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Abstract. Similarity search in high-dimensional spaces is an important
task for many multimedia applications. Due to the notorious curse of
dimensionality, approximate nearest neighbor techniques are preferred
over exact searching techniques since they can return good enough results
at a much better speed. Locality Sensitive Hashing (LSH) is a very popu-
lar random hashing technique for finding approximate nearest neighbors.
Existing state-of-the-art Locality Sensitive Hashing techniques that focus
on improving performance of the overall process, mainly focus on min-
imizing the total number of 10s while sacrificing the overall process-
ing time. The main time-consuming process in LSH techniques is the
process of finding neighboring points in projected spaces. We present a
novel index structure called radius-optimized Locality Sensitive Hashing
(roLSH). With the help of sampling techniques and Neural Networks,
we present two techniques to find neighboring points in projected spaces
efficiently, without sacrificing the accuracy of the results. Our extensive
experimental analysis on real datasets shows the performance benefit of
roLSH over existing state-of-the-art LSH techniques.

Keywords: Approximate nearest neighbor search - High-dimensional
spaces * Locality Sensitive Hashing - Neural Networks

1 Introduction

Finding nearest neighbors is an important problem in many domains such as
information retrieval, computer vision, machine learning, multimedia retrieval,
etc. For low-dimensions (<10), popular tree-based index structures, such as KD-
tree, Quad-tree, etc. are effective, but for higher number of dimensions, these
index structures suffer from the well-known problem, curse of dimensionality
(where the performance of these index structures is often out-performed even
by linear scans) [3]. One solution to this problem is to search for approximate
results instead of exact results. In many applications where strictly correct results
are not necessary, approximate results can produce good enough results while
achieving much better running times. The goal of the c-approximate version of
the Nearest Neighbor problem (ANN) is to find nearest neighbors for a given
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query point that are within ¢ * R distance (where ¢ > 1 is the approximation
ratio and R is the search radius).

1.1 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) [8] is a very popular technique for solving the
Approximate Nearest Neighbor problem in high-dimensional spaces. LSH uses
random projections to map high-dimensional points to lower dimensional repre-
sentations. The intuition behind LSH is that nearby points in high-dimensional
spaces will map to same (or nearby) hash buckets in the projected lower dimen-
sional space with a high probability (and vice-versa). Since the original LSH
index structure was proposed for Hamming distance, LSH families have been
proposed for other popular distances such as the Euclidean distance [6]. The
main benefits of LSH are three-fold: 1) LSH provides theoretical guarantees on
the accuracy of the results, 2) LSH can answer ANN queries in sub-linear time
with respect to the dataset size, and 3) LSH can be easily implemented as exter-
nal memory-based index structures, thus making them more scalable [13]. While
the original LSH design suffered from large index sizes [16], recent works [4,7,9]
have either improved theoretical bounds or introduced techniques such as Col-
lision Counting (Sect. 3) to reduce the number of required hash functions. Due
to the popularity of LSH in diverse applications [18,22], several research works
have been proposed to improve the search efficiency and/or accuracy of LSH
techniques [4,7,9,10,13,14,16,23].

1.2 Motivation of Our Work: Improving the Efficiency of Existing
State-of-the-Art LSH Techniques

One of the important benefits of LSH is their ease of implementation as exter-
nal storage based algorithms. State-of-the-art external memory-based algorithms
(namely C2LSH [7], QALSH [9], and I-LSH [13]) use a bucket-expansion strat-
egy to find points from neighboring buckets. C2LSH and QALSH use a bucket
exponential expansion strategy, whereas I-LSH uses an incremental expansion
strategy. While I-LSH is the state-of-the-art algorithm that minimizes disk I/Os,
it achieves this optimization at the expense of a costly overall processing time
as shown in Sect. 6.} Additionally, random I/Os (disk seeks) are known to be
bottleneck in query processing [11] and much more expensive than sequential
I/Os [12]. I-LSH reduces overall I/Os by mainly reducing sequential I/Os. In
this paper, our goal is to design an LSH external memory technique, roLSH,
that can reduce overall I0s, mainly random I/0Os, (by finding neighboring points
efficiently) which improves the overall query processing time.

