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We theoretically investigate dynamics of classical spins exchange coupled through an isotropic medium. The
coupling is treated at the adiabatic level of the medium’s response, which mediates a first order in frequency
dissipative interaction along with an instantaneous Heisenberg exchange. The resultant damped spin precession
yields exceptional points (EPs) in the coupled spin dynamics, which should be experimentally accessible
with the existing magnetic heterostructures. In particular, we show that an EP is naturally approached in an
antiferromagnetic dimer by controlling local damping, while the same is achieved by tuning the dissipative
coupling between spins in the ferromagnetic case. Extending our treatment to one-dimensional spin chains,
we show how EPs can emerge within the magnonic Brillouin zone by tuning the dissipative properties.
The critical point, at which an EP pair emerges out of the Brillouin zone center, realizes a gapless Weyl
point in the magnon spectrum. Tuning damping beyond this critical point produces synchronization (level
attraction) of magnon modes over a finite range of momenta, both in ferromagnetic and antiferromagnetic
cases. We thus establish that damped magnons can generically yield singular points in their band structure,
close to which their kinematic properties, such as group velocity, become extremely sensitive to the control

parameters.
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L. INTRODUCTION

Over the past several decades, it became clear that a
class of unconventional degeneracies are abundant in diverse
physical systems undergoing non-Hermitian dynamics [1].
This generally concerns a Schrodinger-type evolution of a
complex-valued vector field v(z):

d

ldt v=Hyv, (1)
in terms of a non-Hermitian matrix-valued ‘“Hamiltonian”
H(w), parametrized by a set of complex-valued system pa-
rameters w. The dynamics governed by Eq. (1) become ex-
tremely sensitive to the values of w close to points wy where
H is not diagonalizable. In fact, the standard diagonalization
of H at wy would yield a branch point singularity dubbed
exceptional point (EP) [2]. The defining property of wy is
the degeneration of two or more eigenvectors at an eigen-
frequency degeneracy point. For example, a spin-% raising
operator 6 = &, + i6y, expressed in terms of two 2 x 2 Pauli
matrices G;, has a sole eigenvector, with zero eigenvalue,
corresponding to the spin-up state. As such, 6, cannot be

diagonalized by a similarity transformation.
The eigenenergy solutions A of H(w) realize, as a
function of w, multivalued functions with branch cuts
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terminating at branch points. Smoothly varying one of
the complex-valued parameters w, the eigenenergies can
be represented as single-valued functions on a multisheet
Riemann surface, with branch points marking coalescence
of two or more energy levels. These EPs thus provide
genuine singularities, which can manifest prominently in
microwave [3] and optical [4] response properties and hybrid
dynamical systems [5-8], scattering problems and sensing
[9], open and quasi-Hermitian quantum systems [10], etc.
[1], particularly in regard to their topological encircling
aspects [11]. The emergence of EPs in quasiparticle
band structures, furthermore, tremendously enriches their
topological classification in crystalline materials [12].

In this paper, we argue that EPs are also commonplace in
pure spin dynamics, based on several generic examples, even
in the absence of external driving, such as spin-transfer torque
[13]. In particular, an isotropic antiferromagnetic spin pair
harbors an EP already in its singletlike ground state. We show
how this EP gets inherited by extended antiferromagnetic
dynamics, manifesting in Weyl singularities and synchroniza-
tion (level attraction) within magnonic band structure, which
are tunable by the dissipative properties of the environment.
While somewhat less natural, similar EPs can also be engen-
dered by ferromagnetic systems.

The paper is structured as follows: In Sec. II, a general
model for dissipatively coupled spin dynamics is formulated,
based on exchange and spin-pumping mediated interactions
[14]. In Sec. III, we specialize to the ferromagnetic case,
first revealing EPs in simple two-spin dynamics and then
extending the treatment to the magnon band structure in a
spin chain. In Sec. IV, a similar program is carried out for
the antiferromagnetic case, before summarizing the paper in
Sec. V.
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FIG. 1. A general two-spin system coupled through a dissipative
environment. The spins S, precess in their respective internal fields b,
and couple through a Heisenberg exchange J. In addition, individual
viscous (Gilbert) damping g, is complemented with a mutual spin-
pumping-mediated viscosity G in the coupled dynamics.

