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Endovascular navigation proficiency requires a significant
amount of manual dexterity from surgeons. Objective per-
formance measures derived from endovascular tool tip kine-
matics have been shown to correlate with expertise; how-
ever, such metrics have not yet been used during training as
a basis for real-time performance feedback. This paper eval-
uates a set of velocity-based performance measures derived
from guidewire motion to determine their suitability for on-
line performance evaluation and feedback. We evaluated the
endovascular navigation skill of 75 participants using three
metrics (spectral arc length, average velocity, and idle time)
as they steered tools to anatomical targets using a virtual
reality simulator. First, we examined the effect of naviga-
tion task and experience level on performance and found that
novice performance was significantly different from interme-
diate and expert performance. Then we computed correla-
tions between measures calculated online and spectral arc
length, our “gold standard” metric, calculated offline (at the
end of the trial, using data from the entire trial). Our results
suggest that average velocity and idle time calculated on-
line are strongly and consistently correlated with spectral arc
length computed offline, which was not the case when com-
paring spectral arc length computed online and offline. Av-
erage velocity and idle time, both time-domain based perfor-
mance measures, are therefore more suitable measures than
spectral arc length, a frequency-domain based metric, to use
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as the basis of online performance feedback. Future work
is needed to determine how to best provide real-time perfor-
mance feedback to endovascular surgery trainees based on
these metrics.

1 Introduction

Minimally invasive endovascular procedures are in-
creasingly becoming the intervention of choice given their
numerous postoperative and functional advantages over open
surgery. These procedures are especially preferable for in-
dividuals who are either ineligible for open surgery or who
face high risk due to co-morbidities or advanced age [1-3].
Endovascular procedures cover a wide range of diagnostic
and therapeutic interventions, such as aortic valve placement,
carotid artery stenting, and aortic aneurysm repair [2,4-7],
and can result in significantly shorter operation times and
hospital stays, lower complication rates, less blood loss, and
lower rates of postoperative mechanical ventilation and atrial
fibrillation than the equivalent open procedures [3, 8].

Surgeons perform endovascular procedures by navigat-
ing flexible tools inserted into the body at a small incision.
These procedures generally involve guidewires to provide
and maintain access to anatomical structures, such as the site
of an aneurysm. Surgeons can then introduce catheters to
visualize anatomical structures using radiographic contrast
and deploy devices such as endografts or replacement heart



valves [4, 8]. Depending on the procedure, surgeons may
navigate these tools within a sheath to further improve vessel
access and reduce the risk of vascular injury [4]. The flexible
nature of these tools gives rise to complex interactions within
the vascular environment characterized by a nonlinear map-
ping between proximal motions made by the surgeon and
resultant tool tip motions. These elements of endovascular
navigation require surgeons to undergo a substantial amount
of training to acquire proficiency.

Ensuring surgeons’ proficiency in endovascular naviga-
tion is central to improving postoperative outcomes. Re-
peated practice is necessary for skill acquisition, and min-
imally invasive procedures like endovascular surgery may
require more or specialized practice. For example, despite
observing lower amounts of blood loss and atrial fibrillation
during endovascular aortic valve replacement compared to
traditional surgical methods, Smith et al. attributed observa-
tions of a higher rate of stroke, transient ischemic attacks,
and major vascular complications to a protracted learning
curve [3]. Similar observations in valvuloplasty and pul-
monary valve replacement indicate a relationship between
experience level and lower procedure times, as well as a
longer time before re-operation is necessary [9, 10]. Such
findings highlight the need for surgical training that incorpo-
rate objective assessment and performance feedback.

Traditional approaches for assessing surgical perfor-
mance consist of checklists and global rating scales such
as the Objective Structured Assessment of Technical Skill
(OSATS) and the Imperial College Evaluation of Procedural
Skill (ICEPS) for measuring general and procedural skills
[11,12]. For endovascular performance assessment, the rec-
ommended tool for assessing procedural efficiency and au-
tonomy, fluoroscopic imaging and contrast use, device de-
ployment, and tool manipulation is the Global Rating As-
sessment Device for Endovascular Skill (GRADES) [13].
These approaches remain subjective and retrospective in na-
ture and require time and resources from several examiners,
usually senior-level attending physicians [14].

To address these challenges, there is a growing body of
research exploring the use of tool motion data from instru-
mented or simulated surgical tools as the basis for quantita-
tive and objective performance assessment [15-17]. Kine-
matic and force data obtained directly from surgical proce-
dures can provide a basis for more comprehensive assess-
ment frameworks, with techniques ranging from validating
global performance metrics to developing probabilistic mod-
els with motion data from experienced surgeons [18-20].
Virtual reality simulators, such as the one shown in Fig. 1,
provide a means to acquire tool motion data and test methods
for real-time performance feedback.

While there has been a considerable effort along these
lines for laparoscopic and robotic surgery, application to
the endovascular domain remains underdeveloped. Previ-
ous studies have established that movement smoothness, a
performance metric used in human motor control research
that strongly indicates healthy and coordinated movement,
provides a promising means for objective performance eval-
uation in endovascular procedures, given its strong correla-

Fig. 1: Participant performing endovascular navigation tasks
on an ANGIO Mentor simulator at the Methodist Institute
for Technology, Innovation, and Education (MITIE)

tion with experience level determined by global rating scales
across manual, simulation, and robotic platforms [16, 21].
In these works, data analysis was performed after collecting
data from the entire navigation task, as challenges in extract-
ing tool tip motions from the various platforms and substan-
tial data processing efforts precluded real-time or near real-
time analysis.

