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Abstract. Many large multimedia applications require efficient process-
ing of nearest neighbor queries. Often, multimedia data are represented
as a collection of important high-dimensional feature vectors. Existing
Locality Sensitive Hashing (LSH) techniques require users to find top-k
similar feature vectors for each of the feature vectors that represent the
query object. This leads to wasted and redundant work due to two main
reasons: 1) not all feature vectors may contribute equally in finding the
top-k similar multimedia objects, and 2) feature vectors are treated inde-
pendently during query processing. Additionally, there is no theoretical
guarantee on the returned multimedia results. In this work, we propose
a practical and efficient indexing approach for finding top-k approxi-
mate nearest neighbors for multimedia data using LSH called mmLSH,
which can provide theoretical guarantees on the returned multimedia
results. Additionally, we present a buffer-conscious strategy to speed up
the query processing. Experimental evaluation shows significant gains
in performance time and accuracy for different real multimedia datasets
when compared against state-of-the-art LSH techniques.

Keywords: Approximate nearest neighbor search · High-dimensional
spaces · Locality Sensitive Hashing · Multimedia indexing

1 Introduction

Finding nearest neighbors in high-dimensional spaces is an important problem
in several multimedia applications. In multimedia applications, content-based
data objects, such as images, audio, videos, etc., are represented using high-
dimensional feature vectors. Locality Sensitive Hashing (LSH) [8] is one of the
most popular solutions for the approximate nearest neighbor (ANN) problem
in high-dimensional spaces. Since it was first introduced in [8], many variants
of LSH have been proposed [4,7,9,13] that mainly focused on improving the
search accuracy and/or the search performance of the given queries. LSH is
known for two main advantages: its sub-linear query performance (in terms of
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the data size) and theoretical guarantees on the query accuracy. While the origi-
nal LSH index structure suffered from large index sizes (in order to obtain a high
query accuracy), state-of-the-art LSH techniques [7,9] have alleviated this issue
by using advanced methods such as Collision Counting and Virtual Rehashing.
Thus, owing to their small index sizes, fast index maintenance, fast query per-
formance, and theoretical guarantees on the query accuracy, we propose to build
mmLSH upon existing state-of-the-art LSH techniques.

Motivation of Our Work: Drawbacks of LSH on Multimedia Data
Popular feature extraction algorithms, such as SIFT, SURF (for images),
Marsyas (for audio), etc., extract multiple features that collectively represent
the object of interest for improved accuracy during retrieval. Hence, if a user
wants to find similar objects to a given query object, nearest-neighbor queries
have to be performed for every individual feature vector representing the query
object (and then these intermediate results are aggregated to find the final object
results (Sect. 4)). Existing techniques treat these individual feature vectors as
independent of each other, and hence cannot leverage common elements between
these feature vector queries for improved query performance. Most importantly,
existing techniques can only give theoretical guarantees on the accuracy of the
individual feature vector queries, but not on the final object results, unlike our
proposed index structure, mmLSH.

Contributions of this Paper: In this paper, we propose a practical and effi-
cient indexing approach for finding top-k approximate nearest neighbors for
multimedia data using LSH, called mmLSH. To the best of our knowledge, we
are the first work to provide a rigorous theoretical analysis for answering approx-
imate nearest neighbor queries on high-dimensional multimedia data using LSH.
Our main contributions are:

– mmLSH can efficiently solve approximate nearest neighbor queries for mul-
timedia data while providing rigorous theoretical analysis and guarantees on
the accuracy of the query result.

– Additionally, we present an advanced buffer-conscious strategy to speedup
the processing of a multimedia query.

– Lastly, we experimentally evaluate mmLSH, on diverse real multimedia
datasets and show that mmLSH can outperform the state-of-the-art solu-
tions in terms of performance efficiency and query accuracy.

2 Related Work

LSH was originally proposed in [8] for the Hamming distance and then later
extended to the popular Euclidean distance [6]. C2LSH [7] introduced two main
concepts of Collision Counting and Virtual Rehashing that solved the two main
drawbacks of E2LSH [6]. QALSH [9] used these two concepts to build query-
aware hash functions such that the hash value of the query object is considered as
the anchor bucket during query processing. [19] proposes an efficient distributed
LSH implementation which includes a cache-conscious hash table generation
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(to avoid cache misses to improve the index construction time). Our proposed
cache-conscious optimization is to improve the efficiency of the query processing
(and hence very different).

