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The current routine of comparison and validation in climate science is frequently static and of low efficiency,
which hinders evidence-based decision making and scientific confidence. Due to the aggressively increasing
resolution, complexity, and associated data volumes of climate models, objectively comparing multiple models
and assessing their accuracy against observations is an ever-increasing challenge. We propose an integrated
framework for harmonizing state-of-the-art cyberinfrastructure techniques with the user habits formed by long-
term familiarity with existing community-oriented software. An open source prototype named COVALI is

implemented and used to compare and validate the results of several widely-used climate models and datasets.
Our results show that the proposed cyberinfrastructure-based strategy can significantly automate the comparison
and validation processes in climate modeling. More importantly, the new strategy retains the existing user habits
in the climate community while making it easier for scientists to adopt new technology in their research routine.

Software availability

Name of software: COVALI

Developer: Center for Spatial Information Science and Systems, George
Mason University

Source language: Java

Availability: The source code and application jar can be accessed via
Github: http://github.com/CSISS/cc

1. Introduction

Big data features heavily in two essential and constantly applied
steps in climate modeling workflows: 1) model comparison, which
evaluates the level of agreement between models, and 2) model vali-
dation, which evaluates the level of agreement between models and
observations (Anderson and Bates, 2001; Flato et al., 2014). Climate
models are comprised of complex systems of equations that include a
number of assumptions and approximations that differ from model to
model, and intermodel comparison is a means of assessing their collec-
tive impact (e.g., Randall et al., 2007). In addition to the obvious need to
assess how accurate models are at reproducing the real climate system,
comparison between models is also essential.
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Currently, comparison and validation of climate models is generally
performed by individual scientists using their own unique codes and
workflows. The process frequently requires locating, accessing, trans-
ferring, regridding, and analyzing tens to hundreds of terrabytes of data.
While some standard community analysis packages do exist (e.g. PMP,
CESM diagnostics), the large number of steps and datasets lead to a
situation where results obtained by one researcher cannot be readily
reproduced and/or evaluated by third parties (Gleckler et al., 2008;
Kennedy et al., 2011). A standard, widely-available strategy (tools, li-
braries) for comparison and validation of model results would greatly
improve our understanding of model accuracy, applicability, scope, and
error sources (Rood, 2011).

To standardize the comparison and validation processes, thus
improving reliability and reproducibility as well as saving considerable
time and effort, we present a cyberinfrastructure-based framework to
enable streamlined one-stop comparison and validation in climate
modeling. Inspired by state-of-the-art big data manipulation strategies
in computer science, solutions involving cloud-based data storage and
high-performance on-demand computing can be transplanted to scien-
tific modeling (Zhang, 2019). The scripts, commands, and libraries used
for comparison and validation will be managed remotely by cyberin-
frastructure. Once any of the scripts, commands, or libraries is changed,
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the cyberinfrastructure will automatically re-compile and re-run the
entire workflow (Sun, 2012). The results will be delivered to users once
the execution is completed. Scientists can browse the results and
side-by-side compare them with other model results or on-field obser-
vations discovered by the cyberinfrastructure.

The proposed framework will bring a change of routine to climate
scientists and will make the numeric models more intercomparable and
their results easier to validate against observations. A prototype system
has been implemented to realize the framework and has been used to
compare the results of several popular climate models and data prod-
ucts, e.g., WRF (Done et al., 2004), GFS (Saha et al., 2010), HRRR (Smith
et al.,, 2008), NARR (Mesinger et al.,, 2006), ASR (Bromwich et al.,
2018), ERAS5 (Hersbach and Dee, 2016), via searching and visualizing in
the web browser. Observational data from weather stations, radar, and
sensor networks, are indexed, discovered, and displayed in the proto-
type to validate the model results and calculate the model errors. The
results show that the proposed framework can greatly improve the ef-
ficiency of comparing and validating those models. The expected ad-
vantages including reduced time cost, increased scientific productivity,
standardized processes, and greater confidence in results have been
verified in the experiments. For the community at large, the proposed
cyberinfrastructure will make it easier and faster to deliver model sim-
ulations from research to operation for climate-related activities, such as
air quality monitoring, water availability, and climate change
projections.