1.1 Motivation for online performance feedback

Training and practice can improve manual dexterity, and
the provision of performance feedback can improve training
outcomes [22]. Most endovascular training uses offline feed-
back, or feedback that is provided after the conclusion of a
surgical task or procedure. For example, the results of assess-
ment with global rating scales are often presented after the
completion of navigation tasks. Online performance feed-
back, defined as feedback that is provided to trainees as they
train, either in real-time or in near real-time, remains under-
explored. In our prior work, we surveyed trainees perform-
ing a set of endovascular navigation tasks on a commercial
surgical simulator and found that they were interested in re-
ceiving both offline and online performance feedback [23].
Over 50% of novice participants indicated their preference
for receiving online feedback as a feature included in future
iterations of the system. Intermediate and expert participants
also showed a desire for receiving online feedback, although
the number of survey responses for these groups were much
smaller than that of the novice group. Overall, novices and
intermediates indicated a preference for some form of feed-
back over none, while experts preferring either online feed-
back or no feedback [23].

Online performance evaluation techniques are being



tested in other surgical disciplines such as assessment of
bone surgery training using virtual reality, real-time assess-
ment of tissue trauma during laparoscopic surgery, and for
robotic surgery [22,24-26]. To date, automatic performance
evaluation for endovascular techniques have used hidden
Markov models as a basis for online evaluation and hap-
tic guidance using proximal guidewire and tool tip motions
[20,27].

An alternative technique to using generative models for
training and evaluation is to use global performance mea-
sures known to be correlated with surgical expertise as a
basis for performance feedback. In Jantscher et al. [28], a
frequency-domain movement smoothness measure known as
Spectral Arc Length (or SPARC [29]) was calculated online
and provided to trainees during a mirror-tracing task that em-
ulates endovascular navigation. Performance was evaluated
by calculating SPARC for short time intervals throughout
the task and intermittently providing a vibrotactile cue to the
trainee that corresponded to their level of task performance
(good, fair, or poor). Individuals who received this feedback
adapted their task performance strategy in beneficial ways,
reducing their task completion time while improving their
accuracy in tracing the complex shape using the joystick de-
vice. Still, it was noted that trainees faced difficulties in inter-
preting and understanding the movement-smoothness based
performance feedback that was provided.

Endovascular navigation occurs in an environment con-
strained by vessel walls that allow surgeons to generate dif-
ferent motion trajectories that are equally suitable for achiev-
ing successful vessel cannulation. This task is fundamen-
tally different that the mirror-tracing task used by Jantscher
et al. [28] that resulted in all participants generating the same
motion trajectory. It is unclear if the methods for real-time
performance assessment and feedback that were successful
in the case of the mirror-tracing task can be extended to a
less-constrained and longer duration task like endovascular
surgical navigation.

1.2 Contributions

Online performance assessment and feedback based on
tool movement smoothness has the potential to positively im-
pact endovascular surgical navigation training. In our previ-
ous findings, described in detail by Murali et al. [23] and
Belvroy et al. [30], we determined that average velocity and
idle time (the proportion of the motion profile consisting of
idle tool movements [31]) of guidewire motion showed sig-
nificant differences between experience level. These time-
domain metrics also exhibited high linear correlations with
SPARC and serve as indirect measures of frequency-domain
movement smoothness [23]. However, we did not account
for potential differences across our four different navigation
tasks, and our analysis was based only on offline (end of trial)
computation of metrics for a small number of participants.

This paper makes two primary contributions. First, we
demonstrate the effect of task and experience level on two
time-domain based performance measures (average velocity
and idle time) and one frequency-domain based performance

measure, SPARC, a variant of the frequency-domain mea-
sure of movement smoothness used for offline performance
assessment in Estrada et al. [16,21] and online in Jantscher et
al. [28]. We show that there is a significant effect of task and
experience level for all three metrics calculated offline. The
second major contribution of this paper is an examination of
the suitability of online estimation methods for each of these
metrics, since we are interested in providing real-time per-
formance feedback to endovascular trainees. We explore dif-
ferent methods of online estimation by varying time-domain
window length and type, and examine correlations between
online estimates of each metric to the “gold standard” mea-
sure, SPARC, calculated offline.

2 Method

Participants completed a series of endovascular navi-
gation tasks using the ANGIO Mentor system. We com-
puted three performance measures from the velocity pro-
file of guidewire motion (SPARC, average velocity, and idle
time) collected during four different navigation tasks. We
then applied a linear mixed effects model to verify the valid-
ity of each metric as offline measures of performance. We
first tested to see if these metrics reflected differences in ex-
perience level among our participants, and then whether they
reflected differences among the navigation tasks. Next, we
examined how well each metric correlated as an online mea-
sure of performance with our gold standard metric, offline
SPARC. We calculated each metric online by segmenting the
tangential velocity profile of the guidewire tip during each
navigation task over time using a series of discrete, sliding,
and overlapping windows. The series of values calculated
during these windows were then averaged and compared to
SPARC calculated over the entire velocity profile.

2.1 Participants

Participants of all experience levels were recruited at
various professional meetings of vascular and endovascular
surgeons, as well as at the Houston Methodist Institute for
Technology, Innovation and Education (MITIE). A total of
75 individuals, (57 male, 18 female, 31 novices, 25 interme-
diates, and 19 experts) participated in our study.

