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Abstract—Physically Unclonable Functions (PUFs) are
emerging hardware security primitives that leverage random
variations during chip manufacturing process to generate unique
secrets. The security level of generated PUF secrets is mainly
determined by its unpredictability feature which is typically
evaluated using the metric of entropy bits. In this paper, we
propose a novel Pairwise Distinct-Modulus (PDM) technique that
significantly improves the upper bound of PUF entropy bits from
the scale of log2(N!) up to O(N?). The PDM technique boosts
entropy by eliminating the correlation within PUF response bits
caused by element reuse in conventional pairwise comparison. We
also propose a reliability-enhancing scheme to compensate the
impact on reducing reliability by saving a significant portion of
potential reliable response bits. Experimental results based on a
published large-scale RO PUF frequency dataset validated that
the proposed technique significantly boosts PUF entropy bits from
the scale of O(N-log2(N)) up to approach the new upper bound of
O(N?) with a comparable reliability, and the reliability-enhancing
technique saves 4x more on the percentage of reliable response
bits.

Keywords— Physically Unclonable Functions, Boosting Entropy
Bound, Correlation Elimination, Reliability Enhancing

1. INTRODUCTION

The advent of Internet-of-Things (IoTs) poses an increasing amount
of security vulnerabilities which can be leveraged by adversaries to
compromise the data integrity and confidentiality of connected devices.
Secrets of security mechanisms such as authentication or encryption are
conventionally stored within non-volatile memories (NVMs) which are
vulnerable to physical attacks [1], [2]. Physically Unclonable Functions
(PUFs) have been proposed as a promising secure hardware primitive
for secure secret storage due to its tamper-evident feature and the
capability of generating volatile secrets. PUFs leverage the random
process variations during the manufacturing process of integrated
circuits (ICs) to generate unique, unpredictable and reproducible secrets
for individual ICs. PUFs typically work in the form of a challenge-
response mechanism where a challenge is applied as input and a binary
output is generated as the corresponding response, called a challenge-
response pair (CRP). The secrets generated by such challenge-response
mechanism are unclonable due to the uncontrollable random variations
during the chip manufacturing process. The secrecy of PUF’s CRPs is
usually ensured by the unpredictability property which refers to the
feature that adversaries are not able to predict the response to an
arbitrary challenge, and such unpredictability can be further
quantitatively measured by the amount of entropy bits.

Unfortunately, the concatenation of response bits generated by a
given set of known challenges does not guarantee a secure secret due to
the lack of independence among these CRPs. The CRPs’ independence
can be undermined by either: (1) a non-uniformly distributed physical
layout or (2) a response generation algorithm that determines how the
PUF cells are interacted to generate response bits. We call the former
as spatial correlation while the latter as functional correlation [7][13].
This paper focuses on eliminating the functional correlation that exists

in response bits generation algorithms of weak PUFs, and our proposed
techniques are described in the context of weak PUFs, in particular RO
PUFs. Please note that strong PUFs could be constructed using weak
PUFs with the help of cryptographic primitives like keyed-hash
functions. The proposed technique is applicable to any weak PUF's that
use pairing strategies to compare soft information of entropy source.

A. Related Work

The Ring Oscillator (RO) PUF is one of the most widely
investigated PUF regarding its CRPs correlations. Several works have
proposed schemes to address the spatial correlations of RO PUFs
[7][12] while others [6][7] have proposed different group-based coding
schemes to deal with the functional correlation. It is agreed that [11] all
these different schemes are optimizing the response generation process
of extracting the maximum available entropy bits of log2(N!) with N RO
elements. A number of works have investigated the Entropy and
unpredictability of various types of PUFs. The correlations between
response bits of PUF's are evaluated by Context Tree Weighting (CTW)
in [16] and researchers in [8] analyzed the unpredictability and
reliability of the ASIC-implementations of five different types of PUFs.
The upper bounds on the min-entropy of several strong PUFs are
derived in [13] to show their weakness as secure key generators.
Authors in [11] demonstrated key-recovery attacks on different types
of RO PUFs by manipulating their public helper data. YIN et al
proposed a polynomial regression method [7] to eliminate the spatial
systematic correlation within the physical layout to improve the
randomness of the RO PUF. Group-based schemes were proposed in
[5][6] to explore the maximum amount of independent and reliable bits
out of N ROs. A comprehensive entropy and correlation analysis of the
HELP PUF was studied in [17]. Recently, a spatial autocorrelation
analysis was introduced in [18] to identify correlations in the responses
of single-challenge PUFs, and authors in [14] proposed an entropy
pump based a configurable RO PUF to improve the low-entropy keys.