2. Urgent challenges in climate modeling
2.1. Model intercomparison

Many models have been created by different groups to simulate the
climate system. At the time of writing, thirty-two separate models are
listed as participating in the Coupled Model Intercomparison Project,
phase 6 (cMIP61) (Eyring et al, 2016). CMIP6 is a
community-established framework for studying the output of coupled
atmosphere-ocean general circulation models. It facilitates assessment
of the strengths and weaknesses of climate models which can enhance
and focus the development of future models (Zanchettin et al., 2016).
Within CMIP6 are multiple subprojects focusing on exploring particular
components of the climate system in depth. For example, the Coupled
Climate-Carbon Cycle Model Intercomparison Project (C4MIP) (Jones
et al., 2016) consists of a subset of eleven coupled climate-carbon cycle
models using a common protocol to study the coupling between climate
change and the carbon cycle. For each model, two simulations were
performed in order to isolate the impact of climate change on the land
and ocean carbon cycle, and therefore the climate feedback on the at-
mospheric CO2 concentration growth rate. The results of different
models are compared and analyzed to identify the agreement and
disagreement among them and to help understand their causes. Another
project, the Cloud Forcing Model Intercomparison Project (CFMIP) fo-
cuses on quantifying and comparing the critical cloud radiative feed-
backs across the suite of participating models (Webb et al., 2017). Taken
together, hundreds of derived versions of various models exist across the
climate community. As climate models have become increasingly com-
plex, and have moved to higher resolution, the need for innovative
methods of data discovery as well as intercomparison and analysis of the
resulting simulations has grown more urgent.

2.2. Model validation
Governments, organizations, and individuals frequently ask if

climate models are reliable (Hutton et al., 2016). Rigorous model vali-
dation is crucial to demonstrate that simulations are sufficiently

1 https://pemdi.linl.gov/CMIP6/ArchiveStatistics/esgf_data_holdings/.
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accurate to inform decisions on grand challenges on behalf of both
human society and our living environment (Randall et al., 2007). In
addition to making forecasts, models are regularly tested on their ability
to reproduce past weather and climate events (Karmalkar et al., 2011;
Rood, 2011), a process referred to as “hindcasting”. Hindcasting is
particularly important for assessing climate change projections, as an
alternative to waiting for 30 years to verify the accuracy of a given
projection. If a model can correctly predict trends from a starting point
somewhere in the past, there is less reason to think its predictions of
future climate states will be wrong (Pedersen and Winther, 2005).
Reanalysis products such as ERA5 (Hersbach, H., 2018), which are
blended datasets comprised of both observed and simulated data, are
frequently used for validating models as well as providing initial con-
ditions for forecasts and boundary conditions for regional models.

Climate models are also assessed on their ability to reproduce the
average state of the climate system, known as the climatology. For
example, researchers check to see if the average temperature of the
Earth in winter and summer is similar in the models and reality. They
also compare quantities such as sea ice extent between models and ob-
servations and may choose to use models that do a better job of repre-
senting the current amount of sea ice when trying to project future
changes. Similarly, specific events that have a large impact on the
climate, such as volcanic eruptions, can also be used to test model per-
formance. The climate responds relatively quickly to volcanic eruptions,
so modelers can see if models accurately capture what happens after big
eruptions, after waiting only a few years. Studies show that significant
uncertainties remain in model simulations of changes in temperature
and in atmospheric water vapor after major volcanic eruptions (Zan-
chettin et al., 2016).

2.3. New technology vs old technology

In recent years, climate science has struggled with the growing
disparity between conventional tools and new emerging techniques
(Sun, 2019), neither of which is sufficient alone (Gimeno, 2013; Ng
et al., 2017). The conventional tools are solid, robust, and have a large
number of users (Craig et al., 2005; Kouzes et al., 2009; Lupo and
Kininmonth, 2013; Tsipis, 2019). However, as technology evolves and
data accumulates, the conventional tools are falling short of addressing
new challenges such as higher-resolution big data (Lopez and Man-
ogaran, 2016; Schnase et al., 2016; Sellars et al., 2013) and the inherent
limits of numeric models (Abramson et al., 2005; Mizielinski et al.,
2014). New technologies are growing in popularity because of their
potential to meet those challenges (Hashem et al., 2015; Reed and
Dongarra, 2015), and therefore it is to be hoped that they will gradually
replace the dominant role of conventional tools in the climate research
(Evangelinos and Hill, 2008; Haupt et al., 2008; Huntington et al., 2017;
Kouzes et al., 2009; Schnase et al., 2017; Stewart et al., 2015).