The number of endovascular procedures performed with
and without supervision determined the experience level
of each participant, as we have done in our prior work
[16,23,30]. Novices were defined as individuals who had
performed less than 50 cases; intermediates were defined as
individuals who had performed between 50 and 500 cases;
and experts were defined as individuals who had performed
over 500 cases. This division of experience level by caseload
is supported by evidence of a sharp change in procedural suc-
cess rates after approximately 50-65 consecutive cases for
abdominal aortic aneurysm repair, after which there was little
appreciable change in success rates [7]. A similar result was
observed in carotid artery stenting cases, in which a notice-
able decrease in neurological complication and 30-day mor-
tality rates occurred after the first 50 consecutive cases [5].
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Fig. 2: Process of collecting tool tip kinematics and com-
puting performance metrics from tangential velocity profile.
ANGIO Mentor provides tool tip data of entire motion tra-
jectory for a given navigation task.

The novice group consisted of 19 students, 7 residents, 4
fellows, and 1 industry professional. The intermediate group
consisted of 11 residents, 10 fellows, and 4 attendings. The
expert group consisted of 6 residents, 11 attendings, 1 fel-
low, and 1 physician assistant with experience in vascular
surgery. Participants represented a wide range of medical
specialties, including anesthesiology, general surgery, car-
diology/cardiothoracic surgery, and vascular/endovascular
surgery. All subjects provided informed consent for their
participation and the study was approved by the Rice Uni-
versity Institutional Review Board (IRB-FY2019-302).

2.2 Materials

We used the ANGIO Mentor Flex endovascular simu-
lator (3D Systems, Littleton, CO) at the professional meet-
ings and an ANGIO Mentor Ultimate simulator (3D Sys-
tems, Littleton, CO) at MITIE to collect motion data (see Fig.
1). The preloaded module containing the virtualized training
model used by the Fundamentals of Endovascular and Vas-
cular Surgery (FEVS) platform [13] was loaded on the sim-
ulator. Various tool geometries and interactions within the
virtual environment were simulated using the tool motions
recorded at the input by the ANGIO Mentor. The module
streamed kinematic data of each tool tip over a TCP net-
work connection at varying sampling rates between 15-60
Hz, which was used to compute each performance measure
from the tangential velocity profile, as in Fig. 2.

2.3 Procedure
After consenting to participate in the study and prior to
starting the first task, participants completed a short survey

Table 1: Selected tasks from the FEVS module from [13]
that test endovascular navigation performance without tool
exchange or additional procedural steps.

Task  Description

1 Navigate up and over a bifurcation

3 Navigate into a third order vessel with posterior takeoff
5 Cannulate a branch vessel extending from an aneurysm
7 Gate cannulation

that collected information on their level of medical train-
ing, specialty, familiarity with cardiovascular procedures and
with using the commercial simulator, and the number of su-
pervised and unsupervised endovascular cases performed.
Participants recruited at the professional society meetings
approached a booth containing a simulator, arriving in 15-
20 minute rotations during which they completed between
one and four target navigation tasks depending on the time
available with each participant. Participants recruited from
MITIE in Houston completed all four navigation tasks.

The FEVS module consists of a set of 8 possible tasks
that test various procedural and dexterous tool manipula-
tion abilities. Tasks required either direct navigation to tar-
gets or navigation to targets followed by additional pro-
cedural steps such as exchanging and introducing various
catheters and sheaths. We analyzed performance for only
those tasks described in Table 1, since these tasks required
participants to directly navigate to targets without any ad-
ditional tool exchange or tool introduction elements. This
set of tasks, illustrated in Fig. 3, consisted of navigating a
guidewire and catheter over a right-angle bifurcation, nav-
igating a guidewire, catheter, and sheath into a third-order
vessel with posterior takeoff, cannulating a branch vessel ex-
tending from an aneurysm, and performing gate cannulation
through an aneurysmal segment [13].

Each task required the user to navigate a guidewire,
catheter, and if present, a sheath to the color-coded targets
shown in Fig. 3. The simulator computer screen displayed
basic navigation guidelines before each task, and participants
were given approximately 1-2 minutes to familiarize them-
selves with this information for navigating each tool to its
respective target. The ANGIO Mentor provides some limited
haptic feedback to simulate physical interactions between
tools and the virtual environment. No other haptic feedback
was provided during the execution of the navigation tasks.
After participants were ready to proceed with assessment,
they performed the navigation task until either successfully
reaching the targets or until the simulation timed out (at be-
tween 3 and 5 minutes, depending on task). Almost all par-
ticipants completed the right angle bifurcation task (Task 1,
see Fig. 3), and then (time permitting) proceeded to com-
plete additional tasks (Tasks 3, 5, 7, see Table 1) [13]. The
time limit for Task 3 was 5 minutes, while the other tasks
had a time limit of 3 minutes. Most novice and intermediate
participants performed one or two tasks, while most experts



Fig. 3: Four navigation tasks with targets shown as green
circles. (a) Right angle bifurcation. (b) Cannulation of third
order branch vessel. (c) Cannulation of aneurysmal branch
vessel. (d) Gate cannulation through aneurysmal segment.

performed two to four tasks. Tasks were not repeated and
each session did not exceed 15 minutes.

After finishing their final navigation task, participants
completed an additional custom questionnaire that gathered
information on their perceived experience level and differ-
ences between experienced and inexperienced surgeons, as
well as the amount of cognitive engagement necessary to cor-
rectly manipulate endovascular tools. The questionnaire also
inquired as to the difficult aspects of endovascular naviga-
tion, and whether participants preferred receiving feedback,
either during or after each task.

