
Reasoning about Trustworthiness in Cyber-Physical
Systems Using Ontology-Based Representation and ASP

Thanh Hai Nguyen1[0000−0001−9996−4720], Tran Cao Son1[0000−0003−3689−8433], Matthew
Bundas1, Marcello Balduccini2, Kathleen Campbell Garwood2, and Edward R.

Griffor3

1 New Mexico State University, Las Cruces, USA
{thanhnh,stran,bundasma}@nmsu.edu

2 St. Joseph’s University, Philadelphia, USA
{mbalducc,kcampbel}@sju.edu

3 National Institute of Standards and Technology
edward.griffor@nist.gov

Abstract. This paper presents a framework for reasoning about trustworthiness
in cyber-physical systems (CPS) that combines ontology-based reasoning and an-
swer set programming (ASP). It introduces a formal definition of CPS and several
problems related to trustworthiness of a CPS such as the problem of identifica-
tion of the most vulnerable components of the system and of computing a strategy
for mitigating an issue. It then shows how a combination of ontology based rea-
soning and ASP can be used to address the aforementioned problems. The paper
concludes with a discussion of the potentials of the proposed methodologies.

Keywords: CPS · Ontology · ASP · Knowledge Representation · Reasoning · Planning

1 Introduction

Cyber-physical systems (CPS) are sophisticated systems that include engineered in-
teracting networks of physical and computational components. These highly intercon-
nected and integrated systems provide new functionalities to improve quality of life and
enable technological advances in critical areas, such as personalized health care, emer-
gency response, traffic flow management, smart manufacturing, defense and homeland
security, and energy supply and use. In addition to CPS, there are other terms (e.g.,
Industrial Internet, Internet of Things (IoT), machine-to-machine (M2M), smart cities)
that describe similar or related systems and concepts. CPS and related systems (includ-
ing the IoT and the Industrial Internet) are widely recognized as having great potential
to enable innovative applications and impact multiple economic sectors in the world-
wide economy. Evidence of the promise of CPS is evident in autonomous vehicles,
intelligent buildings, smart energy systems, robots, and smart medical devices. Realiz-
ing the promise of CPS requires interoperability among heterogeneous components and
systems, supported by new reference architectures using shared vocabularies and defi-
nitions. Addressing the challenges and opportunities of CPS requires broad consensus
in foundational concepts, and a shared understanding of capabilities and technologies



2 Thanh H. Nguyen et al.

unique to CPS. The following example describes the Elevator Monitoring scenario, a
simple concrete CPS with its concerns and requirements:

Example 1. Elevator Monitoring

The system consists of an elevator cabin (EC) which is controlled by a control
panel (CP). The panel communicates with the elevator receiver (ER), and calls
the elevator to the required floor. The receiver communicates with the eleva-
tor’s pulley function (PF), which releases/clenches and allows the elevator to
move down/up along the rope and pulley to the designed floor. The elevator
sensor & camera (ESCam) will detect the number of passengers in the cabin. If
passenger number > 11, the sensor (ESCam) will communicate to the receiver
(ER) to stop the elevator from moving and flashes a warning light indicating an
overload.

The National Institute of Standards and Technology (NIST) has taken the first step
towards addressing the aforementioned challenge. In the last few years, NIST has es-
tablished the CPS Public Working Group (CPS PWG) to bring together a broad range
of CPS experts in an open public forum to help define and shape key characteristics
of CPS, which allows us to better manage development and implementation within,
and across, multiple smart application domains. This resulted in the CPS Framework
(CPSF) [11], which provides a principled design and analysis methodology for CPS
that is intended to be applicable across all relevant domains of expertise. Preliminary
research aimed at addressing questions related to the trustworthiness of a CPS utilizing
the CPSF was presented in [2], which introduced a CPSF ontology capturing the keys
elements of CPSF such as facets (modes of the system engineering process: conceptu-
alization, realization and assurance), concerns (areas of concern) and aspects (clusters
of concerns: functional, business, human, trustworthiness, timing, data, composition,
boundaries, and lifecycle).

In this paper, we view a CPS as a dynamic system that consists of several com-
ponents with various constraints and preferences which will be referred as concerns
hereafter. Given a concrete state of the system, a concern might or might not be satis-
fied. This paper builds upon and extends the work from [2] in a number of important
directions. First of all, it introduces precise mathematical formalization of CPS and of
a variety of important questions related to the trustworthiness of the components of
a CPS and of a CPS as a whole: (i) what are the most vulnerable (least trustworthy)
components in a CPS? (ii) how to mitigate (or prevent) an attack on a component? (iii)
what is the probability that a mitigation strategy will succeed? Of the above, (i) and
(iii) have also not been addressed before in the context of CPSF. Additionally, the paper
establishes a clear relationship between CPSF and the formalization of CPS. Finally,
it demonstrates how the combination of ontology-based reasoning and ASP, together
with a suitable extension of the CPS ontology from [2], can be leveraged for the de-
velopment of solutions to the above questions. Hybrid reasoning aims at combining the
best of both worlds, particularly for scalability in practical applications. Take for in-
stance a large CPS such as an aircraft carrier. Answering the above questions requires
sophisticated reasoning, which typically struggles with scalability. By combining the
system scalability and describability of ontology-based reasoning with the flexibility of



Title Suppressed Due to Excessive Length 3

ASP, one can leverage the former to extract inference-rich information for the subsys-
tems relevant to the task at hand, on which ASP-based reasoning can then carry out
sophisticated reasoning in a more focused, efficient way.