Query Workloads in High-Dimensional Spaces: Until now, only two works
[10,15] have been proposed that focus on efficient execution of query workloads
in high-dimensional spaces. Neither of these two works provide a rigorous theo-
retical guarantees on the accuracy of the final result. In [15], the authors propose
to efficiently execute set queries using a two-level index structure. The problem
formulation, which is quite restrictive compared to our work, states that a point
will be considered in the result set only if it satisfies a certain user-defined per-
centage of the queries in the query workload. In [10], the authors build a model
based on the cardinality and dimensionality of the high-dimensional data to effi-
ciently utilize the cache. The main drawback of these two approaches is that
they require prior information that is found by analyzing past datasets. Hence
the accuracy and efficiency of the index structures is determined by the accuracy
of the models. Our proposed work is very different from these previous works:
mmLSH does not require any training models and additionally, we provide a
theoretical guarantee on the accuracy of the returned results.

3 Key Concepts and Problem Specification

A hash function family H is (R, cR, p1, p2)-sensitive if it satisfies the following
conditions for any two points x and y in a d-dimensional dataset D ⊂ R

d: if
|x − y| ≤ R, then Pr[h(x) = h(y)] ≥ p1, and if |x − y| > cR, then Pr[h(x) =
h(y)] ≤ p2. Here, p1 and p2 are probabilities and c is an approximation ratio. LSH
requires c > 1 and p1 > p2. In the original LSH scheme for Euclidean distance,
each hash function is defined as ha,b(x) =

⌊
a.x+b

w

⌋
, where a is a d-dimensional

random vector and b is a real number chosen uniformly from [0, w), such that w
is the width of the hash bucket [6]. C2LSH [7] showed that two close points x
and y collide in at least l hash layers (out of m) with a probability 1 − δ.

Given a multidimensional database D, D consists of n d-dimensional points
that belongs to R

d. Each d-dimensional point xi is associated with an object Xj

s.t. multiple points are associated with a single object. There are S objects in
the database (1 ≤ S ≤ n), and for each object Xj , set(Xj) denotes the set of
points that are associated with Xj . Thus, n =

∑S
j=1 |Xj |.

Our goal is to provide a k-NN version of the c-approximate nearest neighbor
problem for multidimensional objects. For this, we propose a notion of distance
between multidimensional objects called Γ -distance (defined in Sect. 4.1) and
that depends on a percentage parameter that we denote by Γ .

Let us denote the Γ -distance between two objects X1 and X2 by
Γdist(X1,X2). For a given query object Q, an object Xj is a Γ -c-approximate
nearest neighbor of Q if the Γ -distance between Q and Xj is at most c times
the Γ -distance between Q and its true (or exact) nearest neighbor, X∗

j , i.e.
Γdist(Q,Xj) ≤ c × Γdist(Q,X∗

j ), where c > 1 is an approximation ratio.
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Similarly, the Γk-NN version of this problem states that we want to find k
objects that are respectively the Γ -c-approximate nearest neighbors of the exact
k-NN objects of Q.

4 mmLSH

The Borda Count method [17] (along with other aggregation techniques [16])
are popular existing techniques to aggregate results of multiple point queries to
find similar objects in multimedia retrieval [2]. In order to find top-k nearest
neighbor objects of multimedia object query Q, the existing methods find the
top-k′ nearest neighbor points for each query point qi, where 1 ≤ i ≤ |set(Q)|,
k is the number of desired results by the user, and k′ is an arbitrarily chosen
number such that k′ >> k [2]. Once the top-k′ nearest neighbors of each query
point qi is found, an overall score is assigned to each multimedia object Xj based
on the depth of the points (associated with Xj) in the top-k′ results for each
of the point queries qi of Q. Drawbacks of this approach: 1) there is no
theoretical guarantee for the accuracy of the returned top-k result objects, and
2) all query points qi of the query object Q are executed independently of each
other. Hence, if a query point takes too long to execute as compared to others,
then the overall processing time is negatively affected. Our proposed method,
mmLSH, solves both these drawbacks as explained in the next sections.