II. GENERAL TWO-SPIN DYNAMICS
A. Reactive and dissipative coupling

Consider an isotropic system composed of two classical
spins described by the Hamiltonian

H=-b;-Si—by-S;,—JS;-8S,. 2)

b, parametrize individual Zeeman splittings and J Heisenberg
exchange between the spins. This Hamiltonian, according to
the classical spin algebra {S¢, S} = €S, (with {...} stand-
ing for the Poisson bracket and €*¢ denoting the Levi-Civita
symbol), describes a coupled Larmor precession of the spins:

S, =(S,,H} =S, x (b, +JS;). (3)

Here, 7 = 2, 1 for 1 = 1, 2, respectively. A possible physical
realization of such a system can be provided by a magnetic
bilayer coupled through a normal-metal spacer [15].

In addition to a Ruderman-Kittel-Kasuya-Yosida (RKKY)
type exchange J, we generally also need to add a dissipative
coupling mediated by spin pumping through the spacer [15],
which enters the equations of motion as a nonlocal Gilbert
damping [16]. For small-angle dynamics, relative to a com-
mon equilibrium orientation (supposing b, are collinear), the
full coupled equations become

(1 +ngzX)S1 + G(SI X sl — 8§ X ST) = Sz X (bz +JST)
“)

G parametrizes the strength of the spin pumping across
the spacer (which is related to the spin-mixing conductance
[14,17]), driven by the orientational dynamics of s, =S, /S,.
We also included local Gilbert damping [16] g, in each of
the magnetic layers, which parametrizes the quality factor
0, = 1/2g,S, of intrinsic magnetic dynamics. See Fig. 1 for a
schematic. Note that the equations of motion (4) would need
to be revised in the general large-angle case [14,15], in order
to preserve the magnitude of S,. In the following, we will
see that the nonlocal damping G is essential in establishing
EPs in the ferromagnetic case, while it will turn out to be
unimportant for the antiferromagnetic case.

B. Energy dissipation and external pumping

Note that the dissipative coupling G affects only the
out-of-phase precession of the two (macro)spin orientations.
This could be thought of as a viscosity associated with relative

spin dynamics [15]. Calculating energy dissipation according
to the equation of motion (4),

P=-H=H-S +H-S,, (5)
where H, = —ds,H 1is the effective field conjugate to spin ¢,
we find

P =18} + 57 + G(s1 F $2)°, )

in the case of the dynamics near the parallel (antiparallel)
configuration. This dissipation is guaranteed to be positive
semidefinite in the physical situation where gi,g,,G >0
[17]. The above equations thus describe the dynamics of a
stable system near its thermodynamic equilibrium.

Formally, P is positive semidefinite iff g, + G/ S,2 > 0 and
|Gl/S152 < x/(gl + G/Slz)(gz + G/S%). Macroscopic mag-
netic spins can be locally (thermoelectrically) pumped out of
their natural thermodynamic equilibrium by subjecting them
to spin-transfer [18] or spin Seebeck [19] torques, which can
shift the effective local damping g, into negative values [20]
and possibly even invalidate the stability requirement P > 0.
We can exploit this in practice for expanding the parameter
space of experimentally tunable coefficients that govern our
dynamical system.

III. FERROMAGNETIC ALIGNMENT

To be more specific, we now orient the Zeeman terms along
the z axis, b, = b,z, and linearize spin dynamics in terms
of small deviations from the initially parallel configuration
S, &~ §,z. Owing to the axial symmetry, we switch to the
natural circular coordinates: &, = (S* +iS))/+/2S,, which
obey canonical algebra (in the case of small-angle dynamics):

i{6,6% ~ 1 @)

for each site : (with the intersite Poisson brackets vanishing).
We thus see that the quantized & — +/7ia obey bosonic
statistics: [a, a'] — i{&, &*} = 1. a, which is proportional to
the spin-raising operator, thus constitutes the magnon field.