2.4 Data Preprocessing

Any performance metric calculated from motion data
containing critical failures, defined as instances in which
the catheter advanced into the branch of interest before the
guidewire during cannulation, was excluded as these can
lead to severe complications in real-life procedures. Crit-
ical failures were detected by determining if the catheter
tool tip crossed the opening of the vessel branch before the
guidewire. A total of 199 individual motion trials were gen-
erated from participants performing the endovascular navi-
gation tasks, 173 of which were free of critical tool manipu-
lation errors and were used for calculating each performance
measure for the online and offline analyses. Removal of tri-
als containing critical failures resulted in data from 7 subjects
(all novices) being removed from analysis. Outlier removal
was not performed.

The FEVS module provided time series data of X, Y,
Z position and the change in position values for each tool
present in the task environment. The data provided the full

trajectory of each tool from the beginning of the task (illus-
trated in Fig. 2 until either successful task completion or
timeout.

The change in X, Y, and Z position for each tool was
scaled by the time interval between samples to calculate ve-
locity. After this conversion, the data were transformed to
a constant sampling frequency of 60 Hz using linear inter-
polation for frequency analysis and calculation of SPARC.
A third order Savitzsky-Golay filter with a window length
of 21 samples was then implemented to remove high fre-
quency noise from the tool tip data while preserving the
waveform shape of each signal [16]. From the interpolated
and filtered data, the tangential velocity profile was calcu-
lated, from which each candidate performance measure was
calculated.

2.5 Performance Measures
2.5.1 Spectral Arc Length

From the tool tip velocity data, we computed spectral arc
length (SPARC), a measure of movement smoothness that
was previously shown to be significantly correlated to expe-
rience level for endovascular procedures performed on man-
ual, simulation, and robotic platforms [16,21]. Its robustness
to noise and sensitivity to small variations within the physio-
logical range of healthy movement makes it a desirable met-
ric for evaluating performance in the surgical domain [29].
Additionally, the relatively low computational burden of cal-
culating SPARC shows promise for both online and offline
performance evaluation and feedback [32]. SPARC is calcu-
lated using Equation 1,

)y )
soaee [ | (o) () o

where V() is the Fourier magnitude spectrum of the ve-
locity profile v(z), given by the FFT operation. The mag-
nitude spectrum is normalized with its DC magnitude V(0),
expressed as V(o). The cutoff frequency @, is determined
by an amplitude threshold, which ensures that the metric pro-
duces values independent of temporal scaling (i.e. movement
profiles of different duration but same shape) [29].

2.5.2 Average Velocity

Average tool tip velocity was calculated for each tool
using the tangential velocity profile. Average tool velocity
is another promising metric given its significant correlation
to experience level in other catheter-based surgical domains
such as transoesophageal echocardiography [33].

Average velocity for each tool is calculated by taking
the discrete sum of tangential velocity values, given by their
index i, which is then divided by the total number of discrete
velocity values N, as in Equation 2.

@



2.5.3 Idle Time

Idle time is defined as the ratio the time during a navi-
gation task in which the surgical tools remain stationary to
the total amount of time the tool was present in the task.
Idle time was shown to correlate to experience level in open
surgery [31], and similar to average velocity, this metric
likely provides another measure of cognitive engagement,
with higher values evident in individuals with less experi-
ence [31]. Idle time was calculated using 3,

Taie =
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where the amount of time in which the tools moved at tan-
gential velocities below a threshold value vy is provided by a
discrete sum using the binary function g(¢) that compares the
tangential velocity value v(i) at index i with the threshold vy.
This value was multiplied by the sampling interval Az, be-
fore being divided by the time between the first instance of
the tool entering the simulated environment and task comple-
tion t,,;. The value of vy was defined as 0.5 mm/s to account
for motion artifacts such as deceleration of flexible tool tips
and deformation of tool tips against the vessel well.

2.6 Data Analysis

After calculating the offline and online values of each
performance metric for each navigation task performed
across all participants, we performed our analysis in two
parts. First, we used a linear mixed effects model to explore
whether each offline metric showed significant differences
across experience level and navigation task. We then evalu-
ated the suitability of each metric estimated online by com-
paring the set of online metric values generated by each nav-
igation task with the corresponding value of offline SPARC.

2.6.1 Effects of expertise and task

In our previous work, we performed a series of one-
way ANOVAs to show that SPARC, average velocity, and
idle time are valid offline predictors of surgical expertise

[23]. These results, summarized in Tables 2 and 3, did not
consider the potential effects of navigation task and subject-
specific variability on performance. To better account for
these factors, in this paper, we applied a linear mixed ef-
fects model using the values of SPARC, average velocity, and
idle time calculated from guidewire motion data. Experience
level and task were modeled as fixed effects factors and par-
ticipants were modeled as a random factor. Table 4 provides
the between-subject and within-subject factors and their cor-
responding levels that formed the model. Degrees of free-
dom in the model were approximated using the Kenward-
Roger method.

For each significant main effect, contrasts were ap-
plied to determine differences between experience levels and
tasks, again using the Kenward-Roger method for determin-
ing significance levels. Contrasts compared the novice group

Table 2: ANOVA results and effect sizes for performance
metrics calculated from the tangential velocity profile of
guidewire motion data. Statistically significant p-values (in
bold) and large effect sizes for each metric highlight the
strong association with experience level. Reproduced from
Murali et al [23].

