
Learning visual servo policies via planner cloning
Ulrich Viereck∗, Kate Saenko+, Robert Platt∗

∗Khoury College of Computer Sciences, Northeastern University
+Department of Computer Science, Boston University

Abstract—Learning control policies for visual servoing in
novel environments is an important problem. However, standard
model-free policy learning methods are slow. This paper explores
planner cloning: using behavior cloning to learn policies that
mimic the behavior of a full-state motion planner in simulation.
We propose Penalized Q Cloning (PQC), a new behavior cloning
algorithm. We show that it outperforms several baselines and
ablations on some challenging problems involving visual servoing
in novel environments while avoiding obstacles. Finally, we
demonstrate that these policies can be transferred effectively onto
a real robotic platform, achieving approximately an 87% success
rate both in simulation and on a real robot.

I. INTRODUCTION

Visual servoing in novel environments is an important
problem. Given images produced by a camera, a visual servo
control policy guides a grasped part into a desired pose
relative to the environment. This problem appears in many
situations: reaching, grasping, peg insertion, stacking, machine
assembly tasks, etc. Whereas classical approaches to the
problem [6, 3, 27] typically make strong assumptions about the
environment (fiducials, known object geometries, etc.), there
has been a surge of interest recently in using deep learning
methods to solve these problems in more unstructured settings
that incorporate novel objects [29, 14, 26, 8, 21, 28, 12, 13].
However, it is still unclear what are the best methods here.
Standard model-free reinforcement learning methods such as
DQN [15], AC2 [16], PPO [23], etc. do poorly because they
treat this as an unstructured model-free problem. One way
to improve upon this situation is to incorporate additional
knowledge via reward shaping or curriculum learning, but
these approaches can require significant design effort. Most
current approaches to visual servoing in unstructured do-
mains involve some form of imitation learning or behavior
cloning [29, 14, 26, 8, 21, 28]. However, there are substantial
differences between these methods and their relative perfor-
mance is unclear.

This paper focuses on a class of imitation learning ap-
proaches that we call planner cloning, where the expert is an
approximately optimal motion planner that generates estimates
of the optimal value function and optimal policy given full
state feedback. This information is cloned onto a value func-
tion or policy over the observation space (i.e. over the space
of camera images) that can be used at test time where full
state feedback is unavailable. Within this simple framework,
we explore several existing and new cloning techniques and
ablations in order to determine which ideas perform best on the
visual servo problems we consider. We focus on a particularly

challenging class of visual servo tasks that involve servoing to
a goal pose while avoiding obstacles in novel environments.

The main contribution of this paper is a new behavior
cloning algorithm that we call Penalized Q Cloning (PQC).
It has the following characteristics:
• It learns a value function using supervised value targets

provided by the planner, similar to AGGREVATE [19].
• It incorporates a penalty into the value targets for subop-

timal actions, similar to DQfD [4].
• For every experience in the replay buffer, it updates the

values for all feasible actions from that state, not just the
action experienced.

Fig. 1. One of the visual servoing
scenarios (inserting a peg into a hole)
used in our evaluations.

This algorithm differs from
AGGREVATE because
it incorporates the value
penalties and from DQfD
because it uses supervised
targets rather than TD
targets. We compare PQC
with several baselines and
algorithm ablations and
show that it outperforms
all these variations on two
challenging visual servoing
problems in novel cluttered
environments, such as that
shown in Figure 1. The
resulting policies achieve high success rates (approximately
87%) on challenging visual servo tasks.

Finally, we make three additional minor contributions:
1) We show that an approximately optimal motion plan-

ning algorithm can be used to produce a near optimal
value function and policy that can be used for behavior
cloning.

2) We show that, in the visual servo setting at least, it
is often advantageous to “finetune” the cloned policy
using TD learning (DQN or the like) as a separate
postprocessing step.

3) We show that it is sometimes advantageous to use
prioritized replay in the behavior cloning setting, just
as it is advantageous with DQN.

A. Related work

Many approaches to learning visual servo policies use
standard behavior cloning where rollouts from a hand-crafted
expert are used to train a policy. For example, Zhang et al.

ar
X

iv
:2

00
5.

11
81

0v
1

 [
cs

.R
O

]
 2

4
M

ay
 2

02
0

train a reaching controller to imitate a hand crafted policy
that moves directly toward a target object [28]. Viereck et al.
do something similar using an L1 loss term [25]. Sadeghi et
al. combine a policy cloning term with a TD loss term [21].
Yan et al. take a similar approach, combining DAGGER with
a planner-based expert to solve a relatively simple visual
servoing task that does not involve clutter or obstacles [26].
In contrast to the above, this paper: 1) explores a setting
where the expert is a motion planner that finds obstacle free
trajectories rather than a hand crafted policy; 2) explores a
variety of behavior cloning methods beyond the standard off-
policy behavior cloning paradigm.

Rather than imitating a simple hand crafted policy, Zhu
et al. [29] propose an approach to learning visuomotor tasks
focused on leveraging a small number of demonstrations using
on a combination of GAIL [5] and PPO [23]. They incorporate
a variety of additional algorithmic pieces including curriculum
learning, an asymmetric actor-critic method, and an object-
centric state representation into their method. In contrast,
this paper focuses on characterizing the space of cloning
algorithms in a relatively simple planner cloning setting.