B. Our Contribution

Fundamentally different from existing related works, this paper
focuses on boosting the maximum extractable entropy for N PUF
elements from the existing upper bound of log2(N!) up to N(N-1)/2 by
introducing a pairwise distinct-modulus (PDM) scheme. Fig. 1 presents
a high-level concept of this proposed PDM scheme on boosting PUF
entropy. The nonlinearity feature of the proposed pairwise distinct-
modulus (PDM) scheme eliminates the potential correlation in CRPs
introduced by elements reuse in conventional pairwise scheme. This
paper makes the following contributions:

e We propose a pairwise distinct-modulus (PDM) scheme that
significantly improves the entropy upper-bound for the
pairwise-comparison strategy from O(N-log2(N)) to O(N?).

e We propose a reliability enhancing technique that compensate
the negative impact on reliability by identifying and saving a
significant portion of potential reliable response bits that would
otherwise be discarded by the thresholding technique.

e We validate the effectiveness of the proposed entropy-boosting
scheme on improving the entropy and randomness statistical
results with comparable reliability using a publicly available
large-scale dataset of RO frequencies.
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Fig. 1. Overview of the proposed entropy-boosting scheme.

e Experimental evaluations are performed to evaluate the
proposed reliability-enhancing scheme using real RO PUF
datasets, and results show that it improves the length of reliable
response bitstring by 4x.

The rest of the paper are organized as follows. Section II introduces
the relevant preliminary work. Section III describes the proposed
distinct-modulus scheme in the context of RO PUFs and Section IV
presents the proposed reliability-enhancing scheme. Section V presents
the experimental setup and results and Section VI concludes the paper.

II.  PRELIMINARIES

A. Basics of RO PUFs

The proposed distinct-modulus scheme is described in the context
of RO PUFs. As shown in Fig.1, a conventional RO PUF typically
consists of N identically designed Ring Oscillators that are connected
to the inputs of two N-fo-I multiplexers (MUXes). The outputs of the
two MUZXes are connected to two counters which are used to record the
frequency values of two selected RO cells. The “Select” inputs of the
two MUZXes serve as the challenge which select a pair of RO cells
whose frequencies are then compared to generate single response bit. A
binary value ‘1’ (or ‘0’) is generated depending on which frequency is
faster. A pairwise scheme is used to generate the response bits.

B. Entropy/Min-Entropy for PUFs Response Bits

The dependence/correlation mentioned above is detrimental to
PUF’s unpredictability which can be quantitively measured by the
metric of Shannon entropy. Specifically, the number of independent
response bits can be measured by the number of entropy and min-
Entropy [19] which are computed using Equations (1) and (2) below:

HX) = =X P(x;) - logy P(x;) (D

Han (X) = —log, | max (P(x)] @)

where X represents a discrete random variable with n possible
outcomes (X1, X2, ... Xi, ... Xn), and P(X) is the probability mass function.
For a binary variable X with two outcomes (0 or 1), the entropy H(X) is
1 if X is uniformly distributed, i.e., the two outcomes 0 and 1 are of
equal probability (1/2) to occur.

In the RO PUF scenario, the random variable X is regarded as the
K-bit response bitstring b;b>... bk-1bk generated by the K= N(N-1)/2
pairings for a RO PUF with N RO cells. Therefore, the variable X has
2WN(N-D/2) possible outcomes. If each outcome is of equal probability of
120072 to occur, then the maximum entropy of K bits is achieved
which indicates that each of the K response bits are fully random and
independent.