! There is no existing work that compares the overall performance of C2LSH, QALSH,
and I-LSH. We present a detailed performance analysis between these works as a
technical report (https://arxiv.org/abs/2006.11285).
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1.3 Contributions of This Paper

In this paper, we propose a novel approach, called radius-optimized Locality
Sensitive Hashing (roLSH) for efficiently finding top-k approximate nearest
neighbors in high-dimensional spaces. Our main contributions are as follows:

— We present a sampling-based technique, roLSH-samp, that reduces the overall
random disk I/Os which improves the query processing time while satisfying
the theoretical guarantees of LSH. We provide the theoretical analysis for the
correctness of roLSH-samp.

— We further improve the efficiency by proposing a Neural Network-based tech-
nique, roLSH-NN, for an improved prediction of projected radiuses (and thus
further reduction in random disk I/Os), and hence further improving the per-
formance without affecting the query accuracy. To the best of our knowledge,
we are the first work to improve LSH parameters by using Neural Networks.

— Lastly, we experimentally evaluate both techniques of roLSH on real high-
dimensional datasets and show that roLSH can outperform the state-of-the-
art solutions in terms of performance while providing similar query accuracy.

2 Related Work

Locality Sensitive Hashing is a popular technique for solving the Approximate
Nearest Neighbor (ANN) problem in high-dimensional spaces. It was first intro-
duced in [8] for the Hamming distance and later extended to the Euclidean
distance (E2LSH) [6]. These structures suffered from large index sizes due to the
need to have large number of hash functions in multiple hash tables [7]. Addi-
tionally, a magic radius need to be inputted to find the neighboring projected
points, and in order to find the desired number of results, this magic radius
was arbitrarily chosen to be very high. Multi-Probe LSH [16] presented a tech-
nique to probe neighboring buckets if enough number of results were not found.
C2LSH [7] introduced a Collision Counting approach that reduced the need to
have multiple hash tables, and hence reduced the overall index size. SK-LSH [14]
introduced a linear ordering on the disk pages with the help of Z-order curve in
order to reduce the overall I/Os. The drawback of SK-LSH was that it was cre-
ated on the original LSH design, and hence also suffered from the magic radius
problem. QALSH [9] introduced query-aware hash functions and further reduced
the number of hash functions necessary to achieve theoretical guarantees. The
work closest to our proposed idea is I-LSH [13], which introduces an incremental
strategy for finding nearest neighbors in the projected space, as explained in
the next Sect. 3.1. Recently, PM-LSH [23] developed a novel tunable confidence
interval while using a PM-tree to solve c-ANN queries.

3 Background and Key Concepts

In this section, we describe the key concepts behind LSH. We mainly use the
notations and formulations described in the seminal paper on Euclidean LSH
families [6] and C2LSH [7].



326 O. Jafari et al.

Hash Functions: A hash function family H is (R, cR, p1, p2)-sensitive if it
satisfies the following conditions for any two points  and y in a d-dimensional
dataset D C R if ||z —y|| < R, then Pr[h(z) = h(y)] > p1, and if ||z —y|| > cR,
then Prh(z) = h(y)] < ps.