There are a couple of applications of imitation learning
to task-level learning to point out. Nair et al. [17] explore
an approach to imitation learning similar to ADET [11]
where a DAGGER-like loss term is combined with a TD loss
term. They demonstrate on some block stacking results in an
environment with full state feedback. Mahler et al. [14] learn
a policy for picking a sequence of objects from a bin where
the actions are target grasp poses. James et al. [8] use a variant
of standard behavior cloning to clone a heuristic policy that
solves a pick and place task in a non-cluttered environment.

Other work explores applications of model-free reinforce-
ment learning (RL) to visual servoing. Well known examples
are [12] which uses Guided Policy search to learn manipula-
tion tasks and [13] which uses a form of Monte Carlo RL to
find reach/grasp policies. One important idea in this space is
that of an “asymmetric” actor-critic [18] where the critic takes
full state feedback while the actor takes raw observations. Our
paper leverages a similar idea by doing planning in a fully
observable MDP and projecting the resulting value function
and policy onto a policy over observations.

There are several relevant approaches to behavior cloning
that are important to mention. One of the earliest ap-
proaches [1] generates rollouts from an expert policy that are
used to train the cloned policy. DAGGER [20] is similar, but
it combines the expert rollouts with rollouts generated by the
learned policy. This results in better performance over the
on-policy state distribution. Another important idea is that of
cloning a value function rather than a policy, first proposed
by Ross and Bagnell in the form of an algorithm called
AGGREVATE [19]. A couple of different approaches combine
DQN [15] with an additional term that causes a preference for
expert actions. One method is DQfD [4] which uses a large
margin loss. The other is ADET [11] which adds a standard
cross entropy term on the policy. These above approaches are
reviewed in more detail below.

II. BACKGROUND

MDPs: We operate within the Markov decision process MDP
framework. An MDP is a tuple M = (S,A,R, T, γ, ρ0),
where S is a set of states, A a set of actions, R(s, a) is
the expected reward for taking action a in state s, T (s, a, s′)
is the probability of transitioning to s′ when taking action
a from s, γ is the temporal discount factor, and ρ0 is a
distribution over starting states. A stochastic policy π(a|s) is
a probability distribution over action conditioned on state. If
the policy is deterministic, it can be described as a mapping,
π : S 7→ A. The value Qπ(s, a) of a given state-action
pair (s, a) is the expected discounted future reward obtained
starting from (s, a) when following policy π. The optimal
policy is the policy that takes actions so as to maximize value,

π∗ = argmax
π

Es∼ρπ,ρ0 ,a∼π(a|s)
[
Qπ(s, a)

]
, (1)

where ρπ,ρ0 is the distribution over states induced by ρ0 and
π. The optimal action value function is Q∗(s, a) = Qπ

∗
(s, a).

TD learning: TD learning (i.e. model free reinforcement
learning) calculates the optimal value function directly from
trial and error experiences by minimizing the loss,

LTD = E(s,a,s′,r)∼env(π)

[
L
(
Q(s, a), Q̂(s, a)

)]
, (2)

where Q̂(s, a) = r + γmaxa′∈AQ(s′, a′) is the temporal
difference (TD) target, env(π) is an empirical distribution of
experiences generated by the environment under exploration
policy π, and L is a suitable loss function. In TD learning,
the exploration policy improves during learning, approaching
the optimal policy.
Standard Behavior Cloning: Behavior cloning assumes the
existence of an expert in the form of expert demonstrations
D, an expert policy πE , or an expert value function QE . The
expert is assumed to be good, but not necessarily optimal. The
standard approach [1] (for discrete actions) is to find a policy
π that most closely matches the behavior of the expert, i.e.
that minimizes

LBC = Es∼ρexp
[
L(πE(·|s), π(·|s))

]
, (3)

where ρexp is the distribution of states visited by the expert
and L is a suitable categorical loss function, e.g. the cross
entropy loss.
DAGGER: One problem with Equation 3 is that the state-
action distribution over which the expectation is evaluated is
different than that which the learned policy ultimately experi-
ences. This mismatch is often corrected using DAGGER [20],
which gradually shifts the distribution over which the expec-
tation is evaluated from ρexp to the on-policy distribution for
the learned policy ρπ:

LDAG = Es∼ρdag
[
L(πE(·|s), π(·|s))

]
, (4)

where ρdag gradually shifts from ρexp to ρπ . In the limit, this
approach learns a policy that imitates the expert along learned
policy trajectories.

AGGREVATE: Whereas DAGGER clones the policy, AG-
GREVATE [19] clones the value function using

LAGG = Es∼ρdag
[
L
(
Q(s, a), Q̂(s, a)

)]
, (5)

where Q̂(s, a) = QE(s, a). Since AGGREVATE clones the
value function, it is possible to use AGGREVATE as a prepro-
cessing step to TD learning. The cloning algorithm proposed in
this paper, PQC, can be viewed as a variant of AGGREVATE.
DQfD: One problem with AGGREVATE is that it does a poor
job reproducing the expert’s policy. Equation 5 minimizes loss
with respect to QE , but it ignores the policy πE . The result is
that while Q may be a good approximation of QE , the induced
policy π(s) = argmaxa∈AQ(s, a) may be very different from
the expert policy due to small errors in the approximation of Q.
DQfD [4] solves this problem by incorporating an additional
large margin loss term that reduces the approximated value of
non-expert actions