A. Equation of motion

The linearized dynamics following from Eq. (4) is de-
scribed by

(1 +i0)S, —id'S; = —iw, S, + i &, ®)

where w, = b, +JS;, o, = g,S, + G/S, and we denoted by
the primed coefficients o =J/S1S, and o = G//SS>,
the reactive and dissipative interspin couplings, respectively.
Equation (8) can finally be recast in the matrix (Schrodinger-
type) form

ad ~
14+id)i—6 =hS, 9
(I+i )ldz )
where
S = @1) h=w, +w 6. — 6, (10)
2

is the effective 2 x 2 magnon Hamiltonian, and

d=o, +a_6.—d6, (11)
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TABLE 1. Parameters of the collinear two-spin system.

V- normalized frequency asymmetry, o_ /w,
a_ damping asymmetry

v normalized exchange coupling, o'/w

o dissipative coupling

is the damping tensor, parametrized by the Pauli matri-
ces 6, wy = (w; £ wy)/2 (and similarly for «y) are the
(anti)symmetrized frequencies. The dynamics is finally cast
as

d -
i—G =HG, 12
e 12)

in terms of the non-Hermitian “Hamiltonian”
A =+id)"h. (13)

Let us simplify H by assuming smallness of the damping
parameters o < 1 (implying large quality factors for the
resonant modes), as well as of the interspin detuning and
coupling w_, o < w,. This leads to

A~ (1—ia_6, +id'6:)(1 + y_6, — y'6:)d,.
~ [+ (v —ia )6, — (v —id' )6 Joy
=(1+Ha, ~ o, + Ho,, (14)

where y_ =w_/w, <1 and y' = o'/wy K 1 are the nor-
malized detuning and coupling, respectively, and @, =
w4 /(1 +iay) is the complex-valued normal frequency of the
unperturbed symmetric mode. By diagonalizing the normal-
ized and shifted Hamiltonian

H=( —ia)s — (' —id)s, s)

we can finally decompose the linearized dynamics into
damped modes of the form oce "!*7)@+ where A is one of
the two (complex-valued) eigenvalues of 5% For convenience,
we summarize the key quantities parametrizing the coupled
dynamics in Table I.

B. Exceptional points

The diagonalization of the matrix (15) breaks down at the
exceptional points, where the eigenvectors associated with de-
generate eigenvalues coalesce [21], ruling out a diagonalizing
similarity transformation. The two eigenvalues are given by

Ae =2 (o —ia)? + (' — i), (16)

where we are making the convention for the square root to
evaluate the principal value. An EP occurs when AL =0,
while the individual terms under the square root are not both

zero. In this case, 5% # 0, while 5%2 = 0, which confirms that
indeed the matrix cannot be diagonalized. A ready example of
this is provided by a matrix &, + i6p, in terms of two distinct
Pauli matrices &, and &, as we have already mentioned.
Expanding the (complex-valued) energy eigenvalues (16)
near such an EP, as a function of some complex-valued param-
eter that parametrizes 5%, would generically define a square-
root singularity. The trivial degeneracy of ) = 0 signals a

diabolic point, on the other hand, which would harbor a Berry-
curvature monopole [22] associated with a Weyl singularity.

1. The reactive and dissipative scenarios

Even if the two-spin system is symmetric, S| = S, we may
still introduce possible asymmetries in the individual resonant
frequencies and the associated broadenings. The EP condition
(16) translates into

y. —ia_ = %i(y —io) £ 0. (17)

The EPs can then be realized for physical real-valued pa-
rameters when @ = Fy’ and y_ = +a’. Two basic practical
scenarios can then be envisioned: (1) The coupling between
the spins is purely reactive, y’ # 0, while o’ = 0, in which
case the resonances need to be tuned, y_ = 0, resulting in
two EPs when o = +y’; and (2) the coupling between the
spins is purely dissipative, ' # 0, while y’ = 0, in which case
the local dissipation needs to be symmetric, «_ = 0, resulting
in two EPs when y_ = +a’'. The latter scenario is especially
attractive, as it naturally occurs in a magnetic bilayer system
with a diffusive normal-metal spacer [14,15]. Resonant tuning
across the EP has been realized in Ref. [15], not making the
connection with the EP perspective, however, at the time.