Here, p1 and p» are probabilities and ¢ is an approximation ratio. In order
for LSH to work, ¢ > 1 and p; > ps. The above definition states that the two
points = and y are hashed to the same bucket with a very high probability > p;
if they are close to each other (i.e. the distance between the two points is less
than or equal to R), and if they are not close to each other (i.e. the distance
between the two points is greater than cR), then they will be hashed to the same
bucket with a low probability < ps. In the original LSH scheme for Euclidean
distance, each hash function is defined as hq 4(z) = |2ZE| | where a is a d-
dimensional random vector with entries chosen independently from the standard
normal distribution N(0,1) and b is a real number chosen uniformly from [0, w),
such that w is the width of the hash bucket [6]. This leads to the following
collision probability function [6], which states that if ||x — y|| = r, then the
probablhty that = and y map to the same hash bucket for a given hash function

ha p(x) is: = [, 2 re2 T (1 — L)dt. Here, the collision probability P(r)
is decreasmg on r for a given w. For a t, which is the largest absolute value of
a coordinate of point in D, and for every b uniformly drawn from the interval

[0, c[1gc td14y?] and R = ¢ for some n < [log, td] we have that h(z) = Lh“’i}_{(z)J
is (R, cR, p1,p2)-sensitive, where p; = p(1) and pa = p(c) [7].

Collision Counting: In [7], authors theoretically show that two close points
and y collide in at least { hash layers (out of m hash layers) with a probability
1 — 4. Further, only those points that collide at least [ times with the query
point, where [ is the collision count threshold, are chosen as candidates. We
refer the reader to [7] for further details. Since C2LSH creates only one hash
function per hash layer, the number of hash functions are equal to the number
of hash layers.

3.1 Existing Techniques for Finding Neighboring Projected Points

C2LSH [7] also introduced the concept of Virtual Rehashing that finds neighbor-
ing points that collide in neighboring hash buckets. The naive solution to finding
neighboring points is to use a large projected radius such that enough neighbor-
ing points are found to return top-k results. The projected radius is entirely
dependent on the data distribution, and as we show in Fig. 2, these projected
radiuses can vary significantly. Hence, using an arbitrarily large radius results
in wasted I/Os and unnecessary processing. Instead, Virtual Rehashing starts
with a very small radius (R=1), and then exponentially increases the radius in
the following sequence: R = 1, ¢, c?,c3.... If at level-R, enough candidates are not
found, the radius is 1ncreased untll enough query results are found. C2LSH [7]
and QALSH [9] follow this exponential expansion strategy. I-LSH [13] introduces
an incremental strategy where, instead of expanding the search radius exponen-
tially, they find the nearest point to the query in each projection. C2LSH and
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QALSH store points in hash buckets which are stored in disk pages. I-LSH stores
each data point separately and hence instead of reading disk pages that store a
group of data points, only reads a point (which effectively is the same as reading
a disk page of 4 bytes). While they save on disk I/O operations by this method,
this is a very costly operation (as shown in Sect. 6) since this process has to be
done thousands of times for larger radiuses.

4 Problem Specification

The approximate version of the nearest neighbor problem, also called ¢-d -approz-
imate Nearest Neighbor search, aims to return points that are within cx R distance
from the query point with probability at least 1 — §, where ¢ > 1 is a user-
defined approximation ratio, R is the distance of the query point from its nearest
neighbor, and ¢ is a user-defined error probability.

In this paper, our goal is to return c-6-ANNs for a given query ¢ while
reducing the overall processing time and satisfying the theoretical guarantees.
In Sect. 5, we present the processing cost breakdown of the LSH process based
on which we design our proposed index structure, radius-optimized Locality
Sensitive Hashing (roLSH).

800 800 755 800
Audio 750 Color Deep 633
Dataset Dataset
600 Dataset 600 atase 600
400 400 400 343
200 200 200
3 21
0 0 0
4096 8192 16384 512 1024 2048 4096 8192 32 64 128 256

Fig. 1. Frequency (Y-axis) of Final Radius Values (X-axis) for finding Top-100 Points
for 1000 Point Queries on Different Datasets using C2LSH

5 roLSH

In this section, we present the design of roLSH, which consists of two strategies
for efficiently finding neighboring points in the hash functions. We introduce and
describe these two strategies in this section: a sampling-based strategy, called
roLSH-samp, and a Neural Network-based strategy, called roLSH-NN.