III.  PROPOSED DISTINCT-MODULUS SCHEME

A. Motivation of the proposed scheme

According to the pairwise scheme, the N(N-1)/2 response bits are
not independent with each other due to the correlation. Take a group of
3 RO cells RO:, RO: and RO:; (their frequencies as fi, f> and f3) for
example, there are three possible pairings for their frequencies as P;=(f1,
1), P=(f2, f3) and Ps=(f1, f3), and the three corresponding response bits
are represented as b1z, b2z and b3 respectively. If /1 > f2 and f> > f3, then
it can be inferred that f; > f. In other words, these 3 bits b,2b23b;3 can

not be assigned values independently [5], e.g., if b2 =1 and b23 =1, the
value of b;; is already determined be to 1. The dependency that exists
within the N(N-1)/2 bits generated by the pairwise comparison can be
further revealed by Table 1. All 8 possible values of 3-bit bitstring
bi12b23b13, under all 6 possible orderings of 3 frequencies fi, f> and f3.
Two values “001” and “110” will never happen, indicating
dependency. Even with N(N-1)/2 response bits available, the amount
of independent entropy bits using the conventional pairwise scheme is
upper-bounded by the number of orderings as log2(N!), or N-log2(N) in
equivalence. If each of the N! orderings is of the same probability of
1/(N!) to occur, then the maximum entropy is obtained as H(X) =
—Z?ﬂl(% -log, %) = log,N! Bits

A simple “decoupled” scheme was proposed to remove the
dependency by restricting using each RO cell only once but it also
reduces the independent entropy bits to be [N/2|. The chain-like
neighbor coding scheme [12] produces (N-1) response bits by only
pairing neighboring and adjacent RO cells to reduce the systematic
variations. An index-based syndrome (IBS) coding scheme was
proposed in [4] that is information- theoretically secure. Group-based
coding schemes was proposed in [5][6] to investigate the maximum
amount of independent and reliable bits extractable from N Ring
Oscillators..

Different from all these existing works which investigate entropy
within the upper bound of log2(N!), this paper focuses on boosting
the entropy upper bound beyond log2(N!) and up to N(N-1)/2, with a
significant improvement from O(N-log2(N)) to O(N?). This is achieved
by a proposed Pairwise Distinct-Modulus (PDM) scheme to eliminate
correlation in the pairings.

B. Proposed Pairwise Distinct-Modulus (PDM) scheme

The proposed response generation scheme is still a pairwise- based
scheme, i.e., any two PUF elements among a group of N elements are
selected to form a pair to generate a response bit, making the total
number of response bits being N(N-1)/2 bits. However, the vital
difference compared to the conventional pairwise comparison scheme
is that a modulus operation will be applied to the soft information
(digitized magnitude) of each pair of PUF elements before the
comparison takes place, therefore called Pairwise Distinct Modulus
(PDM) scheme. Instead of directly comparing the raw digitized
magnitude (or pre-modulus values), we first apply a modulus operation
to the pair of raw magnitude values to compute a corresponding pair of
post-modulus values, and then the two post-modulus values are
compared to generate a response bit. For simplicity, the raw magnitude
values of each pair before and after the modulus operation are called
pre-modulus values and post-modulus values, respectively.

Fig. 2(a) illustrates the proposed pairwise modulus operation with
an example of a group of 3 PUF elements. With the vertical dimension
representing the magnitude of the PUF elements, the raw magnitude
before modulus (pre-modulus values) of the three PUF elements are
represented by the three points as £, /> and f5 on the left side of the figure.
The arrow on top of the figure indicates a two-phase conversion process

TABLE I. ALL POSSIBLE VALUES OF 3-BIT BITSTRING B12B23B13, UNDER ALL
6 POSSIBLE ORDERINGS OF 3 FREQUENCIES F1, F2 AND F3. TWO VALUES “001”
AND “110” WILL NEVER OCCUR, INDICATING DEPENDENCY.