2 Background

2.1 CPS Framework (CPSF), CPS Ontology, and Representation

CPSF defines a set of concerns related to a CPS such as Trustworthiness, Functionality,
Safety, etc. These concerns are organized in a multi-rooted, tree-like structure (a “for-
est” in graph theory), where branching corresponds to the decomposition of concerns.
Each tree is called a concern tree. The concerns at the roots of this structure, the high-
est level concerns, are called aspects. Properties4 are features of a CPS that address a
certain concern, e.g. encrypted traffic might address the privacy concern (see Table 1
for details). Specifically, the Trustworthiness aspect is related to the trustworthiness of
CPS, including concerns such as security, privacy, safety, reliability, and resilience. In
this paper, we adopt the definition of trustworthiness from the NIST CPSF, where the
term is taken to denote the demonstrable likelihood that the system performs according
to designed behavior under any set of conditions as evidenced by its characteristics.

The CPS Ontology, introduced in [2], defines concepts and individuals related to
Trustworthiness, and the relationships between them (e.g., sub-class of, has-subconcern,
etc.). Figure 1, excluding the nodes labeled CP, ER, PF, EC and ESCam and links la-
beled “relates”, shows a fragment of the CPS ontology where circle nodes represent
specific concerns and grey rectangle nodes represent properties. To facilitate informa-
tion sharing, the CPS Ontology leverages standards such as the Resource Description
Framework (RDF5) and the Web Ontology Language (OWL6) for describing the data,
representing the entities and their relationships, formats for encoding the data and re-
lated metadata for sharing and fusing. An entity or relationship is defined in the ontol-
ogy by a RDF-triple (subject, predicate, object). Table 1 lists the main classes and rela-
tionships in the CPS ontology. Most of the class names are self-describing. Intuitively, a
relationship between a property and a concern indicates that the property positively (or
negatively) affects the associated concern when it is true (or false). Specific concerns
are represented as individuals: Trustworthiness as an individual of class Aspect,
Security and Cybersecurity of class Concern. Edges linking aspects and con-
cerns are represented by the relation has-subconcern. A relation has-subconcern

is used to associate a concern with its sub-concerns. Thus, Trustworthiness aspect
has-subconcern Security, which in turn has-subconcern Cybersecurity.

The notion of satisfaction of a concern is also introduced in [2]. In the simplest case,
a concern is satisfied when all properties related to it, directly or indirectly (via the sub-
concern relation) must be true. Inference can then be applied to propagate the satisfac-

4 There is an unfortunate clash of terminology between OWL properties and CPS properties.
Throughout this paper, the intended meaning of the word ‘property’ can be identified from the
context of its use.

5 https://www.w3.org/TR/rdf-concepts/
6 https://www.w3.org/TR/owl-features/



4 Thanh H. Nguyen et al.

tion, or lack thereof, of concerns and properties throughout a concern tree. For exam-
ple, given a concern that is not satisfied, one can leverage relations has-subconcern
and/or addressed-by to identify the sub-concerns and/or properties that are not satis-
fied, either directly or indirectly.

Functional
Safety

Safety

Trustworthiness

sub-concern

sub-concern Reliability

sub-concern

Security

sub-concern

Resilience

sub-concern

Privacy

sub-concern

Cyber-
Security

Physical-
Security

sub-concern
sub-concern

Manageability

sub-concern

Confidentiality

sub-concern

Integrity

sub-concern Availability

sub-concern

Control_Mo
ving

Detect_Up_
11

Address

Control_Speed

EC ESCam

relates

Controlability

sub-concern

Human 
Safety

sub-concern

Severity

sub-concern

Frequency

sub-concern

Hazard

sub-concern
Stability

Functionality

sub-concern

sub-concern

PF

relates

Address

Address

Address

Control_Pulley

Address

relates

Communicate_With
_Other_Component

Address

relates

CP relatesER

relates

relates

Send_Actions

Address
Address

relates

relatesrelates

relates

AddressAddress

Flash_Warning

Address

relates

Maintenance_
Regularly

relates

Address Address

relates

relates

Pulley_Release

Pulley_Clench

Address

Integrity

sub-concern

Address

Moving_Up

Moving_Down

Halting

Address

Address
Address

relates

relates

relates

relates

relates

Fig. 1: A Fragment of the Trustworthiness Concern Ontology

2.2 Answer Set Programming

Answer set programming (ASP) [12,16] is a declarative programming paradigm based
on logic programming under the answer set semantics. A logic program Π is a set of
rules of the form: c← a1, . . . ,am, not b1, . . . , not bn. where ai’s, and bi’s are atoms
of a propositional language7 and not represents (default) negation. Intuitively, a rule
states that if ai’s are believed to be true and none of the bi’s is believed to be true then
c must be true. For a rule r, r+ and r− denote the sets {a1, . . . ,am} and {b1, . . . ,bn},
respectively.

Let Π be a program. An interpretation I of Π is a set of ground atoms occurring in
Π . The body of a rule r is satisfied by I if r+ ⊆ I and r−∩ I = /0. A rule r is satisfied by
I if the body of r is satisfied by I implies I |= c. When c is absent, r is a constraint and
is satisfied by I if its body is not satisfied by I. I is a model of Π if it satisfies all rules in
Π . For an interpretation I and a program Π , the reduct of Π w.r.t. I (denoted by Π I) is
the program obtained from Π by deleting (i) each rule r such that r−∩ I 6= /0, and (ii) all
atoms of the form not b in the bodies of the remaining rules. Given an interpretation I,

7 For simplicity, we often use first order logic atoms in the text which represent all of its ground
instantiations.



Title Suppressed Due to Excessive Length 5

Class Meaning

Concern
Concerns that stakeholders have w.r.t. to a system, such as security, integrity, etc.
They are represented in the ontology as individuals. The link between a concern
and its sub-concerns is represented by the has-subconcern relation.

Aspect
High-level grouping of conceptually equivalent or related cross-cutting concerns
(i.e. human, trustworthiness, etc). In the ontology, Aspect is subclass of class
Concern.

Property
Class of the properties relevant to a given CPS. The fact that a property addresses
a concern is formalized by relation addressed-by.

Configuration
Features of a CPS that characterize its state, e.g. if a component is on or off. When
property satisfaction can change at run-time, corresponding individuals will be
included in this class.

