
5318 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 38, NO. 19, OCTOBER 1, 2020

A Review: Neural-Inspired Photonic Functional

Systems for Dynamic RF Signal Processing
Mable P. Fok

(Invited Paper)

Abstract—Drawing inspiration from our nature, photonic sys-
tems that use light to imitate neural algorithms and behaviors of
nature could be effective to solve complex problems in human’s
civilized society that have been challenging for conventional elec-
tronic to tackle. Since neural algorithms are natural designs that
have undergone hundreds of million years of evolution and govern
the survival of the organism, therefore, those neural algorithms are
highly effective for the designated tasks. The goal of this article is to
review the recent demonstrations of the photonic implementations
of small scale functional neural algorithms for dynamic RF sig-
nal processing applications. In this article, two small-scale neural
algorithms are reviewed – (i) spike timing dependent plasticity, an
algorithm that governs how neural network are connecting together
and how learning/adaptation can be achieved in animals, and (ii)
jamming avoidance response in Eigenmannia, an algorithm in a
gene of electric fish that mitigates frequency jamming between
neighboring electric fish. The photonic circuits that are inspired by
the two neural algorithms are also presented and the real-life appli-
cations of the neural algorithms in human society will be discussed.

Index Terms—Neural-inspired photonics, biomimetic photonics,
photonic neuron, bio-inspired signal processing, neural algorithm.

I. INTRODUCTION

L
IVING organisms have undergone hundreds of million

years of evolution and have been well adapted to their

environment. Adaptation governs how living organisms look,

how they behave, how they are built, and how they live their

life, such that the living organisms can suit to survive and

reproduce in their habitats. The neural algorithms that govern

how living organisms behave are critical for their survival and

are extremely efficient in performing their designed tasks. Due

to the civilization of human society, powerful technologies are

invented but that also bring unsolved challenges that are beyond

what our current technologies could offer. Looking back to our

uncivilized nature, there are lots of adaptation schemes and

neural algorithms that could be the natural solutions towards the

critical challenges that we are facing in modern technologies.
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It is exciting to discover, reveal, and understand those powerful

neural algorithms, as well as mimicking them using photonics

to make them as effective solutions for the challenges we are

facing in human society.

In the last ten years, intensive research efforts have been

made in various areas related to marrying photonics with neural

science. For example, spike processing devices [1]–[18] using

semiconductor optical devices, silicon photonics, and excitable

lasers have been proposed and experimentally demonstrated to

mimic the behavior of a leaky integrate and fire neuron. The pho-

tonic based spiking devices could operate at a tens of picosecond

time scale while mimic the spiking process in a biological neu-

ron, including summing and weighting, integration, threshold-

ing, and spiking. Synapse in neural network that governs the pro-

cessing and storage of information in the brain has been mimic

using photonics [19]–[22] that could potentially allow photonic

neural network to process information like the brain. Photonic

neural networks have also been proposed using VCSELs-SA

[23] and nanophotonic chip with wavelength division multi-

plexing techniques [24]. Small scale photonic systems inspired

by functional neural algorithms have been demonstrated using

semiconductors and silicon photonics for performing specific

tasks [25]–[28] including pattern recognition, supervised learn-

ing, and jamming avoidance. Furthermore, a number of neural

algorithms inspired photonic circuits have been demonstrated

with success and shown their potentials in solving challenges

in dynamic RF systems. For example, a photonic circuit that

consists of two semiconductor optical amplifiers (SOA) as the

neuron has been used to experimentally demonstrate the tail-flip

escape response in crayfish [29]. The tail-flip escape response

is a fast and accurate algorithm that allows the crayfish to

escape from danger quickly, while it has been successfully used

for pattern recognition in the corresponding photonic escape

response circuit. Furthermore, spike timing dependent plasticity

(STDP) - a biological algorithm that governs various types of

learning in human and animals by adjusting the interconnection

strength between neurons has been mimicked using a SOA [30],

VCSOA [32], high-order passive ring resonators, as well as a

SOA with an electro-absorption modulators [34]. A photonic

circuit that performs supervised learning based on STDP has

been demonstrated experimentally [34], [35] where the neuron

learnt how the teacher teaches it during the learning phase. More

recently, machine learning based on photonics neural circuits

[36]–[40] has drawn intensive research interest.
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This paper focuses on the review of recent progress on mim-

icking small-scale functional neural algorithms with photonics

and its applications in solving challenges in human technologies.

