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Abstract—Physically Unclonable Functions (PUFs) are 
emerging hardware security primitives that leverage random 
variations during chip manufacturing process to generate unique 
secrets. The security level of generated PUF secrets is mainly 
determined by its unpredictability feature which is typically 
evaluated using the metric of entropy bits. In this paper, we 
propose a novel Pairwise Distinct-Modulus (PDM) technique that 
significantly improves the upper bound of PUF entropy bits from 
the scale of log2(N!) up to O(N2). The PDM technique boosts 
entropy by eliminating the correlation within PUF response bits 
caused by element reuse in conventional pairwise comparison. We 
also propose a reliability-enhancing scheme to compensate the 
impact on reducing reliability by saving a significant portion of 
potential reliable response bits. Experimental results based on a 
published large-scale RO PUF frequency dataset validated that 
the proposed technique significantly boosts PUF entropy bits from 
the scale of O(N·log2(N)) up to approach the new upper bound of 
O(N2) with a comparable reliability, and the reliability-enhancing 
technique saves 4x more on the percentage of reliable response 
bits.  
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I. INTRODUCTION  

The advent of Internet-of-Things (IoTs) poses an increasing amount 
of security vulnerabilities which can be leveraged by adversaries to 
compromise the data integrity and confidentiality of connected devices. 
Secrets of security mechanisms such as authentication or encryption are 
conventionally stored within non-volatile memories (NVMs) which are 
vulnerable to physical attacks [1], [2]. Physically Unclonable Functions 
(PUFs) have been proposed as a promising secure hardware primitive 
for secure secret storage due to its tamper-evident feature and the 
capability of generating volatile secrets. PUFs leverage the random 
process variations during the manufacturing process of integrated 
circuits (ICs) to generate unique, unpredictable and reproducible secrets 
for individual ICs. PUFs typically work in the form of a challenge-
response mechanism where a challenge is applied as input and a binary 
output is generated as the corresponding response, called a challenge-
response pair (CRP). The secrets generated by such challenge-response 
mechanism are unclonable due to the uncontrollable random variations 
during the chip manufacturing process. The secrecy of PUF’s CRPs is 
usually ensured by the unpredictability property which refers to the 
feature that adversaries are not able to predict the response to an 
arbitrary challenge, and such unpredictability can be further 
quantitatively measured by the amount of entropy bits.  

Unfortunately, the concatenation of response bits generated by a 
given set of known challenges does not guarantee a secure secret due to 
the lack of independence among these CRPs. The CRPs’ independence 
can be undermined by either: (1) a non-uniformly distributed physical 
layout or (2) a response generation algorithm that determines how the 
PUF cells are interacted to generate response bits. We call the former 
as spatial correlation while the latter as functional correlation [7][13]. 
This paper focuses on eliminating the functional correlation that exists 

in response bits generation algorithms of weak PUFs, and our proposed 
techniques are described in the context of weak PUFs, in particular RO 
PUFs. Please note that strong PUFs could be constructed using weak 
PUFs with the help of cryptographic primitives like keyed-hash 
functions. The proposed technique is applicable to any weak PUFs that 
use pairing strategies to compare soft information of entropy source. 

A. Related Work 

The Ring Oscillator (RO) PUF is one of the most widely 
investigated PUF regarding its CRPs correlations. Several works have 
proposed schemes to address the spatial correlations of RO PUFs 
[7][12] while others [6][7] have proposed different group-based coding 
schemes to deal with the functional correlation. It is agreed that [11] all 
these different schemes are optimizing the response generation process 
of extracting the maximum available entropy bits of log2(N!) with N RO 
elements. A number of works have investigated the Entropy and 
unpredictability of various types of PUFs. The correlations between 
response bits of PUFs are evaluated by Context Tree Weighting (CTW) 
in [16] and researchers in [8] analyzed the unpredictability and 
reliability of the ASIC-implementations of five different types of PUFs. 
The upper bounds on the min-entropy of several strong PUFs are 
derived in [13] to show their weakness as secure key generators. 
Authors in [11] demonstrated key-recovery attacks on different types 
of RO PUFs by manipulating their public helper data. YIN et al 
proposed a polynomial regression method [7] to eliminate the spatial 
systematic correlation within the physical layout to improve the 
randomness of the RO PUF. Group-based schemes were proposed in 
[5][6] to explore the maximum amount of independent and reliable bits 
out of N ROs. A comprehensive entropy and correlation analysis of the 
HELP PUF was studied in [17]. Recently, a spatial autocorrelation 
analysis was introduced in [18] to identify correlations in the responses 
of single-challenge PUFs, and authors in [14] proposed an entropy 
pump based a configurable RO PUF to improve the low-entropy keys.  