2. Topology of the exceptional points

Let us look more closely into the frequency eigenvalues
(16) in the vicinity of these exceptional points. As an example,
suppose we have a magnetic bilayer coupled through a purely
dissipative coupling, i.e., y’ = 0. Let us take the dissipative
coupling o to be fixed, while the local resonance conditions
and damping y_ and o_ are allowed to be tuned by the
control of local fields and thermoelectric pumping [20]. The
frequency eigenvalues are then given by

Ae =+ (y_ —ia_)? —a. (18)

We can rewrite these eigenfrequencies as Ay = ++/72 — o2,
in terms of the fully tunable complex-valued parameter z =
y_ — ia_ [which couples to the z-component Pauli matrix in
the original Hamiltonian (15)]. If ¢ = 0, z is swept along
the real axis by varying y_, passing through two EP at z =
+a’'. The corresponding frequency eigenvalues are plotted in
Fig. 2. For |y_/a’| < 1, they are purely imaginary, with the
antisymmetric mode damped relative to the symmetric one.
Amusingly, both modes here are perfectly synchronized, in
regard to their real frequency components. This is dubbed
level attraction [7,8], in contrast to the usual level repulsion
for a hybridized Hermitian system. At |y_/o’| > 1, the modes
bifurcate, with a vanishing relative damping. The EP transi-
tion from the purely real to the purely imaginary eigenvalues
A+ at |y_/a’| =1, as depicted in Fig. 2, is related to the
spontaneous breaking of a P77 symmetry [10].

It may be useful to recall that these frequency eigenvalues
Ay are normalized and shifted by a complex valued @, [cf.
Eq. (14)]. The corresponding physical eigenfrequencies must
both have negative imaginary components, according to the
overall thermodynamic stability of the system [so long as
dissipation P in Eq. (6) is positive, which should be true in
and near equilibrium].
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FIG. 2. Complex-valued eigenfrequencies (18), when o_ = 0.
The two EPs at |y_/o’| =1 engender singularities, at which the
eigenfrequencies switch from being purely imaginary (at smaller lo-
cal frequency asymmetries y_) to purely real (at larger asymmetries
y_). Such eigenfrequency structure has been observed in a symmetric
iron-based magnetic bilayer [15] (see also Ref. [14], for a more
detailed analysis), as well as hybrid microwave-cavity-based systems
[6-8].

Close to either of the two EPs, z — zgp = +«’, we obtain a
square-root singularity in the full complex plane z € C:

A — +/220(z — 20) (when &’ # 0). (19)

When the dissipative coupling vanishes, &’ — 0, on the other
hand, the two EPs merge, resulting in a single Weyl point in
the spectrum (at ) — 0):

A+ — £z (when o’ =0). (20)

The latter is of course just a trivial scenario of decoupled
circular precession, near the degeneracy point. For a finite
spin pumping o # 0, the eigenfrequencies .,/z constitute a
double-valued function in the original complex plane z, while
being single valued on the Riemann surface, which consists
of two sheets emanating from the EP (the branch point) and
stitched up along the branch cut (that is typically chosen along
the negative real axis of z).

If z passes just to the right of the EP (path 1 in Fig. 3),
z=2z29+ € —it, where € > 0 is a small shift controlled by
fixing y—- — zo + € and o— — ¢ is continuously varied, the
eigenvalues

Ay X Ee —it 2D

have their two real parts anticrossing and two imaginary parts
crossing, at ¢ — (. When the passage is performed to the left
of the EP (path 2 in Fig. 3), € < 0, the real parts cross while
the imaginary parts anticross. At the Weyl point € = 0, both
parts cross, of course. This crossing/anticrossing behavior is
generic for basic topological reasons [21].