First, the biological spike timing dependent plasticity (STDP)

algorithm that governs learning will be introduced, and its ap-

plications and implementation in angle-of-arrival detection and

3D localization [30], [31] will be explained and discussed. Next,

the jamming avoidance response of Eigenmannia - a genus of

electric fish [41]–[44] will be dissected, and the use of photonic

phenomena to mimic the jamming avoidance response will be

discussed [44]. Finally, the investigation of using the photonic

jamming avoidance circuit for mitigating inadvertent jamming

in RF system and phase locking will be presented [45].

II. SPIKE TIMING DEPENDENT PLASTICITY (STDP)

The most fascinating feature of neuron is its ability to learn

and adapt, which governs how we should act, allows us to think,

alters the state of our internal organ, and enables us to have

memory. Neuron networks achieve the amazing ability to learn,

think, and remember greatly relying on the synaptic weight

plasticity between neurons. Synaptic weight plasticity enables

neural systems to adjust the strength of synaptic connection

between neurons based on the information being processed and

the response of the neuron itself. While there are a number

of synaptic weight plasticity models, spike timing dependent

plasticity (STDP) is the most popular one. STDP has a number of

variations (e.g. additive type STDP, quadratic type STDP, reverse

STDP) but generally it is a biological process that adjust the

interconnection strength between neurons based on the temporal

relationship between pre-synaptic and post-synaptic activities.

An old saying in neural science community describes STDP

as “Neurons that fire together wire together”. That means the

more you are running certain neural circuit, the stronger the

circuit become. To enable learning, adaptation, and memory

in photonic neural circuit, the ability to mimic STDP using

photonics is essential. In fact, photonic based STDP circuits

have been demonstrated [34], [35] and have shown that the

photonic based STDP behavior could be operated at a hundred of

picosecond time scale. Furthermore, supervised learning based

on photonic based STDP has been demonstrated [34], [35] to get

a taste of the possibility to build a fast learning neural network

using photonic technologies.

A. Biological STDP and Optical STDP

Here, we are discussing the most common STDP [46] that

causes long-term potentiation (LTP) and long-term depression

(LTD) of synaptic connections. The interconnection strength

between two biological neurons is governed by STDP, which

is determined by the relative timing and sequence between the

pre-synaptic and post-synaptic spikes, as illustrated in Fig. 1(a).

Pre-synaptic spike (red) is the output spike from neuron 1 (N1)

that also acts as the stimulating input of neuron 2 (N2), while

post-synaptic spike (blue) is the output spike from neuron 2

(N2). If N2 spikes shortly after the receiving of stimulation

from the pre-synaptic spike (i.e. pre-synaptic spike is leading

the post-synaptic spike), the interconnection strength will be

significantly increased, resulting in potentiation of the con-

nection strength, as illustrated by the shaded purple region in

Fig. 1. (a) Illustration of pre-synaptic and post-synaptic spikes from two
neurons. (b) Illustration of a spike timing dependent plasticity curve. Pre-post
firing (right purple region): post synaptic spike fires shortly after the pre-synaptic
spike; Postpre-firing (left brown region): post synaptic spike fires before the
pre-synaptic spike. tpost-tpre: time difference between the firing of the post-
and pre-synaptic spikes.

Fig. 2. Schematic diagram of the photonic based STDP. PC: polarization
controllers; SOA: semiconductor optical amplifier.