Metric ‘ ANOVA Test Result Effect Size (Cohen’s f)
SPARC F(2,42) =9.38; p <.001 0.67
Avg. Velocity | F(2,42) =10.66; p <.001 0.71
Idle Time F(2,42) =8.18; p =.001 0.62

Table 3: Pearson’s r correlation coefficients and accompany-
ing p values from linear regression tests performed in Murali
et al. [23]. Average velocity and idle time are strongly cor-
related with SPARC and can serve as indirect time-domain
measures. Statistically significant values in bold.

Metric Pearson r and p-value

r(42) = 0.72; p <.001
r(42) = 0.70; p <.001

Avg. Velocity
Idle Time

Table 4: Summary of fixed and random factors and corre-
sponding levels used by the Linear Mixed Model.

Factor Type Levels

Task Fixed 1,3,5,7

Experience Level Fixed Novice, Intermediate, Expert
Subject Random 1-68

with a combined group of intermediate and expert partic-
ipants, as well as the expert group with the intermediate
group. Contrasts for task compared Task 1 (right angle
branch cannulation) with Task 3 (third order vessel with pos-
terior takeoff), Task 5 (aneurysmal branch cannulation), and
Task 7 (gate cannulation). We did not test for interactions
between experience level and task.

2.6.2 Online and offline metric comparison

SPARC, average velocity, and idle time show statisti-
cally significant differences across experience levels as of-
fline measures of performance (see Table 2). In addition to
serving as two candidate metrics from the time domain, av-
erage velocity and idle time may be more suitable for online
performance evaluation and feedback, given their strong lin-
ear correlations with SPARC and their potential ease of in-
terpretation compared to SPARC. To show the utility of each
measure as an online indicator of performance, it is neces-
sary to determine the relationship between each metric cal-
culated online and experience level. A similar analysis to the
ANOVAs performed by Murali et al. [23] can be performed
by taking advantage of the high correlations between average
velocity, idle time, and SPARC from Table 3. These linear
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correlations allow for the use of offline SPARC to establish
the corresponding relationship to experience level.

This comparison can be performed indirectly by explor-
ing the relationship between each online metric and offline
SPARC, since offline SPARC shows the strongest differences
with experience level [23]. If a strong relationship exists be-
tween each online metric and offline SPARC, then by exten-
sion, the significant differences across experience level ob-
served with the offline metrics in our prior work will likely be
present with the online metrics. Linear regression was used
to evaluate the online-offline relationship between each con-
tinuous valued metric, with higher Pearson correlation coef-
ficients indicating a stronger online-offline relationship.

To compute online measures, we used a set of discrete
and sliding windows of 5-15 second lengths. Given the aver-
age data sampling rate before interpolation of approximately
20 Hz, each 5 second window contained approximately 100
samples of data, resulting in a frequency resolution of ap-
proximately 0.2 Hz, which is likely sufficient for capturing
movement frequencies expected for endovascular navigation
motions. The upper bound of this range of window sizes was
determined by the average completion time across all trials
of 102.6 seconds, which would allow for at least 6 discrete
windows for providing online feedback. The amount of over-
lap between the sliding windows was varied in 0.5 second
increments.

Kinematic data acquired in real-time from the virtual-
ized FEVS tasks were used to calculate each candidate met-
ric over a moving window of time, similar to our prior work
[28]. A real-time performance feedback scenario can be
emulated from the tool tip positions and velocities used for
the offline analysis performed previously [23] by calculating
each metric across a subset of the overall motion profile de-
fined by a window of fixed time interval. These windows can
be either non-overlapping (discrete) or overlapping (sliding)
with different amounts of overlap, as detailed in Fig. 4.

The values for SPARC, average velocity, and idle
time from each window were averaged and compared with
SPARC calculated across the entire trial. This comparison
was performed using robust linear regression to minimize
the effect of potential outlier data. These regression tests
provided Pearson correlation coefficients that relate the aver-
age online values of each performance metric to the offline
measure of SPARC shown to correlate with experience level
from prior studies [23, 30, 34]. The evaluation of the online

performance of each metric was carried out using motion tri-
als corresponding to a single task, given the task-dependence
of movement smoothness metrics [29]. That each task likely
differs in difficulty may result in certain tasks being more
amenable for online performance feedback than others.

2.6.3 Performance thresholds for feedback cue design

Implementation of an online performance feedback pro-
tocol similar to that presented in Jantscher et al. [28] requires
appropriate thresholds defining high, medium, and low qual-
ity of motion. One possible method of determining these
thresholds is to use the averaged online values correspond-
ing to the different experience levels used to define novice,
intermediate, and expert performance. From the distribution
of the online values for each experience level, namely from
the set of error bars using the mean and standard deviation,
medium motion quality was defined as the region of values
given by the intersection of the error bars of the novice and
expert groups. High and low motion quality were defined as
the regions above and below this intersecting region, respec-
tively.

Using the average online values of each metric, an ap-
propriate basis for defining performance thresholds requires
the assumption that the values calculated across each win-
dow of time do not deviate substantially from the average
online value, likely due to a combination of both uniform
task difficulty and participants using similar motion profiles
for performing navigation. This assumption was verified by
using the standard deviation of the online values calculated
for each motion trial.