C. Spin chain

The EPs discussed above can also be approached in mo-
mentum space, by considering a dimerized chain of two-spin
composites. As a starting point to that end, we analyze a

Rely

FIG. 3. The evolution of the eigenvalues upon the passage of an
exceptional point zo — «’ to the right (1) orleft (2). The solid lines in
the insets show the respective values of the real and imaginary parts
of the frequency eigenvalues (in units of v/2a”). The dashed lines are,
respectively, the imaginary and real parts.

chain of N identical spins, with periodic boundary conditions,
exchange coupled as in Eq. (2):

N
H=->"b,-S,—J) S,-S,, (22)
J=1

(7"

where the double sum runs over the nearest neighbors (the
Nth spin being a neighbor to the first one). The linearized
dynamics (8) then obey

(14,96, —id' (&, 1 +6,,1 —26,)/2
=—ib,S, +id (6,1 +6,,1 —26,)/2,  (23)

scaling, for convenience, the definitions of the coupling pa-
rameters ' and ' up by a factor of 2. If g, =a/S and
b, = b, the solutions are plane waves &; eki=on with the
dispersion

b+ 2w’ sin? ’%

w= - - .
1+ z(a + 20/ sin? %)

(24)

It has a finite positive curvature in the (real part of the)
frequency as well as in the effective Gilbert damping (or the
inverse quality factor), as k — O [14]. The wave number k
runs over the Brillouin zone (—m, ]. Assuming the lineariza-
tion of the spin dynamics is performed with respect to a stable
state (i.e., energy minimum of an isolated spin chain), the
eigenfrequency (24) exhibits no singularities.

To allow for a dimerization of spin dynamics (a term
we use broadly to account for a two-spin unit cell), we
next suppose the onsite field and damping are alternating
in magnitude between neighboring sites, as in the preceding
two-spin model. See Fig. 4 for a schematic. We will now look
for solutions of the form

S, (t) = &,(t)e™, (25)

where ¢ = 1, 2 is the sublattice index and ; is the unit-cell
index labeling repeated site pairs. The ensuing dynamics of
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FIG. 4. Spin waves in a ferromagnetically ordered spin chain.
The neighboring sites are interacting via reactive ' and dissipative
a’ exchange couplings. A unit cell is composed of a nonidentical spin
pair, with the individual frequencies and damping parametrized by w,
and «,, respectively.

G, () is then governed by a k-dependent 2 x 2 Hamiltonian:
k ~1
H = |:1 + i<a+ + a,ﬁz — C(/COS 56}{‘)]

A / k,\k
X |wy +w_6;, —w cos =0, |].

X

N

This is fully analogous to Egs. (10)—(13) but with o’ —
o cos§ and o' — o’ cos’i‘ now modulated by the factor of

cos % and rotating the Pauli matrix

cos ks + sin ks (26)
= —6y —0y,
27 27

6, — 6*
by the angle k/2 around the z axis.

Focusing on a purely dissipative coupling by setting ' —
0, as before, we find frequency eigenvalues [normalized by
@&+ = w4 /(1 + iy )] in the form (18):

k
e = i\/(y, —io_)? — &% cos? 2 27

with y_ and «_ now denoting the frequency and damping
asymmetries on the adjacent lattice sites. The role of the
spin-pumping coupling «’ is maximized at k = 0, where
the antisymmetric mode gets damped relative to the sym-
metric one, and gets diminished toward the Brillouin zone
boundaries.

As before, we can reach the EP singularity by setting
o_ — 0 and varying y_ and/or k. Physically, this corresponds
to a homogeneous spin chain, apart from a staggering of the
applied magnetic field (parametrized by y_). Suppose all the
parameters of the system are fixed, with |&’/y_| > 1, so that
there are two real-valued momenta

ke = #2c0s” ||, (28)
a/

at which the EPs shown in Fig. 2 are traversed as we move
within the Brillouin zone. For k € (k_, k), we are effectively
inside the circle shown in Fig. 2, while outside otherwise. In
Fig. 5, we plot the corresponding (real part of the) eigenfre-
quencies A /y_, for &’ /y_ varied between 0 and 5. o' /y_ —
1 corresponds to the critical point, at which the two EPs merge
into a single Weyl point and subsequently disappear from the
real momentum axis at smaller dissipative coupling o’