4.1 Key Definitions of mmLSH

Justification for Using R-Object Similarity and Γ -distance: In order to
define two Nearby Objects, we first define a similarity/distance measure between
two objects in the context of ANN search. Note that, there have been several
works that have defined voting-based similarity/distance measures between two
multimedia objects, especially images [11,22,23]. Also, region-based algorithms
have been explored in the past, whose main strategy is to divide the query object
in regions and compare these with regions of the dataset objects via some region
distance, and then aggregate the resulting distances [1]. In this work we define
the Γ -distance as a way to measure distances between objects as a whole. Our
definition follows the naive strategy of comparing all pairs of features of the
objects but it uses a percentage parameter Γ to ensure two identical objects
have a near zero distance. Another key advantage of the proposed distance is
that it allows us to provide theoretical guarantees for our results. In order to do
so, we leverage the theoretical guarantees of LSH in our design.

Definition 1 (R-Object Similarity). Given a radius R, the R-Object Sim-
ilarity between two objects Q and Xj, that consists of set(Q) and set(Xj) d-
dimensional feature vectors respectively, is defined as:

sim(Q,Xj , R) =
|{q ∈ set(Q), xi ∈ set(Xj) : ||q − xi|| ≤ R}|

|set(Q)|.|set(Xj)|
(1)
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Note that, 0 ≤ sim(Q,Xj , R) ≤ 1. sim(Q,Xj , R) will be equal to 1 if every
point of Q is a distance at most R to every point of Xj (e.g. if you are comparing
an entirely green image with another green image - and assuming the feature
vectors were based on the color of the pixel. But if you are comparing two
identical images, then sim(Q,Xj , R) < 1 if R is less than the largest among
||q−xi||). Since the number of points associated with two objects can be different,
we normalize the similarity w.r.t the points associated with Q and Xj .

Definition 2 (Γ -distance). Given a two objects Q and Xj, the Γ -distance
between Q and Xj is defined as:

Γdist(Q,Xj) = inf{R | sim(Q,Xj , R) ≥ Γ} (2)

In order to find points that are within R distance, we use the Collision
Counting method that is introduced in C2LSH [7].

We define a Collision Index (denoted by ci(Q,Xj) that determines how close
two objects are based on the number of points between the two objects that are
considered close (i.e. the collision counts between the points of the two objects
is greater than the collision threshold l).

Definition 3 (Collision Index of Two Objects). Given two objects Q and
Xj, the collision index of Xj with respect to Q is defined as:

ci(Q,Xj) =
|{q ∈ set(Q), xi ∈ set(Xj) : cc(q, xi) ≥ l}|

|set(Q)|.|set(Xj)|
(3)

The Collision Index between two objects depends on how many nearby points
are considered as candidates between the two objects. Thus, in turn, the accuracy
of the collision index depends on the accuracy of the collision counting process
(which is shown to be very high [7,9]). Hence we define an object Xj to be a Γ -
candidate if the collision index between them is greater than or equal to (1−ε)Γ ,
where ε > δ is an approximation factor which we set to 2δ.

Definition 4 (Γ -candidate Objects). Given an object query Q and an object
Xj, we say that Xj is a Γ -candidate with respect to Q if ci(Q,Xj) ≥ (1 − ε)Γ .

Additionally, we define an object to be a Γ -false positive if it is a Γ -candidate
but its Γ -distance to the object query is too high.

Definition 5 (Γ -False Positives). Given an object query Q and an object Xj,
we say Xj is a Γ -false positive with respect to Q if we have ci(Q,Xj) ≥ Γ + β

2
but Γdist(Q,Xj) > cR.

4.2 Design of mmLSH

During query processing, instead of executing the query points of Q indepen-
dently, we execute them one at a time in each projection (Lines 5–6 in Algo-
rithm1). The function CountCollisions(qi) (Line 7), an existing function from
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Algorithm 1. k-Nearest Neighbor Object
1: while TRUE do
2: if |{Xj |Xj ∈ CL ∧ Γdist(Q, Xj) ≤ cR}| ≥ k then
3: return the top-k objects from CL;
4: end if
5: for g = 1; g ≤ m; g + + do
6: for i = 1; i ≤ |set(Q)|; i + + do
7: CountCollisions(qi);
8: ∀Xj∈S Update ci(Q, Xj);
9: end for

10: if |CL| ≥ k + βS then
11: return the top-k objects from CL;
12: end if
13: end for
14: R = cnumIter;
15: numIter + +;
16: end while

C2LSH, is responsible for counting collisions of query points and points in the
database. The Buffer-conscious Optimizer module (Sect. 4.3) is responsible for
finding an effective strategy to utilize the buffer to speed up the query process-
ing. This module decides which query and the hash bucket should be processed
next. The Γ -Analyzer module is in charge of calculating the collision indexes
(Sect. 4.1) for objects in the database and for checking/terminating the process
if the terminating conditions are met.