However, it will never be simple to convince scientists to drop tools
that they have been using for decades and use something new and un-
familiar, even when the new technologies are more powerful and effi-
cient (Fernandez-Quiruelas et al., 2011). This conflict follows the birth
of all new technologies. The chaotic multitude of languages, tools, and
libraries makes the situation worse and leads to a situation where the
abundancy of big data (petabytes of observational, reanalysis, simulated
datasets online) cannot be fully exploited to benefit climate researchers.

3. Advanced cyberinfrastructure solution

Web systems have taken on a big portion of the market in scientific
data processing today because of their high availability, scalability, and
efficiency. Cyberinfrastructure, which is a term summarizing these web
systems and their served capabilities, is not a new technology but a
merger of tools, data, and human resources into a seamless interoperable
platform. While processors, storage devices, sensors, and other physical
assets are part of CI, it is more than the practice of connecting people
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with advanced networks and sophisticated applications running on
powerful computer systems-it aims to involve those people as partici-
pants in the generation of knowledge, giving them the opportunity to
share expertise, tools, and facilities. CI is also known as e-research, e-
science, and e-infrastructure in Europe, Australia, and Asia, bringing
together high-performance computing, remote sensors, large data sets,
middleware, and sophisticated applications (modeling, simulation,
visualization)(Cyberinfrastructure vision for 21st century discovery).
Beyond the technology, an essential part of CI is the way it allows
distributed teams to turn “flops, bytes, and bits into scientific break-
throughs”(Cyberinfrastructure vision for 21st century discovery).

CI provides a technical infrastructure which knits together high-
speed networks with high-performance, high-availability, and high-
reliability computational resources (Hey, 2005). Data can be large ag-
gregations of previously collected data (e.g., reanalysis) or live feeds
from remote sensors (e.g., satellite observations, NEXRAD network).
Many of the systems are housed in different locations, and experiments
typically run on virtual machines in which spare cycles from dozens or
hundreds of computers are used for a single task. Data sets can be
distributed as well, with data coming from multiple institutions
(Schnase, 2016).

CI provides an opportunity for a new kind of scholarly inquiry and
education, empowering communities of researchers to innovate and
revolutionize what they do, how they do it, who participates (Revolu-
tionizing Science and Engineering Through Cyberinfrastructure: Report
of the National Science Foundation Blue-Ribbon Advisory Panel on
Cyberinfrastructure). Data and experiment notebooks are posted online
as they are collected, facilitating real-time, distributed science. To
enhance climate science and the ability to meet the two critical chal-
lenges of model intercomparison and validation, the required advanced
cyberinfrastructure should at least provide the following capabilities.

3.1. Multisource data discovery and multifile subsetting collection

Due to the big data challenges in climate science, there are only a few
choices available for scientists to find their desired data sets and collect
them as initial input data of their models. Currently, a common routine
is that scientists either search in Google to find the data providers’
descriptive web pages and access the data via their portal entrance link
or learn about the data sets from colleagues/conferences/seminars and
go directly to their websites to access the data sets. Many datasets are too
big (e.g., over 100 TB) to readily transfer and store locally, requiring
scientists to subset or downsample the data on site and prior to trans-
ferring the reduced data to their own facilities. However, the current
cyberinfrastructure still has a lot of room for improvements (e.g.,
THREDDS Data Server need search function). To solve this problem,
advanced cyberinfrastructure should be equipped in the data centers to
further facilitate the manipulation of big data to improve climate
research.

3.2. Efficient regridding

All veteran climate modelers know the sophisticated challenges
raised by the gridding task (Hill et al., 2004). Scientists don’t have a
limitless supply of computing power at their disposal, and so it is
necessary for models to divide up the Earth into grid cells to make the
calculations more manageable. This means that in every step of the
model takes through time it calculates quantities averaged over a grid
cell that may be 100 km on a side. However, the precise definition of the
grid typically varies from model to model. The proliferation of models
discussed in section 2.1 means that scientists must be able to work with
many different grid definitions, and direct comparison of models re-
quires first transforming the data to a common grid. Likewise, many
observational data products are either supplied on their own grids (such
as reanalysis) or at point locations (such as station data), and validating
models against such data again requires a regridding step. Automated,
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efficient conversions between different grids would lead to significant
savings in time and effort in model analysis workflows.