Action and
Constraint

Actions are those within the control of an agent (e.g., an operator) and those that
occur spontaneously. Constraints capture dependencies among properties
(e.g., mutual exclusion).

Object Property Meaning

hasSubConcern
The object property represents the has-subconcern relationship between
the concerns.

addrConcern
The object property represents the addressed-by relation between a concern
and a property.

Table 1: Main components of the CPS Ontology

observe that the program Π I is a program with no occurrence of not b. An interpretation
I is an answer set [8] of Π if I is the least model (wrt. ⊆) of Π I . Several extensions
(e.g., choice atoms, aggregates, etc.) have been introduced to simplify the use of ASP.
We will use and explain them whenever it is needed. Efficient and scalable ASP solvers
are available8.

3 OA4CPS: A Hybrid Reasoner for CPS

We now describe OA4CPS, a hybrid reasoning system for CPS, which combines ontology-
based reasoning with ASP. As a prototypical system for reasoning about CPS, OA4CPS
focuses on the trustworthiness aspect of CPS. The techniques developed in this paper
can be easily extended to cover other aspects described in CPSF. Figure 2 depicts the
overview of OA4CPS. The input of OA4CPS is a CPS Theory Specification ∆ = (S , I)
(details follow shortly). The translator combines ∆ with the relevant fragment Ω of the
CPS Ontology obtained from a suitable query. The translator then produces an ASP
program Π(∆ ,n) where n is an integer, denoting the time horizon of interest for reason-
ing tasks over ∆ . Π(∆ ,n) is utilized by the reasoner to answer questions related to the
trustworthiness of the system. The answers generated by the reasoner can be presented
to the users in different formats (e.g., sunburst chart, hierarchy, etc.) by a visualizer. The
focus of this section will be on the reasoner and how CPS specifications are translated

8 See, e.g., https://potassco.org/clingo/.

https://potassco.org/clingo/


6 Thanh H. Nguyen et al.

(CPS)-Ontology

(CPS) Theory 
Specification Reasoner Visualizer UserTranslator�횫=(�풮,I)

�훀

�횷(�횫,n) Answer

Fig. 2: Overall architecture of OA4CPS

to ASP programs for use with the reasoner. Details about the implementation of the
translator and the visualizer are given in the next section.

3.1 From CPS Theory Specification to ASP Encoding

We view a CPS as consisting of interacting cyber and physical components, which af-
fect properties defined in the CPS ontology, e.g. trustworthiness of the system. For this
reason, we extend the CPS ontology with a component class, a relates relationship
which represents the connection between components and properties in the CPS on-
tology, and an action class which allows for the representation and reasoning about
actions in CPS. In this paper, we employ the action ontology described in [15] where
the action profile (preconditions, effects, input, output, etc.) is described by an OWL on-
tology and reasoning about effects of actions is formalized via action language B[10].
From now on, “CPS ontology” refers to the CPS ontology in [2] with these features.

In the CPS ontology, a CPS is characterized by a set of concerns (represented as
ontology individuals), a set of properties, and a relation linking properties to the con-
cerns they address. Formally, a CPS domain S is a tuple (C,A,F,R) where C is a set of
components; A is a set of actions that can be executed over S ; F is a finite set of fluents
of S ; R is a set of relations that maps each c ∈ C to a set of properties R(c) defined
in the CPS ontology. A state s of S is an interpretation9 of F . A CPS theory is a pair
(S , I) where S is a CPS domain and I is a state representing the initial configuration of
S . The execution of actions changes the states, e.g., the truth values of the properties,
thereby affecting the trustworthiness of the system. As such, we can utilize the frame-
work for reasoning about actions and changes to reason about the trustworthiness of a
CPS. In this paper we adopt a hybrid approach to reasoning that leverages the power of
ontology-based reasoning for drawing (time-independent) inferences about a CPS and
its components and the flexibility of ASP for non-monotonic reasoning and reasoning
about actions and change. For this reason, the translator takes in input a CPS theory
∆ = (S , I), queries the CPS ontology for relevant information, and produces the ASP
program Π(∆ ,n) discussed earlier. We use ASP as it is well-known for working with
ontologies (e.g., [4,7,15,14]). Due to the space limitation, we will illustrate the transla-
tion from ∆ to Π(∆ ,n) using a simplified CPS ∆Ele = (SEle, IEle) for controlling an el-
evator in Example 1. We define Π(∆Ele,n) = Π(Ω)∪Πd(SEle)∪Π(IEle)∪Πn(SEle).
Each component of Π(∆Ele) is defined next.

9 In the following, we will follow the convention to describe a state s as a subset of F and say
that f ∈ s is true in s and f 6∈ s is false in s.



Title Suppressed Due to Excessive Length 7

CPS Ontology. Let Ω be obtained by querying the CPS ontology for the task at hand.
Π(Ω) is the ASP encoding of Ω and includes representations of the classes, individuals,
and relationships as well as the supporting rules. Listing 1.1 depicts selected rules of
Π(Ω).

Listing 1.1: Π(Ω) (selected rules)

1 class(concern). class(aspect). class(property). class(action).
2 subClass(aspect,concern). concern(X) :- aspect(X).
3 aspect(trustworthiness). isInstOf(trustworthiness,aspect).
4 concern(security). isInstOf(security,concern).
5 concern(cybersecurity). isInstOf(cybersecurity,concern).
6 concern(integrity). isInstOf(integrity,concern).
7 ...
8 subCo(cybersecurity,integrity). subCo(security,cybersecurity).
9 subCo(trustworthiness,security).

10 ...
11 prop(flash_warning). isInstOf(flash_warning,property).
12 addBy(integrity,flash_warning).
13 ...
14 subClass(X,Y):-subClass(Z,Y), subClass(X,Z).
15 ...