3 Results

Using kinematic data collected from a commercial sur-
gical simulator while participants performed a set of en-
dovascular navigation tasks, SPARC, average velocity, and
idle time were calculated offline using motion data collected
from subjects representing a wide range of surgical experi-
ence levels and medical specialties. A linear mixed effects
model was used to verify significant group differences across
experience level observed in our prior works, and to quantita-
tively determine the task-dependence of movement smooth-
ness metrics and their indirect measures. Then, we evaluated
SPARC, average velocity, and idle time of guidewire mo-
tion calculated over discrete and sliding windows of varying



duration and overlap amount with SPARC calculated offline
using the entire tangential velocity profile.

3.1 Differences between experience levels

Significant main effects of experience level were
observed for SPARC (F(2,63)=13.87,p < .001), aver-
age velocity (F(2,62)=28.88,p < .001), and idle time
(F(2,63) =15.12,p < .001) of the guidewire motion, as
shown in Fig. 5. From the contrasts, the SPARC val-
ues associated with the combined group of intermediates
and experts are significantly lower than those of novices
(#(83) = 4.27;p < .001). The same trend was present for idle
time (#(88) = 4.43;p < .001) and the inverse was true for av-
erage velocity (#(89) =3.19;p =.002). The expert group
alone possessed significantly lower SPARC values than in-
termediates (#(50) = 3.30;p = .002), as well as higher aver-
age velocities (#(46) = 2.89;p = .006) and lower idle times
(t(47) =3.46;p = .001).

3.2 Differences between tasks

There exists a significant effect of task on per-
formance for SPARC (F(3,124) =13.36;p < .001),
average velocity (F(3,129) =17.80;p < .001), and
idle time (F(3,127)=12.25;p <.001), illustrated
in Fig. 6. The contrasts showed significant dif-
ferences between Tasks 1 and 3 for idle time only
(#(128) =2.71; p = .008). Tasks 1 and 5 showed significant
differences for average velocity (s(128) =5.02;p < .001)
and idle time (#(128) =3.40;p =.001). Significant
differences for SPARC (#(125) =5.05;p <.001), av-
erage velocity (#(131) =5.49;p < .001), and idle time
(1(129) = 2.00; p = .047) were present between Task 1 and
Task 7.

3.3 Correlations between Online and Offline Metrics

SPARC calculated online resulted in low correlations
with SPARC calculated offline using discrete, sliding, and
overlapping windows, with correlation coefficient values
ranging between approximately 0.1 and 0.5. A maximum
correlation coefficient of approximately 0.6 between online
and offline SPARC was observed at an approximately 1-2
second window length using sliding windows.

Discrete windows resulted in a noisy and non-
monotonic trend between correlation coefficients and in-
creasing window size, with no one task producing consis-
tently higher or lower values than the others. Sliding win-
dows resulted in a smoother but non-monotonic relationship
between correlation coefficient values and window size, with
values for each task increasing from a minimum value of
approximately 0.1 after a window size of approximately 6
seconds. Correlation coefficients between online and offline
SPARC using overlapping windows produced trends similar
in shape, magnitude, and noise to those observed using dis-
crete windows. The correlation coefficients between online
and offline SPARC for Task 3 remained consistently low for
discrete, sliding, and overlapping windows.

Average velocity and idle time calculated online pro-
duced higher and more consistent correlations with offline
SPARC for discrete, sliding, and overlapping windows. Cor-
relation coefficients for online average velocity and idle time
remained between approximately 0.6 and 0.8 for each win-
dow type, with online average velocity showing an almost
constant behavior with increasing window length. Task 1 ex-
hibited the highest correlation coefficient values for online
average velocity using discrete windows, while Tasks 1, 3,
and 7 had comparable values across all window lengths for
sliding and overlapping windows. Task 5 produced the low-
est correlation coefficients between averaged online average
velocity and offline SPARC for discrete, sliding, and over-
lapping windows.

Correlation coefficients for idle time calculated online
versus SPARC offline were comparable in value to those for
average velocity calculated online versus SPARC offline for
all window types. The lowest correlation values for each
window type were observed for data from Task 3, while the
highest values were observed for data from Task 1. Calculat-
ing online idle time using sliding windows resulted a slightly
monotonically increasing trend between correlation coeffi-
cient value and window size. Tasks 1 and 7 had the highest
correlation values using sliding windows, followed by Tasks
3 and 5. As with online average velocity, sliding and over-
lapping windows produced similar behaviors and values with
different window lengths and overlap amounts.

4 Discussion

From our offline evaluations of performance, it is clear
that each metric shows significant differences across expe-
rience level. Differences observed across navigation tasks
highlight the task dependent nature of movement smoothness
based performance metrics. These differences may also im-
ply a learning effect and a possible increase in difficulty be-
tween subsequent tasks. While SPARC is effective as an of-
fline measure of performance, average velocity and idle time
prove to be more effective as online measures, given their
higher online-offline correlation coefficients. From the dis-
tributions of each online performance metric separated first
by task and then by experience level, it is possible to deter-
mine performance thresholds that can be used as a basis for
providing online performance feedback.