5.1 Sampling-Based Improved Virtual Rehashing Strategy

In Sect. 2, we explained the original Virtual Rehashing strategy (denoted as o VR
strategy) as proposed in C2LSH [7]. The initial radius is set to 1, and if sufficient
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results are not found, then the radius is increased in an exponential sequence:
R =1,c,c?, ... until sufficient number of results are found. The main drawback
of this approach is when the values of R become larger (i.e. when the difference
between two consecutive radius values is large - e.g., 4096 and 8192). In such
situations, it happens frequently that very few (or no) nearest neighbor points
are found at radius value 4096 but all (and lot more) are found at radius 8192.
Thus, for example, if the actual radius of the kth-nearest point was near 5000,
then index files corresponding to radius 5000-8192 will be read unnecessarily
from the disk, leading to expensive wasted 10 operations. Instead, we propose a
sampling-based improved Virtual Rehashing strategy (denoted as roLSH-samp)
based on the following observation:

Observation 1. For high-dimensional datasets, the required radius values for a
k value are similar to each other for different query points for a given dataset.

This observation was also noted by a very recent paper [23] where the authors
show that the homogeneity of the distance distributions of data points in dif-
ferent high-dimensional datasets is very high. Figure 1 shows our observation on
popular real high-dimensionsal datasets with varying cardinalities and dimen-
sionalities (Audio [1], Color [5], Deep [2]). For 1000 randomly chosen query
points, we report the final radius values (using the Virtual Rehashing technique
from C2LSH [7]) for top-100 points. By leveraging the above observation, we
design an improved and effective Virtual Rehashing technique: we execute a
sample set of randomly chosen queries for a given k£ and count the number of
occurrences of the final radius value. We choose our initial radius value that is
before the radius with the maximum count of sampled queries. E.g. in the Audio
dataset (Fig. 1), the radius with the maximum count is 8192. For these queries,
it means that the optimal radius would be between 4096 and 8192. Hence we
choose our initial radius value to be 4096. Thus, instead of starting at the initial
radius of 1, we find an improved initial starting radius (denoted as i2R) based
on sampling queries. Note that, since this is done during the indexing phase, it
has no overhead during query execution. Once the initial starting radius (i2R)
is found, we leverage the same exponential sequence strategy as C2LSH (using
x as the expansion step counter), such that:

R_ 2R+2% 0<x<logyi2R
)2 x > logy i2R

Thus, for 1000 random queries on the Audio dataset, using the o VR tech-
nique, the average final radius is 7450 for ¢ = 2 and & = 100. On the other
hand, using our improved strategy, the average final radius is 6083, which leads
to significant savings in the 10.

Note that, one disadvantage of this approach is that there potentially can be
queries that finish with a radius value much lower than the chosen initial radius.
E.g., in the Color dataset (Fig.1), our strategy will choose i2R = 1024. As you
can see, there were 2 out of 1000 queries whose final radius value to find top-100
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points was 512. In this case, the improved Virtual Rehashing strategy (denoted
as iVR strategy) will do wasted work by starting (and ending) at 1024.

Lemma 1. For those queries whose required radius in o VR is at least (2 x i2R),
1VR strategy will generate less I0s than the o VR strategy.

Proof. Set R = i2R. By construction of the sequence of radii in o VR, it is enough
to assume that the required radius is 2R, that is, the actual radius r of the kth-
nearest point satisfies R < r < 2R. In the o VR, the sequence of radii needed to
find the kth-nearest point has log, R+ 2 elements, that is, 1,2,4,...,2R. On the
other hand, for the same query ¢, iVR analyzes at most log, R+ 1 radii, that is,
R+1,R+2,...,2R. This finishes the proof.

While I-LSH [13] still generates less disk I/Os than roLSH-samp, roLSH-samp
is significantly faster than I-LSH (due to less overall processing time) and also
generates less disk seeks than I-LSH for bigger datasets (Sect.6).