Components, Fluents, and Relations. The components of SEle are EC, CP, ER, PF,
and ESCam. They are related to various properties defined in the CPS Ontology, e.g., CP
is related to maintenance regularly, communicate with other, etc. These com-
ponents and relationships are depicted in the bottom part of Fig. 1, where squares (links
labeled relates) represent components and (relationships). A component X is operating
in different modes, each mode is a property P; this is denoted with a fluent im(X ,P)
(‘im’ stands for ‘in mode’). The relates relationship is translated into predicate of the
form rel(X ,P). The sets of components, fluents, and relations of SEle are translated
into a set of ASP facts, denoted by Πd(SEle), as follows:

Listing 1.2: Πd(SEle)

1 comp(cp). comp(er). comp(pf). comp(ec). comp(escam).
2 fluent(im(escam,flash_warning)).fluent(im(er,control_speed)).
3 fluent(im(escam,detect_up_11)).fluent(im(ec,halting)).
4 ...
5 rel(cp,maintenance_regularly). rel(er,send_actions).
6 rel(er,communicate_with_other_comp). rel(er,control_speed).
7 rel(pf,control_speed). rel(ec,control_moving).
8 rel(escam,flash_warning). rel(escam,detect_up_11).
9 ...

Initial Configuration. Initially, properties associated with SEle can be true (>) or false
(⊥). The initial state is translated into a set of facts of the form o(x,>) or o(x,⊥) for
x ∈ I or x 6∈ I (Lines 1-5, Listing 1.3). An initial configuration IEle of the values of SEle
is done by two rules that define the predicate h and ¬h at the time step 0 (Lines 6-7,
Listing 1.3). Line 8 describes which properties having available patch.

Listing 1.3: Π(IEle)

1 o(maintenance_regularly,>). o(control_speed,⊥).
2 o(flash_warning,>). o(send_actions,>). o(pulley_release,>).



8 Thanh H. Nguyen et al.

3 o(pulley_clench,>). o(control_pulley,>). o(control_moving,>).
4 o(moving_up,>). o(moving_down,>). o(halting,>).
5 o(detect_up_11,⊥). o(communicate_with_other_comp,>).
6 h(P,0) :- o(P,>), prop(P).
7 -h(P,0) :- o(P,⊥), prop(P).
8 availablePatch(control_speed).

Actions and Constraints. Actions change the status of the properties in SEle and con-
straints describe dependencies among CPS properties. For brevity, we focus on a few
affecting the trustworthiness of the system. For simplicity of presentation, we assume
that each property P can be changed by the action tOn(P) or tOff (P). In addition, there
is an action patch(P)—a special action that could help restore P to the value true if
the patch of P is available (availablePatch(P) holds). Furthermore, when escam

detects more than 11 passengers, it sets the property overloaded to be true. Actions and
constraints are translated to ASP rules accordingly following Table 2. In these rules, T
is an integer ranging between 0 and n, h∗(l, t) stands for h(l, t) if l is a fluent and for
−h( f , t) if l is a negated fluent ¬ f .

Statement type ASP Translation
(0) Action declaration action(a).

(1) Executability condition exec(a,T) :− step(T),h∗(p1,T), . . . ,h∗(pn,T).
(2) Dynamic law h∗(f,T+1) :− step(T),occurs(a,T), h∗(p1,T), . . . ,h∗(pn,T).
(3) State constraint h∗(f,T) :− step(T), h∗(p1,T), . . . ,h∗(pn,T).

(4) Inertial axiom
h(f,T+1) :− step(T),h(f,T), not −h(f,T+1).
−h(f,T+1) :− step(T),−h(f,T), not h(f,T+1).

Table 2: Formulas of an action a

Listing 1.4: Πn(SEle)

1 action(tOn(X)) :- prop(X). action(tOff(X)) :- prop(X).
2 action(patch(X)) :- prop(X).
3 h(im(ec,halting),T) :- h(im(escam,overloaded),T), step(T).
4 exec(tOn(X),T) :- -h(X,T), prop(X), step(T).
5 exec(tOff(X),T) :- h(X,T), prop(X), step(T).
6 exec(patch(X),T):- prop(X), availablePatch(X),-h(X,T), step(T).
7 h(X,T+1) :- occurs(tOn(X),T), step(T).
8 -h(X,T+1) :- occurs(tOff(X),T), step(T).
9 h(X,T+1) :- occurs(patch(X),T), step(T).

10 ...

3.2 Queries Related to Trustworthiness

Given a CPS theory ∆ = (S , I), [11] list several questions related to the trustworthiness
of ∆ and its components. We are interested in the following questions:
• Question #1 (Q1): What is the most/least trustworthy of component in ∆? This is one

of most important questions in CPSF, as discussed in [11].
• Question #2 (Q2): What can be done to mitigate an issue?
• Question #3 (Q3): Which mitigation strategies have the best chance to succeed? This

question is a generalization of (Q2).



Title Suppressed Due to Excessive Length 9

3.3 Queries Answering Using Π(∆ ,n)

In this section, we use Π(∆ ,n) to answers Q1−Q3. For each query Qi, we develop a
program Πi(∆) such that answer sets of Π(∆ ,n)∪Πi(∆) are solutions of the query.

Most/Least Trustworthy Components. A component c ∈C might be related to many
concerns through the properties in R(c), whose truth values depend on the state s of
the system. If a property p ∈ R(c) is false in s, it might negatively affect a concern and
affect the trustworthiness of the system. Likewise, if p is true in s, it will positively
affect the concern and helps strengthen the trustworthiness of the system.

Assume that all concerns and properties are equally important, we could say that a
component c ∈C is less trustworthy than a component c′ ∈C if the number of concerns
negatively associated to c is greater than the number of concerns negatively associ-
ated to c. Alternatively, we can characterize the trustworthiness of a component by the
numbers of concerns that are positively or negatively affected by the component and
use them in evaluating the components. In this paper, we adopt this second alternative.
Since actions change the truth values of properties, we will define these numbers wrt.
a state, i.e., for each x ∈C and a state s of S , we define twc+(x,s) (twc−(x,s)) as the
number of concerns in Ω that are positively (negatively) impacted by component x in a
state s.