B. Our Contribution 

Fundamentally different from existing related works, this paper 
focuses on boosting the maximum extractable entropy for N PUF 
elements from the existing upper bound of log2(N!) up to N(N-1)/2 by 
introducing a pairwise distinct-modulus (PDM) scheme. Fig. 1 presents 
a high-level concept of this proposed PDM scheme on boosting PUF 
entropy. The nonlinearity feature of the proposed pairwise distinct-
modulus (PDM) scheme eliminates the potential correlation in CRPs 
introduced by elements reuse in conventional pairwise scheme. This 
paper makes the following contributions: 

• We propose a pairwise distinct-modulus (PDM) scheme that 
significantly improves the entropy upper-bound for the 
pairwise-comparison strategy from O(N·log2(N)) to O(N2). 

• We propose a reliability enhancing technique that compensate 
the negative impact on reliability by identifying and saving a 
significant portion of potential reliable response bits that would 
otherwise be discarded by the thresholding technique. 

• We validate the effectiveness of the proposed entropy-boosting 
scheme on improving the entropy and randomness statistical 
results with comparable reliability using a publicly available 
large-scale dataset of RO frequencies. 



Fig. 1. Overview of the proposed entropy-boosting scheme. 

• Experimental evaluations are performed to evaluate the 
proposed reliability-enhancing scheme using real RO PUF 
datasets, and results show that it improves the length of reliable 
response bitstring by 4x. 

The rest of the paper are organized as follows. Section II introduces 
the relevant preliminary work. Section III describes the proposed 
distinct-modulus scheme in the context of RO PUFs and Section IV 
presents the proposed reliability-enhancing scheme. Section V presents 
the experimental setup and results and Section VI concludes the paper. 

II. PRELIMINARIES 

A. Basics of RO PUFs  

The proposed distinct-modulus scheme is described in the context 
of RO PUFs. As shown in Fig.1, a conventional RO PUF typically 
consists of N identically designed Ring Oscillators that are connected 
to the inputs of two N-to-1 multiplexers (MUXes). The outputs of the 
two MUXes are connected to two counters which are used to record the 
frequency values of two selected RO cells. The “Select” inputs of the 
two MUXes serve as the challenge which select a pair of RO cells 
whose frequencies are then compared to generate single response bit. A 
binary value ‘1’ (or ‘0’) is generated depending on which frequency is 
faster. A pairwise scheme is used to generate the response bits. 

B. Entropy/Min-Entropy for PUFs Response Bits 

The dependence/correlation mentioned above is detrimental to 
PUF’s unpredictability which can be quantitively measured by the 
metric of Shannon entropy. Specifically, the number of independent 
response bits can be measured by the number of entropy and min-
Entropy [19] which are computed using Equations (1) and (2) below: 

(ܺ)ܪ   = −∑ (௜ݔ)ܲ ∙ logଶ ௡௜ୀଵ(௜ݔ)ܲ                                           (1) 

(ܺ)ஶܪ   = − logଶ ቂmaxଵஸ௜ஸ௡൫ܲ(ݔ௜)൯ቃ                                             (2) 

where X represents a discrete random variable with n possible 
outcomes (x1, x2, … xi , … xn), and P(X) is the probability mass function. 
For a binary variable X with two outcomes (0 or 1), the entropy H(X) is 
1 if X is uniformly distributed, i.e., the two outcomes 0 and 1 are of 
equal probability (1/2) to occur. 

In the RO PUF scenario, the random variable X is regarded as the 
K-bit response bitstring b1b2… bK-1bK generated by the K= N(N-1)/2 
pairings for a RO PUF with N RO cells. Therefore, the variable X has 
2(N(N-1)/2) possible outcomes. If each outcome is of equal probability of 
1/2(N(N-1)/2) to occur, then the maximum entropy of K bits is achieved 
which indicates that each of the K response bits are fully random and 
independent.  