1000 500 400
LabelMe Dataset Deep Dataset Mnist Dataset

800 400
300

600 300
200

400 200
200 100 100
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798 23256 45714 68172 26 67 107 147 284 511 738 964 1191

Fig. 2. Frequency (Y Axis) of radiuses (X Axis) for 10,000 Top-100 Queries

5.2 Drawbacks of roLSH-samp

The main benefit of roLSH-samp is that it is effective in reducing the disk I/Os,
especially when the radiuses are large (e.g., the Audio dataset in Fig. 1). There
is a minor overhead of utilizing the sampling-based method during the indexing
phase. Additionally, we found that we also get good sampling representatives
even with a small sampling size (e.g., 100). There are two main drawbacks of
roLSH-samp: 1) roLSH-samp works best when Observation 1 holds true. We
found out that Observation 1 holds true for many datasets, but not all. For
example, as seen in Fig.2, the radiuses for top-100 queries on the LabelMe
dataset are quite different leading to inefficient performance of roLSH-samp (as
shown in Sect. 6), 2) It is not easy to do sampling for different k values since the
radius changes for different k values. It is not trivial to build a single model and
extend it to multiple k values to find the radius for a particular k£ value. Instead
a model needs to be built for each k value.
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Table 1. Performance comparison of learning techniques

MLP | Linear Reg. | RANSAC | Decision tree | Gradient boosting
MSE | 0.0265 | 0.3543 0.3542 0.7057 0.2117
R2 0.9687|0.5826 0.5827 0.1698 0.7504

5.3 Neural Network-Based Prediction of Projected Radiuses

To remedy these two drawbacks, we present a Neural Network-based strategy,
roLSH-NN, that can better predict starting radiuses based on the query location
(in each hash function) for any given k value. The main intuition behind roLSH-
NN is that nearby points in the original space will have similar projected radiuses
to find the desired number (k) of nearest neighbors. Hence, our goal is to predict
the projected radiuses given the hash locations of a query for a given k.

Formally, let h;(gq) denote the bucket location of ¢ in the ith hash projection.
Thus, H(q) = h1(q), ..., hm(q) denotes a vector of size m (since there are m
hash projections) that contains m bucket locations for a given query point g.
Let Ruct(q, k) denote the smallest radius in the projected space that satisfies
the desired number of results (k). Let Q. be the set of training queries, where
for each query ¢ € Q,, we also find the ground truth (i.e. Ruet(q, k)), which is
entered as a target value into the neural network during training. This step is
done in the indexing step, and hence does not affect the query processing time.
We train a Neural Network with Q. queries such that for each query ¢, we input
H(q) and k and the Neural Network outputs the predicted radius, Ryreq(q, k).
We explain the different characteristics of our Neural Network in Sect. 6.

Justification for Choosing Neural Networks: Since the problem of pre-
dicting radiuses given the hash function is a regression problem, we tried several
machine learning techniques. Table 1 shows that Neural Networks (denoted by
MLP since we use a Multilayer Perceptron Neural Network) have the best MSE
and R2 for a sample dataset (Deep) for @y = 10,000 among different machine
learning techniques (using 10-fold cross validation). Hence, we choose Neural
Networks over other techniques in the design of roLSH-NN.

Underestimation of Radius: When the radius is underestimated (i.e.
Rprea(q, k) < Ract(q, k)), the desired number of results are not found and hence
we have to enlarge the radius in all projections. One strategy is to follow the same
expansion pattern of roLSH-samp presented in Sect.5.1, where the predicted
radius is set as i2R. We call this strategy roLSH-NN-iVR. The drawback of this
strategy is that it can lead to excessive (and expensive) disk seeks if the predicted
radius is much lower than the actual radius. Since we observe that R,,cq(g, k)
is close to R,ct(q, k), we also adopt another strategy where we increase the pre-
dicted radius, Rpreq(q, k), linearly by Rj,. such that Rine = Rpred(q, k) X A. This
strategy is referred to as roLSH-NN-) in the rest of this paper.
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Overestimation of Radius: While overestimation of the projected radius by
the Neural Network leads to wasted disk I/Os during query processing, we exper-
imentally show in Sect. 6 that these wasted disk I/Os are still less than the expo-
nential strategy of C2LSH/QALSH and the improvement in the query processing
time (as compared with I-LSH) offsets the disk I/Os significantly.