Note that the direct relationship between a concern c and a property p in Ω is
translated into addBy(c,p) in Π(Ω). We say that a property p addresses a concern c if
(i) p directly addresses c; or (ii) there exists some subconcern c′ of c that is addressed
by p. As such, a concern c is positively (negatively) impacted by a component x at the
step t if x is related to a property p that addresses c and p holds (does not hold) at t.
Formally, for a state s of S : twc+(x,s) = Σp∈R(x),p∈s|{c | addBy(c, p)}| and
twc−(x,s) = Σp∈R(x),p6∈s|{c | addBy(c, p)}|. Next, we propose an ordering among the
components using the two numbers. Let δ (x,s) = twc+(x,s)− twc−(x,s).

Definition 1. For a CPS S = (C,A,F,R), c1,c2 ∈C, and state s of S ,
• c1 is more trustworthy than c2 in s, denoted by c1 �s c2 (or c2 is less trustworthy
than c1, denoted by c2 ≺s c1), if δ (c1,s)> δ (c2,s); and
• c1 is as trustworthy as c2 in s, denoted by c1 ∼s c2, if δ (c1,s) = δ (c2,s).

c1 �s c2 denotes that c1 �s c2 or c1 ∼s c2. c is the most (least) trustworthy component
of S in s if c�s c′ (c′ �s c) for every c′ ∈C.

Proposition 1. Let S = (C,A,F,R) be a CPS system and s be a state in S . The rela-
tion �s over the components of S is transitive, symmetric, and total.

Proposition 1 shows that �s has min/maximal elements, i.e., least/most trustworthy
components of a system always exist. The program Π1(S ) for computing these com-
ponents is listed below.

Listing 1.5: Π1(S ): Computing the most/least trustworthy component

1 addBy(C,P) :- prop(P), addBy(O,P), subCo(C,O).
2 tw p(P,N) :- N=#count{C:addBy(C,P)}, prop(P).
3 pos(X,P,T) :- comp(X), prop(P), step(T), rel(X,P), h(P,T).



10 Thanh H. Nguyen et al.

4 neg(X,P,T) :- comp(X), prop(P), step(T), rel(X,P),-h(P,T).
5 twcp(X,TW,T) :- TW=#sum{N,P:tw p(P,N), prop(P), pos(X,P,T)},
6 comp(X), step(T).
7 twcn(X,TW,T) :- TW=#sum{N,P:tw p(P,N), prop(P), neg(X,P,T)},
8 comp(X), step(T).
9 d(X,D,T) :- comp(X), step(T), twcp(X,TWp,T), twcn(X,TWn,T),

10 D=TWp-TWn.
11 most(X,T) :- comp(X), step(T), d(X,M,T), M == #max{N:d(_,N,T)}.
12 least(X,T):- comp(X), step(T), d(X,M,T), M == #min{N:d(_,N,T)}.

In Π1(S ), tw p(p,n) says that p impacts n concerns. pos(x, p, t) (neg(x, p, t)) states
that x has a property p which positively (negatively) impacts the concerns related to it
at the step t. twcp(x, tw, t) (twcn(x, tw, t)) states that the number of concerns positively
(negatively) impacted by x at step t is tw. #count{C : addBy(C,P),prop(P)} is an ag-
gregate atom and encodes the cardinality of the set of all concerns addressed by P. Simi-
larly, #sum{...}, #max{...}, and #min{...} are aggregate atoms and are self-explanatory.

Proposition 2. For a CPS theory ∆ = (S , I) and an answer set S of Π(∆ ,n)∪Π1(S ),
twc+(x,st) = k iff twcp(x,k, t) ∈ S and twc−(x,st) = k iff twcn(x,k, t) ∈ S where st =
{h( f , t) | h( f , t) ∈ S}. Furthermore, x is a most (least) trustworthy component in st iff
most(x, t) ∈ S (least(x, t) ∈ S).

The proposition confirms that the program correctly computes the values of twc+(x,s)
and twc−(x,s) as well as the most (least) component of S in a state. Its proof follows
immediately from the definition of the predicate addBy and the definition of aggregate
functions in ASP. As such, to identify the most trustworthy component of S , we only
need to compute an answer set S of Π(∆)∪Π1(S ) and use Proposition 2.

Example 2. For ∆Ele, we can easily see that (from Figure 1) tw p(control speed,6) and
tw p(flash warning,4), etc. belong to any answer set of Π(∆Ele)∪Π1(SEle). Similar
atoms are present to record the number of concerns affected by different properties. Fur-
thermore, twcp(cp,15,0), twcn(cp,0,0), twcp(er,16,0), twcn(er,6,0), twcp(p f ,28,0),
twcn(p f ,6,0), twcp(ec,32,0), twcn(ec,0,0), twcp(escam,13,0), and twcn(escam,3,0)
belong to any answer set of Π(∆Ele)∪Π1(SEle): EC is the most trustworthy compo-
nent; ER and ESCam are the least trustworthy components at step 0.

We conclude this part with a brief discussion on possible definitions of�. The proposed
definition assumes everything being equal. On the other hand, twc+(x,s) and twc−(x,s)
can be used in different ways such as via the lexicographic order to define an ordering
that prefers the number of positively impacted concerns over the negatively ones (or vise
versa). Any ordering based on twc+(x,s) and twc−(x,s) could easily be implemented
using ASP. Last but not least, in practice, the ordering � might be qualitative and user-
dependent, e.g., an user might prefer confidentiality over integrity. � can be defined
over a qualitative ordering and implemented in ASP in a similar fashion that preferences
have been implemented (e.g., [9]).