III. PROPOSED DISTINCT-MODULUS SCHEME 

A. Motivation of the proposed scheme 

According to the pairwise scheme, the N(N-1)/2 response bits are 
not independent with each other due to the correlation. Take a group of 
3 RO cells RO1, RO2 and RO3 (their frequencies as f1, f2 and f3) for 
example, there are three possible pairings for their frequencies as P1=(f1, 
f2), P2=( f2, f3) and P3=(f1, f3), and the three corresponding response bits 
are represented as b12, b23 and b13 respectively. If f1 > f2 and f2 > f3, then 
it can be inferred that f1 > f3. In other words, these 3 bits b12b23b13 can 

not be assigned values independently [5], e.g., if b12 = 1 and b23 =1, the 
value of b13 is already determined be to 1. The dependency that exists 
within the N(N-1)/2 bits generated by the pairwise comparison can be 
further revealed by Table I. All 8 possible values of 3-bit bitstring 
b12b23b13, under all 6 possible orderings of 3 frequencies f1, f2 and f3. 
Two values “001” and “110” will never happen, indicating 
dependency. Even with N(N-1)/2 response bits available, the amount 
of independent entropy bits using the conventional pairwise scheme is 
upper-bounded by the number of orderings as log2(N!), or N·log2(N) in 
equivalence. If each of the N! orderings is of the same probability of 
1/(N!) to occur, then the maximum entropy is obtained as ܪ(ܺ) =−∑ ( ଵே! ∙ logଶ ଵே!)ே!௜ୀଵ = logଶܰ!  Bits 

A simple “decoupled” scheme was proposed to remove the 
dependency by restricting using each RO cell only once but it also 
reduces the independent entropy bits to be ۂ2/ܰہ . The chain-like 
neighbor coding scheme [12] produces (N-1) response bits by only 
pairing neighboring and adjacent RO cells to reduce the systematic 
variations. An index-based syndrome (IBS) coding scheme was 
proposed in [4] that is information- theoretically secure. Group-based 
coding schemes was proposed in [5][6] to investigate the maximum 
amount of independent and reliable bits extractable from N Ring 
Oscillators.. 

Different from all these existing works which investigate entropy 
within the upper bound of log2(N!), this paper focuses on boosting 
the entropy upper bound beyond log2(N!) and up to N(N-1)/2, with a 
significant improvement from O(N·log2(N)) to O(N2). This is achieved 
by a proposed Pairwise Distinct-Modulus (PDM) scheme to eliminate 
correlation in the pairings. 

B. Proposed Pairwise Distinct-Modulus (PDM) scheme 

The proposed response generation scheme is still a pairwise- based 
scheme, i.e., any two PUF elements among a group of N elements are 
selected to form a pair to generate a response bit, making the total 
number of response bits being N(N-1)/2 bits. However, the vital 
difference compared to the conventional  pairwise comparison scheme 
is that a modulus operation will be applied to the soft information 
(digitized magnitude) of each pair of PUF elements before the 
comparison takes place, therefore called Pairwise Distinct Modulus 
(PDM) scheme. Instead of directly comparing the raw digitized 
magnitude (or pre-modulus values), we first apply a modulus operation 
to the pair of raw magnitude values to compute a corresponding pair of 
post-modulus values, and then the two post-modulus values are 
compared to generate a response bit. For simplicity, the raw magnitude 
values of each pair before and after the modulus operation are called 
pre-modulus values and post-modulus values, respectively.  

Fig. 2(a) illustrates the proposed pairwise modulus operation with 
an example of a group of 3 PUF elements. With the vertical dimension 
representing the magnitude of the PUF elements, the raw magnitude 
before modulus (pre-modulus values) of the three PUF elements are 
represented by the three points as f1, f2 and f3 on the left side of the figure. 
The arrow on top of the figure indicates a two-phase conversion process 

TABLE I. ALL POSSIBLE VALUES OF 3-BIT BITSTRING B12B23B13, UNDER ALL 
6 POSSIBLE ORDERINGS OF 3 FREQUENCIES F1, F2 AND F3. TWO VALUES “001” 

AND “110” WILL NEVER OCCUR, INDICATING DEPENDENCY.    

   Response bits for each pairing 
Index Frequency 

Orderings 
Occur. 
Prob. 

Pair 1 
(f1 - f2) 

Pair 2 
(f2 - f3) 

Pair 3 
(f1 - f3) 

b12 b23 b13 
1 f1 > f2 > f3 1/6 1 1 1 
2 f1 > f3 > f2 1/6 0 1 0 
3 f2 > f1 > f3 1/6 1 0 0 
4 f2 > f3 > f1 1/6 1 0 1 
5 f3 > f1 > f2 1/6 0 0 0 
6 f3 > f2 > f1 1/6 0 1 1 
7 - 0 0 0 1 
8 - 0 1 1 0 

Frequency reuses 
exist in N(N-1) pairs

Frequency reuses 
are eliminated

f1 
f2 
f3

fN 

Conventional
pairwise
scheme

Proposed Pairwise
Distinct Modulus 

(PDM) scheme

Max. extractable 
Entropy boosted from
 log2(N!) to N(N-1)/2   

Conv. scheme: max(E)=log2(N!)
Proposed scheme: max(E)=N(N-1)/2

# 
E

n
tr

op
y 

B
it

s

# of PUF elements (N)

Max. extractable 
Entropy bounded

 at log2(N!) 