LLM = max
a∈A

[
Q(s, a) + l(a, πE(s))

]
−Q(s, πE(s)), (6)

where l(a, πE(s)) is a large constant positive number when
a 6= πE(s) and zero otherwise. In state s, LLM is large when
the maximum action is different than the expert action. In order
to reduce this error, the optimizer will decrease the values for
non-expert (s, a) pairs. Our version of DQfD combines LLM
with a standard TD loss: Ldqfd = LTD + LLM . 1 A key
advantage of DQfD over AGGREVATE is that it learns an
action value function for which the greedy policy is equal to
the expert policy.
ADET: Accelerated DQN via Expert Demonstrations
(ADET) [11] is another approach to the problem of small Q
estimation errors leading to a failure to reproduce the expert
policy. However, rather than adding the large margin loss of
Equation 6, ADET adds the DAGGER cross entropy loss
on the policy instead: LADET = LTD + LDAG, where the
DAGGER loss is evaluated after applying a softmax to the
Q-function output.

III. VISUAL SERVO PROBLEM

Problem Statement: We assume we are given a discrete time
system that includes a robotic hand or end-effector, a camera,
and an environment that contains arbitrary objects placed
randomly (see Figure 1). Define S to be a state space that spans
all feasible end-effector poses and environment configurations.
Let A denote the action space that spans all feasible end-
effector displacements on a single time step. Let Z denote
the observation space that spans the set of images that can be
perceived by the camera. At the beginning of each episode,
state (i.e. environmental configuration and end-effector pose)
is randomly sampled from an initial distribution, s ∼ ρ0, and
the agent must attempt to move an object grasped by the end-
effector into a desired pose relative to the environment. The
agent must find a policy π : Z 7→ A over the observation space

1The loss proposed in [4] actually contains two TD loss terms, the large
margin loss above, and a regularization term, but we use this simplified version
to make the algorithm more comparable to the others described in this section.

that minimizes the expected time to reach a goal state for the
given system. Importantly, we assume that the true state s ∈ S
is always hidden at test time. The agent only ever observes
the camera images z ∈ Z.

Novel environment assumption: A key assumption is that
each experience with the world will take place with a novel
configuration of “clutter objects” (Figure 1). At the beginning
of each episode, several objects uniformly randomly sampled
from a database of clutter objects are placed in random
positions and orientations in the scene (Figure 3). The task
objective remains the same – to move the grasped object into a
desired pose with respect to the environment – but the presence
of clutter makes the problems of visual perception and obstacle
avoidance more challenging.

Train/test information asymmetry assumption: We assume
that the agent has access to a fully modeled MDP and a
simulator during training. Specifically, we assume that the
agent has access to the transition model T : S×A 7→ S and the
observation model h : S 7→ Z and that the agent observes the
full Markov state s ∈ S at each time step. During training, the
simulator produces state and simulated camera observations.
At test time, we assume that the agent does not observe the full
state. Instead, the agent only has access to camera observations
z ∈ Z.

This paper focuses on visual servo problems that do not
involve contact. Also, we largely ignore the domain transfer
problem, relying on an off-the-shelf method [7] to bridge the
sim2real gap.

IV. PENALIZED Q CLONING (PQC)

Fig. 2. Illustration of full state motion
planning scenario.

In view of the train/test
information asymmetry as-
sumption (above), notice
that there are really two
relevant MDPs: 1) a fully
modeled MDP over the un-
derlying state space S and
action space A; and 2) an
unmodeled MDP over the
observation space Z and
action space A. We want
to find a policy for the
unmodeled MDP, but we
can only plan in the mod-
eled MDP. Our approach is
therefore to use a full state motion planner to generate an
“expert” policy and value function for the fully modeled MDP
and then to project those solutions onto the unmodeled MDP
using behavior cloning.

A. Full state motion planner as the expert

First, we need to solve the fully modeled MDP for an
expert value function and policy. In general, this solution is
found using some form of approximate dynamic programming.
However, in our particular case, since the modeled MDP

corresponds to a collision free motion planning problem, we
can use any standard approximately optimal motion plan-
ner, e.g. sPRM [10], RRT∗ [9], etc. In our experiments,
we use Djikstra’s algorithm over a regular 3D grid of end-
effector positions. Edges in the graph correspond to Euclidean
distances between end-effector positions (in meters) plus a
penalty for approaching obstacles. This penalty is zero for
distances greater than 2 cm and linearly increases to a cost
of 1 as distance drops to zero. Shortest paths to goals in the
graph correspond to optimal solutions to the modeled MDP,
assuming a reward function that applies negative rewards equal
to the costs described above. Solutions found by the planner
provide two pieces of information to the behavior cloner:
an approximately optimal policy πE and an approximately
optimal value function QE . Figure 2 shows an example of
a trajectory found using this method.