Extension to any k: In order to train the Neural Network to work for any
number of desired results (k), we need to include k as an input feature in the
training set. In order to simplify the training procedure, we only consider few
values of k in the training set Q.. In Sect. 6, we experimentally show that as
more diverse k values are included in the training set, the MSE decreases. Also,
we explain the training setup and the different &k values in our training set.

6 Experimental Evaluation

In this section, we evaluate the effectiveness of our proposed index structure,
roLSH, on three real diverse high-dimensional datasets. All experiments were
run on the nodes of the Bigdat cluster? with the following specifications: two
Intel Xeon E5-2695, 256 GB RAM, and CentOS 6.5 operating system. We
implement our work on top of C2LSH [7] since we found it to be the fastest
external memory-based LSH algorithm (while achieving high accuracy for high-
dimensional datasets). Note that, our method is orthogonal to the LSH algorithm
and can be used in any state-of-the-art LSH algorithms. All codes were written
in C4++11 and compiled with gcc v4.7.2 with the -O3 optimization flag. We
compare our three strategies, roLSH-samp, roLSH-NN-iVR, and roLSH-NN-\
with the state-of-the-art LSH algorithms C2LSH [7] and I-LSH [13].%:4

Table 2. Comparison of (a) Index Construction Time (in sec) and (b) roLSH Index
Time Breakdown (in sec) on Different Datasets

Index Time | LabelMe | Deep | Mnist Index Time .
LabelMe | Deep | Mnist
roLSH-samp 83.5 93.5 | 1480.8 Breakdown
roLSH-NN 88.6 98.4 | 1488 Base Index Time 80.6 69 | 1430.2
C2LSH 80.6 69 |1430.2 Sampling 2.9 24.5 | 50.6
I-LSH 20.8 25.7 | 1359.9 NN Training 8 29.4 | 57.8

6.1 Datasets

We use the following three popular real datasets to evaluate the proposed
method:

2 Supported by NSF Award #1337884.
3 PM-LSH code is not yet released; hence, we do not compare with it.
4 The source code for roLSH is available at: https://3m.nmsu.edu/rolsh.
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Fig. 7. Accuracy Ratio (Y axis) for different & (X Axis) on 3 datasets

— LabelMe [19] consists of 181,093 512-dimensional points which were gener-
ated by running the GIST feature extraction algorithm on annotated images.

— Deep consists of 1,000,000 96-dimensional points that were randomly chosen
from the DeeplB dataset introduced in [2].

— Mnist [15] This dataset contains 8,100,000 784-dimensional points that rep-
resent images of the digits 0 to 9 which are grayscale and of size 28 x 28.

6.2 Evaluation Criteria and Parameters

The goal of roLSH is to improve the performance efficiency without sacrificing
the accuracy of existing LSH techniques. The performance and accuracy of the
technique used in this paper are evaluated using the following metrics:

— Query Processing Time (QPT): We break down the Query Processing

Time into the Index I/O cost, the Algorithm time (AlgT'ime), and the neg-
ligible false positive removal cost (denoted by FPRemTime, which consists
of the cost of reading the data point candidates and computing their exact
Euclidean distance for removing false positives). Following [13], we further
break down Index I/O cost into the number of disk seeks (i.e. random I/O
reads, noDiskSeeks) and the amount of data (i.e. index files, dataRead)
read in MB. We observed that the index I/O times were not consistent
(i.e. running the same query multiple times, which needed the same index
1/0s, would return drastically different results, mainly because of disk cache
and instruction cache issues). Therefore, following [20], for a Seagate 1TB
HDD with 7200 RPM, we assume a random seek to cost 8.5 ms on aver-
age, and the average time to read data to be 0.156 MB/ms. Thus, we have
QPT = noDiskSeeks x 8.5 + dataRead * 0.156 + AlgTime + FPRemTime.
— Accuracy: We follow the accuracy ratio definition followed by many previ-