Generating Mitigation Strategies. Let S = (C,A,F,R) be a CPS domain and s be a
state of S . A concern c is satisfied in a state s if all properties addressing c are true



Title Suppressed Due to Excessive Length 11

in s and all sub-concerns of c are satisfied in s; otherwise, it is unsatisfied. Mitigating
an issue is therefore equivalent to identifying a plan that suitably changes the state of
properties related to it. The mitigation problem can then be defined as follows:

Definition 2. Let S = (C,A,F,R) be a CPS system and s be a state of S . Let Σ be a set
of concerns. A mitigation strategy addressing Σ is a plan [a1, . . . ,ak] whose execution
in s results in a state s′ such that for every c ∈ Σ , c is satisfied in s′.

As planing can be done using ASP, the mitigation problem can be solved using the
following code:

Listing 1.6: Π2(S ): Computing Mitigation Strategy for concern c

1 -h(sat(C),T) :- addBy(C,P),-h(P,T).
2 -h(sat(X),T) :- subCo(X,Y), not h(sat(Y),T).
3 -h(sat(X),T) :- subCo(X,Y),-h(sat(Y),T).
4 h(sat(C),T) :- not -h(sat(C),T), concern(C).
5 1{occurs(A,T):action(A)}1 :- step(T), T<n.
6 :- occurs(A,T), not exec(A,T).
7 :- not h(sat(c),n), concern(c).

The first four rules are for reasoning about the satisfaction of concerns (see also [2]):
h(sat(C),T) states that concern C is satisfied at the time step T. The first rule states
that C is not addressed if some of its properties is false. The next two rules propa-
gate the unsatisfaction of a concern from its subconcern. Finally, a concern is satis-
fied if it cannot be proven that it is unsatisfied. In line 5, the rule containing the atom
1{occurs(A,T) : action(A)}1 —a choice atom—is used to generate the action occur-
rences and says that at any step T , exactly one action must occur. The second to last
rule states that an action can only occur if it is executable. The last rule helps enforce
that h(sat(c),n) must be true in the last state, at step n. For a set of concerns Σ , let
Π2(S )[Σ ] be the program obtained from Π2(S ) by replacing its last rule with the set
{:−not h(sat(c),n). | c ∈ Σ}. Based on the results in answer set planning, we have:

Proposition 3. Let ∆ = (S , I) be a CPS theory and Σ be a set of concerns. Then,
[a0, . . . ,an−1] is a mitigation strategy for Σ iff Π(∆ ,n)∪Π2(S )[Σ ] has an answer set
S such that occurs(ai, i) ∈ S for every i = 0, . . . ,n−1.

We conclude the section with a brief discussion on possible changes to Π2(S ) that
might be useful in certain situations and can easily be implemented in ASP. Observe that
the execution of an action might change the state of some properties between step 0 and
n or might result in some concerns becoming unsatisfied. To prevent this, the following
rule can be added to Π2(S [Σ ]): :−h(sat(C),0),−h(sat(C),T),T> 0. which says that
if C is satisfied at 0 then it should not be unsatisfied at any step > 0.

Example 3. Consider again ∆Ele. Assume that control speed and detect up 11 are
initially false (figure 1), leading to many unsatisfied concerns (e.g., Safety, Privacy)
and affecting the Trustworthiness of the system. In this situation, tOn(control speed),
patch(control speed) and tOn(detect up 11) can be used to repair these prop-
erties (action patch(detect up 11) is not executable). Π2(S ) have four mitigation
strategies of length 2:
• α1 = tOn(detect up 11) ·tOn(control speed)



12 Thanh H. Nguyen et al.

• α2 = tOn(detect up 11) ·patch(control speed)

• α3 = tOn(control speed) ·tOn(detect up 11)

• α4 = patch(control speed) ·tOn(detect up 11)

Best Mitigation Strategies. Mitigation strategies computed in the previous subsec-
tion assumed that actions always succeeded. In practice, actions might not always suc-
ceed. In this case, it is preferable to identify strategies with the best chance of suc-
cess. Assume that each action a is associated with a set of statements of the form:
a success with v if X where v ∈ [0,1] and X is a consistent set of literals in S .
This statement says that if each l ∈ X is true in a state s and a is executable in s then
v is the probability of a’s execution in s succeeds. We assume that if a occurs in two
statements “a success with v1 if X1” and “a success with v2 if X2” with X1 6= X2 then
v1 = v2 or there exists p ∈ F such that {p,¬p} ⊆ X1 ∪X2. Furthermore, for a state s
in which no statement associated with some action a is applicable, we assume that a
succeeds with probability 1 in s if it is executable in s. It is easy to see that this set of
statements defines a mapping pr : A× States→ [0,1] where States denotes the set of
all states of S and pr(a,s) represents the probability that the execution of a in s suc-
ceeds. Such concepts can easily be added to the CPS ontology and information about
the actions in the theory can easily be added to the theory specification.

In this setting, the execution of a sequence of actions (or a strategy) [a0, . . . ,an−1]
in a state s succeeds with the probability Π

n−1
i=0 pr(ai,si) where s0 = s, and for i > 0,

si is the result of the execution of ai−1 in si−1. Problem Q3 focuses on identifying
strategies with the maximal probability of success. Due to the space limitation, we will
only briefly discuss how this problem can be addressed. Let Π3(S ) be the program
Π2(S ) extended with the following rules:
• for each statement a success with v if p1, . . . , pn, the two rules:
pr(a,v,T) :− h∗(p1,T), . . . ,h

∗(pn,T).
dpr(a,T) :− h∗(p1,T), . . . ,h

∗(pn,T).
which check for the satisfaction of the condition in a statement defining the proba-
bility of success in the step T and states that it is defined.
• the rule: pr(A,1,T) :− exec(A,T), not dpr(A,T).

which says that by default, the probability of success of a at step T is 1.
• computing the probability of the state at step T :
prob(1,0).
prob(U∗V,T+1) :− prob(U,T),occurs(A,T),pr(A,V,T). where the first rule says
that the probability of the state at the time 0 is 1; prob(v, t) states that the probability
of reaching the state at the step t is v and is computed using the second rule.