4.1 Assessing performance differences offline: Effect of
expertise and task

SPARC, average velocity, and idle time each showed
significant group differences across different levels of exper-
tise. The contrasts performed as part of the mixed effects
model suggest that novices, determined by a caseload of less
than 50 endovascular procedures, have significantly higher
SPARC and idle time scores, and lower average velocities,
than those of intermediate and expert groups combined. This
finding is in line with prior studies that have shown the ef-
fect of surgical expertise on procedural success rates, com-
plication rates, and completion times [5, 7]. Importantly, our



3 0 2 15 I _ 50 I
g E 1 =40 T
g E i ; —
= o 210 |
5 ;; £ 30 T
Q 1 < 2 20
ﬁ -20 T = 5 o)
@) 2
& I . k 10
-30 )
& &% & & @2 & & &2 &
&8 & & & & &
& & &
N AN A\
(a) SPARC (b) Average Velocity (c) Idle Time

Fig. 5: Bar graphs showing mean of SPARC, average velocity, and idle time calculated from guidewire motion for each

experience level. Error bars provide standard error of the mean for each experience level.

0 20 50
5 z 40 I
o - = —
£ £ 15 I I X I
g é o T
3 ; =
3 -10 £ z %0 i
& T g 10 I I <
Q l = =1
215 = Z20
= © 5 =
@ .20 =T 2 <10
T i ]
I
25 ' 0 0
T1 3 T5 17 T T3 TS T7 T T3 5 T7
(a) SPARC (b) Average Velocity (c) Idle Time

Fig. 6: Bar graphs showing mean of SPARC, average velocity, and idle time calculated from guidewire motion for each

navigation task. Error bars provide standard error of the mean for each navigation task.

Table 5: Results from linear mixed effects model contrasts. Statistically significant values in bold.

Contrast

SPARC

Average Velocity (mm/s)

Idle Time (%)

Novice vs. (Intermediate, Expert)
Intermediate vs. Expert

Task 1 vs. Task 3

Task 1 vs. Task 5

Task 1 vs. Task 7

t(83) = 4.27; p <.001
t(50) = 3.30; p = .002
t(125) = 1.29; p = .20
t(124) = 0.24; p = .81
t(125) = 5.05; p <.001

t(89) = 3.19; p =.002
t(46) = 2.89; p = .006
t(129) = 0.16; p = .87
t(128) = 5.02; p <.001
t(131) = 5.49; p <.001

t(88) = 4.43; p <.001
t(47) = 3.46; p = .001
t(128) = 2.71; p = .008
t(128) = 3.40; p = .001
t(129) = 2.00; p = .047

approach using direct tool motion data offers a quantitative,
objective, and automatic method for assessing expertise.

The significant main effect of task on the values of each
performance measure, along with the results of the task-
based comparisons from Table 5, provides quantitative ev-
idence that online performance assessment should be con-
ducted on a task-by-task basis. Also, the task-dependencies
of each metric are verified. The significant differences in
SPARC, average velocity, and idle time observed between
Task 1 and Tasks 3, 5, and 7 suggests that a small learn-
ing effect may be present between the first and subsequent
tasks. Since the majority of participants performed Task 1
before proceeding to the other tasks, such a learning effect
could reflect the familiarization period that most subjects ex-
perienced regarding the simulation environment, tool inter-
actions within the FEVS module, and the virtualized visual-

ization controls. Alternatively, given the order of tasks in the
FEVS module, it may be possible that tasks are ordered by
difficulty level. In our previous work, we observed a linearly
increasing trend in SPARC and other movement smoothness
metrics across three sessions of performance assessment that
may suggest the presence of a learning with these naviga-
tion tasks [16]; however, it is unclear whether this trend was
due to learning the navigation task itself, or attributable to
participants becoming more comfortable with the simulator
interface.

4.2 Comparison of Online and Offline Calculation
Objective and quantitative performance metrics such as
movement smoothness, average velocity, and idle time have
significant potential for offline evaluation of endovascular
surgical performance [23,30]. To investigate the utility of
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these metrics for online performance evaluation, the average
value of each metric calculated during a navigation task us-
ing discrete and sliding windows of different duration and
overlap was compared to SPARC calculated offline across
the entire motion trial.

The results of the online-offline linear correlations be-
tween each metric and SPARC clearly indicate that SPARC,
despite providing a robust offline measure of experience
level and motion proficiency, is substantially less effective
in capturing performance when calculated online. Given
its frequency-domain computation and high task-dependence
[29], SPARC is most effective at comparing discrete mo-
tion profiles that employ similar task execution strategies

and are of comparable difficulty. The motion profile gener-
ated by performing each target navigation task in the FEVS
module consists of several smaller sub-profiles resulting
from the continuous insertion, retraction, and rotation of the
guidewire and catheter throughout the task. Segmenting the
overall velocity profile in the time-domain would either omit
portions of a single sub-profile or contain portions of ad-
jacent sub-profiles, which would increase the variability of
the online SPARC values calculated throughout a navigation
task and ultimately obscure any trends evident between on-
line and offline SPARC.

In contrast, the higher and nearly constant online-offline
correlations associated with average velocity and idle time

10
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values of each metric also shown.

provide a stronger basis for their use as online performance
measures. As with the correlations produced by online
SPARC, discrete windows produce noisier results, but cor-
relations remain relatively constant and high-valued. The
online computation of average velocity and idle time can be
expected to produce correlation values roughly equivalent to
those observed from their offline computation provided in
Table 3. Average velocity shows slightly higher correlations
than idle time, as taking the mean of a set of average veloci-
ties calculated across moving windows of time would result
in a value that correlates highly with the average velocity
of the entire motion profile and, by extension, with offline
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SPARC [23]. Idle time calculated online provides the per-
centage of the windowed segment in which the tool tip veloc-
ity is lower than a threshold defined to account for motion ar-
tifacts from tool tip and vessel wall interactions. Overlapping
motion sub-profiles within a navigation task would likely af-
fect idle time values, but given that its computation does not
require a nonlinear operation as with SPARC, idle time can
be expected to produce high-valued correlations with offline
SPARC. Additionally, the strong correlations exhibited by
online average velocity and idle time suggest that these mea-
sures may also be correlated to the traditional structured rat-
ing scales, given their mutual correlation with offline SPARC



[16].