Pair 1Pair N(N-1)
fi

Pair 2

Pair 1Pair N(N-1)
fi

Pair 2



Fig. 2. Overview of the proposed pairwise distinct modulus (PDM) scheme. 

Fig. 3. Working flow of the proposed pairwise distinct-modulus scheme 
(PDM) for a RO PUF instance with N ROs. 

where the first phase is the pairwise construction among the three 
elements, and the second phase applies a pairwise modulus operation to 
each corresponding pair of the pre-modulus values to generate the 
corresponding post-modulus values. 

The right side of Fig. 2(a) illustrates the two phases of the 
conversion process: pairing pre-modulus values and applying pairwise 
modulus operation. The pairwise modulus operation shares a common 
modulus value between the two pre-modulus values within the same 
pair, while distinct modulus values are used among different 
pairings. This is illustrated by the three distinct modulus values M1, M2 
and M3 used for the three pairings in Fig. 2(a), respectively.  During 
phase 1, the “reuse” scenarios of each pre-modulus value can be 
observed in two different pairs, e.g., f1 is reused in Pair 1 and Pair 3 
shown in the upper half of Fig. 2(b). However, such “reuse” scenario of 
the pre-modulus value is eliminated for the corresponding post-
modulus values after phase 2, e.g., the reuse of the pre-modulus value 
f1 is eliminated in its two post-modulus values ଵ݂ெଵ and ଵ݂ெଷ in Pair 1 
and Pair 3 because of the two distinct modulus values M1 and M3, as 
shown in the lower half of Fig. 2(b). This indicates that the 'reuse' 
scenarios in pre-modulus pairings are 'eliminated' after the pairwise 
distinct modulus operation is applied. The reuse elimination is 
attributed to the fact that different modulus values are being used for 
different pairings, generating different post-modulus values that are 
even from a common pre-modulus value. 

Fig. 3 illustrates the working flow of our proposed PDM scheme. 
After constructing the N(N-1)/2 pairings from the N frequencies (step 1 
in Fig. 3), N(N-1)/2 distinct modulus values M1, …, MN(N-1)/2 are used to 
be applied to their corresponding pairings to generate the post-modulus 
values which are then compared to generate the response bits (steps 2-
4 in Fig. 3). The distinct modulus values M1, …, MN(N-1)/2 can be 
determined by incrementally adding a step size value ΔM to its previous 
value, e.g., ܯ௜ = ଵܯ + (i − 1) ∙ ܯ∆ where ܯ∆ = ଵܯ (ܰ(ܰ − 1) 2⁄ )⁄ . 
The first modulus value M1 is called the “starting modulus value”.      

The elimination of the pre-modulus reuse scenarios using our 
PDM scheme is the key to reduce the correlation that exists within 
response bits generated among all the N(N-1)/2 pairings, and thus 
significantly improves the entropy from O(N·log2(N)) up to O(N2). 

IV. PROPOSED RELIABILITY-ENHANCING TECHNIQUE 

In this section, we propose a pairwise offset-based technique (POT) 
for each post-modulus pair to enhance the reliability of the response bits 
generated by the proposed PDM scheme.  

A. Additional noise margins for post-modulus values   

In the previous section, the described pairwise distinct modulus (PDM) 
scheme maps each pair of pre-modulus values from a much larger 
magnitude into a smaller range of post-modulus values of [0, M-1], 
where M is the applied modulus value. This mapping process can be 
regarded as a repetitive ‘folding’ operation which repeatedly subtract M 
at a time from the pre-modulus value until a value between [0, M-1] is 
obtained. Although such 'folding' operation eliminates the correlation 
caused by the frequency reuse, it unfortunately introduces two 
additional response flipping boundary lines for the pair of post-modulus 
values. This process is illustrated in the lower half of Fig. 4(a) where a 
modulus value of M1 is used and the two additional boundary lines are 
introduced at 0 and M1-1 respectively for the post-modulus values ଵ݂ெଵ 
and ଶ݂ெଵ. 