B. Cloning a full state motion planner

Now that we have found an approximately optimal policy
and value function for the modeled MDP, we need to project
these solutions onto the unmodeled MDP using behavior
cloning. We do the following:
(a) Sample trajectories from expert: First, we sample trajec-
tories from the expert by sampling an initial state s0 ∼ ρ0 and
then rolling out the expert πE until termination of the episode.
For each action, we simulate the resulting next state and query
the expert for an approximate q-value, QE(s, a). This results
in a sequence of experiences (s1, a1, q1), . . . , (sn, an, qn),
where qi = QE(si, ai), that are accumulated in a dataset D.
(b) Augment dataset with supervision for all actions:
Because we have a small number of actions and the expert
is implemented by a planner, we can generate supervision for
all feasible actions from a given state, not just those executed
by the simulator. We do this for all states in D. Specifically, for
each experience (s, a, q) ∈ D, we generate |A| − 1 additional
experiences {(s, a′, QE(s, a′))|a′ ∈ A \ a} and add these
experiences to D.
(c) Apply a penalty to non-expert actions: Unlike an
approach like DAGGER [20] which clones the policy directly,
here we are cloning the value function. This exposes us
to a key failure mode: we may learn a good estimate of
QE while still estimating πE poorly. Under ideal condi-
tions, our estimate Q is exactly equal to QE : Q(s, a) =
QE(s, a), ∀s, a ∈ S × A. In this case, the greedy pol-
icy of the learned value function is equal to expert policy:
argmaxaQ(s, a) = argmaxaQE(s, a) = πE(s). However,
since we are using a deep neural network to approximate QE ,
we can expect small errors. This is a problem because even
small errors can result in a substantial divergence between
argmaxaQ(s, a) and πE(s). To combat this, we set the
action values of non-expert actions to a fixed value c where
c < mins,a∈S×AQE(s, a) (line 10 of Algorithm 1).

After generating the dataset D using the above, we use
standard SGD-based methods to optimize

LPQC = E(s,a,q)∼D

[
L(Q(s, a), q)

]
, (7)

Algorithm 1 Batch Penalized Q Cloning (Batch PQC)
1: D← ∅
2: while more episodes to execute do
3: s0 ∼ ρ0
4: for t ∈ [0, T − 1] do . iterate over time steps
5: at = πE(st)
6: for ∀a ∈ A do
7: if a = at then
8: q ← QE(st, a)
9: else

10: q ← c . apply penalty
11: D← D ∪ {(s, a, q)}
12: st+1 ← T (st, at)

13: Find Q that minimizes LPQC
14: Return Q

where L(·) is an appropriate loss. We call this method batch
penalized Q cloning or batch PQC for short. The full algorithm
is shown in Algorithm 1.
Relationship of this cloning method to prior work: This
approach to behavior cloning draws elements from at least
two different pieces of prior work. First, since we are cloning
the value function rather than the policy, our method can be
viewed as a form of AGGREVATE [19]. Second, the fact that
we administer a penalty to non-expert actions is similar to what
is done in DQfD [4] and ADET [11]. However, since both of
those methods use TD learning, they must add an additional
term into the loss function in order to achieve this. DQfD
adds the relatively complex large margin loss term. ADET
adds a cross entropy term between the policy implied by the
value function and the expert policy. In contrast, since our
method uses a fully supervised target, we can simply reduce
the supervised target q value without the additional loss term.
We experimentally compare our approach to AGGREVATE
and DQfD in Section V.
Algorithm variations: We also consider a couple of dimen-
sions of variation on the basic algorithm described above.

• Online PQC: Instead of training over a large batch of
expert rollouts, online PQC uses a DAGGER-like roll-
out schedule, i.e. it alternates between rollouts from
the expert policy and rollouts from the learned policy
according to a schedule. Early in training, most rollouts
come from the expert. Later, most rollouts come from
the learned policy. Our experiments indicate that this
method outperforms on the training set but underperforms
in novel environments due to overfitting.

• Relative penalty PQC: In this variant, we replace the
constant penalty (line 10 of Algorithm 1) with a relative
penalty: q ← QE(St, a) − l where l is the margin by
which to penalize the non-expert action. This version of
the algorithm is more simliar to DQfD [4]. Our experi-
ments indicate that it outperforms on the training set but
underperforms in novel environments due to overfitting.

C. Caching visual observations

One of the challenges of training in simulation is that it
can be computationally expensive to simulate depth images
of simulated worlds. In principle, each transition added to
the dataset D requires simulating an image of a novel scene
from a novel perspective. In order to speed this up this
process, we precompute observations for a large set of clutter
configurations. Specifically, we precompute the image that
would be observed from each node in the motion planning
graph. Then, when rolling out a trajectory during training, we
simply recall the observation that corresponds to a given end-
effector pose rather than recomputing it. This enables us to
roll out as many trajectories as we want from a given scene.
As long as this graph is not too large, this approach works
well. Using this procedure, since we no longer create a new
scene each time a new episode executes, we must select some
number of scenes in advance for which to generate data. In our
experiments, we simulate observations for at least 500 different
scenes where each scene contains randomly selected clutter in
a random task setting. In the experiments, we evaluate the
effect of increasing the number of scenes used to create this
training set (Figure 5).

D. Finetuning using TD learning

After learning a policy using the behavior cloning methods
described above, we follow up with additional training using
pure TD learning (DQN in our case, but other algorithms
should accomplish the same thing). We view this as a fine-
tuning step: the cloning phase (pretraining) learns an approx-
imately correct value function and the TD learning phase
(finetuning) makes small adjustments to improve performance.
TD learning has the potential to improve upon a suboptimal
planner as well as correct value function inaccuracies caused
by the penalty applied to non-expert actions. Our experiments
indicate that this phase of training generally helps, improving
performance of policies produced by most cloning algorithm
variations over both the test set and training set.