Fig. 1(b). On the other hand, if N2 spikes before receiving the

stimulation from the pre-synaptic spike (i.e. pre-synaptic spike

is lagging from the post-synaptic spike), the interconnection

strength will be significantly decreased, resulting in depression

of the connection strength, as illustrated by the shaded brown

region in Fig. 1(b). The exact amount of synaptic connection

strength increment/decrement depending on the precise timing

difference between the pre-synaptic and post-synaptic spikes

of the neuron. A smaller time difference will result in a larger

change in synaptic connection strength, while a larger time

difference will result in a smaller change in synaptic connection

strength, as shown in Fig. 1(b).

In biological neuron, the STDP control is an internal backward

feedback that changes the weight of the synaptic connection.

While in photonic based neurons, the control of weight change

can be performed either through an internal response or external

feedback. STDP with internal weight response is suitable for

implementing large scale photonic neural network, while stan-

dalone photonic STDP circuit has the advantage of being used in

RF signal processing without a large-scale neural network. To

mimic STDP using photonics, a single semiconductor optical

amplifier (SOA) is used, as illustrated in Fig. 2. First, both the

pre- and post-synaptic pulses are combined using an optical

coupler and launched to the SOA via a polarizer to ensure
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Fig. 3. (a) Illustration of the dependency of cross-gain modulation effect on
the pulse timing and sequence. (b) Illustration of the dependency of crosspo-
larization rotation effect on the pulse timing and sequence. (c) Resultant STDP
response based on photonic phenomena.

the optimized polarization state of light is used. Inside the

SOA, there are two optical phenomena occurring – cross-gain

modulation and cross-polarization rotation. At the output of the

SOA, a polarization beam splitter is used to observe the power

change at the pre-synaptic pulse (channel 1) and post-synaptic

pulse (channel 2).

For channel 1, the post-synaptic pulse is the pump light that

induces cross-gain modulation effect, while the pre-synaptic

pulse is the probe signal that experiences the effect. Cross-

gain modulation effect contributes to the power change in

pre-synaptic pulse according to the timing and sequence, as

illustrated in Fig. 3(a). If the post-synaptic pulse is leading the

pre-synaptic pulse (post-pre firing), then the post-synaptic pulse

depletes the carriers in the SOA and the pre-synaptic pulse

will experience insignificant gain at the SOA that results in

a weak output power. Cross-gain modulation effect is weaker

if the probe signal enters the SOA much later than the pump

signal. On the other hand, if the pre-synaptic pulse is leading the

post-synaptic pulse (pre-post firing), then the post-synaptic pulse

is not able to induce cross-gain modulation to the pre-synaptic

pulse, pre-synaptic pulse will experience large gain and resulting

in a strong output power at the output pre-synaptic pulse. For

channel 2, the pre-synaptic pulse is the pump light that induces

cross-polarization rotation, while the post-synaptic pulse is the

probe signal that experiences the effect. Cross-polarization ro-

tation effect contributes to the power change in post-synaptic

pulse according to the timing and sequence, as illustrated in

Fig. 3(b). Initially, the polarization of the input post-synaptic

pulse is set such that no power is observed after the polarization

beam splitter for channel 2. If the pre-synaptic pulse is leading,

it will introduce cross-polarization rotation to the post-synaptic

pulse, such that significant power can be observed at channel

2. Cross-polarization rotation is weaker if the probe signal goes

into the SOA at a much later time. On the other hand, when

the post-synaptic pulse enters the SOA before the pre-synaptic

pulse, no cross-polarization rotation can be induced, and no

Fig. 4. Experimentally measured STDP curves from the photonic based STDP
circuit. Inset: Individually measured output pulses at channel 1 and channel 2.