In the conventional thresholding technique [3], a helper data bit 1 
(or 0) is generated during enrollment to record if the distance of a pair 
of frequencies is more (or less) than the predefined threshold distance 
T. Without the modulus operation, it is straightforward to apply the 
thresholding technique to the pre-modulus values: the inter-distance 
between a pair of pre-modulus values is calculated as dinter=abs(f1-f2) 
during enrollment and it is compared with the predefined threshold 
value T. The pair will be discarded if dinter<T and otherwise will be used 
later during regeneration. The inter-distance dinter creates only a single 
tolerance margin for the pair of pre-modulus values, i.e., any pair with 
dinter > T will be regarded as “reliable” pair to be used for regeneration. 

After applying the modulus operation of the proposed PDM scheme, 
however, two additional response flipping boundary lines are 
introduced at the two ends of the post-modulus range [0, M1-1]. i.e., the 
low boundary line at value 0 and the upper boundary line at value (M1-
1) respectively. These two additional boundary lines are illustrated as 
the two blue horizontal lines in the lower half of Fig. 4(a). For any one 
post-modulus value that is close to any of these two boundary lines, 
noise fluctuation will make them 'jump' to the other end of the range [0, 
Mod-1], flipping the relative positions of two post-modulus values and 
generating a response bit flip error. Therefore, two additional 
thresholding margins dlower and dupper are introduced around these two 
additional boundary lines as two new noise margins for a “reliable” 
post-modulus pair. A post-modulus pair can be regarded as a “reliable” 
pair only when all the three margin requirements are met at the same 
time, i.e., dinter > T, dlower > T and dupper > T. Such more strict 
requirements will significantly reduce the ratio of reliable response bits. 

B. Proposed Pairwise offset technique   

We propose a pairwise offset-based technique to save those 
“potentially reliable” pairs that are discarded as “unreliable” post-
modulus pairs that meet the following two conditions: (a) meet the 
inter-distance threshold requirement (dinter > T) and (b) only meet one 
of the two additional margins’ requirements, i.e., either dlower > T and 
dupper < T, or dlower < T and dupper > T. These “potentially reliable” pairs 
are illustrated as Case2 and Case3 in Fig. 4(b), which is equivalent to 
meeting the requirement of T< dinter < M-2T. The lower bound value of 
dinter is defined as T because condition (a) needs to be met. The upper 
bound value of dinter is M-2T because the sum of dlower and dupper need to 
be no less than 2T given that: (i) (dlower + dupper) = M- dinter and (ii) (dlower 
+ dupper) ≥ 2T so that a global shifting of the two post-modulus values 
could possibly meet both conditions of dlower > T and dupper > T 
simultaneously. 

The flow of the proposed pairwise offset technique is described in 
Fig. 4(c) and it works as follows: 

1) Compute the average value of the pair of post-modulus values 
as ܽ݁ݒ = ( ଵ݂ெଵ + ଶ݂ெଵ)/2;   

2) Compute the offset value as ܱ݂݂ݐ݁ݏ = ெଶ −  ;݁ݒܽ
3) Add the Offset value computed in step (2) to both ଵ݂ெଵ  and ଶ݂ெଵ, so that the new average value of the two post-modulus values is 

equal to M/2, i.e., ܽ݁ݒ′ =  .2/ܯ
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Fig. 4. (a) Added noise margins to the post-modulus values. (b) Potentially stable pairs as Case 2 and 3. (c) Proposed POT to save potentially stable pairings

It can be observed from Fig. 4(c) that after the offset operation, the 
two new post-modulus values will meet all the three margins’ 
requirements to become a real “qualified reliable” pair, i.e., d’inter>T, 
d’lower>T and d’upper>T. This is also why these pairs are called 
“potentially reliable” pairs. The other two cases Case1 and Case 4 
illustrated in Fig. 4(b) includes scenarios where any global offset 
operation on the two post-modulus values will not help to move the pair 
to be a “qualified reliable” pair. Case1 describes two post-modulus 
values with dinter < T, so the first noise margin requirement will never 
be met no matter what offset value is applied. Case4 describes scenarios 
where dinter > M-2T, which indicates that at least one post-modulus 
value will be located in one of the upper and lower noise margins 
regardless of what offset value is applied. 