Terminating Conditions for mmLSH: The existing solution (Sect. 4) finds
top-k′ candidates for each query point in Q and then terminates. Instead,
mmLSH stops when top-k objects are found. These conditions guarantee that
Γ -c2-approximate NN are found with constant probability (Sect. 4.4):

T 1) At certain point at level-R, at least k+βS Γ -candidates have been found,
where βS is the allowed number of false positives. (Line 14, Algorithm1)
T 2) At the end of level-R, there exists at least k Γ -candidates whose Γ -
distance to Q is at most R. (Line 6, Algorithm 1)

4.3 Buffer-Conscious Optimization for Faster Query Processing

Another goal of mmLSH is to improve the processing speed by efficiently utilizing
a given buffer space. In order to explain our strategy, we first analyze the two
expensive operations and the two naive strategies for solving the problem. The
two main dominant costs in LSH-based techniques are the Algorithm time (which
is the time required to find the candidate points that collide with the given query
point) and the Index IO time (which is the time needed to bring the necessary
index files from the secondary storage to the buffer).

Due to space limitations, we do not present a formal cost model for this
process. Our main focus is on minimizing the above mentioned two dominant
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costs: algorithm time and index IO time. We want to store the most important
hash buckets from the cache to maximize total number of buffer hits.

Table 1. Performance comparison of naive strategies NS1 and NS2 (in sec)

Total AlgTime IndexIOTime

NS1: LRU 263.6 117.6 146.0

NS2: Per-Bucket 279.5 260.8 18.7

Fig. 1. (a) Query split strategy, (b) Comparison of exact and approx. Frequencies on
a real and random query

Naive Strategy 1: Using LRU Eviction Strategy on a Given Buffer.
Given Q, we first find the hash bucket locations for each of point queries of Q. In
order to make the LRU (Least Recently Used) eviction strategy more effective,
in each hash function m, we order the execution of point queries of Q according
to the hash bucket locations from left to right. During query processing, we evict
the LRU index files from the buffer when the buffer gets full.

Naive Strategy 2: Using a Per-bucket Execution Strategy. Since one of
our goals is to reduce the indexIOCost, we also consider a Per-bucket execution
strategy. Given a query object Q, we bring each useful hash bucket, hb, into the
buffer, and for every q in Q that requires hb, we perform Collision Counting to
find the candidate nearest neighbor points to the point query. In Fig. 1(a), this
strategy would bring in hb1 (then solve for q1), then bring hb2 (and then solve
for q1 and q2, since both queries using hb2) and so on.

As seen from Table 1, NS1, due to its simplicity, has a lot smaller AlgTime
than NS2, but its IndexIOTime is a lot more than NS2. NS2 needs to find the
queries that require the particular hash bucket brought into the main memory.
While this process can be sped up with more index structures, it is still an
expensive operation to check for all queries. In each projection , since a hash
bucket is brought into the buffer only once for NS2, IndexIOTime is the lowest.

Hence we propose an efficient and effective buffer-conscious strategy that
reduces the IndexIOTime of NS1 without adding significant overhead to the
AlgTime. Instead of using LRU, our eviction strategy is to evict a bucket based
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on the following three intuitive criteria. Criterion 1: if the bucket was not added
to the buffer very recently. When a bucket is added to the buffer, then there is
a high likelihood that another query might use it in the near future. Criterion
2: if the bucket is far away from the current query. It is more beneficial to evict
another bucket that is far apart in the projection than the position of the current
query. Criterion 3: if the number of queries that still require this bucket (called
frequency of the bucket) is the lowest after the first two criteria are satisfied.
Criterion 3 ensures that a bucket needed by a lot of queries is not evicted.