Fig. 5. Experimental setup of STDP based AOA measurement. MZM: elec-
trooptic intensity modulator; STDP: photonic based spike-timing dependent
plasticity circuit.

output power is observed in channel 2. By combining the power

from both channel 1 and channel 2, a STDP response is observed

as shown in Fig. 3(c).

The experimentally measured channel 1 and channel 2 outputs

are shown in the inset in Fig. 4, and the corresponding measured

STDP response based on the use of SOA and photonic phe-

nomena is shown in Fig. 4. It is worth noticing that once the

polarization setting is determined, there is no need to further

adjust the polarization during the STDP measurement.

B. STDP Algorithm For Angle-of-Arrival Detection and 3D

Localization

Needless to say, photonic STDP will have significant appli-

cation in learning and adaptation in photonic neural systems, it

is also interesting to identify the application of STDP response

in engineering applications for advancing different aspects in

various fields. One example is the utilization of STDP in angle-

of-arrival (AOA) detection and 3D localization. Fig. 5 shows an

AOA system that is based on the photonic STDP circuit [31].

Since the STDP response is strongly depending on the timing

and sequence of the pre- and post-synaptic pulses, it aligns very

well with the scenario of AOA detection where the actual target

angle is governed by the pulses received by the two co-located

antennae. The STDP based AOA system consists of two laser

sources at λpre and λpost, two electrical impulse generators, two

Mach-Zehnder intensity modulators (MZMs), two microwave

antennae, and a photonic STDP system as described in Fig. 2

[30], [31]. A microwave signal is emitted from the target object
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Fig. 6. Angle-of-arrival measurement based on STDP curve. Comparison of
expected (red) and observed (blue) STDP outputs for various arrival angles.

at a frequency fRF, and is received by the two antennas at the

AOA system.

Due to the path difference between the target and the two

antennas, a time delay ∆t between the two received signals is

resulted. Furthermore, since the unique STDP curve is capable of

distinguishing the order of the two incoming pulses (through the

negative and positive values of ∆t), therefore, the STDP system

not just able to detect the arrival angle that is in the form of a cone

shape, but it also able to identify the direction of the incoming

signal that essentially pin-point the exact direction and angle of

the target. The ability to distinguish negative and positive values

of ∆t eliminates the confusion of signals arriving from opposite

directions but at the same angle relative to the antenna array.

The measured STDP output value has a direct correspondent to

a particular delay, which in turns is used for determining the

angle-of-arrival through the relationship c·∆t = d·cos θ, where

c is the speed of light, ∆t is the time delay between the two

received signals, d is the separation of the two antennas, and

θ is the resultant angle-of-arrival value. The major advantages

of STDP based AOA system are the ability to distinguish the

arrival direction with the same angle, as well as having a wide

detection angle that is not limited by the optical filter bandwidth

as in sideband modulation-based AOA approaches. However,

the compatibility of STDP based AOA with existing geolocation

systems have yet to be evaluated.

Figure 6 shows the simulation results of the angle-of-arrival

system. The red and blue curves correspond to the expected

STDP response when the target is between 0° to 90° and 90°

to 180°, respectively. When the target object is placed at an

arbitrary location and emit an RF signal, the photonic STDP

circuit will be able to identify its angle and direction using

the STDP output value. Experimental results are shown by the

hollow circles in Fig. 6, where blue circles corresponding to the

observed STDP outputs for different nodes, while red hollow

circles corresponding to the expected STDP output without

errors. The demonstrated STDP AOA system is designed for

indoor use, therefore, unit displacement with 1-mm error and

laser power error of 0.003 dBm are considered in the simulation,

which results in AOA measurement error <0.5°.

With the success of angle-of-arrival detection using STDP

based circuit, 3D localization system can be implemented with

three or more STDP based angle-of-arrival systems, as depicted

Fig. 7. Basic 3D AOA localization schematic with three nodes uncovering
three directions, θa, θb, θc.

