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Abstract—Drawing inspiration from our nature, photonic sys-
tems that use light to imitate neural algorithms and behaviors of
nature could be effective to solve complex problems in human’s
civilized society that have been challenging for conventional elec-
tronic to tackle. Since neural algorithms are natural designs that
have undergone hundreds of million years of evolution and govern
the survival of the organism, therefore, those neural algorithms are
highly effective for the designated tasks. The goal of this article is to
review the recent demonstrations of the photonic implementations
of small scale functional neural algorithms for dynamic RF sig-
nal processing applications. In this article, two small-scale neural
algorithms are reviewed — (i) spike timing dependent plasticity, an
algorithm that governs how neural network are connecting together
and how learning/adaptation can be achieved in animals, and (ii)
jamming avoidance response in Eigenmannia, an algorithm in a
gene of electric fish that mitigates frequency jamming between
neighboring electric fish. The photonic circuits that are inspired by
the two neural algorithms are also presented and the real-life appli-
cations of the neural algorithms in human society will be discussed.

Index Terms—Neural-inspired photonics, biomimetic photonics,
photonic neuron, bio-inspired signal processing, neural algorithm.

I. INTRODUCTION

IVING organisms have undergone hundreds of million

years of evolution and have been well adapted to their
environment. Adaptation governs how living organisms look,
how they behave, how they are built, and how they live their
life, such that the living organisms can suit to survive and
reproduce in their habitats. The neural algorithms that govern
how living organisms behave are critical for their survival and
are extremely efficient in performing their designed tasks. Due
to the civilization of human society, powerful technologies are
invented but that also bring unsolved challenges that are beyond
what our current technologies could offer. Looking back to our
uncivilized nature, there are lots of adaptation schemes and
neural algorithms that could be the natural solutions towards the
critical challenges that we are facing in modern technologies.
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It is exciting to discover, reveal, and understand those powerful
neural algorithms, as well as mimicking them using photonics
to make them as effective solutions for the challenges we are
facing in human society.

In the last ten years, intensive research efforts have been
made in various areas related to marrying photonics with neural
science. For example, spike processing devices [1]-[18] using
semiconductor optical devices, silicon photonics, and excitable
lasers have been proposed and experimentally demonstrated to
mimic the behavior of a leaky integrate and fire neuron. The pho-
tonic based spiking devices could operate at a tens of picosecond
time scale while mimic the spiking process in a biological neu-
ron, including summing and weighting, integration, threshold-
ing, and spiking. Synapse in neural network that governs the pro-
cessing and storage of information in the brain has been mimic
using photonics [19]-[22] that could potentially allow photonic
neural network to process information like the brain. Photonic
neural networks have also been proposed using VCSELs-SA
[23] and nanophotonic chip with wavelength division multi-
plexing techniques [24]. Small scale photonic systems inspired
by functional neural algorithms have been demonstrated using
semiconductors and silicon photonics for performing specific
tasks [25]-[28] including pattern recognition, supervised learn-
ing, and jamming avoidance. Furthermore, a number of neural
algorithms inspired photonic circuits have been demonstrated
with success and shown their potentials in solving challenges
in dynamic RF systems. For example, a photonic circuit that
consists of two semiconductor optical amplifiers (SOA) as the
neuron has been used to experimentally demonstrate the tail-flip
escape response in crayfish [29]. The tail-flip escape response
is a fast and accurate algorithm that allows the crayfish to
escape from danger quickly, while it has been successfully used
for pattern recognition in the corresponding photonic escape
response circuit. Furthermore, spike timing dependent plasticity
(STDP) - a biological algorithm that governs various types of
learning in human and animals by adjusting the interconnection
strength between neurons has been mimicked using a SOA [30],
VCSOA [32], high-order passive ring resonators, as well as a
SOA with an electro-absorption modulators [34]. A photonic
circuit that performs supervised learning based on STDP has
been demonstrated experimentally [34], [35] where the neuron
learnt how the teacher teaches it during the learning phase. More
recently, machine learning based on photonics neural circuits
[36]-[40] has drawn intensive research interest.
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This paper focuses on the review of recent progress on mim-
icking small-scale functional neural algorithms with photonics
and its applications in solving challenges in human technologies.
First, the biological spike timing dependent plasticity (STDP)
algorithm that governs learning will be introduced, and its ap-
plications and implementation in angle-of-arrival detection and
3D localization [30], [31] will be explained and discussed. Next,
the jamming avoidance response of Eigenmannia - a genus of
electric fish [41]-[44] will be dissected, and the use of photonic
phenomena to mimic the jamming avoidance response will be
discussed [44]. Finally, the investigation of using the photonic
jamming avoidance circuit for mitigating inadvertent jamming
in RF system and phase locking will be presented [45].