Response bits for each pairing
Index Frequency Occur. Pair 1 Pair 2 Pair 3
Orderings Prob. (fi- ) (f,-f3) (fi - f3)
bll b23 b13
1 f1>2>1f3 1/6 1 1 1
2 f1>1f3>1f 1/6 0 1 0
3 f2>f1>13 1/6 1 0 0
4 2> 3> fl 1/6 1 0 1
5 f3>f1>1f2 1/6 0 0 0
6 3>2>fl 1/6 0 1 1
7 - 0 0 0 1
8 - 0 1 1 0
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Fig. 2. Overview of the proposed pairwise distinct modulus (PDM) scheme.
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Fig. 3. Working flow of the proposed pairwise distinct-modulus scheme
(PDM) for a RO PUF instance with N ROs.

where the first phase is the pairwise construction among the three
elements, and the second phase applies a pairwise modulus operation to
each corresponding pair of the pre-modulus values to generate the
corresponding post-modulus values.

The right side of Fig. 2(a) illustrates the two phases of the
conversion process: pairing pre-modulus values and applying pairwise
modulus operation. The pairwise modulus operation shares a common
modulus value between the two pre-modulus values within the same
pair, while distinct modulus values are used among different
pairings. This is illustrated by the three distinct modulus values M, M>
and M; used for the three pairings in Fig. 2(a), respectively. During
phase 1, the “reuse” scenarios of each pre-modulus value can be
observed in two different pairs, e.g., fi is reused in Pair 1 and Pair 3
shown in the upper half of Fig. 2(b). However, such “reuse” scenario of
the pre-modulus value is eliminated for the corresponding post-
modulus values after phase 2, e.g., the reuse of the pre-modulus value
/i is eliminated in its two post-modulus values 1 and f*3 in Pair 1
and Pair 3 because of the two distinct modulus values M; and M3, as
shown in the lower half of Fig. 2(b). This indicates that the 'reuse’
scenarios in pre-modulus pairings are 'eliminated' after the pairwise
distinct modulus operation is applied. The reuse elimination is
attributed to the fact that different modulus values are being used for
different pairings, generating different post-modulus values that are
even from a common pre-modulus value.

Fig. 3 illustrates the working flow of our proposed PDM scheme.
After constructing the N(N-1)/2 pairings from the N frequencies (step 1
in Fig. 3), N(N-1)/2 distinct modulus values M, ..., My-1)/2 are used to
be applied to their corresponding pairings to generate the post-modulus
values which are then compared to generate the response bits (steps 2-
4 in Fig. 3). The distinct modulus values M), ..., Mnw-1)22 can be
determined by incrementally adding a step size value 4M to its previous

value, e.g., M; = My + (i — 1) - AM where AM = M, /(N(N — 1)/2).

The first modulus value M, is called the “starting modulus value”.

The elimination of the pre-modulus reuse scenarios using our
PDM scheme is the key to reduce the correlation that exists within
response bits generated among all the N(N-1)/2 pairings, and thus
significantly improves the entropy from O(N-log2(N)) up to O(N?).

IV. PROPOSED RELIABILITY-ENHANCING TECHNIQUE

In this section, we propose a pairwise offset-based technique (POT)
for each post-modulus pair to enhance the reliability of the response bits
generated by the proposed PDM scheme.

A. Additional noise margins for post-modulus values

In the previous section, the described pairwise distinct modulus (PDM)
scheme maps each pair of pre-modulus values from a much larger
magnitude into a smaller range of post-modulus values of [0, M-1],
where M is the applied modulus value. This mapping process can be
regarded as a repetitive ‘folding’ operation which repeatedly subtract M
at a time from the pre-modulus value until a value between /0, M-1] is
obtained. Although such 'folding' operation eliminates the correlation
caused by the frequency reuse, it unfortunately introduces two
additional response flipping boundary lines for the pair of post-modulus
values. This process is illustrated in the lower half of Fig. 4(a) where a
modulus value of M, is used and the two additional boundary lines are
introduced at 0 and M;-1 respectively for the post-modulus values ;1
and fM1.

In the conventional thresholding technique [3], a helper data bit 1
(or 0) is generated during enrollment to record if the distance of a pair
of frequencies is more (or less) than the predefined threshold distance
T. Without the modulus operation, it is straightforward to apply the
thresholding technique to the pre-modulus values: the inter-distance
between a pair of pre-modulus values is calculated as diner=abs(f1-f2)
during enrollment and it is compared with the predefined threshold
value 7. The pair will be discarded if dine»<T and otherwise will be used
later during regeneration. The inter-distance diner creates only a single
tolerance margin for the pair of pre-modulus values, i.e., any pair with
diner > T Will be regarded as “reliable” pair to be used for regeneration.