Fig. 8. Error plot for detecting a transmitter at (10, 10, 10) (a) with nodes at
xa = yb = zc = 1 m; (b) with nodes at xa = 1 m, yb = zc = 5 m.

in Fig. 7. The target or transmitter is at position p, while the

localization system consists of three STDP-based AOA nodes,

each positioned on a Cartesian axis at (xa, 0, 0), (0, yb, 0),

and (0, 0, zc) at points a, b, and c, respectively. Each node

has a transmitter/receiver that provides one third of the location

information of the user at p. Each node acts as an angle-of-arrival

unit, and the resultant value at each node forms a conical surface

for each axis. The exact location of the user can be determined

through the common intersection of the three conical surfaces.

To investigate the accuracy of the STDP based 3D localization

system, root mean square error (RMSE) of the localization

system is simulated for various scenarios. In the simulation,

maximum location error is 1 mm and laser instability are 0.003

dBm for each node. Two examples of the scenarios are shown in

Fig. 8. First, the transmitter is located at xa=yb= zc=1 m, and a

maximum RMSE is just over 1 m. When the transmitter at two of

the nodes are moved to yb = zc = 5 m, the RMSE is significantly

reduced to 0.4 m. The maximum RMSE is further decreased

to 0.3 m if the nodes are relocated to xa = yb = zc = 15 m.

Authorized licensed use limited to: University of Georgia. Downloaded on January 05,2021 at 22:55:37 UTC from IEEE Xplore.  Restrictions apply. 



5322 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 38, NO. 19, OCTOBER 1, 2020

The simulation results show that the 3-node STDP based 3D

localization system could provide a simple but accurate solution

to indoor positioning systems, where existing systems usually

require a much larger networks of measuring units [15]–[17].

The above results show the ability to perform indoor 3D

localization, however, the 3-node STDP system is also capable

and effective of performing outdoor positioning. The system has

been explored by setting the nodes at xa = yb = zc = 5 m and

user location could be over 100 m away. A RMSE of about 9.7 m

is resulted for outdoor positioning, showing that the system is

also promising in outdoor positioning.

III. JAMMING AVOIDANCE RESPONSE IN EIGENMANNIA

With neural circuits that has more than two neurons, the

neural circuit could perform more complicated task. The neural

algorithm that governs the mitigation of signal jamming in

electric fish has been studied and has shown promising results

toward tackling the same types of signal jamming in our com-

munication systems. Eigenmannia [47]–[51], a genus of electric

fish that lives under the deep ocean, generates and uses electric

fields for specialized active sensing that enables navigation,

communication, and prey capture in the dark. However, there

is no centralized system to assign a particular frequency for a

particular fish, thus, when two nearby Eigenmannia are emitting

electric fields that are very similar in frequency, jamming could

occur and endanger the Eigenmannia. If the electric field is being

jammed by another Eigenmannia, the electric fish will lose its

ability to sense its surrounding and will be unable to escape

from dangers. In fact, Eigenmannia has a very efficient neural

algorithm, named Jamming Avoidance Response (JAR), that

always regulate the frequency of the Eigenmannia away from

the other electric fish if a similar frequency is detected, and they

will never cross their frequency which could increase the effect

of interference.

A. Principle of The Biological JAR Model

JAR in Eigenmannia has been studied by neuroscientists and

the JAR algorithm for the electric fish to mitigate jamming has

been dissected. The ability for the Eigenmannia to avoid jam-

ming from another close-by electric fish is based on the phasor

phenomenon [47]–[51], where phase and amplitude information

between the Eigenmannia’s own electric field and the interacting

electric field with the neighboring fish are used to determine how

the Eigenmannia should response to any potential jamming.