We have that if [a0, . . . ,an−1] and S is an answer set of Π(∆)∪Π3(S )∪{occurs(ai, i) |
i = 0, . . . ,n−1} then prob(Π n−1

i=0 pr(ai,si),n) ∈ S. To compute the best strategy, we add
the rule #maximize{V : prob(V,n)}. to Π3(S ).

Example 4. Continue with Example 3. We assume that the probability of success of
tOn(detect up 11), tOn(control speed), and patch(control speed) are 0.8, 0.7,
0.3 in every state, respectively. In this case, the strategies α1 and α3 have the maximal
probability to succeed.



Title Suppressed Due to Excessive Length 13

4 Towards a Decision-Support System for CPSF

As a demonstration of the potential use of our approach, in this section we give a brief
overview of a decision-support system that is being built for use by CPS designers,
managers and operators. We also include preliminary considerations on performance
aspects.

The decision-support system relies on an implementation of the translator and of the
different modules for answering queries described in Sec. 3, and comprises a reasoning
component and a visualization component. Figure 4 shows the reasoning component
at work on two queries related to the elevator example. Notice how the user can ask
the system to reason about satisfaction of concerns and to produce mitigation plans.
The output of the reasoning component can then be fed to the visualization component,
where advanced visualization techniques allow practitioners to get a birds-eye view of
the CPS or dive into specific details. For instance, the sunburst visual from Figure 3
provides a view of the CPS from Figure 1 where the aspects are presented in the inner
most ring. Moving outwards, the visualization shows concerns from increasingly deeper
parts of the concern tree and properties. The left-hand side of the figure depicts the
visualization in the case in which all concerns are satisfied (blue), while the right-hand
side shows how the sunburst changes when certain concerns (highlighted as red) are
not satisfied. Focusing on the right-hand side, the text box open over the visual reports
that the trustworthiness aspect is currently not not satisfied and the level at which this
concern is not being met is the concern of privacy and the property of manageability.
The visual allows for a pinpoint where within the CPS framework issues have arisen
that when addressed can enable a working state.

To ensure flexibility and to allow for investigation on the scalability on larger CPS,
the decision-support system is designed to support a variety of hybrid ontology-ASP
reasoning engines. Currently, we consider four reasoning engines: the naı̈ve engine is
implemented by connecting, in a loosely-coupled manner10, the SPARQL reasoner11

and the Clingo ASP solver. This engine issues a single SPARQL query to the ontol-
ogy reasoner at the beginning of the computation, fetching all necessary data. The
Clingo-Python engine is another loosely-coupled engine, leveraging Clingo’s ability
to run Python code at the beginning of the computation. This engine issues multiple
queries in correspondence to the occurrences of special “external predicates” in the
ASP program, which in principle allows for a more focused selection of the content of
the ontology. The DLVHex2 engine also uses a similar fragmentation of queries, but the
underlying solver allows for the queries to be executed at run-time, which potentially
results in more focused queries, executed only when strictly needed. Finally, the Hexlite
engine leverages a similar approach, but was specifically designed as a smaller, more
performant alternative to DLVHex2.

10 By loosely-coupled, we mean that the components see each other as black-boxes and only
exchange information, via simple interfaces, at the end of their respective computations. Com-
pare this with a tightly-coupled architecture, where the components have a richer interfaces
for exchange state information and controlling each other’s execution flow while their compu-
tations are still running.

11 https://www.w3.org/TR/rdf-sparql-query/



14 Thanh H. Nguyen et al.

Fig. 3: Visualization component

In this preliminary phase of our investigation on scalability, all reasoning engines
have exhibited similar performance, as exemplified by Table 3. The table summarizes
the results of question-answering experiments on the Lane Keeping/Assist System (LKAS)
[2] domain and on the Elevator domain. The reasoning tasks considered are for answer-
ing questions Q1−Q3 discussed earlier. While the results show that the naı̈ve engine is
marginally better than the others, the differences are quite negligible, all within 10%.

Query
LKAS Elevator

Naı̈ve
Clingo
-Python

DLVHex2 Hexlite Naı̈ve
Clingo
-Python

DLVHex2 Hexlite

Q1 1.827s 2.013s 1.82s 1.831s 1.853s 2.03s 1.795s 1.88s
Q2 1.91s 2.15s 1.913s 1.924s 1.933s 2.076s 1.941s 2.02s
Q3 2.02s 2.33s 2.031s 2.027s 2.051s 2.253s 2.058s 2.181s

Table 3: CPS domains Querying, Extracting and Reasoning Summary

It is conceivable that larger-scale experiments will eventually exhibit similar pat-
terns to those found in other research on the scalability of hybrid systems (e.g., [3]).
We obtained positive indications on this from preliminary experiments we conducted
on ontologies featuring up to 150K triples, 85 classes, 61K individuals, 30 object prop-
erties, 40 data properties, and 45 subclass relations. In these experiments, running our
system consistently took a minute or less. (We omit the details due to space considera-
tions, since it is not the focus of this paper.) A thorough analysis will be the subject of
a separate paper.

5 Conclusions, Related Work, and Discussion

This paper discusses three important problems related to the trustworthiness of CPS and
their solutions using hybrid ontology-ASP reasoning. Specifically, for each problem, the
paper presents a mechanism for answering it and proves relevant properties. To the best
of our knowledge, this is the first attempt at a mathematically precise solution of issues
in the CPSF, addressing the need for tools for evaluating the trustworthiness of CPS.