The main challenge is that the main criterion (Criterion 3) requires mmLSH
to know the frequencies of each bucket to decide which bucket to evict. This is an
unfair expensive requirement to have in online query processing. Across different
multimedia datasets, we observed that the frequencies of buckets on collection of
queries associated with an object showed a behavior very similar to a collection
of randomly chosen queries. Figure 1(b) shows that the bucket frequencies for a
randomly chosen query from the Wang [21] dataset exhibit a similar pattern for
a set of randomly generated point queries on a single projection.

Projection-Dividing Strategy: We use the above stated important observa-
tion to estimate the frequencies of buckets during offline processing. The follow-
ing is the overview: 1) We divide a projection into different regions. Too few
divisions will result in a high error between the estimated and actual frequen-
cies. Too many divisions will also result in a high error because if the frequency
behavior is slightly deviated than the random queries’ behavior, then we assign
same frequencies as that of the random queries. For this paper, we empirically
decide the total number of divisions (set to 10). 2) We calculate the average
frequencies for the random point queries for each region, and assign the region’s
frequency to each bucket in that particular region. 3) For each projection, we
assign approximate frequencies to all buckets in each projection.

Query-Splitting Strategy: In order to utilize the buffer more effectively, we
split the queries into multiple sub-queries and reorder the execution of the queries
based on these new set of queries. In Fig. 1(a), the query execution order will
change from q1, q2, q3 to q1a, q2a, q1b, q3a, q2b, q3b to utilize the buffer more
effectively. Note that too many splits is still detrimental due to the increase in
the overall Algorithm time (like Naive Strategy 2). We also try different number
of splits and get the overall times of 173, 169, 171, and 176 s for 5, 10, 15, and 20
splits respectively. In this work, we empirically find a good split (that is found
during the indexing phase, and set to 10).

4.4 Theoretical Analysis

Guarantees on the Stopping Conditions. The goal of this section is to
prove the following theorem which provides a theoretical guarantee to mmLSH.
For simplicity we perform the theoretical analysis for the case k = 1, the general
case follows similarly after simple adaptations.
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Theorem 1. Let Q be a query object and let L = min{|X| | X ∈ D}. If

Γ ≥

√√
√
√max

{
ln 1

δ

(ε − δ)2|Q|L,
2 ln 2

β

β2|Q|L

}

,

then mmLSH finds a Γ -c2-approximate NN with constant high probability.

For the proof of this theorem we need the following lemma. For this, we
consider the following two properties for a given query object Q and level R:

P1) If X is an object such that Γdist(Q,X) ≤ R then X is a Γ -candidate.
P2) The number of Γ -false positives is at most βS.

In the next lemma, we show that the above properties hold with high probability.

Lemma 1. Let δ be the probability defined in Sect. 3 and ε > δ as defined in
Sect. 4.1, then if Γ satisfies the inequality in Theorem1 we have Pr[P1] ≥ 1 − δ
and Pr[P2] > 1

2 .

Proof. For qi ∈ set(Q) and xj ∈ set(X), let A be the condition cc(q, xj) ≥ l, B
be ||q − xj || ≤ R, and C be ||q − xj || > cR. From the proof of Lemma 1 in [7]
we know the following inequalities hold:

Pr[A|B] ≥ 1 − δ and Pr[¬A|C] ≥ (1 − exp(−2(α − p2)2m)) ≥ (1 − β

2
). (4)

We proceed to prove inequality Pr[P1] ≥ 1−δ. Assume Γdist(Q,X) ≤ R, which
is equivalent to Pr[||qi − xj || ≤ R] ≥ Γ, where qi ∈ set(Q) and xj ∈ set(X).
Therefore, p = Pr[A] ≥ Pr[A ∧ B] = Pr[A|B]Pr[B] ≥ (1 − δ)Γ, where the last
inequality follows from the left hand side inequality in Eq. (4).

For every 1 ≤ i ≤ |Q| and 1 ≤ j ≤ |X|, let Yi,j ∼ Ber(1 − p) be a Bernoulli
random variable which is equal to 1 if cc(qi, xj) < l. Then

Pr[ci(Q,X) ≥ (1 − ε)Γ ] = 1 − Pr[
∑

i,j

Yi,j ≥ (1 − (1 − ε)Γ )|Q||X|]

≥ 1 − exp(−2(ε − δ)2Γ 2)|Q||X|,

where the inequality follows from Hoeffding’s Inequality. Therefore for the given
range of Γ we have Pr[P1] = Pr[ci(Q,X) ≥ (1 − ε)Γ ] ≥ 1 − δ.