3.3. Interactive visualization

Recent development in web map services such as Google Maps, Bing
Maps, Apple Maps, has greatly reformed the habits of people examining
spatial datasets. When it comes to visualize spatial datasets, people
generally expect something similar to those widely-used map applica-
tions which allow users to freely zoom, pan, rotate, search, and query on
maps. Rapid and interactive visualization is also a key element in the
development of successful climate analysis workflows, allowing imme-
diate and flexible feedback on the outcome of experiments and the
identification of both errors and features of interest. CI tools for visu-
alization should be intuitive and provide steeing, 3 or higher dimension
mapping, as well as many other functions such as on-the-fly clicking for
values, changing legends, switching projections, and adjusting opacity.

3.4. Result comparison and difference calculation

Advanced climate cyberinfrastructure should serve the capability of
comparing the results from different models and data products and
calculate their differences. Comparing to geographic information sys-
tems, climate scientists are more comfortable with side-by-side com-
parison instead of layers that are overlaid together and compared by
showing and hiding each layer. Cyberinfrastructure development should
honor the user habit and make the comparison function friendly enough
for veteran scientists to adopt. Difference calculation should follow the
community paradigm to produce the difference map and avoid potential
misunderstanding caused by the changes in map production.

3.5. Hindcast validation

Hindcasting in climate science, or backtesting in many other disci-
plines, is one of the major validation strategies for climate models at
present2 (Sotillo et al., 2005). In hindcast experiments, researchers test
the ability of a model to reproduce the known or estimated state of the
climate system (e.g., reanalysis data) in the past (Chawla et al., 2013).
To facilitate the hindcasting experiment, advanced cyberinfrastructure
for conveniently retrieving both reanalysis data and observed data and
automatically performing standard comparisons (including the neces-
sary regridding noted in section 3.2) would be in high demand. Dealing
with the twin challenges of data volume and variety are key challenges
in establishing a qualified cyberinfrastructure for hindcasting.

3.6. FAIR data

To reproducibility of and confidence in the results of climate models,
ma_ny3 scientific communities and publishers have affirmed their
commitment to the principle that scientific data should be findable,
accessible, interoperable, and reusable (FAIR). Given the volume and
complexity of climate simulations and observations, implementing FAIR
principles represents a significant technical and logistical challenge.
There should be cyberinfrastructure allowing climate modelers to easily
publish their results in FAIR web services which could interoperate with
the models of other components of the Earth system and beyond to
generate a big picture of environmental current status as well as the
future trends.

3.7. Automation

After years of performing challenging and complex data processing

2 https://www.emc.ncep.noaa.gov/users/meg/fv3gfs/.
3 https://copdess.org/enabling-fair-data-project/.
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tasks (Yue, 2010), climate scientists eagerly expect automation as one of
the essential features in advanced cyberinfrastructure (Sun and Di,
2019; Sun et al., 2012, 2014). Scientists spend hours and hours on a
daily basis on preprocessing datasets, because one error in data pro-
cessing could lead to hundreds of computation hours wasted (they must
recalculate the models again) (Sun et al., 2017). A workflow manage-
ment module should be provided to help scientists oversee the entire
process, check provenance (Sun, 2013), quickly locate the sources of
errors and decrease the resource waste caused by wrong runs of models
to the minimum (Sun, 2019). In model comparison and validation, once
the files on either side of the comparison/validation settings are
changed, the comparison workflow should be triggered by cyberinfras-
tructure to automatically calculate the difference (Sun, 2016) and the
results will be sent to the subscribers of the comparison instantly once
the calculation is over.