The JAR in Eigenmannia can be explained using the illus-

tration in Fig. 9. In JAR, the first Eigenmannia receives its

own signal (reference signal, JR, blue dash curve) alongside

with the jamming signal fJ, that results in a beat signal at fB
(magenta solid curve) that has an envelope with frequency equals

to the difference between fJ and fR. The envelope of the beat

signal is represented by the green solid curve in Fig. 9. While

the waveforms in both fR > fJ and fR < fJ looks similar, a

unique amplitude and phase relationship between fR and fB is

observed. As shown in Fig. 9(a), where the jamming signal fJ
is at a lower frequency than the Eigenmannia’s own signal fR,

phase relationship between the beat signal and the reference

Fig. 9. Principle of the jamming avoidance response (JAR) in Eigenmannia.
(a) When fR > fJ, phase of beat signal is lagging the phase of the reference
signal at the falling edge of the envelope, while it is leading at the rising edge.
(b) When fR < fJ, the phase of beat signal is leading the phase of the reference
signal during the falling portion of the envelope, while it is lagging during the
rising portion.

signal can be identified by comparing the positive zero crossing

point of each signal. The positive zero crossing points of the

reference signal are marked by the blue hollow circles, while

the positive zero crossing points of the beat signal are marked

by the red crosses. It is observed that the phase of the beat signal

is lagging that of the reference signal during the beat signal’s

falling envelope; while it is leading the phase of the reference

signal during the beat signal’s rising envelope. However, as

shown in Fig. 9(b), when the jamming signal fJ is at a higher

frequency than the Eigenmannia’s own signal fR, the phase of

the beat signal is leading that of the reference signal during

the beat signal’s falling envelope; while it is lagging the phase

of the reference signal during the beat signal’s rising envelope.

Therefore, by extracting the amplitude change information in

the beat signal as well as the phase relationship between the

reference signal and beat signal, the JAR algorithm is capable of

telling the Eigenmannia whether or not it should tune its emitting

frequency to a higher or lower frequency to avoid potential

jamming.

B. Optical Implementation of JAR for RF Systems

Due to the spectral scarcity and dramatic increasing demand

of mobile RF devices/systems, inadvertent jamming is unavoid-

able. Inadvertent jamming is one type of jamming that comes

from a friendly source, i.e. a nearby mobile radar, and is usually
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Fig. 10. Illustration of the JAR design and the four functional units – ZeroX
unit, Phase unit, Amplitude unit, and Logic unit in JAR.

aimless and unforeseen. However, inadvertent jamming is as

harmful as intentional jamming [52], [53] if jamming is not

properly mitigated. Conventionally, inadvertent jamming could

be avoided by careful spectral assignment, however, due to the

spectral scarcity, mobility of RF systems, and the closely packed

applications in the RF spectrum, it is becoming unrealistic to

avoid inadvertent jamming through spectral assignment. There-

fore, there is a critical need to identify an effective solution

to tackle inadvertent jamming, which convention solution for

intentional jamming will not work on inadvertent jamming. By

examining the jamming issue in Eigenmannia, it has shown

much similarity as in inadvertent jamming – meaning that the

JAR in Eigenmannia could be a promising solution to inadvertent

jamming in our wireless system. The biological JAR is working

in the hundreds of Hz frequency range, using photonics to mimic

JAR will able to bring the operation frequency to hundreds of

MHz to tens of GHz range.

The JAR in Eigenmannia mainly consists of four functional

blocks, as shown in Fig. 10 [41]–[44], they are (1) Zero-crossing

point detection unit (ZeroX unit), (2) Phase detection unit (Phase

Unit), (3) Amplitude unit, and (4) Logic unit. The ZeroX unit

identifies the positive zero crossing points in the reference

signal. Then, the Phase unit compares the phase relationship

between the reference signal and the beat signal at the identified

positive zero crossing points, and determine if the phase of the

beat signal is leading or lagging that of the reference signal.