After applying the modulus operation of the proposed PDM scheme,
however, two additional response flipping boundary lines are
introduced at the two ends of the post-modulus range /0, M;-1]. i.e., the
low boundary line at value 0 and the upper boundary line at value (M-
1) respectively. These two additional boundary lines are illustrated as
the two blue horizontal lines in the lower half of Fig. 4(a). For any one
post-modulus value that is close to any of these two boundary lines,
noise fluctuation will make them 'jump' to the other end of the range /0,
Mod-1], flipping the relative positions of two post-modulus values and
generating a response bit flip error. Therefore, two additional
thresholding margins diower and dypper are introduced around these two
additional boundary lines as two new noise margins for a “reliable”
post-modulus pair. A post-modulus pair can be regarded as a “reliable”
pair only when all the three margin requirements are met at the same
time, i.e., diner > T, diower > T and dupper > T. Such more strict
requirements will significantly reduce the ratio of reliable response bits.

B. Proposed Pairwise offset technique

We propose a pairwise offset-based technique to save those
“potentially reliable” pairs that are discarded as “unreliable” post-
modulus pairs that meet the following two conditions: (a) meet the
inter-distance threshold requirement (diner > T) and (b) only meet one
of the two additional margins’ requirements, i.e., either diower > T and
dupper < T, Ot diower < T and dupper > T. These “potentially reliable” pairs
are illustrated as Case2 and Case3 in Fig. 4(b), which is equivalent to
meeting the requirement of 7'< dimer < M-2T. The lower bound value of
dimer 1s defined as T because condition (a) needs to be met. The upper
bound value of dinter is M-2T because the sum of diower and dupper need to
be no less than 27 given that: (i) (diower + dupper) = M- dinter and (i1) (diower
+ dupper) > 2T so that a global shifting of the two post-modulus values
could possibly meet both conditions of diower > T and dupper > T
simultaneously.

The flow of the proposed pairwise offset technique is described in
Fig. 4(c) and it works as follows:

1) Compute the average value of the pair of post-modulus values
as ave = (fM* + 11 /2,
2)  Compute the offset value as Of fset = % — ave,
3) Add the Offset value computed in step (2) to both fM* and
M1 so that the new average value of the two post-modulus values is
equal to M/2, i.e., ave' = M /2.
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Fig. 4. (a) Added noise margins to the post-modulus values. (b) Potentially stable pairs as Case 2 and 3. (c) Proposed POT to save potentially stable pairings

It can be observed from Fig. 4(c) that after the offset operation, the
two new post-modulus values will meet all the three margins’
requirements to become a real “qualified reliable” pair, i.e., d inwer>T,
d’tlower>T and d’upper>T. This is also why these pairs are called
“potentially reliable” pairs. The other two cases Casel and Case 4
illustrated in Fig. 4(b) includes scenarios where any global offset
operation on the two post-modulus values will not help to move the pair
to be a “qualified reliable” pair. Casel describes two post-modulus
values with diner < T, so the first noise margin requirement will never
be met no matter what offset value is applied. Case4 describes scenarios
where dinter > M-2T, which indicates that at least one post-modulus
value will be located in one of the upper and lower noise margins
regardless of what offset value is applied.

C. Security and overhead of the Pairwise Offset Technique (POT)

Unlike the helper data generated using the Error Correction Code
(ECC) [11], the helper data of the proposed POT scheme is based on
the thresholding technique which does not reveal secret information
about the response bits. The range of the offset value is /[-(M/2-T/2),
M/2-T/2], the sign and magnitude of the offset value only reveals the
relative location of the average value of the post-modulus pair
compared to M/2, but not any information regarding the magnitude
relationship between the two post-modulus values within the pair which
determines the generated response bit value. The overhead of the POT
scheme depends on the number of bits used to represent the offset value
whose resolution can be flexibly adjusted according to the reliability
requirements.