V. EXPERIMENTS IN SIMULATION

A. Experimental setup

We evaluate PQC against several algorithm variations and
baselines on two visual servoing tasks: a peg insertion task and
a block stacking task (Figures 3a and b, respectively). In peg
insertion, the robot starts execution with the peg in its hand
and must move it until it reaches a goal pose just above the
hole. The block stacking task (Figure 3 b) is similar except
that the robot starts with a block in its hand and must move
it to a goal pose just above a second block. To solve these
tasks, the agent must learn to servo while avoiding obstacles.
In addition, the block stacking task requires the policy to
determine which block to stack upon by matching the visual
image of the grasped block with the blocks that are visible in
the scene.

In both tasks, the scene is populated by randomly placed
clutter that serves both as visual complexity and as obstacles
that must be avoided during servoing. In each scene of peg

(a) (b)

Fig. 3. (a) peg insertion scenario. (b) block stacking scenario.

insertion, both peg and hole size are sampled uniformly
randomly (peg smaller than hole) and the peg is displaced in
the hand with a small random offset. Similarly, in each scene
of block stacking, both block sizes are sampled uniformly ran-
domly, the grasped block is offset by a random displacement,
and a small uniform random rotation is applied to the block to
be stacked upon. Figure 3 illustrates the depth images observed
by the agent. Note that they include both the grasped object
and the scene. The expert is implemented by a planner that
uses Djikstra’s algorithm over a 21×21×12 grid of positions
(fixed orientation) with vertices at 1cm intervals (a total of 5k
vertices, see Figure 2).

B. Training details

For each task, we created a dataset with 50k episodes by
generating 500 scenes and rolling out 100 episodes per scene.
Each scene was populated by random clutter and random
peg/hole/block sizes and positions as described above. Since
each episode is approximately 10 to 15 steps long, this dataset
contains at least 500k transitions. For testing purposes, we
created a second holdout dataset with 50k episodes created by
generating 100 additional different scenes. We evaluated each
algorithm on both the training set and the holdout set.

We compare batch PQC with several online algorithms. The
online algorithms train using data produced using a policy with
a DAGGER-like schedule. Initially, the online policy rolls out
80% of its transitions from the expert policy and 20% from a
uniform random policy. The proportion of expert and random
transitions decays exponentially (but with the same 80%/20%
proportion) until all transitions are sampled from the learned
on-policy distribution after 25k episodes. Batch PQC trains for
eight epochs on the 50k episodes rolled out from the expert
(i.e. the planner). The online algorithms train for 50k episodes
of data generated by rolling out the online policy as described
above. All batch sizes are 64.

C. Comparisons with ablations and baselines

Figure 4 compares the performance of fixed penalty batch
PQC with a variety of ablations and baselines on our two tasks,
peg-insertion and block-stacking. A task is considered to have
succeeded if the agent reaches a position within 1cm of the
goal.
1. Batch PQC (green): Version of Batch PQC shown in Algo-
rithm 1. In this experiment we set c = −0.5 (line 10). Batch
training was for eight epochs on the 50k episode training set
(see Section V-B).

(a) Peg-insertion; training set (b) Peg-insertion; holdout test set (c) Block-stacking; training set (d) Block-stacking; holdout test set

Fig. 4. Success rate as a function of training episode during cloning. (a,b) are peg-insertion. (c,d) are block-stacking. (a,c) show success rates on the training
set. (b,d) show success rates on the holdout test set. Colors explained in Section V-C.

2. Online PQC (blue): Same as batch PQC above except that
it is trained online using a DAGGER-like rollout schedule.
Trained for 50k episodes.
3. Online PQC with no penalty (red): Ablation. Same as on-
line PQC above except that there is no penalty for non-expert
actions.
4. Online PQC one action update (cyan): Ablation. Same as
online PQC except that we delete lines 9 and 10 of Algorithm 1
(only update the value of the action selected for execution).
5. Online PQC, relative penalty (orange): Same as online
PQC except that we change line 10 of Algorithm 1 to:
q ← QE(st, a) − l, where l = 0.2 (the same margin used
by DQfD).
6. DAGGER (black): Baseline. Classic DAGGER algorithm
implemented using the standard cross entropy loss.
7. DQfD with DAGGER schedule (magenta): Baseline. This
version of DQfD uses a single TD loss term plus the large
margin loss (margin equal to 0.2 in this experiment) weighted
at one tenth the contribution of the TD term (this combination
gave us the best performance). It was trained using the
DAGGER schedule.
8. DQN on-policy (purple): Baseline. DQN trained entirely
on-policy.
9. DQN with DAGGER schedule (grey): Baseline. DQN
trained off-policy using the DAGGER schedule.