ous works [7,9,14]: %Z?Zl ||||OO§;:Z‘|“. Here, o; is the ith point returned by the

technique and of is the true ith nearest point from ¢ (ground truth). Ratio
of 1 means the returned results have the same distance from the query as the
ground truth. The closer the ratio is to 1, the higher is the accuracy.

For the state-of-art methods, we used the same parameters suggested in their
papers (w = 2.719 for QALSH and w = 2.184 for C2LSH). Also, as roLSH is
built on top of C2LSH, it uses the same parameters as C2LSH. We set the allowed
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error probability, , to be 0.1. The Multilayer Perceptron (MLP) Neural Network
is implemented using the Scikit-learn Python package [17]. In this paper, we use
the default parameters and options (i.e. 100 hidden layers, ReLU activation
function, and the Adam optimization algorithm). We leave the hyper-parameter
tuning analysis to future work. We choose 10,000 training queries randomly from
the dataset. 50 different queries were randomly chosen from the dataset for the
evaluation. We report an average of the results on these 50 queries.

6.3 Effect of Different Parameters on Performance of roLSH-NN-\

In this section, we present the performance of roLSH-NN-A under different
parameters for the Deep dataset.

Effect of Training Size: We consider three different training sizes (5K, 10K,
50K). In our experiments, the MSE reduces (by 18.4% between 5K and 50K
training size) as the training size increases and since the MSE decreases (i.e.
the predicted radius is close to the actual radius), the overall Query Processing
Time (QPT) also decreases (by 33% between 5K and 50K training size). In the
following experiments, we choose 10K as the default training size. Due to space
limitations, we do not present the results in Sect. 6.3 in detail.

Effect of Number of Different k in Training: We analyze the performance of
roLSH-NN-) for different values of k that are present in the training data while
keeping the total training size and A constant. We chose {1, 50, 100}, {1, 25, 50,
75, 100}, and {1, 10, 25, 50, 75, 90, 100} as three different settings. The MSE
reduces as more diverse k are included: by 33% between the first two settings,
but only by 14% between the last two settings since the neural networks are
capable of adequately predicting the radiuses for different k& even for the second
setting (which is our default in the following experiments).

Effect of Different Radius Increment (\): We experiment using A\ values
of 5%, 10%, and 20%. As A increases, the number of disk seeks decrease (by
32%) since a higher A\ eventually results in a larger radius and in turn makes the
algorithm stop sooner without processing all projections, but the algorithm time
and the amount of I/O increases (by 4% and 1% respectively) since more hash
buckets are processed. We choose 10% as our default in further experiments.

6.4 Discussion of the Results

Table 2 (a) shows the time taken to finish the index construction. The reported
times show that the sampling and training overhead for roLSH-samp and roLSH-
NN are only 3.4% and 3.9% for the largest dataset (Mnist). Table2 (b) shows
the break-down of index construction time for roLSH-samp and roLSH-NN (i.e.
overhead of the techniques used in each method) for all datasets. The index size
of our techniques are similar to C2LSH since we use C2LSH as our underlying
LSH implementation. The index size overhead of roLSH-samp is 0.1 MB for all
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datasets, and overhead of roLSH-NN is 0.4 MB for LabelMe and 0.5 MB for
Deep and Mnist datasets.