We continue with the proof of Pr[P2] > 1
2 . For this, we assume

Γdist(Q,X) > cR. Which is equivalent to Pr[||qi − xj || > cR] ≥ 1 − Γ. Then

1 − p = Pr[¬A] ≥ Pr[¬A ∧ C] = Pr[¬A|C]Pr[C] ≥ (1 − β

2
)(1 − Γ )

where the last inequality follows from the right hand side inequality in Eq. (4).
Therefore, p ≤ Γ + β

2 − βΓ
2 . For every 1 ≤ i ≤ |Q| and 1 ≤ j ≤ |X|, let

Yi,j ∼ Ber(1 − p) be a Bernoulli random variable defined as above. Thus

Pr[ci(Q,X) ≥ Γ +
β

2
] = Pr[

∑

i,j

Yi,j ≤ (1 − Γ − β

2
− Δ)|Q||X|]
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for some Δ > 0. Thus, from Hoeffding’s Inequality it follows that

q = Pr[ci(Q, X) ≥ Γ +
β

2
] < exp(−2(Γ +

β

2
− p)2|Q||X|) ≤ exp(−2

(β

2

)2
Γ 2|Q||X|).

Let FP be the set of false positives, that is FP = {X ∈ D | ci(Q,X) ≥
Γ + β

2 and Γdist(Q,X) > cR}, then Pr[P2] = Pr[|FP | ≤ βS]. Therefore, it
suffices to show the latter is larger than 1

2 .
Let X1, . . . , XS denote the elements of D. For every 1 ≤ i ≤ S let Zi ∼ Ber(q)

be the Bernoulli random variable which is equal to one if Xi ∈ FP . Then the
expected value of the size of FP satisfies

E(|FP |) = E(
∑

i

Zi) =
∑

i

E(Zi) = S · q < S · exp(−2
(β

2
)2

Γ 2|Q||X|).

Therefore, from Markov’s Inequality it follows that

Pr[|FP |] ≤ βS]1− ≥ E[|FP |]
βS

> 1 − 1
β

exp(−2
(β

2
)2

Γ 2|Q||X|) ≥ 1
2
,

where the last inequality holds by the assumption on Γ . This finishes the proof.

We are now ready to prove the theorem.

Proof (of Theorem 1). By Lemma 1 properties P1 and P2 hold with constant
high probability. Therefore, we may assume these properties hold simultaneously.

Let r be the smallest Γ -distance between Q and an object of D. Set t =
�logc r	 and R = ct.

Assume first that the algorithm finishes with terminating condition T 1, that
is at level R at least 1 + βS Γ -candidates have been found. By property P2
at most βS of these are false positives. Let X be the object returned by the
algorithm, then we have Γdist(Q,X) ≤ cR ≤ c2r.

Now, if the algorithm does not finish with T 1, then property P1 guarantees
it finishes with T 2 at the end of level R. Let X be the object returned by the
algorithm, then we have Γdist(Q,X) ≤ R ≤ cr < c2r. This finishes the proof.

5 Experimental Evaluation

In this section, we evaluate the effectiveness of mmLSH on four real multimedia
data sets. All experiments were run on the nodes of the Bigdata cluster1 with:
two Intel Xeon E5-2695, 256 GB RAM, and CentOS 6.5 operating system. We
used the state-of-the-art C2LSH [7] as our base implementation.2 All codes were
written in C++11 and compiled with gcc v4.7.2 with the -O3 optimization flag.
For existing state-of-the-art algorithms (C2LSH and QALSH), we used the Borda
Count process (Sect. 4) to aggregate the results of the point queries to find the

1 Supported by NSF Award #1337884.
2 mmLSH can be implemented over any state-of-the-art LSH technique.
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nearest neighbor objects. Additionally, since the accuracy and the performance
of the aggregation is affected by the chosen number of top-k′ results of the
point queries, we choose a varying k′ for Linear, C2LSH, and QALSH for a fair
comparison: k′ = 25, 50, 100. We also implement an LRU buffer for the indexes
in C2LSH and QALSH to show a fair comparison with our results. We compare
our work with the following alternatives:

– LinearSearch-Borda: In this alternative, the top-k′ results of the point
queries are found using a brute-force linear search. This method does not
utilize the buffer since it does not have any indexes.