II. SPIKE TIMING DEPENDENT PLASTICITY (STDP)

The most fascinating feature of neuron is its ability to learn
and adapt, which governs how we should act, allows us to think,
alters the state of our internal organ, and enables us to have
memory. Neuron networks achieve the amazing ability to learn,
think, and remember greatly relying on the synaptic weight
plasticity between neurons. Synaptic weight plasticity enables
neural systems to adjust the strength of synaptic connection
between neurons based on the information being processed and
the response of the neuron itself. While there are a number
of synaptic weight plasticity models, spike timing dependent
plasticity (STDP) is the most popular one. STDP has a number of
variations (e.g. additive type STDP, quadratic type STDP, reverse
STDP) but generally it is a biological process that adjust the
interconnection strength between neurons based on the temporal
relationship between pre-synaptic and post-synaptic activities.
An old saying in neural science community describes STDP
as “Neurons that fire together wire together”. That means the
more you are running certain neural circuit, the stronger the
circuit become. To enable learning, adaptation, and memory
in photonic neural circuit, the ability to mimic STDP using
photonics is essential. In fact, photonic based STDP circuits
have been demonstrated [34], [35] and have shown that the
photonic based STDP behavior could be operated at a hundred of
picosecond time scale. Furthermore, supervised learning based
on photonic based STDP has been demonstrated [34], [35] to get
a taste of the possibility to build a fast learning neural network
using photonic technologies.

A. Biological STDP and Optical STDP

Here, we are discussing the most common STDP [46] that
causes long-term potentiation (LTP) and long-term depression
(LTD) of synaptic connections. The interconnection strength
between two biological neurons is governed by STDP, which
is determined by the relative timing and sequence between the
pre-synaptic and post-synaptic spikes, as illustrated in Fig. 1(a).
Pre-synaptic spike (red) is the output spike from neuron 1 (N1)
that also acts as the stimulating input of neuron 2 (N2), while
post-synaptic spike (blue) is the output spike from neuron 2
(N2). If N2 spikes shortly after the receiving of stimulation
from the pre-synaptic spike (i.e. pre-synaptic spike is leading
the post-synaptic spike), the interconnection strength will be
significantly increased, resulting in potentiation of the con-
nection strength, as illustrated by the shaded purple region in
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Fig. 1. (a) Illustration of pre-synaptic and post-synaptic spikes from two
neurons. (b) Illustration of a spike timing dependent plasticity curve. Pre-post
firing (right purple region): post synaptic spike fires shortly after the pre-synaptic
spike; Postpre-firing (left brown region): post synaptic spike fires before the
pre-synaptic spike. tpost-tpre: time difference between the firing of the post-
and pre-synaptic spikes.
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Fig. 2. Schematic diagram of the photonic based STDP. PC: polarization

controllers; SOA: semiconductor optical amplifier.

Fig. 1(b). On the other hand, if N2 spikes before receiving the
stimulation from the pre-synaptic spike (i.e. pre-synaptic spike
is lagging from the post-synaptic spike), the interconnection
strength will be significantly decreased, resulting in depression
of the connection strength, as illustrated by the shaded brown
region in Fig. 1(b). The exact amount of synaptic connection
strength increment/decrement depending on the precise timing
difference between the pre-synaptic and post-synaptic spikes
of the neuron. A smaller time difference will result in a larger
change in synaptic connection strength, while a larger time
difference will result in a smaller change in synaptic connection
strength, as shown in Fig. 1(b).