4.3 Future Directions and Recommendations

To support our broader motivation for providing online
performance feedback to surgical trainees, our results show
that performance thresholds can be defined using the dis-
tributions of online SPARC, average velocity, and idle time
generated by participants from each experience level. A po-
tential feedback protocol can be illustrated by using a set of
overlapping windows of 15 second length and 5 second over-
lap between windows. Such a window configuration would
likely result in trainees receiving an acceptable amount of
feedback cues during a navigation task, as shorter window
lengths and overlap amounts may overload trainees and neg-
atively affect performance.

After defining a set of online performance threshold re-
gions for each metric and each navigation task(Fig. 7), we
can demonstrate the possibility of delivering performance
feedback to surgical trainees by calculating the online value
of each metric from the most recent data window and de-
termining the appropriate performance region it falls under
(Fig. 8). The best way of delivering this information as feed-
back will likely vary in type (i.e. vibrotactile, visual, etc.)
and threshold values computed for each navigation task.

The task-dependent nature of movement smoothness
metrics and their indirect measures implies that the exact val-
ues and thresholds determined for one set of motion tasks
will not be applicable for a different set of tasks. There-
fore, comparing the average value of a performance met-
ric calculated online with SPARC calculated offline provides
a methodology to pinpoint a set of motion-based candidate
metrics and to evaluate their utility as online performance
measures for providing as feedback. The gold-standard met-
ric to be used for the online-offline correlations may also vary
depending on the application domain.

Given the different navigational elements of each task
ranging from simple tool insertion/retraction to more com-
plex vessel branch cannulation motions, it is likely that each
task is not of constant difficulty. This observation is sup-
ported by the standard deviation of the distributions of online
SPARC, average velocity, and idle time values within mo-
tion tasks, as apparent in Fig. 8, and warrants further work
in determining trends in online values for subtasks within
navigation tasks. Using the averaged online value of any
metric to directly develop performance thresholds for eval-
uation or feedback requires the assumption that task diffi-
culty is constant throughout a motion task and that online
values calculated at each window remains close to the aver-
age value across all windows. Thus, while using the average
online values for SPARC, average velocity, and idle time for
the online-offline comparisons establishes their general util-
ity as online performance measures, variations in online val-
ues corresponding to more difficult subtasks, such as during
branch cannulation, may preclude their direct use for perfor-
mance feedback.

Performing online evaluation and feedback using per-
formance thresholds based on the average online values of
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SPARC, average velocity, and idle time may still result in
positive improvements in navigation strategies, as was dis-
cussed in Jantscher et al. [28]. Unlike laparoscopic or open
surgery, endovascular procedures may be more amenable
for such feedback since they involve constrained input mo-
tions of insertion, retraction, or rotation of the guidewire and
catheter, despite showing large variation in online tool move-
ment smoothness measures within tasks. Difficulties in tool
navigation arising from the nonlinear mapping between in-
put and tool tip motions may still require the identification of
smaller subtasks in which the performance thresholds could
be more appropriately defined.

Given the low and noisy correlations between online and
offline SPARC, this metric cannot be used reliably as a ba-
sis for online performance feedback, especially for motion
tasks that consist of unconstrained movements that gener-
ate various types of discrete motion sub-profiles. A special
case for online computation in which SPARC might perform
better would be for navigation tasks that consist of a closed
and constrained path, similar to the ones used in Jantscher
et al. [28], which would guarantee that participants gener-
ate a smaller set of motion sub-profiles by following similar
motion trajectories. Another possible alternative method of
improving the online calculation of SPARC would be to spa-
tially segment motion trajectories into their discrete motion
sub-profiles [19], in a manner that would guarantee that each
value of SPARC would correspond to a single sub-profile,
with minimal overlap between adjacent sub-profiles that re-
flect different motion strategies or are of varying difficulty.

5 Conclusion

Improved postoperative outcomes are linked to surgical
expertise, which provides a strong motivation for research
on objective and quantitative performance evaluation. While
objective evaluation techniques are more common in other
surgical domains, their application in endovascular surgery is
sparse. Frequency-domain movement smoothness (SPARC),
average tool tip velocity, and idle time are quantitative mo-
tion quality metrics calculated from tool tip motion that show
significant differences across experience level and navigation
task. The capability of these metrics in providing an offline
measure of experience level in the midst of differences across
task is complemented by their potential as online indicators
of performance that can provide a basis for intuitive and ro-
bust feedback.

Average velocity and idle time correlate well with
SPARC as online and offline measures, and offer promis-
ing alternatives to SPARC for delivering to trainees as on-
line feedback of movement smoothness information. These
metrics are more amenable for online computation and are
more effective at conveying movement smoothness informa-
tion in a more intuitive manner than SPARC. Transitioning
the findings of this paper towards an online evaluation and
feedback paradigm will require additional evaluation of the
motion tasks to be used for determining subtasks within a
navigation task in which the online values across experience
levels are different from that of the average, in addition to



the most effective method of delivering these performance
measures as feedback to trainees.
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