4. Prototype implementation

To implement such a cyberinfrastructure, we utilized dozens of state-
of-art techniques, tools, libraries and performed substantial software
development work and held regular discussions with modelers. A
layered architecture interoperability framework including data re-
positories and discovery catalogs, models, workflow environments, and
analysis and visualization tools, is adopted to manage resources and
provided functionalities (Fig. 1). The system is named COVALI, short for
intercomparision and validation (the user interface in Fig. 2), which is
implemented as a module system of the NSF-funded EarthCube Cyber-
Connector. Different from other online web mapping systems, COVALI is
customized according to the user habits of climate scientists formed in
their long-term research careers. The interface is divided into two side-
by-side maps, each of them has multiple view modes including 2-D and
3-D modes. There are two toolbars on the top and left side, providing
redundant entries for scientists to capabilities such as data discovery,
retrieval, uploading, visualization, metadata display, layer manipula-
tion, animation, pixel value query, difference calculation, print, etc.
There is a scaler for each map to indicate the current scale of the cor-
responding map window. A legend panel at the bottom shows the layer
name and the color-value legend of the top data layer in the map. A
small container on the top right area shows the coordinates of the mouse
pointer to remind the real-time location scientists are pointing at. At the
bottom right corner, a projection/mode selector is provided for users to
switch among various projection and dimension choices. COVALI is a
decentralized open-source system which can be downloaded from its
Github repository (https://www.github.com/CSISS/cc) and installed on
most machines including servers, clusters, cloud virtual machines, per-
sonal laptops, where the climate models and datasets reside. The normal
usage of COVALI relies on no third-party services. After being installed,
COVALI allows scientists to browse the data files in public folders on the
host servers, interactively visualize them on the maps, intercompare the
simulation of different models side by side, and validate the accuracy
with observed data products ranging from gridded reanalysis data to
individual station measurements of precipitation and temperature.

The development of the system combines various community-
standard tools which are very familiar to climate scientists. For
example, the Unidata NetCDF library (Java) is used to parse the variable
metadata and visualize NetCDF files in web browser. ncWMS is used for
rendering the NetCDF/GRIB files into standard web map service which
can be directly integrated by many map tool providers. UCAR THREDDS
Data Server is connected to provide the NEXAD radar datasets (recent
two weeks). UCAR research data archive is connected to retrieve the
reanalysis data products (e.g., Arctic System Reanalysis). NCO (NetCDF
Operator) command lines are integrated to manipulate and analyze
NetCDF data files with many powerful mathematical and statistical al-
gorithms (difference calculation, ensemble, subsetting, average, and
etc.). OpenLayers, a popular open-source JavaScript library, is used as
the API for building the two rich web-based maps which can be panned,
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zoomed, rotated, and overlaid. CesiumJS is utilized to provide 3-D vir-
tual globe view mode for visualizing both static and dynamic data.

5. Experiment & showcase

We have helped climate scientists use COVALI in comparing and
validating their model results. They exercised COVALI to compare a
series of climate model results, some of which are introduced below.
However, it is important to note that while the comparisons choose the
closest reanalysis products and the dates might not be strictly the same.
These comparison results aim to demonstrate the capabilities of the
proposed framework only.

5.1. GFS vs HRRR

The Global Forecasting System (GFS),” is an operational weather
forecast model developed by the National Centers for Environmental
Prediction (NCEP) (Whitaker et al., 2008). GFS datasets consist of
dozens of variables, such as temperature, wind, precipitation, and ozone
concentration and are used by the forecasters to predict weather up to 16
days in advance.

HRRR® short for the High-Resolution Rapid Refresh, is a NOAA real-
time 3-km resolution, hourly updated, cloud resolving, convection-
allowing atmospheric model. Radar data is assimilated in the HRRR
every 15 min over a 1-h period adding further detail to that provided by
the hourly data assimilation from the 13km radar enhanced rapid
refresh.

We compared their convective available potential energy (CAPE), a
measure of the energy present in the atmosphere to fuel the develop-
ment of storms, for CONUS at the same time period (Apr 22, 2019 00:00)
shown in Fig. 3. The two maps use the same legend (maximum, mini-
mum, color style, base map, scale, and etc.) and can be zoomed to
specific regions for detail comparison. In COVALL the differences of the
two models are very obvious in the central plain region and across the
southeast. The impact of the higher resolution in HRRR is very apparent
in the more sharply-defined nature of the main feature. Conveniently,
COVALI allows users to rapidly and easily adjust the focus region to
compare results at various scales.

5.2. MERRAZ2 vs NARR

The NCEP North American Regional Reanalysis (NARR) (Mesinger
et al., 2006) products are long-term (1979-present) atmospheric datasets
with 3-h temporal, 32-km horizontal, and 45-layer vertical resolutions
over the North American domain. NARR contains outputs of many at-
mospheric variables and fluxes and is nicely suited for diagnosis of
synoptic and mesoscale conditions. In this portion of the study, we use
NARR monthly means and the NASA Modern-Era Retrospective analysis
for Research and Applications, Version 2 (MERRA-2) monthly data to
compare their assessments of the air temperatures at 2m above the
surface (t2m) (Fig. 4a). The results above the coastal states are relatively
close. However, further in-land states, particularly in the region of the
Appalachian mountains, the two datasets have clear disagreements.
These differences are difficult to see, however, using the default palette
and value range, so to highlight these differences we use COVALI to
adjust the value range of the color legend. (Fig. 4b). Now the broader
area of colder temperatures near the mountains in MERRA2 relative to
NARR can be idenfied clearly.