Inbiological neuron, the STDP control is an internal backward
feedback that changes the weight of the synaptic connection.
While in photonic based neurons, the control of weight change
can be performed either through an internal response or external
feedback. STDP with internal weight response is suitable for
implementing large scale photonic neural network, while stan-
dalone photonic STDP circuit has the advantage of being used in
RF signal processing without a large-scale neural network. To
mimic STDP using photonics, a single semiconductor optical
amplifier (SOA) is used, as illustrated in Fig. 2. First, both the
pre- and post-synaptic pulses are combined using an optical
coupler and launched to the SOA via a polarizer to ensure
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Fig. 3. (a) Hlustration of the dependency of cross-gain modulation effect on

the pulse timing and sequence. (b) Illustration of the dependency of crosspo-
larization rotation effect on the pulse timing and sequence. (c) Resultant STDP
response based on photonic phenomena.

the optimized polarization state of light is used. Inside the
SOA, there are two optical phenomena occurring — cross-gain
modulation and cross-polarization rotation. At the output of the
SOA, a polarization beam splitter is used to observe the power
change at the pre-synaptic pulse (channel 1) and post-synaptic
pulse (channel 2).

For channel 1, the post-synaptic pulse is the pump light that
induces cross-gain modulation effect, while the pre-synaptic
pulse is the probe signal that experiences the effect. Cross-
gain modulation effect contributes to the power change in
pre-synaptic pulse according to the timing and sequence, as
illustrated in Fig. 3(a). If the post-synaptic pulse is leading the
pre-synaptic pulse (post-pre firing), then the post-synaptic pulse
depletes the carriers in the SOA and the pre-synaptic pulse
will experience insignificant gain at the SOA that results in
a weak output power. Cross-gain modulation effect is weaker
if the probe signal enters the SOA much later than the pump
signal. On the other hand, if the pre-synaptic pulse is leading the
post-synaptic pulse (pre-post firing), then the post-synaptic pulse
is not able to induce cross-gain modulation to the pre-synaptic
pulse, pre-synaptic pulse will experience large gain and resulting
in a strong output power at the output pre-synaptic pulse. For
channel 2, the pre-synaptic pulse is the pump light that induces
cross-polarization rotation, while the post-synaptic pulse is the
probe signal that experiences the effect. Cross-polarization ro-
tation effect contributes to the power change in post-synaptic
pulse according to the timing and sequence, as illustrated in
Fig. 3(b). Initially, the polarization of the input post-synaptic
pulse is set such that no power is observed after the polarization
beam splitter for channel 2. If the pre-synaptic pulse is leading,
it will introduce cross-polarization rotation to the post-synaptic
pulse, such that significant power can be observed at channel
2. Cross-polarization rotation is weaker if the probe signal goes
into the SOA at a much later time. On the other hand, when
the post-synaptic pulse enters the SOA before the pre-synaptic
pulse, no cross-polarization rotation can be induced, and no

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 38, NO. 19, OCTOBER 1, 2020

| 3 SOA bias:
0.6 - 18| W —60mA  —120mA
0.8 —140mA  —160 mA
1.0 1 JUUULL —200 mA
-1.2 T T T + T
300 -200  -100 0 100 200 300

toos\ - tpve

Fig.4. Experimentally measured STDP curves from the photonic based STDP
circuit. Inset: Individually measured output pulses at channel 1 and channel 2.

Fig. 5. Experimental setup of STDP based AOA measurement. MZM: elec-
trooptic intensity modulator; STDP: photonic based spike-timing dependent
plasticity circuit.

output power is observed in channel 2. By combining the power
from both channel 1 and channel 2, a STDP response is observed
as shown in Fig. 3(c).

The experimentally measured channel 1 and channel 2 outputs
are shown in the inset in Fig. 4, and the corresponding measured
STDP response based on the use of SOA and photonic phe-
nomena is shown in Fig. 4. It is worth noticing that once the
polarization setting is determined, there is no need to further
adjust the polarization during the STDP measurement.