Note that at «’/y_ < 1, a finite dissipative coupling o’
endows dynamics with a dispersion, despite the absence of

ReA

FIG. 5. The (positive real part of the) eigenfrequencies (27),
with k& swept over the Brillouin zone. Here, we set «_ — 0 and
vary ' /y- — {0,0.6,0.9, 1, 1.1, 1.5}. The EPs k. [Eqgs. (28)] are
marked for «’/y_ = 1.5.Im A = 0 when Re A # 0 and vice versa.

any Heisenberg exchange J. For«’/y_ > 1, on the other hand,
the two modes get synchronized at Re .. = 0 (with one mode
damped relative to the other) for k. < k < k. These two
qualitatively distinct regimes of the coupled dynamics are
separated by a Weyl point emerging at «’/y_ = 1. We expect
these characteristic dispersions, synchronization, and Weyl
criticality to provide practical experimental handles to explore
the consequences of the emergence of the EPs in our spin
chain. It is intriguing, in particular, how the group velocity
changes in a steplike fashion around the EPs k..

We remind, in the closing of this section, that these
dynamics are associated with an overall decaying envelope
function governed by the complex-valued frequency &, =
w4 /(1 +icy), which would ensure stability in equilibrium.
If the spin chain is thermoelectrically pumped [20], in order
to effectively tune o, to zero, the symmetric mode would go
unstable within the (k_, k) interval delineated by the EPs, if
o > |y-|.

IV. ANTIFERROMAGNETIC ALIGNMENT
A. Two spins

Returning to our two-spin dynamics [Eq. (4)], let us
now consider an antiferromagnetic (AF) state, J < 0, of two
equal spins. We will suppose S, =~ (—1)'Sz, for sites 1 =
1,2. The local fields are b, = [b+ (—1)' K]z = (—1)'D,z,
b, = (—1)b+ K, in terms of an easy-axis anisotropy K >
0 and a collinearly applied uniform field . The canonical
transverse coordinates are now conveniently defined as &, =
(—1)'(S¥ +iS))/~/2S, obeying i{G,, &*} ~ (—1)'. Lineariz-
ing equations of motion (4) in terms of these coordinates, we
get

(=) +i0,]6, —id'&; = —iw, G, + i/ &;,  (29)
where, as before, w, = b, + o/, a, = g,S + «’, and we de-
noted by the primed coefficients ' = |J|S and o’ = G/S.

Adhering to the form of Eq. (9), this system of two equations
can be written in terms of

d=—g §—(g,S+d)6, +id6, (30)
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and

h=b—(K+o)s, + i)y, 3D
where gy = (g1 £ g2)/2. The net effective non-Hermitian
Hamiltonian (13) is thus

H~[l+ig S+i(g:S+a)6, +a'6y]

x [b— (K + )6, + iw'6y], (32)
supposing, as before, that all the dimensionless damping
parameters are small.

Settingg. — 0,g,S+ & — a,b— 0,and K + o’ — «,
we get
H~ (1 +iaé, + a'&) (i), — k6,)
= —i(ak —d'0") + i(aw — a'k)6, + (i0'6y — k62),

(33)

with constraints @ > «’ and « > «'. This Hamiltonian de-
scribes a two-site antiferromagnet, with effective local damp-
ing «, local Larmor frequency k, dissipative coupling o',
and exchange coupling «’. Dropping the constant piece o
(ak — o’@") > 0, which governs an overall decay, we get

H? =k? — 0% — (a0 — a'k)*. (34)
Setting this to zero, in order to locate the EP, we thus require
aw — o'k = +/Kk? — w?, (35)

with the expression under the square root being positive (for
a stable AF configuration with K > 0). Writing « = a + «/,
where a > 0 is the intrinsic local damping (excluding spin
pumping), the EP condition can be rewritten as

1w’ = 'K £ VKK + 20). (36)

Supposing, as before, that o’ < 1 and also @’ > K (strong
exchange), we finally get

2K
ax g — <L (37

which is consistent with the smallness of a. This value of
damping corresponds to the quality factor of the AF resonance
~1, however. In the spirit of these approximations, we thus
end up with the full frequency eigenvalues following from
Hamiltonian (33):

A A —iaw £ /2(1 — a0 /o), (38)

near the EP point a ~ w/w’, where w = +/2K ' is the intrin-
sic AF resonance frequency.