For more details on methods #1 – #5, see Section IV-B. For
more details on methods #6 – #9, see Section II

Based on these results, a few things are immediately clear.
First, on-policy DQN (purple) underperforms significantly.
This justifies our fundamental choice to clone an expert
rather than use model-free learning. DQN performance can be
improved by providing expert demonstrations, i.e. DQN with
the DAGGER schedule (grey), but it still underperforms other
methods. Second, our proposed methods, batch PQC (green)
and online PQC (blue) both perform similarly or slightly
worse than two baselines, DQfD (magenta) and DAGGER
(black), on the training set. However, they outperform these
two baselines on the holdout test set. This is particularly
true for the block stacking task which is harder than peg
insertion because it requires observing the size of the grasped
block in order to determine where to stack. This suggests
that PQC generalizes better to new scenes with different

Fig. 5. Success rate achieved by fixed penalty batch PQC when training
with different numbers of scenes. Blue: performance on training set. Red:
performance on holdout test set. The left three pairs of bars are for peg
insertion. The right three are for block stacking.

clutter configurations. Third, the results indicate that the two
ablations, online PQC with no penalty (red) and online PQC
with one action update (the two ablations of online PQC),
underperform, suggesting that both these elements of the
algorithm are important. Finally, if we compare online (fixed
penalty) PQC versus relative penalty online PQC, we see that
the relative penalty version outperforms on the training set but
significantly underperforms on the test set. This suggests that
the fixed penalty version generalizes better to novel scenes.

D. Effect of adding more training scenes

Recall from Section IV-C that we performed online rollouts
using cached visual observations. This accelerated online
learning because it reduced the number of (expensive) visual
rendering operations performed by the simulator during train-
ing. However, comparing the results of Figure 4a and c with
those in b and d suggests that there is a significant performance
drop when evaluating on holdout test data rather than training
data, especially on the blocks task. This suggests that 500
different scenes are not enough to generalize to scenes with
new clutter configurations. To test this, we repeated the fixed
penalty batch PQC trial with training sets generated with 1500
and 4000 novel scenes instead of just 500. Figure 5 shows the
result. Performance on the training set improved marginally
but performance on the holdout test set improved dramatically,
especially for the block stacking task. Why does cloning seem
to require so many novel scenes? If the only effect of clutter
was to create scenes that were more complex visually, then
500 should be sufficient. However, our tasks require learning

Method Peg/Hole Blocks
Fixed penalty batch PQC 649s (data gen) 519s (data gen)

+104s (train) + 160s (train)
Fixed penalty online PQC 5009s 4625s

TABLE I
AVERAGE TRAINING TIMES FOR A 50K EPISODE DATASET: BATCH VERSUS

ONLINE TRAINING.

a policy that can avoid colliding with the clutter objects. The
blocks task is particularly challenging because the agent must
match the image of the grasped block with a block in the
scene. These tasks appear to require training data generated
from a large number of unique scenes.

The above discussion is critical to understanding why the
batch version of PQC is superior to the online version in our
experimental setting. In our experiments, the fixed penalty
batch PQC trains several times faster per optimization step
than the online version (see Table I, results averaged over 5
runs). This is because batch training does not require running
the simulator periodically during optimization – it just samples
from a dataset. Without using the batch version, we cannot
reasonably train with the large datasets needed to generalize
well to scenes with novel clutter.

E. Prioritized Experience Replay

Fig. 6. DAGGER and online PQC
with and without PER. Blue and cyan
show PQC performance with and with-
out PER (resp.) Black and grey simi-
larly show DAGGER performance.

Prioritized experience
replay (PER) is an
approach to biasing
minibatch sampling in
DQN [22]. Instead of
sampling batches at
random from the replay
buffer, PER samples
them with a probability
proportional to a power
of the TD error and
corrects sample bias using
importance sampling. We
adapted this idea to the
imitation learning setting by prioritizing experiences using
the loss for whatever method was being used. For example,
in DAGGER, we prioritize by magnitude of the cross entropy
loss for a particular experience (the other elements of PER are
the same). Figure 6 shows a comparison between DAGGER
and batch PQC, with and without PER. We conclude that PER
can sometimes improve cloning performance and we have
never seen it hurt performance in our scenarios. Therefore,
all experiments in this paper use PER.

F. Finetuning with TD Learning

After cloning, we “finetune” the policy using TD learning
(standard DQN) on a new 500 scene dataset. The dataset
used for TD learning is distinct from both the training set
used for cloning and the holdout test set. TD learning follows
the same DAGGER-like expert/on-policy schedule that was
used for DQN earlier (see Section V-B). Results are shown in

Fig. 7. Success rates fixed penalty batch PQC agents on holdout test set
before (red) and after (yellow) finetuning using DQN. The left three pairs of
bars are for peg insertion. The right three are for block stacking.

Figure 7. They show that DQN results in a small improvement
in performance on the holdout test set for both tasks.

Why does TD learning help? First, the expert policy that is
cloned during pretraining is only approximately optimal – so
there is room for TD learning to improve upon it. Second,
recall that the penalty term used in many of the cloning
methods causes the agent to learn an incorrect value function,
albeit one that supports a near-optimal policy. TD learning
probably does a better job finding values that are nearly correct
and that support a near-optimal policy.

VI. VALIDATION ON A PHYSICAL ROBOT

We performed 100 proof-of-concept trials on the robotic
system shown in Figure 10 for the peg-insertion task on five
novel scenes containing novel objects placed arbitrarily. Be-
cause of the small number of trials, these experiments cannot
measure performance precisely. However, they do demonstrate
that the results from our evaluation in simulation (Figures 4, 7)
roughly correspond to expected performance on a physical
system. The experiments were performed using a Robotiq Two
Finger gripper mounted on a UR5 robotic arm in a tabletop
setting. Depth images were produced by an Intel SR300 depth
sensor mounted near the robotic hand as illustrated in Figure 1.