B. STDP Algorithm For Angle-of-Arrival Detection and 3D
Localization

Needless to say, photonic STDP will have significant appli-
cation in learning and adaptation in photonic neural systems, it
is also interesting to identify the application of STDP response
in engineering applications for advancing different aspects in
various fields. One example is the utilization of STDP in angle-
of-arrival (AOA) detection and 3D localization. Fig. 5 shows an
AOA system that is based on the photonic STDP circuit [31].
Since the STDP response is strongly depending on the timing
and sequence of the pre- and post-synaptic pulses, it aligns very
well with the scenario of AOA detection where the actual target
angle is governed by the pulses received by the two co-located
antennae. The STDP based AOA system consists of two laser
sources at Ay and Ao, two electrical impulse generators, two
Mach-Zehnder intensity modulators (MZMs), two microwave
antennae, and a photonic STDP system as described in Fig. 2
[30], [31]. A microwave signal is emitted from the target object
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Fig. 6. Angle-of-arrival measurement based on STDP curve. Comparison of
expected (red) and observed (blue) STDP outputs for various arrival angles.

at a frequency fry, and is received by the two antennas at the
AOA system.

Due to the path difference between the target and the two
antennas, a time delay At between the two received signals is
resulted. Furthermore, since the unique STDP curve is capable of
distinguishing the order of the two incoming pulses (through the
negative and positive values of At), therefore, the STDP system
not just able to detect the arrival angle that is in the form of a cone
shape, but it also able to identify the direction of the incoming
signal that essentially pin-point the exact direction and angle of
the target. The ability to distinguish negative and positive values
of At eliminates the confusion of signals arriving from opposite
directions but at the same angle relative to the antenna array.
The measured STDP output value has a direct correspondent to
a particular delay, which in turns is used for determining the
angle-of-arrival through the relationship c-At = d-cos 6, where
c is the speed of light, At is the time delay between the two
received signals, d is the separation of the two antennas, and
0 is the resultant angle-of-arrival value. The major advantages
of STDP based AOA system are the ability to distinguish the
arrival direction with the same angle, as well as having a wide
detection angle that is not limited by the optical filter bandwidth
as in sideband modulation-based AOA approaches. However,
the compatibility of STDP based AOA with existing geolocation
systems have yet to be evaluated.

Figure 6 shows the simulation results of the angle-of-arrival
system. The red and blue curves correspond to the expected
STDP response when the target is between 0° to 90° and 90°
to 180°, respectively. When the target object is placed at an
arbitrary location and emit an RF signal, the photonic STDP
circuit will be able to identify its angle and direction using
the STDP output value. Experimental results are shown by the
hollow circles in Fig. 6, where blue circles corresponding to the
observed STDP outputs for different nodes, while red hollow
circles corresponding to the expected STDP output without
errors. The demonstrated STDP AOA system is designed for
indoor use, therefore, unit displacement with 1-mm error and
laser power error of 0.003 dBm are considered in the simulation,
which results in AOA measurement error <0.5°.

With the success of angle-of-arrival detection using STDP
based circuit, 3D localization system can be implemented with
three or more STDP based angle-of-arrival systems, as depicted
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Fig. 8.  Error plot for detecting a transmitter at (10, 10, 10) (a) with nodes at
Xa =Yb = Zc = 1 m; (b) with nodes at X, = 1 m, yp, =2z, =5m.

