Herbrand model of T [14], which is the least fixpoint of
the operator Tiy defined by Ti1(I) = {a | 3r € I1, head(r) = a,I |=
body(r)} and is denoted by Ifp(Try).

Given an answer set I of IT and an atom ¢, a justification for ¢q
wrt. I is a set of rules S C II such that I |= body(r) for r € S and
q € Ifp(Tsr). A justification S for ¢ wrt. I is minimal if there exists
no proper subset ' C S such that S’ is also a justification for q wrt.
I.Tt is easy to see that if S is a minimal justification for g wrt. I then
negs(S) N heads(S) = 0 and heads(S) is an answer set of S.

2 PLANNING USING ASP

Answer set planning refers to answer set programming in plan-
ning [9]. It has been shown by Gebser et al. [4] that answer set
planning, combined with good heuristics, can perform at the highest
level of state-of-the-art planning systems.

A planning problem - as described using PDDL [6] - is a triple
(I, G, D), where I and G encode the initial state of the world and the
goal, respectively; and D (the domain) specifies the actions and their
preconditions and effects. Given a problem P = (I, G, D), answer set
planning translates it into a program (P, n) to compute solutions
of P, where n is constant indicating the maximal length of solutions
that we are interested in (i.e., horizon). Program (P, n) consists of
different groups of rules:

o Facts: These atoms define object constants, types of objects,
actions, the initial state, and the goal state.

e Reasoning About Effects of Actions: Rules in this group make
sure that an action can only be executed if all of its conditions
are true and all of the effects of the actions become true. We use
h(l, t) to denote that [ is true at step t for 1 < t < n.



¢ Goal Enforcement and Action Generation: The rules in this
group generates action occurrences and ensure that only valid
plans are generated.

3 EXPLAINABLE PLANNING

In explainable planning (XAIP) problems [7], the planning agent
needs to find ways to ensure that its plans are understood and ac-
cepted by human users. As the model or knowledge base of the robot
differs from that of the human users, a plan that may be optimal
in the model of the robot may be suboptimal or, worse, infeasible
in the model of the human user. Researchers have approached this
problem from two perspectives. The first is by enforcing that the
robot finds explicable plans (i.e., plans that are optimal or feasible
in the model of the human user) [8, 15]. The second is for the robot
to provide explanations to the human user and reconciling their
two models such that the plan of the robot is also optimal in the
reconciled model of the human user [3, 12, 13]. There is also recent
work in balancing both approaches [1, 2].

In an XAIP problem, a planning problem P = (I, G, D) is given,
which is identical to the robot model P, = (I, G4, Dg). The human
model of the planning problem Py, = (I, Gy, Dy, ) might be different
from the model of the robot. The focus of this paper is in the model
reconciliation process, i.e., to bring the human’s model closer to
the robot’s model by means of explanations in the form of model
updates. Given P, and Py, a model reconciliation problem (MRP) is
defined by a tuple (n*, Py, Py ), where 7™ is a cost-minimal solution
for P,. A solution for an MRP is a multi-model explanation e, which
creates a model P} from P, and P, such that 7* is also a cost-
minimal solution of P;’; by inserting to Py (or removing from Py)
some initial conditions, action preconditions, action effects, or goals.
It is required that the changes in the model of the human must be
consistent with the robot’s model.

4 EXPLANATIONS USING ASP

Let 7, be the program of the robot, 7y, be the program of the human,
and g be an atom of 7, such that 7, |~ g and rp, |[£q. Assume that
the robot wishes to explain to the human that g, representing a
plan, is true. The robot could do so by identifying an answer set I
supporting q and explaining to the human by presenting a set of
rules A C 7,4, which might be a justification for g wrt. I, such that
an update of 7 by A given I will allow the human to accept that ¢
is entailed. In other words, the process of updating j, by A given
I should result in a new program, denoted by 7;, ®; A such that
7y, ®1 A b~ q. Therefore, we define the operator ® before we discuss
the explanation process.

Definition 4.1 (Conditional Update). Let n, and 7, be two pro-
grams. Further, let I be an answer set of 7, and A C 7. The condi-
tional update of rr, with respect to A and I is the program n;l UA4, de-
noted by 7, ®1 A, where 7] is the collection of rules from mj, \ A such
that (i) head(r) € I and neg(r) N I = O or (ii) neg(r) N heads(A) # 0.

Let 7, and 7, to denote two arbitrary but fixed programs and
q € atoms(rrg) such that 7, b g and 7, |£q.

Definition 4.2 (Explanation). A subprogram ¢ C g is a lp-
explanation for q from r, to mp wrt. an answer set I of 7, (or

Algorithm 1: LP — Explanation(rg, 7y, q)

Input: Programs m4, 7y, atom q
Output: An explanation € for g
if 7, U {< not g} has no answer set then return nil

[

N

Let I be an answer set of 7, U {« not q}

(™)

Compute (g, I)

'S

Compute an answer set J of I1(74, I)

Compute € = {head(r) « pos(r), neg(r) | head(r) «
pos(r), neg(r), ok(r) € (ng, I), ok(r) € J}.

6 return € \ mp, (or (e \ 7y, 7y \ €))

[z

Algorithm 2: Computing Non-Trivial LP-Explanation

1 if (g, I) \ {q <} has no model then
2 L return {q < }—% only trivial Ip-explanation exists

3 Compute an answer set of J of II(7rg, I) \ {q <}

an Ip-explanation for q wrt. I) if 7, ® € |~ q. € is a minimal lp-
explanation for q wrt. I if there exists no proper subset ¢’ of € s.t.
€’ is an Ip-explanation for g wrt. I. € is a lp-explanation with justifi-
cation if €’ contains a justification for g wrt. I. Finally, if {q <} is
an lp-explanation for g, we call it a trivial Ip-explanation.