C. Security and overhead of the Pairwise Offset Technique (POT)  

Unlike the helper data generated using the Error Correction Code 
(ECC) [11], the helper data of the proposed POT scheme is based on 
the thresholding technique which does not reveal secret information 
about the response bits. The range of the offset value is [-(M/2-T/2), 
M/2-T/2], the sign and magnitude of the offset value only reveals the 
relative location of the average value of the post-modulus pair 
compared to M/2, but not any information regarding the magnitude 
relationship between the two post-modulus values within the pair which 
determines the generated response bit value. The overhead of the POT 
scheme depends on the number of bits used to represent the offset value 
whose resolution can be flexibly adjusted according to the reliability 
requirements.     

V. EXPERIMENTAL EVALUATION 

This section validates the effectiveness of the proposed pairwise 
distinct modulus (PDM) scheme and the pairwise offset technique 
(POT) using a large scale of RO frequency dataset available in [9].   

A. Experimental Setup 

We used the RO counter values in the dataset provided in [9] which 
was collected from a set of Xilinx Artix-7 XC7A35T FPGAs. The 
dataset consists of two sub-datasets where the first sub-dataset was 
collected under room temperature and it is used for our entropy 
evaluation, and the second sub-dataset was collected across different 
temperatures and it is therefore used in our reliability evaluation. The 
first sub-dataset includes 217 FPGAs at 15 evaluation times under room 
temperature of 25°C. The second sub-dataset contains RO counter 
values from 50 FPGA boards across 6 different temperatures from 5°C 
to 55°C in steps of 10°C. For the first sub-dataset, we selected the 
evaluation time of 0.59 ms because it is the closest to the one used in 
the second sub-dataset in order to keep consistency on evaluation time 
in both evaluations. For simplicity, we selected the qL slice type out of 
6 slice types which contains 1600 RO cells per board for both 
evaluations. 

In order to validate that the entropy bits are in scale of N(N-1)/2 
with a group of N RO cells for the proposed PDM scheme, we 
constructed RO groups each of which has N (or #ROs_per_group) RO 
cells with N = 3, 4, 5 and 6 respectively, from the dataset which contains 

1600*217 = 347,200 RO cells. These constructed RO groups are used 
for statistical evaluation in which an ideally infinite number of 
experimental trials need to be performed so that the relative frequencies 
of occurrence of each outcome would approach agreement with the 
probabilities of each outcomes [10]. However, the numbers of available 
trials provided by the dataset is far from infinity. Specifically, a trial in 
our experiment refers to the process of generating a N(N-1)/2-bit 
response bitstring by all the N(N-1)/2 pairs in a single RO group of N 
cells. Therefore, the limited number of available experimental trials 
equal to the number of available RO groups as 347,200/N. (Please note 
#ROs_per_group=N). 

Since the number of outcomes 2N(N-1)/2 increases exponentially with 
N, the occurring frequencies of each outcome will become unacceptably 
low as N grows given the limited available trials. To address this 
limitation, we set an upper bound value of N (or #ROs_per_group) to 
be 6 to make sure that the number of trials is at least no less than the 
number of outcomes. 

 

Fig. 5. (a) Theoretical and experimental entropy Comparisons between No-
Mod and With-Mod schemes. (b) NIST test results. 

B. Randomness Evaluation 

In this section we evaluate the entropy and randomness of the 
proposed PDM technique. Given the fact that the entropy will vary with 
the magnitude of the used modulus value (discussed in Section V.C), 
we present our evaluation in this subsection using an optimal starting 
modulus value M1 = 1800 which is obtained under the reliability 
restriction further discussed in the next subsection V.C. 

The number of distinct modulus values (#Distinct_Mod_vals) used 
in our experiment can be any value between 2 and N(N-1)/2. If 
#Distinct_Mod_vals < N(N-1)/2, then a rotating method will be used to 
go back to the first distinct modulus value in a rotative way until each 
of the N(N-1)/2 pairs is assigned with a modulus value.   

1) Entropy and min-Entropy Evaluation 
For all the values of #ROs_per_group being 3, 4, 5 and 6, all 

available trials for each #ROs_per_group value were experimentally 
performed for two scenarios: without the PDM scheme (No-Mod) and 
with the PDM scheme (With-Mod). For each listed N value, entropy is 
estimated based on Equation (1) using the probabilities calculated by 
the occurrence frequencies of each outcome calculated by the observed 
results of all trials. The experimentally estimated entropy along with the 
corresponding theoretical entropy upper bounds are reported in 
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Fig.5(a). The left blue bars for each #ROs_per_group show that the 
theoretical entropy limits are boosted from the scale log2(N!) to N(N-
1)/2 by the proposed PDM scheme. This is validated by the 
experimental entropy results presented by the right red bars for each 
listed N value. It is worth noting that the estimated entropy for the With-
Mod scheme are very close to the corresponding theoretical limits, 
validating our proposed claim on boosting the entropy from 
O(N·Log2N) to O(N2). 