– C2LSH-Borda: top-k′ results of point queries are found using C2LSH [7].
– QALSH-Borda: top-k′ results of point queries are found using QALSH [9].

5.1 Datasets

We use the following four real multimedia datasets to evaluate mmLSH :

– Caltech [3] This dataset consists of 3,767,761 32-dimensional points that
were created using BRIEF on 28,049 images belonging to 256 categories.

– Corel [5] This dataset consists of 1,710,725 64-dimensional points that were
created using SURF on 9,994 images belonging to 100 categories.

– MirFlicker [14] This dataset consists of 12,004,143 32-dimensional points
that were created using ORB on 24,980 images.

– Wang [21] This dataset consists of 695,672 128-dimensional SIFT descriptors
belonging to 1000 images. These images belong to 10 different categories.

5.2 Evaluation Criteria and Parameters

We evaluate the execution time and accuracy using the following criteria:

– Time: Two main dominant costs in LSH-based techniques are the algorithm
time and the index IO time. We observed that index IO times were not con-
sistent (i.e. running the same query multiple times, would return drastically
different results, mainly because of disk cache and instruction cache issues).
Thus, the overall execution time is modeled for an HDD where an average
disk seek requires 8.5 ms and an average data read rate is 0.156 MB/ms [18].

– Accuracy: Similar to the ratio defined in earlier works [7,9], we define an
object ratio to calculate the accuracy of the returned top-k objects as fol-
lowing: ORΓ (Q) = 1

k

∑k
i=1

Γdist(Q,Xi)
Γdist(Q,X∗

i )
where X1, . . . , Xk denote the top-k

objects returned from the algorithm and X∗
1 , . . . , X∗

k denote the real objects
found from the ground truth. Γdist is computed using Eq. 2. Object Ratio of
1 means 100% accuracy and as it increases, the accuracy decreases.

We do not report the index size or the index construction cost, since they would
be the same as the underlying LSH implementation that we use (C2LSH [7]).

We choose δ = 0.1, β = 25
S , ε = 0.2, w = 2.184 [9] for C2LSH and mmLSH,

w = 2.7191 [9] for QALSH. We randomly chose 10 multimedia objects as queries
from each dataset and report the average of the results.
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5.3 Discussion of the Results

In this section, we analyze the execution time and accuracy of mmLSH using the
criteria explained in Sect. 5.2 against its alternatives. We note that QALSH gives
drastically worse times than C2LSH, and hence when comparing the effectiveness
for varying parameters, we only compare with C2LSH.

Effect of Buffer Size: Figure 2(a) shows the benefit of our eviction strategy
(Sect. 4.3) when compared with C2LSH + LRU for varying buffer sizes. It is
evident from this figure that our three criterion are helpful in evicting less useful

Fig. 2. Effect of (a) Buffer size on time, (b) Varying k on time and accuracy

Fig. 3. Comparison of time of mmLSH against alternatives

Fig. 4. Comparison of accuracy of mmLSH against alternatives
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index files. The small overhead in Algorithm time is offset by a significant reduc-
tion in the number of index IOs. We found out that the highest L3 cache size is
24.75 MB for desktop processors and 60MB for server processors. Therefore, we
decided to choose the buffer sizes between 20 MB and 50 MB. We use 30 MB as
the default cache size in the following experiments.

Effect of Number of Desired Objects: Figure 2(b) shows the execution time
and accuracy of mmLSH against C2LSH for varying number of desired objects
(k). This figure shows that mmLSH has better time and object ratio for different
k values. Additionally, it shows that mmLSH is scalable for a large number of
desired objects as well. Moreover, although the object ratio of mmLSH stays
the same by increasing k, the object ratio of C2LSH increases. We use k = 25
as the default for the following experiments.

Comparison of mmLSH vs. State-of-the-art Methods. Figures 3 and 4
show the time and accuracy of mmLSH, LinearSearch-Borda, C2LSH-Borda,
QALSH-Borda for 4 multimedia datasets with varying characteristics. The Borda
count process is done after query processing and takes very negligible time. Note
that, In our work, we consider all feature-vectors that are extracted by a feature-
extraction algorithm. Several works [12,20] have been proposed that cluster these
points with the purpose of finding a representative point to reduce the complexity
and overall processing time of the problem. Our work is orthogonal to those
approaches and hence are not included in this paper.