Given a program i, and an answer set I supporting q of 74, we

define I1(r4, I) be the program such that:
o TI(7g,I) contains the constraint « not g;
e for each x € 7, s.t. head(x) € I and neg(x) NI = 0:

o head(x)«pos(x), neg(x), ok(x) is a rule in (74, I);

o {0k(x)} « is arule of II(74, I).

e #mimimize{1,X : 0k(X)} is a rule of I1(xg, I).

e No other rule is in II(r4, I).

Algorithm 1 can be used for computing an lp-explanation. To
compute a non-trivial lp-explanation, Line 4 is replaced by the three
lines (Lines 1-3) in Algorithm 2.

The proposed notion of an Ip-explanation can be used in ex-
plainable planning as follows. Let n(P4,t) and n(Py,t) be the
two programs encoding the planning model of the robot and the
human, respectively. Assume that « = [a1,...,a;-1] is a plan
in 7(Pg,t) and is not a plan in x(Py,t). This implies that 7, =
7(Pg, t) U occurs™(a) b goal and ny, = w(Py, t) U occurs™(a) fgoal
where occurs®(a)={occurs(a;,i) | i=1,...,t — 1}. As such, an lp-
explanation for the atom goal from r, to xy, could explain why «
is not a solution in the model of Py. Indeed, Algorithm 1 can be
used to compute an Ip-explanation for the atom goal from 7, to 7y,
i.e., an explanation for the MRP between the robot and the human.
This can be used as a seed for computing complete explanations
for the MRP.

5 CONCLUSIONS AND FUTURE WORK

In this abstract, we consider a general problem of updating a theory
7y, so that the resulting theory 7, credulously entails an atom ¢
given that g is entailed by a theory =z, using ASP by proposing
the notion of conditional updates in logic programming and use it
to define the notion of an explanation. We then show how it can
be used to compute explanations for MRP problems. Future work
includes experimentally evaluating this approach against the state
of the art.



REFERENCES

[1] Tathagata Chakraborti, Sarath Sreedharan, and Subbarao Kambhampati. 2018.

[2

[

Explicability versus explanations in human-aware planning. In AAMAS. 2180—
2182.

Tathagata Chakraborti, Sarath Sreedharan, and Subbarao Kambhampati. 2019.
Balancing Explicability and Explanations in Human-Aware Planning. In I[JCAL
1335-1343.

Tathagata Chakraborti, Sarath Sreedharan, Yu Zhang, and Subbarao Kambham-
pati. 2017. Plan Explanations as Model Reconciliation: Moving Beyond Explana-
tion as Soliloquy. In [JCAL 156-163. https://doi.org/10.24963/ijcai.2017/23
Martin Gebser, Benjamin Kaufmann, Javier Romero, Ramén Otero, Torsten
Schaub, and Philipp Wanko. 2013. Domain-Specific Heuristics in Answer Set
Programming. In AAAI 350-356.

M. Gelfond and V. Lifschitz. 1990. Logic programs with classical negation. In LP.
579-597.

Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin Ram,
Manuela Veloso, Daniel Weld, and David Wilkins. 1998. PDDL - the planning
domain definition language.

Subbarao Kambhampati. 2019. Synthesizing Explainable Behavior for Human-AI
Collaboration. In AAMAS. 1-2.

Anagha Kulkarni, Yantian Zha, Tathagata Chakraborti, Satya Gautam Vadlamudi,
Yu Zhang, and Subbarao Kambhampati. 2019. Explicable Planning as Minimizing

[10

[11

[12

[14

[15

]

Distance from Expected Behavior. In AAMAS. 2075-2077.

V. Lifschitz. 2002. Answer set programming and plan generation. Artificial
Intelligence 138, 1-2 (2002), 39-54. https://doi.org/10.1016/S0004-3702(02)00186-8
V. Marek and M. Truszczyniski. 1999. Stable models and an alternative logic pro-
gramming paradigm. In The Logic Programming Paradigm: a 25-year Perspective.
375-398. https://doi.org/10.1007/978-3-642-60085-2_17

I. Niemela. 1999. Logic programming with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelligence 25, 3,4
(1999), 241-273.

Sarath Sreedharan, Tathagata Chakraborti, and Subbarao Kambhampati. 2018.
Handling model uncertainty and multiplicity in explanations via model reconcil-
iation. In ICAPS. 518-526.

Sarath Sreedharan, Alberto Olmo Hernandez, Aditya Prasad Mishra, and Sub-
barao Kambhampati. 2019. Model-Free Model Reconciliation. In IJCAL 587-594.
M. van Emden and R. Kowalski. 1976. The semantics of predicate logic as a
programming language. J. ACM 23, 4 (1976), 733-742. https://doi.org/10.1145/
321978.321991

Yu Zhang, Sarath Sreedharan, Anagha Kulkarni, Tathagata Chakraborti,
Hankz Hankui Zhuo, and Subbarao Kambhampati. 2017. Plan explicability and
predictability for robot task planning. In ICRA. 1313-1320.


https://doi.org/10.24963/ijcai.2017/23
https://doi.org/10.1016/S0004-3702(02)00186-8
https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.1145/321978.321991
https://doi.org/10.1145/321978.321991

	Abstract
	1 Logic Programming
	2 Planning using ASP
	3 Explainable Planning
	4 Explanations using ASP
	5 Conclusions and Future Work
	References