2) NIST Test Evaluation Results 
The NIST test suit is used to evaluate the randomness of the 

bitstrings. In order to generate the longest possible bitstring per RO 
group for NIST testing, we used the maximum #ROs_per_group value 
of 6 which generates a 15-bit bitstring per RO group. With 1600 RO 
cells available per FPGA, 266=ۂ1600/6ہ RO groups are obtained per 
FPGA and we generate a bitstring of length 15*266=3990 bits per 
FPGA for NIST. The number of bitstrings is the number of FPGAs as 
217. According to NIST, 11 out of 15 available tests are suitable for a 
bitstring length of 3990. The required minimum number of passing 
bitstrings is 210 with 217 bitstrings tested in total. 

The NIST test results are presented in Fig. 5(b) where the passing 
threshold value 210 is illustrated as the orange mesh. The X-axis 
represents all the 11 NIST tests. From left to right, the Y-axis represents 
the No-Mod scheme as the first index followed by the With-Mod 
scheme with values of #Distinct_Mod_vals ranging from 2 to 15. For 
the With-Mod scheme, it is clearly shown that the randomness increases 
along with the number of #Distinct_Mod_vals, with 9 out of 11 NIST 
tests passed as the value of #Distinct_Mod_vals surpasses 12. The two 
failed tests are Approximate Entropy (NIST test #10) and Serial-
Forward (NIST test #11) tests, in which 200 and 190 (close to 210) 
bitstrings have passed. On the other hand, Fig. 5(b) shows that only 1 
out of 11 NIST tests is passed for the No-Mod scheme, and zero passing 
bitstrings is observed at half of the 11 NIST tests. These observations 
indicate a significant improvement in the bitstrings randomness of our 
proposed With-Mod scheme over the No-Mod scheme. 

3) Uniqueness Evaluation on Average Inter-HD evaluation 
We evaluated the uniqueness of the bitstrings generated by our 

proposed With-Mod (PDM) scheme using Equation (3), where m 
represents the total number of boards in the experiment. In our 
evaluation, m = 217. Table II reports the average inter-HD of the No-
Mod scheme and our With-Mod scheme with distinct modulus values 
ranging from 2 to 15. The reported average inter-HD values show that 
the proposed With-Mod scheme significantly improves the average 
inter-HD from a difference of 1.1% up to 0.01% compared to the ideal 
value of 50%. ܽܦܪݎ݁ݐ݊݅_݁ݒ = ଶ௠(௠ିଵ) ∑ ∑ ு஽(ோೠ,ோೡ)௡௠௩ୀ௨ାଵ × 100%௠ିଵ௨ୀଵ 	    (3) 

TABLE II. AVERAGE INTER-HD FOR NO-MOD AND WITH-MOD SCHEMES  

Ave inter-HD  
#ROs_per_group (N)

3 4 5 6
No-Mod 48.9766% 48.8878% 48.8336% 48.8089% 

With-Mod 50.0036% 49.9929% 49.9946% 49.9973% 

C. Reliability Evaluation 

In this subsection, we evaluate the reliability of generated response 
bitstings using our proposed With-Mod (PDM) scheme and the 
proposed Pairwise Offset Technique (POT). We used a threshold value 
T (described in section IV.B) that equals to 25% of the applied modulus 
value M for each pair. The average intra-chip Hamming distance (ave-
intra-HD) is used as the metric which is defined in Equation (4), where ܴ௜ is the reference response bitstring generated at room temperature, 
and ܴ′௜,௬  are the re-generated bitstrings from 1 up to 6 different 
temperature conditions available in the dataset and n is the length of 
generated bitstring as 15 for #ROs_per_group=6. ܽ݁݃ܽݎ݁ݒ	ܦܪ_ܽݎݐ݊݅ = ଵ଺∑ ு஽(ோ೔,ோᇱ೔,೤)௡ × 100%଺௬ୀଵ             (4) 

1) Optimal Modulus Value for Comparable Reliability   
As discussed in section IV.A, the proposed With-Mod (PDM) 

scheme introduces two extra noise margins compared to the No-Mod 
scheme, which undermines the reliability of the bitstring. The proposed 
pairwise offset technique (POT) is used to enhance the corresponding 
reliability. In order to do a fair comparison, we define an optimal 
modulus value that achieves a comparable reliability of that for the No-
Mod scheme.  