Next, the Amplitude unit takes the envelope of the beat signal

and identifies if the beat signal envelope is rising or falling in

amplitude. Finally, the Logic unit takes the phase and amplitude

information from the outputs of the Phase unit and Amplitude

unit and determines if the emitting frequency of the Eigenmannia

should be remained, increased, or decreased. In Eigenmannia,

the JAR is only enabled if the frequency difference between the

Eigenmannia emitting frequency and the jamming frequency are

within the jamming range, otherwise, the emitting frequency is

maintained.

The photonic implementation of JAR is shown in Fig. 11.

The major devices to achieve the JAR is semiconductor optical

amplifier (SOA), and various photonic phenomena in SOA is

being utilized. SOA has been used as a spiking processing device

for mimicking neuron behavior with picosecond response time,

and here, SOA’s application in implementing JAR is discussed.

Fig. 11. Experimental setup of the photonic JAR that consists of the four
functional units – ZeroX unit, Phase unit, Amplitude unit, and Logic unit.

Fig. 12. Experimental results of the photonic-based JAR. Top curve: input;
bottom curve: output. (a) ZeroX unit – positive zero crossing points of the
reference signal (top blue) are identified and represented by the bottom red
pulses. (c)–(d) Phase unit – the output amplitudes (bottom blue) are high for
phase lag and are low for phase lead. (b) Amplitude unit – rising and falling
in beat signal envelope amplitude (top red) are distinguished, a high output
represents rising in amplitude and a low output represents falling in amplitude
(bottom blue).

First, the reference signal from a voltage control oscillator

(VCO) and the beat signal are modulated onto three optical

carriers generated from distributed laser diodes (DFB 1–3) at

different wavelength. As the reference signal (Blue waveform

in Fig. 12(a)) enters the SOA1, it induces self-phase modulation

and causes spectral broadening in the optical spectrum. An

optical filter is used to select the portion of the optical spectrum

that corresponding to the positive zero crossing point at the

reference signal, resulting in pulses at each positive zero crossing

points, as shown by the red waveform in Fig. 12(a). Then, the

zero-crossing point pulses together with the beat signal (pink

curves in Fig. 12(c) and (d)) are launched to SOA2.

The beat signal is the strong pump that could induce cross-gain

modulation in the SOA, while the zero crossing point pulses are

the weak probe that experience cross-gain modulation. If the

phase of the beat signal is leading, the beat signal depletes the

carriers in the SOA, such that the zero crossing pulses experience

very weak or no gain – a weak output is resulted. However, if

the phase of the beat signal is lagging, the zero crossing pulses

leaves the SOA before cross gain modulation is induced by the

beat signal, therefore, the zero crossing pulses will have strong

output power. In short, a “0” is resulted if the phase of the beat
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Fig. 13. The logic flow chat of the logic unit. VPHASE: Phase information
from the Phase unit; VAMPLITUDE: Amplitude information from the Ampli-
tude unit; VVCO: Current setting at the VCO; Venable: Output from the low
pass filter determining if the jamming frequency is within the jamming range.

signal is leading, while a “1” is resulted if the phase of the beat

signal is lagging, as shown in Fig. 12(c) and (d). The amplitude

unit takes the beat signal envelope and launches it to SOA3

together with a continuous light wave from DFB 4. With the

beat signal envelope as the pump light to deplete the carrier

in the SOA, an inverted copy of it is resulted at the DFB 4

output. Relative delay is introduced between the inverted copy

and non-inverted copy of the beat signal envelope, such that a

weak output is resulted during the falling beat signal envelope

while a strong output is resulted during the rising beat signal

envelope, as shown in Fig. 12(b).

In the photonic JAR, an electrical low pass filter (LPF) is used

to determine whether the JAR should be enabled. If the frequency

difference between the reference signal and jamming signal is

smaller than the LPF frequency, i.e. within the jamming range,

then JAR is enabled, and the reference frequency will either

move higher or lower according to the result from the JAR;

otherwise, the JAR is disabled, and the reference frequency is

maintained.

Fig. 13 shows the operation principle of the logic circuit.