V. EXPERIMENTAL EVALUATION

This section validates the effectiveness of the proposed pairwise
distinct modulus (PDM) scheme and the pairwise offset technique
(POT) using a large scale of RO frequency dataset available in [9].

A. Experimental Setup

We used the RO counter values in the dataset provided in [9] which
was collected from a set of Xilinx Artix-7 XC7A35T FPGAs. The
dataset consists of two sub-datasets where the first sub-dataset was
collected under room temperature and it is used for our entropy
evaluation, and the second sub-dataset was collected across different
temperatures and it is therefore used in our reliability evaluation. The
first sub-dataset includes 217 FPGAs at 15 evaluation times under room
temperature of 25°C. The second sub-dataset contains RO counter
values from 50 FPGA boards across 6 different temperatures from 5°C
to 55°C in steps of 10°C. For the first sub-dataset, we selected the
evaluation time of 0.59 ms because it is the closest to the one used in
the second sub-dataset in order to keep consistency on evaluation time
in both evaluations. For simplicity, we selected the qL slice type out of
6 slice types which contains 1600 RO cells per board for both
evaluations.

In order to validate that the entropy bits are in scale of N(N-1)/2
with a group of N RO cells for the proposed PDM scheme, we
constructed RO groups each of which has N (or #ROs_per_group) RO
cells with N = 3, 4, 5 and 6 respectively, from the dataset which contains

1600*217 = 347,200 RO cells. These constructed RO groups are used
for statistical evaluation in which an ideally infinite number of
experimental trials need to be performed so that the relative frequencies
of occurrence of each outcome would approach agreement with the
probabilities of each outcomes [10]. However, the numbers of available
trials provided by the dataset is far from infinity. Specifically, a trial in
our experiment refers to the process of generating a N(N-1)/2-bit
response bitstring by all the N(N-1)/2 pairs in a single RO group of N
cells. Therefore, the limited number of available experimental trials
equal to the number of available RO groups as 347,200/N. (Please note
#ROs_per_group=N).

Since the number of outcomes 2V™-//? increases exponentially with
N, the occurring frequencies of each outcome will become unacceptably
low as N grows given the limited available trials. To address this
limitation, we set an upper bound value of N (or #ROs_per_group) to
be 6 to make sure that the number of trials is at least no less than the
number of outcomes.

Entropy Bits

‘after PDM scheme

4 5
#ROs per group (N)

Before PDM scheme

Fig. 5. (a) Theoretical and experimental entropy Comparisons between No-
Mod and With-Mod schemes. (b) NIST test results.

B. Randomness Evaluation

In this section we evaluate the entropy and randomness of the
proposed PDM technique. Given the fact that the entropy will vary with
the magnitude of the used modulus value (discussed in Section V.C),
we present our evaluation in this subsection using an optimal starting
modulus value M; = 1800 which is obtained under the reliability
restriction further discussed in the next subsection V.C.

The number of distinct modulus values (#Distinct Mod_vals) used
in our experiment can be any value between 2 and N(N-1)/2. If
#Distinct Mod_vals < N(N-1)/2, then a rotating method will be used to
go back to the first distinct modulus value in a rotative way until each
of the N(N-1)/2 pairs is assigned with a modulus value.

1) Entropy and min-Entropy Evaluation

For all the values of #ROs per group being 3, 4, 5 and 6, all
available trials for each #ROs_per group value were experimentally
performed for two scenarios: without the PDM scheme (No-Mod) and
with the PDM scheme (With-Mod). For each listed N value, entropy is
estimated based on Equation (1) using the probabilities calculated by
the occurrence frequencies of each outcome calculated by the observed
results of all trials. The experimentally estimated entropy along with the
corresponding theoretical entropy upper bounds are reported in



Fig.5(a). The left blue bars for each #ROs_per_group show that the
theoretical entropy limits are boosted from the scale log2(N!) to N(N-
1)/2 by the proposed PDM scheme. This is validated by the
experimental entropy results presented by the right red bars for each
listed N value. It is worth noting that the estimated entropy for the With-
Mod scheme are very close to the corresponding theoretical limits,
validating our proposed claim on boosting the entropy from
O(N-Log:N) to O(N?).