5.3. ASR vs ERAS5 reanalysis

ASR (Arctic System Reanalysis) is a retrospective reanalysis of the

“ https://www.emc.ncep.noaa.gov/GFS/.php.
5 https://rapidrefresh.noaa.gov/hrrr/.
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Great Arctic region produced by high-resolution versions of the Polar
Weather Forecast Model (PWRF) and the WRF-VAR and High-
Resolution Land Data Assimilation (HRLDAS) data assimilation sys-
tems that have been optimized for the Arctic. It covers the period of
2000-2016 at two resolutions: 15km and 30km. It has 29 pressure
levels, 27 surface and 10 upper air analysis variables, 74 surface and 16
upper air forecast variables, and 3 soil variables.

The ERAS dataset is the fifth generation of ECMWF (European Centre
for Medium-Range Weather Forecast) reanalysis of the global climate,
which started with the FGGE reanalyses produced in the 1980s, followed
by ERA-15, ERA-40 and more recently ERA-Interim. ERA5 provides
hourly estimates of a large number of atmospheric, land and oceanic
climate variables, and currently covers the period 1979 to within 3
months of real time. It combines vast amounts of historical observations
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Fig. 3. Comparison of CAPE for GFS (left) and HRRR (right).

in its estimation. Specially, ERAS includes information about its un-
certainties for all the variables at reduced spatial and temporal resolu-
tions for quality assurance. The hourly analysis and twice daily forecast
parameters form the basis of the monthly means (and monthly diurnal
means) in the dataset.

We used COVALI to load their estimates of the albedo in the greater
Arctic. Fig. 5 shows the results with ASR on the left map and ERAS5 on the
right. The general distribution of high and low areas matches well,
especially in the Arctic ocean, Canada, Russia, and Alaska. Differences
are localized and driven by reasonable forcings. Via the comparison it

could be concluded that both ASR and ERAS5 produced consistent esti-
mates in the Arctic. More improvements on each model might be made
at local scale and further validated by the future datasets collected by
Multidisciplinary Drifting Observatory for the Study of Arctic Climate
(MOSAIC).

5.4. Model validation with ground station measurements

COVALI not only provides a platform for interactively visualizing the
model results, but also allows directly overlaying observations collected
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Fig. 4. Comparison of 2-m temperature (t2m) in GFS reanalysis (left) and NCEP North American Regional Reanalysis (NARR, right).

by ground stations. EarthCube CHORDS (Cloud-Hosted Real-Time Data
Services for the Geosciences) is a real-time data service infrastructure
that will provide an easy-to-use system to acquire, navigate, and
distribute real-time data streams from 3-D printed, self-deployed in-situ
sensors. The CHORDS group has deployed several sensors in Colorado
which are keeping streaming the observations to their cloud-hosted
databases. Using the CHORDS API, COVALI can real-time retrieve and
display those observations on the maps (Fig. 6). We compared the pre-
cipitation in GFS hindcast predictions with the accurate observation
from CHORDS by clicking on the maps. Scientists can check their results

against the real observations to evaluate the accuracy of their models
and to help in identifying sources of errors.

Besides CHORDS, COVALI can also directly load observations from
IRIS station network. Although IRIS network is specifically used for
seismology research, they also have some surface sensors which provide
near surface measurements of variables like radiation, temperature, and
etc., and can help climate models to evaluate their results at near ground
surface level. Fig. 7 shows the distribution of some stations in the IRIS
network. Scientists can click on the station icons to get the station name,
the station network, channels, and the measurements of each channel. In
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Fig. 5. Comparison of Arctic albedo between ASR (left) and ERA5 (right).
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Fig. 6. Model validation with 3-D printed sensor measurements from EarthCube CHORDS.

future, more ground or remotely sensed datasets will be made available
to scientists in COVALI to facilitate directly adjusting their results
against the real-world datasets.