Title Suppressed Due to Excessive Length 15

Fig. 4: Reasoning component

Due to space constraints, we limit our overview of related work to what we consider
the most relevant approaches. The literature from the area of cybersecurity is often fo-
cused on the notion of graph-based attack models. Of particular relevance is the work
on Attack-Countermeasure Trees (ACT) [18]. An ACT specifies how an attacker can
achieve a specific goal on a IT system, even when mitigation or detection measures
are in place. While ACT are focused on the Cybersecurity concern, our approach is
rather generally applicable to the broader Trustworthiness aspect of CPS and can in
principle be extended to arbitrary aspects of CPS and their dependencies. The underly-
ing formalization methodology also allows for capturing sophisticated temporal models
and ramified effects of actions. In principle, our approach can be extended to allow for
quantitative reasoning, e.g. by leveraging recent work on Constraint ASP and proba-
bilistic ASP [3,17,5]. As we showed above, one may then generate answers to queries
that are optimal with respect to some metrics. It is worth pointing out that the combina-
tion of physical (non-linear) interaction and logical (discrete or Boolean) interaction of
CPS can be modeled as a mixed-integer, non-linear optimization problem (MINLP) ex-
tended with logical inference. MINLP approaches can support a limited form of logic,
e.g. through disjunctive programming [1]. But these methods seem to struggle with sup-
porting richer logics and “what-if” explorations. For relevant work in this direction, see
[13,6].

The proposed methodologies in this paper build on a vast number of research results
in ASP and related areas such as answer set planning, reasoning about actions, etc.
and could be easily extended to deal with other aspects discussed in CPSF. They are
well-positioned for real-world applications given the efficiency and scalability of ASP-
solvers that can deal with millions of atoms, incomplete information, default reasoning,
and features that allow ASP to interact with constraint solvers and external systems.
In our future works, we continue monitoring to reason about the factors that affect
to the trustworthiness of a CPS such as the probability that a component crashes, the
accessibility of a component and the internal probability of system errors.

The second author is partially supported by NSF grants 1757207, 1812628, and 1914635.



16 Thanh H. Nguyen et al.

Disclaimer. Official contribution of the National Institute of Standards and Technology; not sub-
ject to copyright in the United States. Certain commercial products are identified in order to
adequately specify the procedure; this does not imply endorsement or recommendation by NIST,
nor does it imply that such products are necessarily the best available for the purpose. Portions of
this publication and research effort are made possible through the help and support of NIST via
cooperative agreements 70NANB18H257 and 70NANB19H102.

References
1. Balas, E.: Disjunctive programming: Cutting planes from logical conditions. In: Nonlinear

Programming 2, pp. 279–312. Elsevier (1975)
2. Balduccini, M., Griffor, E., Huth, M., Vishik, C., Burns, M., Wollman, D.A.: Ontology-

based reasoning about the trustworthiness of cyber-physical systems. ArXiv abs/1803.07438
(2018)

3. Balduccini, M., Lierler, Y.: Constraint Answer Set Solver EZCSP and Why Integration
Schemas Matter. Journal of Theory and Practice of Logic Programming (TPLP) 17(4), 462–
515 (2017)

4. Baral, C.: Knowledge Representation, reasoning, and declarative problem solving with An-
swer sets. Cambridge University Press, Cambridge, MA (2003)

5. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. Theory and
Practice of Logic Programming 9(1), 57–144 (2009)

6. D’Iddio, A.C., Huth, M.: ManyOpt: An Extensible Tool for Mixed, Non-Linear Optimization
Through SMT Solving. CoRR abs/1702.01332 (2017), http://arxiv.org/abs/1702.01332

7. Eiter, T.: Answer set programming for the semantic web. In: ICLP. LNCS, vol. 4670, pp.
23–26. Springer (2007)

8. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Warren, D., Szeredi,
P. (eds.) Logic Programming: Proceedings of the Seventh International Conference. pp. 579–
597 (1990)

9. Gelfond, M., Son, T.C.: Prioritized default theory. In: Selected Papers from the Workshop
on Logic Programming and Knowledge Representation 1997. pp. 164–223. Springer Verlag,
LNAI 1471 (1998)

10. Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. Artif. Intell. 2, 193–210 (1998)
11. Griffor, E., Greer, C., Wollman, D.A., Burns, M.J.: Framework for cyber-physical systems:

volume 1, overview (2017)
12. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.

In: The Logic Programming Paradigm: a 25-year Perspective. pp. 375–398 (1999)
13. Mistr, M., D’Iddio, A.C., Huth, M., Misener, R.: Satisfiability modulo theories for process

systems engineering. eprints for the optimization community (19 June 2017)
14. Nguyen, T.H., Potelli, E., Son, T.C.: Phylotastic: An experiment in creating, manipulat-

ing, and evolving phylogenetic biology workflows using logic programming. TPLP 18(3-4),
656–672 (2018). https://doi.org/10.1017/S1471068418000236

15. Nguyen, T.H., Son, T.C., Pontelli, E.: Automatic web services composition for phylotastic.
In: PADL. pp. 186–202 (2018), https://doi.org/10.1007/978-3-319-73305-0 13

16. Niemelä, I.: Logic programming with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3,4), 241–273 (1999)

17. Ostrowski, M., Schaub, T.: ASP Modulo CSP: The Clingcon System. Journal of Theory and
Practice of Logic Programming (TPLP) 12(4–5), 485–503 (2012)

18. Roy, A., Kim, D.S., Trivedi, K.S.: Attack countermeasure trees (ACT): towards unifying the
constructs of attack and defense trees. Security and Communication Networks 5(8), 929–943
(2012). https://doi.org/10.1002/sec.299, https://doi.org/10.1002/sec.299

http://arxiv.org/abs/1702.01332
https://doi.org/10.1017/S1471068418000236
https://doi.org/10.1007/978-3-319-73305-0_13
https://doi.org/10.1002/sec.299
https://doi.org/10.1002/sec.299

	Reasoning about Trustworthiness in Cyber-Physical Systems Using Ontology-Based Representation and ASP