2)  NIST Test Evaluation Results

The NIST test suit is used to evaluate the randomness of the
bitstrings. In order to generate the longest possible bitstring per RO
group for NIST testing, we used the maximum #ROs_per_group value
of 6 which generates a 15-bit bitstring per RO group. With 1600 RO
cells available per FPGA, |1600/6]=266 RO groups are obtained per
FPGA and we generate a bitstring of length 75%266=3990 bits per
FPGA for NIST. The number of bitstrings is the number of FPGAs as
217. According to NIST, 11 out of 15 available tests are suitable for a
bitstring length of 3990. The required minimum number of passing
bitstrings is 210 with 217 bitstrings tested in total.

The NIST test results are presented in Fig. 5(b) where the passing
threshold value 210 is illustrated as the orange mesh. The X-axis
represents all the 11 NIST tests. From left to right, the Y-axis represents
the No-Mod scheme as the first index followed by the With-Mod
scheme with values of #Distinct Mod_vals ranging from 2 to 15. For
the With-Mod scheme, it is clearly shown that the randomness increases
along with the number of #Distinct Mod_vals, with 9 out of 11 NIST
tests passed as the value of #Distinct Mod_vals surpasses 12. The two
failed tests are Approximate Entropy (NIST test #10) and Serial-
Forward (NIST test #11) tests, in which 200 and 190 (close to 210)
bitstrings have passed. On the other hand, Fig. 5(b) shows that only 1
out of 11 NIST tests is passed for the No-Mod scheme, and zero passing
bitstrings is observed at half of the 11 NIST tests. These observations
indicate a significant improvement in the bitstrings randomness of our
proposed With-Mod scheme over the No-Mod scheme.

3) Uniqueness Evaluation on Average Inter-HD evaluation
We evaluated the uniqueness of the bitstrings generated by our
proposed With-Mod (PDM) scheme using Equation (3), where m
represents the total number of boards in the experiment. In our
evaluation, m = 217. Table II reports the average inter-HD of the No-
Mod scheme and our With-Mod scheme with distinct modulus values
ranging from 2 to 15. The reported average inter-HD values show that
the proposed With-Mod scheme significantly improves the average
inter-HD from a difference of 1.1% up to 0.01% compared to the ideal

value of 50%.
ave_interHD =

2 m-1vm HD(Ry,Ry)
u=1 &v=u+l

m(m-1) n

x100% (3)

TABLE II. AVERAGE INTER-HD FOR NO-MOD AND WITH-MOD SCHEMES

. #ROs_per_group (N)
|| Ave inter-HD 3 4 5 3
I No-Mod 48.9766% | 48.8878% | 48.8336% | 48.8089%
I With-Mod 50.0036% | 49.9929% | 49.9946% | 49.9973%

C. Reliability Evaluation

In this subsection, we evaluate the reliability of generated response
bitstings using our proposed With-Mod (PDM) scheme and the
proposed Pairwise Offset Technique (POT). We used a threshold value
T (described in section IV.B) that equals to 25% of the applied modulus
value M for each pair. The average intra-chip Hamming distance (ave-
intra-HD) is used as the metric which is defined in Equation (4), where
R; is the reference response bitstring generated at room temperature,
and R';, are the re-generated bitstrings from 1 up to 6 different
temperature conditions available in the dataset and n is the length of
generated bitstring as 15 for #ROs_per_group=6.

HD(RiR1;y)

n

average intra_HD = %236/=1 x 100% )

1)  Optimal Modulus Value for Comparable Reliability

As discussed in section IV.A, the proposed With-Mod (PDM)
scheme introduces two extra noise margins compared to the No-Mod
scheme, which undermines the reliability of the bitstring. The proposed
pairwise offset technique (POT) is used to enhance the corresponding
reliability. In order to do a fair comparison, we define an optimal
modulus value that achieves a comparable reliability of that for the No-
Mod scheme.