5.5. Data processing workflow

To assist COVALI to make model results more comparable, Geo-
weaver, an open-source geoscientific workflow system, is used in com-
bination with COVALI to assist the creation and running of data
processing workflow to automate the tedious daily jobs like regridding,
averaging, reformatting, reprojecting, and etc. (Fig. 8). COVALI uses
Geoweaver in the backend to complete the data processing tasks
received through its front interface. Geoweaver is very flexible for
managing resources like servers, cloud virtual machines, clusters,
scripts, Notebooks, Python code, and workflows. Underneath the

Geoweaver processes are the community-standard tools, such as NCO,
GrADS, NCL, THREDDS Data Server, and etc., which provide the actual
algorithms and commands to operate on the data files. Geoweaver wraps
all the resources into automated workflows and greatly reduces the time
cost of scientists spent on the frequently repeated data processing per
day.

6. Discussion

One biggest advantage of COVALI is to make climate model results
and observed datasets FAIRable (findable, accessible, interoperable,
reusable) via a single platform. Model results can be intercompared and
validated in an interactive and uniform interface instead of static and
random images. Since it runs in web browsers, COVALI allows scientists
to bypass many layers of protocols and connection techniques to directly
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manipulate the model results. Regarding the volume challenge of big
data in climate science, COVALI provides an advanced cyberinfras-
tructure solution to meet the substantial problems in data retrieval,
visualization, pre-/post-processing, statistics, intercomparison, and
validation. The availability of COVALI could make these daily activities
of climate scientists easy, straightforward, automatic, and time efficient.
It can help improve climate modeling by providing objective compari-
son among various models and hindcasts, and also enhance integrated
modeling by allowing the model results to be accessible, downloadable
and reusable by other modelers. The simple integration of ground sta-
tion observations will facilitate validation efforts that answer the reli-
ability questions asked by all the stakeholders. In addition, the tedious
data processing tasks which take a big portion of work time of climate

scientists will be simplified and automated in COVALI using scientific
workflow techniques. The software can run on Windows, Mac OS X, and
Unix/Linux and others that can run Java Virtual Machine. Every sci-
entist can install a copy on their machines to take advantage of its
capabilities.

The major barrier preventing the usage of cyberinfrastructure like
COVALI in real world scenarios is the long-term user habits and software
practicality. It takes a while for people, not just scientists, to transfer
from their familiar tools to something brand new. We are aware of this
obstacle and have taken it into consideration since the beginning of the
project. The interface of COVALI is made into a similar layout and style
as the ones that climate scientists are familiar with. During the devel-
opment, we have periodically interacted with scientists to discuss the
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design of user interfaces and functionalities to eliminate resistance in
their minds. Currently COVALI is at the prototype phase and we will
follow the best practices of standard software engineering cycle to
develop it into an operational system which is robust and useable by the
large climate community.

7. Conclusion and future work

We proposed an advanced cyberinfrastructure framework to enable
intercomparison and validation of climate models and observed datasets
via web-based systems. The proposed method will bring a change in the
research routine of climate scientists and make the numeric models
more intercomparable and the validation of results with ground truth
data more efficient. A prototype system has been implemented using
Java to realize the framework and has been used to compare the results
of widely used climate data sets: WRF, GFS, HRRR, NARR, ASR, ERAS5,
and etc. We worked together with specialists of climate models and help
them to use the developed system to compare their results with other
existing products via searching and visualizing in the web browser.
Validation data from weather stationary datasets, radar observation
dataset, sensor networks, are indexed, discovered, and displayed in the
prototype to validate the model results and calculate the model errors.
The results show that the proposed framework for advanced cyberin-
frastructure can greatly improve the automation and efficiency of
intercomparing and validating numerical models.

In future, we will make more ground and remotely sensed datasets
available in COVALI and provide more data processing and analysis
functions. By reaching out to the climate community, we will solicit
engagement of users and developers of different models to compare their
results via COVALIL The short-term benefits of adopting the cyberin-
frastructure in the climate domain include reduced time cost, stan-
dardized process, confident results, and improved reproducibility.
Ultimately, COVALI will automate the model intercomparison and
validation for improving the model simulation to support the re-
quirements of operational decision making in atmosphere-related ac-
tivities, such as air quality monitoring, greenhouse effect prediction,
ozone monitoring, dust forecasting, atmosphere thickness monitoring,
air pollutant control, etc.
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