A. Depth image domain shift

A key challenge that is deemphasized in this work is the
domain shift problem for depth images. The problem is that
the observation model used by the simulator is not perfectly
accurate, as illustrated in Figure 9. Figure 9a shows a real
depth image (pixel intensity corresponds to distance from
camera) of the robotic gripper holding a peg and Figure 9b
shows a simulated image of the same scene. Notice that the
real image is noisier and there are several dropped pixels
shown in white (e.g. the shadows behind the peg and inside the
hole). If we run the policy learned in simulation directly on the
real depth images, the system performs poorly because of these
differences. This is known as the domain shift problem and it
must be addressed in some way in order to run experiments on
the physical robot. A variety of techniques exist for mitigating
this problem, e.g. [24] and [2]. In these experiments, we used
the pix2pix GAN approach [7] because it was a standalone
piece of software that we could incorporate relatively easily.
The pix2pix GAN learns a model that transforms a real image

Fig. 8. Example of a single trial on our robot.

(a) (b) (c)

(d) (e) (f)

Fig. 9. Examples of corresponding real and simulated depth images of gripper
holding a peg. (a,d) real image; (b,e) simulated image; (c,f) prediction made
by the pix2pix GAN of what the simulated image would look like given only
the real image. (f) shows that it might fail to transform the hole (see area
marked with red circle) because there is no objective to focus on it.

Failure Mode
Scene Success Collision Not Recognize Missed Hole

Rate Hole
1 14/20 2 3 1
2 19/20 - 1 -
3 17/20 1 2 -
4 18/20 - 1 1
5 18/20 - - 2

TABLE II
RESULTS FROM PHYSICAL ROBOT TRIALS. SUCCESS RATES AND FAILURE

MODES FOR EACH OF FIVE DIFFERENT SCENES (SEE FIGURE 10).

into an image that looks like what the simulator would have
produced under similar circumstances. This is illustrated in
Figure 9c. We trained the pix2pix GAN using 3200 paired
real/simulated images from four different scenes. Then, we
used it as a preprocessing step on real depth images. During
testing, real depth images produced by the depth sensor were
preprocessed by the pix2pix GAN and the result was input to
the learned policy in order to select an action.

B. Experimental protocol and results

We ran experimental trials on five different scenes with
varying amounts of clutter. We ran 20 trials for each scene for a
total of 100 trials. In each scene, clutter objects were selected
and placed arbitrarily, but without blocking the hole (same
protocol that was used in the simulated trials). All objects and
placements were novel with respect to the scenes used for

(a) Scene 1 (b) Scene 2

(c) Scene 3 (d) Scene 4

(e) Scene 5

Fig. 10. Different scenes for robot trials. Diameters of peg/hole: (a,b)
2.2cm/4.2cm, (c) 2.2cm/3.9cm, (d) 1.9cm/4.2cm, Scene 5 (no clutter):
2.54cm/3.9cm

training. Each trial began with the manipulator in a randomly
selected pose (not in collision) continued until either reaching
the hole, colliding with an object or timing out. We used the
same policy for all trials – one that was trained in simulation
using the full batch BQC cloning (pretraining) followed by
TD learning (finetuning). Figure 8 shows an example of one of
our trials. Table II shows the results of the 100 trials. Average
success rates over all 100 trials was 86% – similar to the
performance in simulation on the holdout testset (87% for 4k
scenes in Figure 7).

VII. CONCLUSION

We explore planner cloning, an approach that leverages
the asymmetry in information that is available to the agent
at train and test time. Since training is in simulation, full
state information is available to the agent and it is possible
to generate “expert” policy and value function rollouts from
a full state planner (a graph based motion planner in our
case). However, since only image observations are available
to the agent at test time, it is necessary to project these plans

onto a policy that the agent can execute. This happens via
behavior cloning. This paper proposes a new behavior cloning
method called Penalized Q Cloning (PQC) that we demon-
strate outperforms several algorithm ablations and baselines in
simulation. Finally, we demonstrate that the resulting policies
have similarly good performance for visual servoing tasks on
a real robotic system.

REFERENCES

[1] Michael Bain and Claude Sommut. A framework for
behavioural cloning. Machine intelligence, 15(15):103,
1999.

[2] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart,
Yunfei Bai, Matthew Kelcey, Mrinal Kalakrishnan, Laura
Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, et al.
Using simulation and domain adaptation to improve
efficiency of deep robotic grasping. arXiv preprint
arXiv:1709.07857, 2017.

[3] B. Espiau, F. Chaumette, and P. Rives. A new approach
to visual servoing in robotics. IEEE Transactions on
Robotics and Automation, 8(3):313–326, June 1992. doi:
10.1109/70.143350.

[4] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanc-
tot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan,
Andrew Sendonaris, Ian Osband, et al. Deep q-learning
from demonstrations. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[5] Jonathan Ho and Stefano Ermon. Generative adversarial
imitation learning. In Advances in neural information
processing systems, pages 4565–4573, 2016.

[6] Seth Hutchinson, Gregory D Hager, and Peter I Corke.
A tutorial on visual servo control. IEEE transactions on
robotics and automation, 12(5):651–670, 1996.