For the Caltech and MirFlickr datasets, QALSH did not finish the exper-
iments due to their slow execution and hence are not included in the charts.
The slow execution is mainly due to the use of the B+-tree index structures
to find the nearest neighbors in the hash functions. mmLSH always returns a
higher accuracy than the alternatives while being much faster than all three
alternatives. This is because mmLSH is able to leverage the common elements
between queries and improve cache utilization along with being able to stop
earlier than the state-of-the-art algorithms. For future work, we plan on investi-
gating the application of mmLSH to other distance measures and compare with
other feature vector aggregation techniques [11].

6 Conclusion

In this paper, we presented a novel index structure for efficiently finding top-k
approximate nearest neighbors for multimedia data using LSH, called mmLSH.
Existing LSH-based techniques can give theoretical guarantees on these individ-
ual high-dimensional feature vector queries, but not on the multimedia object
query. These techniques also treat each individual feature vector belonging to
the object as independent of one another. In mmLSH, novel strategies are used
that improve execution time and accuracy of a multimedia object query. Addi-
tionally, we provide rigorous theoretical analysis and guarantees on our returned
results. Experimental evaluation shows the benefit of mmLSH in terms of exe-
cution time and accuracy compared to state-of-the-art algorithms. Additionally,
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mmLSH can give theoretical guarantees on the final results instead of the indi-
vidual point queries.
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12. Križaj, J., Štruc, V., Pavešić, N.: Adaptation of SIFT features for robust face
recognition. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010. LNCS, vol. 6111.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13772-3 40

13. Liu, W., Wang, H., Zhang, Y., Wang, W., Qin, L.: I-LSH: I/O efficient c-
approximate nearest neighbor search in high-dimensional space. In: ICDE (2019)

14. MirFlicker dataset. http://press.liacs.nl/mirflickr
15. Nagarkar, P., Candan, K.S.: PSLSH: an index structure for efficient execution of

set queries in high-dimensional spaces. In: CIKM (2018)
16. Perez, C.A., Cament, L.A., Castillo, L.E.: Methodological improvement on local

Gabor face recognition based on feature selection and enhanced Borda count. Pat-
tern Recogn. 44, 951–963 (2011)

17. Reilly, B.: Social choice in the south seas: electoral innovation and the Borda count
in the Pacific Island countries. IPSR 23, 355–372+467 (2002)

18. Seagate ST2000DM001 Manual. https://www.seagate.com/files/staticfiles/docs/
pdf/datasheet/disc/barracuda-ds1737-1-1111us.pdf

19. Sundaram, N., et al.: Streaming similarity search over one billion tweets using
parallel locality-sensitive hashing. In: VLDB (2013)

20. Tao, C., Tan, Y., Cai, H., Tian, J.: Airport detection from large IKONOS images
using clustered SIFT keypoints and region information. In: GRSL (2011)

https://doi.org/10.1007/s10115-009-0257-4
https://doi.org/10.1007/s10115-009-0257-4
http://www.vision.caltech.edu/Image_Datasets/Caltech256
https://doi.org/10.1007/978-3-030-32047-8_1
https://doi.org/10.1007/978-3-030-32047-8_1
http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx
https://doi.org/10.1007/s11263-009-0285-2
https://doi.org/10.1007/s11263-009-0285-2
https://doi.org/10.1007/978-3-642-13772-3_40
http://press.liacs.nl/mirflickr
https://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/barracuda-ds1737-1-1111us.pdf
https://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/barracuda-ds1737-1-1111us.pdf


mmLSH: A Practical and Efficient Technique for Processing ANNS 61

21. Wang, J.Z., Li, J., Wiederhold, G.: Simplicity semantics-sensitive integrated match-
ing for picture libraries. TPAMI 23, 947–963 (2001)

22. Wu, Z., Ke, Q., Isard, M., Sun, J.: Bundling features for large scale partial-duplicate
web image search. In: CVPR (2009)

23. Zhou, W., Li, H., Lu, Y., Tian, Q.: Large scale image search with geometric coding.
In: MM 2011 (2011)