B. AF vs F cases

It is amusing to remark that two spins interacting by a pure
antiferromagnetic exchange, in the absence of any damping
and additional fields, naturally realize an EP:

H\p = o/'(i6, — 62), (39)
according to Egs. (30) and (31), after setting to zero all terms

but '. This is in stark contrast to the analogous ferromagnetic
case, where

Al = o'(1 —6,), (40)

wo
< <
# N w* i
D ——Oé SPass
—_—s e e iy
> >
...... bt S
unit cell

FIG. 6. Spin waves in an antiferromagnetically ordered spin
chain. The neighboring sites are interacting via reactive «’ and
dissipative o’ exchange coupling. A unit cell is composed of an an-
tiferromagnetic dimer, with the individual frequencies and damping
parametrized by w, and «,, respectively.

according to Eq. (10). I-?ZF =0, while (ﬁﬁ/a)’ -1’ =1
(having subtracted the constant part), suggests that the AF dy-
namics is more peculiar. Indeed, decomposing the small-angle
dynamics into the symmetric and antisymmetric components
G =(6)£6,)/2, we get

64_ = Zl.Cl),G,,
6. =-2i6_. (41)

AF: &_ =0,
F: 64_:0,

Both cases exhibit a zero mode &, corresponding to a
reorientation of the overall order parameter (Néel in the AF
and magnetic in the F cases). The distortion of this order, i.e.,
G_ #0, triggers its small-angle precession with frequency
2w’ in the F case, while resulting in an apparently unbounded
growth of G, in the AF case. The antiferromagnetic EP
point thus results in a breakdown of the linearized treatment.
We of course know the corresponding outcome in the full
spin dynamics: the Néel order parameter precesses in the
plane perpendicular to the distortion &_, which parametrizes
relative spin canting, with the frequency ocw’&_. This simple
example illustrates how an EP takes the coupled dynamics
out of the linearized perturbative treatment, necessitating a
fallback on a more complete description.

C. Spin chain

Viewing the above two-spin system as a unit cell of an
infinite homogeneous spin chain (which is thus naturally
dimerized), we are looking for solutions of the form (25),
where 1 = 1, 2 is the sublattice index, as before, and ; labels
the unit cells. See Fig. 6 for a schematic. The resultant
equations of motion [cf. Eq. (29)] are

. 14Dk
(1) +ia, 16, — ia’6;++
| 4 o1k
= 0,8, + i) &——— 42)

scaling, for convenience, the definitions of the coupling pa-
rameters o’ and @’ up by a factor of 2. The analogs of Egs. (30)
and (31) become (having setg_ — 0,¢.S+ o’ — o, b — 0,

013031-6



EXCEPTIONAL POINTS IN DISSIPATIVELY COUPLED ...

PHYSICAL REVIEW RESEARCH 2, 013031 (2020)

and K + o' — k)

o k
d = —ab. +ia’ cos E&f (43)
and
A . ., k &
h = —ké, + iw cos 70 (44)
where
N k .k
y = COs EO’_‘- — sin on 45)

is the Pauli matrix &, rotated by angle k/2 around the z axis.
These equations reduce to Egs. (30) and (31) in the limit of
k=0.

The spectrum and the subsequent EP analysis can thus be
obtained from Eq. (34), after scaling &’ and &’ by cos £, which
results in the k-dependent eigenfrequencies

k k
AL~ —iaw + \/a)z + w? (sin2 3 acos? E) (46)

We are omitting here terms o', which can be shown to be
unimportant when the intrinsic damping a is approaching the
EP point. The EP is located at

k Lk
acos§% (w/w')? + sin X 47)

For a <« 1, we thus need to focus on k — 0, which gives

axJ(w/o)?+ (k/2)? ~ o/, (48)

supposing, as before, that K <« " and thus 0 € o'. @ =

JJ@? + @' sin? % is the intrinsic undamped dispersion. Note

that in the absence of damping, a — 0, the EP is reached at
k — 0, requiring the absence of any anisotropy, @ — 0. This
reproduces the elementary antiferromagnetic EP discussed in
Sec. IVB.