Fig. 6(a) depicts the average intra-HD for the With-Mod scheme
(both without and with the proposed POT technique applied) as a
function of the magnitude of the starting modulus values (M) ranging
from 600 to 1800 with a step of 400. The average intra-HD of 1.8012%
for the No-Mod scheme is presented as a black horizontal solid line at
the bottom of Fig. 6(a) as a comparison reference. The average intra-
HD of the With-Mod schemes decreases as the starting modulus value
(M) increases, with a comparable or even smaller average intra-HD
value achieved when M, rises up to 1800. This M, value of 1800 is
therefore used as the optimal starting modulus value in our entropy and
randomness evaluation in Section V.B in order to achieve a comparable
comparison with the No-Mod scheme. As the reliability gets improved
with an increasing starting modulus value M}, the entropy/min-Entropy
decreases at a very slow rate as presented by the dashed lines in Fig.
6(a). An entropy of 14.13 is obtained at the optimal M; value of 1800,
which is still close to the new upper entropy limit of 15.

2)  Apply POT scheme to save potential reliable responses

This subsection evaluates the improved percentage of reliable bits
by the proposed POT technique. Fig. 6(b) shows the average percentage
of the “qualified reliable bits” over a whole bitstring length of 15 bits
for both No-Offset and With-Offset schemes, respectively. For different
magnitude of starting modulus values M;, we can see that the
percentage of “qualified reliable” bits for the scheme that uses the POT
technique is around 31.25%, while the percentage for the scheme
without the POT technique is only around 6.25%. This indicates around
4x improvement on the percentage of reliable bits of the proposed offset
technique over the no-offset technique.

3) Evaluating length of Entropy bit with comparable reliability

between Mod-Scheme and No-Mod

Fig. 7 evaluates the length of Entropy bits with comparable
reliability as a function of the #RO_per group (or N) of the three
schemes as No-Mod scheme, With-Mod scheme without POT
technique, and With-Mod scheme with POT technique, respectively.
We can observe from Fig. 7 that for small #RO per group values
below 21, the No-Mod scheme has the most entropy bits compared the
other two schemes. As #RO per group increases, both With-Mod
schemes surpass the No-Mod scheme and then grow at a much faster
quadratic rate. The first crosspoint value 1is observed at
#RO per group=21 between the No-Mod scheme and the With-Mod
Scheme with POT technique, and the second crosspoint value occurs at
#RO_per group=201 between the No-Mod scheme and the With-Mod
Scheme without POT. The large gap of the two crosspoint values
indicates that the proposed pairwise offset technique significantly

. 7
600 80 1000 1200 1400 1600 1800 600 1000 1400 1800
start mod val start mod val

Fig. 6. (a) Explore optimal modulus magnitude to achieve comparable

average Intra-HD with No-Mod Scheme. (b) Reliable bits ratio improvement
of applying the proposed POT technique over no-POT technique.
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Fig. 7. Comparison of length of Entropy bits among No-Mod scheme, With-
Mod scheme without POT and With-Mod scheme with POT with comparable
reliability

improves the percentage of “qualified reliable” response bits. Moreover,
a minimum number of 21 RO cells in a group is required to generate
more entropy bits than the No-Mod scheme with a comparable
reliability, and the entropy bit will grow quadratically in scale of O(N?)
for #RO_per group>21 compared to a much slower growth rate of
O(Nlog:N) for the No-Mod Scheme.

VI. CONCLUSION

This paper presents a pairwise distinct modulus (PDM) scheme that
significantly boost PUF entropy bits from the scale of log2(N!) up to
N(N-1)/2 by removing the correlations within the pairwise comparison
scheme. A pairwise offset technique is also proposed to compensate the
reliability impact of the PDM scheme by significantly improving the
ratio of qualified reliable response bits by 4x. Experimental results
using a large-scale RO dataset show that the estimated entropy are
approaching the new upper bound of N(N-1)/2 bits for the proposed
PDM scheme with comparable reliability with the help of the proposed
pairwise offset technique (POT). Results show the POT scheme
improves the ratio of reliable bits by 4x and the two schemes can be
integrated to generate entropy bits with a much faster growth rate from
O(Nlog:2N) to O(N?) with comparable reliability.
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