Since the amplitude and phase information are now down to

a low frequency range, determined by the frequency difference

between fR and fJ. i.e., same as the beat signal envelope (i.e.,

around 200 MHz), an Arduino Due is used instead of photonic

circuit to implement the Logic unit.

Once the JAR is enabled to shift the reference signal frequency

step by step, the Logic unit also responsible to determine when

to stop the shifting of frequency. The shifting of reference signal

frequency should stop once the jamming frequency is out of the

jamming frequency range of the reference signal from the first

Eigenmannia. Fig. 14 shows the spectral waterfall measurement

of the photonic JAR in action. The jamming signal is approach-

ing the Eigenmannia from either lower or higher frequency and

the JAR helps the Eigenmannia to keep its emitting frequency to

be out of the jamming frequency range. The photonic JAR will

also work when the reference signal is modulated digitally or

analogy. The photonic JAR supports frequency from hundreds

of MHz to tens of GHz, with jamming sensitivity defined by the

Fig. 14. Spectral waterfall measurement of the photonic JAR in action with
sinusoidal reference signal fR and jamming signals fJ = 150 MHz. (a) fJ is
approaching fR from the low frequency side and triggers the JAR, (b) fJ is
approaching fR from the low frequency side and triggers the JAR, and then is
moved away, (c) fJ is approaching fR from the high frequency side and triggers
the JAR, (d) fJ is approaching fR from the high frequency side and triggers the
JAR and then is moved away.

Fig. 15. Phase noise improvement of a VCO using the JAR based phase lock
loop.

bandwidth of the RF low-pass filter. The major advantage of JAR

for avoiding inadvertent jamming is its effectiveness towards an

unknown jamming frequency with no prior knowledge needed,

its wide operation frequency range, and its analog processing.

However, intensive research is still needed to modify the JAR

for scenario with multiple jammers.

Besides using the photonic JAR for inadvertent jamming,

another application is to use the ZeroX unit and Phase unit

for detecting the phase difference in a phase lock loop [39].

Experimental demonstration shows that the photonic JAR based

microwave phase lock loop has significantly suppressed the

phase noise of a voltage-controlled oscillator (VCO) by 25 dB,

as shown in Fig. 15.

IV. SUMMARY AND DISCUSSION

Interdisciplinary applications of neural science have been a

very interesting field to explore and there are a lot of useful

neural algorithms that could be a good candidate for solving

long lasting challenges in human technologies. Neural algo-

rithm has undergone hundreds of million years of evolution

and are optimized to effectively perform designated tasks. In
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just a short ten years, intensive research has been focusing on

the photonic demonstration of spiking neuron, synapse, neu-

ral network, and various small scale neural algorithms, that

could essentially allow the effective but slow neural algorithm

to operate at a fast time scale of picoseconds [47]. Photonic

implementation of small scale functional neural algorithms is

not trivial. First, most functional neural algorithms are hard to

dissect and understand even by neuroscientist. Very often, neural

behaviors are being observed without a clear explanation of how

it works. Therefore, implementing functional neural algorithm

requires the identification of well-studied neural algorithm, eval-

uation of the potential benefit to human society, translating the

neural algorithm to an engineering problem, and implement-

ing the engineering-translated neural algorithm using optical

phenomena.

This paper discusses the idea of marrying photonics with

neural science and presents a number of neural-inspired pho-

tonic circuits that mimic various neural functional algorithms

using optical devices and optical phenomena. Neural algorithms

have find its value in solving challenges in various RF sig-

nal processing applications, by providing efficient, accurate,

and task-specific capabilities. The photonic implementation of

neural algorithms that are introduced in this paper including

angle-of-arrival measurement, 3D indoor localization, phase-

lock-loop, and inadvertent jamming avoidance in wireless RF

systems. There are still lots of hidden treasure in the nature that

are waiting to be explored and could be an effective solution to

the challenges we are facing in the modern society.
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