[7] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1125–
1134, 2017.

[8] Stephen James, Andrew J. Davison, and Edward Johns.
Transferring end-to-end visuomotor control from sim-
ulation to real world for a multi-stage task. CoRR,
abs/1707.02267, 2017. URL http://arxiv.org/abs/1707.
02267.

[9] Sertac Karaman and Emilio Frazzoli. Sampling-based al-
gorithms for optimal motion planning. The international
journal of robotics research, 30(7):846–894, 2011.

[10] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H
Overmars. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE transac-
tions on Robotics and Automation, 12(4):566–580, 1996.

[11] Aravind S Lakshminarayanan, Sherjil Ozair, and Yoshua
Bengio. Reinforcement learning with few expert demon-
strations. In NIPS Workshop on Deep Learning for Action
and Interaction, volume 2016, 2016.

[12] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter

Abbeel. End-to-end training of deep visuomotor policies.
J. Mach. Learn. Res., 17(1):1334–1373, January 2016.

[13] Sergey Levine, Peter Pastor, Alex Krizhevsky, and
Deirdre Quillen. Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data
collection. In Proc. International Symposium on Exper-
imental Robotics (ISER), Tokyo, Japan, October 2016.

[14] Jeffrey Mahler and Ken Goldberg. Learning deep policies
for robot bin picking by simulating robust grasping
sequences. In Conference on robot learning, pages 515–
524, 2017.

[15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015.

[16] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In Interna-
tional conference on machine learning, pages 1928–
1937, 2016.

[17] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wo-
jciech Zaremba, and Pieter Abbeel. Overcoming explo-
ration in reinforcement learning with demonstrations. In
2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 6292–6299. IEEE, 2018.

[18] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wo-
jciech Zaremba, and Pieter Abbeel. Asymmetric actor
critic for image-based robot learning. arXiv preprint
arXiv:1710.06542, 2017.

[19] Stéphane Ross and J. Andrew Bagnell. Reinforcement
and imitation learning via interactive no-regret learning.
CoRR, abs/1406.5979, 2014. URL http://arxiv.org/abs/
1406.5979.

[20] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the four-
teenth international conference on artificial intelligence
and statistics, pages 627–635, 2011.

[21] Fereshteh Sadeghi, Alexander Toshev, Eric Jang, and
Sergey Levine. Sim2real view invariant visual servoing
by recurrent control. CoRR, abs/1712.07642, 2017. URL
http://arxiv.org/abs/1712.07642.

[22] Tom Schaul, John Quan, Ioannis Antonoglou, and David
Silver. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015.

[23] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[24] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider,
Wojciech Zaremba, and Pieter Abbeel. Domain ran-
domization for transferring deep neural networks from
simulation to the real world. In Intelligent Robots and
Systems (IROS), 2017 IEEE/RSJ International Confer-
ence on, pages 23–30. IEEE, 2017.

http://arxiv.org/abs/1707.02267
http://arxiv.org/abs/1707.02267
http://arxiv.org/abs/1406.5979
http://arxiv.org/abs/1406.5979
http://arxiv.org/abs/1712.07642

[25] Ulrich Viereck, Andreas ten Pas, Kate Saenko, and Rob
Platt. Learning a visuomotor controller for real world
robotic grasping using easily simulated depth images.
CoRR, abs/1706.04652, 2017. URL http://arxiv.org/abs/
1706.04652.

[26] Mengyuan Yan, Iuri Frosio, Stephen Tyree, and Jan
Kautz. Sim-to-real transfer of accurate grasping with
eye-in-hand observations and continuous control. arXiv
preprint arXiv:1712.03303, 2017.

[27] Billibon H Yoshimi and Peter K Allen. Active, uncali-
brated visual servoing. In Proceedings of the 1994 IEEE
International Conference on Robotics and Automation,
pages 156–161. IEEE, 1994.

[28] Fangyi Zhang, Jürgen Leitner, Michael Milford, and
Peter Corke. Sim-to-real transfer of visuo-motor policies
for reaching in clutter: Domain randomization and adap-
tation with modular networks. CoRR, abs/1709.05746,
2017. URL http://arxiv.org/abs/1709.05746.

[29] Yuke Zhu, Ziyu Wang, Josh Merel, Andrei Rusu,
Tom Erez, Serkan Cabi, Saran Tunyasuvunakool, János
Kramár, Raia Hadsell, Nando de Freitas, et al. Rein-
forcement and imitation learning for diverse visuomotor
skills. arXiv preprint arXiv:1802.09564, 2018.

http://arxiv.org/abs/1706.04652
http://arxiv.org/abs/1706.04652
http://arxiv.org/abs/1709.05746

	I Introduction
	I-A Related work

	II Background
	III Visual Servo Problem
	IV Penalized Q Cloning (PQC)
	IV-A Full state motion planner as the expert
	IV-B Cloning a full state motion planner
	IV-C Caching visual observations
	IV-D Finetuning using TD learning

	V Experiments in simulation
	V-A Experimental setup
	V-B Training details
	V-C Comparisons with ablations and baselines
	V-D Effect of adding more training scenes
	V-E Prioritized Experience Replay
	V-F Finetuning with TD Learning

	VI Validation on a physical robot
	VI-A Depth image domain shift
	VI-B Experimental protocol and results

	VII Conclusion