Fig. 6(a) depicts the average intra-HD for the With-Mod scheme 
(both without and with the proposed POT technique applied) as a 
function of the magnitude of the starting modulus values (M1) ranging 
from 600 to 1800 with a step of 400. The average intra-HD of 1.8012% 
for the No-Mod scheme is presented as a black horizontal solid line at 
the bottom of Fig. 6(a) as a comparison reference. The average intra-
HD of the With-Mod schemes decreases as the starting modulus value 
(M1) increases, with a comparable or even smaller average intra-HD 
value achieved when M1 rises up to 1800. This M1 value of 1800 is 
therefore used as the optimal starting modulus value in our entropy and 
randomness evaluation in Section V.B in order to achieve a comparable 
comparison with the No-Mod scheme. As the reliability gets improved 
with an increasing starting modulus value M1, the entropy/min-Entropy 
decreases at a very slow rate as presented by the dashed lines in Fig. 
6(a). An entropy of 14.13 is obtained at the optimal M1 value of 1800, 
which is still close to the new upper entropy limit of 15. 

2) Apply POT scheme to save potential reliable responses 
This subsection evaluates the improved percentage of reliable bits 

by the proposed POT technique. Fig. 6(b) shows the average percentage 
of the “qualified reliable bits” over a whole bitstring length of 15 bits 
for both No-Offset and With-Offset schemes, respectively. For different 
magnitude of starting modulus values M1, we can see that the 
percentage of “qualified reliable” bits for the scheme that uses the POT 
technique is around 31.25%, while the percentage for the scheme 
without the POT technique is only around 6.25%. This indicates around 
4x improvement on the percentage of reliable bits of the proposed offset 
technique over the no-offset technique. 

3) Evaluating length of Entropy bit with comparable reliability 
between Mod-Scheme and No-Mod 

Fig. 7 evaluates the length of Entropy bits with comparable 
reliability as a function of the #RO_per_group (or N) of the three 
schemes as No-Mod scheme, With-Mod scheme without POT 
technique, and With-Mod scheme with POT technique, respectively. 
We can observe from Fig. 7 that for small #RO_per_group values 
below 21, the No-Mod scheme has the most entropy bits compared the 
other two schemes. As #RO_per_group increases, both With-Mod 
schemes surpass the No-Mod scheme and then grow at a much faster 
quadratic rate. The first crosspoint value is observed at 
#RO_per_group=21 between the No-Mod scheme and the With-Mod 
Scheme with POT technique, and the second crosspoint value occurs at 
#RO_per_group=201 between the No-Mod scheme and the With-Mod 
Scheme without POT. The large gap of the two crosspoint values 
indicates that the proposed pairwise offset technique significantly  
 

Fig. 6. (a) Explore optimal modulus magnitude to achieve comparable 
average Intra-HD with No-Mod Scheme. (b) Reliable bits ratio improvement 

of applying the proposed POT technique over no-POT technique. 
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Fig. 7. Comparison of length of Entropy bits among No-Mod scheme, With-
Mod scheme without POT and With-Mod scheme with POT with comparable 

reliability 
 
improves the percentage of “qualified reliable” response bits. Moreover, 
a minimum number of 21 RO cells in a group is required to generate 
more entropy bits than the No-Mod scheme with a comparable 
reliability, and the entropy bit will grow quadratically in scale of O(N2) 
for #RO_per_group>21 compared to a much slower growth rate of 
O(Nlog2N) for the No-Mod Scheme. 

VI. CONCLUSION 

This paper presents a pairwise distinct modulus (PDM) scheme that 
significantly boost PUF entropy bits from the scale of log2(N!) up to 
N(N-1)/2 by removing the correlations within the pairwise comparison 
scheme. A pairwise offset technique is also proposed to compensate the 
reliability impact of the PDM scheme by significantly improving the 
ratio of qualified reliable response bits by 4x. Experimental results 
using a large-scale RO dataset show that the estimated entropy are 
approaching the new upper bound of N(N-1)/2 bits for the proposed 
PDM scheme with comparable reliability with the help of the proposed 
pairwise offset technique (POT). Results show the POT scheme 
improves the ratio of reliable bits by 4x and the two schemes can be 
integrated to generate entropy bits with a much faster growth rate from 
O(Nlog2N) to O(N2) with comparable reliability. 
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