Close to the EP, the frequency eigenvalues (46) are given

by

Ar A~ —iaw £ /2(1 — aw' Jwy)wy. (49)

This leads to a qualitatively similar behavior in the k-
dependent eigenfrequency dispersions, as already discussed
for the ferromagnetic case (cf. Fig. 5, along with the associ-
ated discussion). In particular, for a < w/0’ = /2K/o', we
obtain two dispersing modes with opposite circular polar-
izations and the same damping and frequency, for all wave
numbers k. This is the ordinary AF dynamics. A stronger
damping a > /2K/w’, however, results in the synchronized
(zero-frequency damped) dynamics within the two excep-
tional points ki (corresponding to wy/w’ = a), without any
dispersion. Finally, a Weyl point with a closed gap is obtained
ata = /2K /' In this critical case (corresponding to the AF
resonance quality factor ~1), an ordinary Gilbert damping
closes the gap opened in the undamped AF dynamics by
an easy-axis anisotropy, restoring the linear Goldstone-mode
dispersion. We plot the positive real part of the dispersion (46)
in Fig. 7.

ReX

k

—r k_ k. pe

FIG. 7. The (positive real part of the) eigenfrequencies (46),
with k swept over the Brillouin zone. Here, we set w/w’ = 0.3
and increase a from O to 0.5, in increments of 0.1 (with the 0.3
corresponding to the gapless dispersion). The EPs k., which solve
Eq. (49), are marked for a = 0.5. Note how increasing the ordinary
Gilbert damping a closes the anisotropy gap  in the intrinsic AF
dispersion.

V. SUMMARY AND OUTLOOK

When embedded into a dissipative environment, coupled
spin dynamics can yield exceptional points that have a drastic
effect on their spectral properties. We focused our discus-
sion on ferromagnetic and antiferromagnetic dimers and spin
chains. In the antiferromagnetic case, the EPs can be experi-
mentally accessed by simply tuning the overall damping of the
system. The ferromagnetic case requires a nonlocal dissipative
coupling, which can be realized by internal magnetic spin
pumping into itinerant degrees of freedom. In both cases, the
EP emerges in the magnon band structure as a linearly dis-
persing Weyl point, which acts as a precursor to a flat magnon
dispersion that extends over a finite range of momenta.

In the strongly damped regimes, the EP singularities, there-
fore, separate the dispersing and nondispersing regions of the
magnon band structure. These examples show how control-
ling dissipation can dramatically modify kinetic properties of
magnons, such as a steplike change in their group velocities, in
the vicinity of an EP. The resultant thermodynamic response
and kinetic coefficients of the magnon gas, such as its spin
conductivity and spin diffusion length [23], could then be
invoked to exhibit this physics, in addition to coherent mi-
crowave probes.

Reducing the spins and crossing over to the quantum
regime of the coupled dynamics, at low temperatures, it can
be interesting to explore how the EPs evolve into the quantum
limit of magnetic fluctuations. It may be intriguing, for ex-
ample, to look for the associated features in the entanglement
properties between individual spins [24] or magnetic sublat-
tices [25].

Braiding around the classical EPs in the parameter space
taps into their Riemannian topological aspects, manifested,
for example, in characteristic phase changes and non-Abelian
braiding representation in the eigenvector evolution [11],
along with the associated topological energy transfer [5].
When applying such braiding to the evolution of an open
quantum spin system, one may be compelled to investigate
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the possibility of robust features inherited from the topology
in the underlying classical counterpart, in regard, for example,
to quantum gates and information processing tasks. In the
future works, it could also be interesting to study the braid-
ing of magnons in momentum space (or mixed parameter-
momentum space), both in the classical and quantum regimes.
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