Number of Disk Seeks: Figure3 shows the number of disk seeks (random
1/0s) required by these different techniques. It is very interesting to note that
while I-LSH performs the best (roLSH-NN-\ is a close second) for LabelMe, their
performance degrades as the dataset size increases. I-LSH produces significant
more disk seeks as the dataset size increases. We believe this is mainly due to
the fact that more points need to be accessed incrementally to find the candi-
dates. roLSH-NN-) significantly performs the best for Deep and Mnist datasets
because it can accurately predict the radius for different k. Every time roLSH-
NN-X underestimates the radius (Sect. 5.3), it has to increment the radius by A
resulting in a disk seek in each projection. Also, as expected, roLSH-NN-iVR
produces more disk seeks due to radius underestimation (Sect.5.3).

Amount of Data Read: Figure 4 shows the total amount of data (index files)
read. Since I-LSH incrementally increases the search to the nearest point in the
projected space (instead of an empirically chosen number, such as \), it results in
the least amount of data read for all datasets. These savings in the I/O are offset
due to the expensive search for the nearest point as shown in Fig. 5. Especially
for lower k, roLSH-NN-iVR and roLSH-NN-) read less data than C2LSH, but as
k increases the overall data read is similar for both techniques. It is interesting to
note that roLSH-samp reads significantly more data for LabelMe dataset. This
is due to choosing of a bad starting radius due to the unique distribution of the
LabelMe radiuses (Fig. 2 (a)). Moreover, roLSH-NN-iVR and roLSH-NN-X read
similar amount of data since their starting radius is the same.

Algorithm Time: Figure5 shows the time needed by the algorithms to find
the candidates (excluding the time taken to read the index files). Note the log
scale of this figure because the algorithm time for I-LSH was orders of magnitude
more than the other techniques. This is because I-LSH expands the radius incre-
mentally in each projection which creates a significant overhead. Figure 5 shows
that the overhead of our methods is negligible when compared with C2LSH.

Query Processing Time: Figure6 shows the overall time required to solve
a given k-NN query. I-LSH works well for smaller datasets (LabelMe) but is
significantly slower as the dataset size increases (due to high overhead in incre-
mentally finding the next neighbor in each projection). roLSH-samp is always
faster than C2LSH because of the savings in disk seeks. roLSH-NN-iVR and
roLSH-NN-) are always much faster than roLSH-samp and C2LSH because of
their ability to accurately predict radiuses, resulting in significantly less disk
seeks and lesser (or similar in some cases) data read than C2LSH. roLSH-NN-)\
has better performance compared to roLSH-NN-iVR, mainly because of having
lesser disk seeks as discussed before. This figure shows the performance benefit
of roLSH-NN-\ over its competitors for different datasets, and confirms that the
design of roLSH-NN-X leads to improvement in overall efficiency.

Accuracy: Figure7 shows the accuracy of all techniques. roLSH-samp gives
the worst accuracy for LabelMe dataset. We found that this is due to the fact
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that LabelMe dataset has queries with very different large radiuses. roLSH-samp
is unable to work well for datasets that have differing radiuses because if the
starting radius is chosen wrong, then roLSH-samp can significantly overestimate
the radius for larger radiuses leading to lower accuracy. roLSH-NN-X always
returns similar accuracy to that of C2LSH. I-LSH returns a better accuracy
for Mnist dataset due to their usage of query-aware hash functions, but the
performance is significantly slower as shown in Fig. 6.

7 Conclusion

Locality Sensitive Hashing is a popular technique for efficiently solving Approxi-
mate Nearest Neighbor queries in high-dimensional spaces. State-of-the-art LSH
techniques improve the overall disk I/Os at the expense of algorithm time. In
this paper, we present a unique index structure called radius-optimized Local-
ity Sensitive Hashing (roLSH). The goal of roLSH is to improve the efficiency
of LSH techniques by improving the random disk seeks without any significant
overhead in algorithm time. We propose two novel strategies, roLSH-samp and
roLSH-NN that are based on sampling and Neural Networks respectively. Exper-
imental results on real datasets show the benefit of roLSH in improving overall
performance over existing state-of-the-art techniques, C2LSH and I-LSH.
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