in Fig. 7. The target or transmitter is at position p, while the
localization system consists of three STDP-based AOA nodes,
each positioned on a Cartesian axis at (X, 0, 0), (0, yp, 0),
and (0, 0, z.) at points a, b, and c, respectively. Each node
has a transmitter/receiver that provides one third of the location
information of the user at p. Each node acts as an angle-of-arrival
unit, and the resultant value at each node forms a conical surface
for each axis. The exact location of the user can be determined
through the common intersection of the three conical surfaces.
To investigate the accuracy of the STDP based 3D localization
system, root mean square error (RMSE) of the localization
system is simulated for various scenarios. In the simulation,
maximum location error is 1 mm and laser instability are 0.003
dBm for each node. Two examples of the scenarios are shown in
Fig. 8. First, the transmitteris located atx, =y, =z, = 1 m,and a
maximum RMSE is just over 1 m. When the transmitter at two of
the nodes are moved to yy, = z. = 5 m, the RMSE is significantly
reduced to 0.4 m. The maximum RMSE is further decreased
to 0.3 m if the nodes are relocated to x, = yp = z, = 15 m.
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The simulation results show that the 3-node STDP based 3D
localization system could provide a simple but accurate solution
to indoor positioning systems, where existing systems usually
require a much larger networks of measuring units [15]-[17].

The above results show the ability to perform indoor 3D
localization, however, the 3-node STDP system is also capable
and effective of performing outdoor positioning. The system has
been explored by setting the nodes at X, =y, =z, = 5 m and
user location could be over 100 m away. A RMSE of about 9.7 m
is resulted for outdoor positioning, showing that the system is
also promising in outdoor positioning.

III. JAMMING AVOIDANCE RESPONSE IN EIGENMANNIA

With neural circuits that has more than two neurons, the
neural circuit could perform more complicated task. The neural
algorithm that governs the mitigation of signal jamming in
electric fish has been studied and has shown promising results
toward tackling the same types of signal jamming in our com-
munication systems. Eigenmannia [47]-[51], a genus of electric
fish that lives under the deep ocean, generates and uses electric
fields for specialized active sensing that enables navigation,
communication, and prey capture in the dark. However, there
is no centralized system to assign a particular frequency for a
particular fish, thus, when two nearby Eigenmannia are emitting
electric fields that are very similar in frequency, jamming could
occur and endanger the Eigenmannia. If the electric field is being
jammed by another Eigenmannia, the electric fish will lose its
ability to sense its surrounding and will be unable to escape
from dangers. In fact, Eigenmannia has a very efficient neural
algorithm, named Jamming Avoidance Response (JAR), that
always regulate the frequency of the Eigenmannia away from
the other electric fish if a similar frequency is detected, and they
will never cross their frequency which could increase the effect
of interference.

A. Principle of The Biological JAR Model

JAR in Eigenmannia has been studied by neuroscientists and
the JAR algorithm for the electric fish to mitigate jamming has
been dissected. The ability for the Eigenmannia to avoid jam-
ming from another close-by electric fish is based on the phasor
phenomenon [47]-[51], where phase and amplitude information
between the Eigenmannia’s own electric field and the interacting
electric field with the neighboring fish are used to determine how
the Eigenmannia should response to any potential jamming.

The JAR in Eigenmannia can be explained using the illus-
tration in Fig. 9. In JAR, the first Eigenmannia receives its
own signal (reference signal, Jr, blue dash curve) alongside
with the jamming signal fj, that results in a beat signal at fp
(magenta solid curve) that has an envelope with frequency equals
to the difference between fj and fr. The envelope of the beat
signal is represented by the green solid curve in Fig. 9. While
the waveforms in both fg > fy and fg < fj looks similar, a
unique amplitude and phase relationship between fr and fg is
observed. As shown in Fig. 9(a), where the jamming signal f;
is at a lower frequency than the Eigenmannia’s own signal fg,
phase relationship between the beat signal and the reference
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Fig. 9. Principle of the jamming avoidance response (JAR) in Eigenmannia.

(a) When fr > fj, phase of beat signal is lagging the phase of the reference
signal at the falling edge of the envelope, while it is leading at the rising edge.
(b) When fg < fj, the phase of beat signal is leading the phase of the reference
signal during the falling portion of the envelope, while it is lagging during the
rising portion.

signal can be identified by comparing the positive zero crossing
point of each signal. The positive zero crossing points of the
reference signal are marked by the blue hollow circles, while
the positive zero crossing points of the beat signal are marked
by the red crosses. It is observed that the phase of the beat signal
is lagging that of the reference signal during the beat signal’s
falling envelope; while it is leading the phase of the reference
signal during the beat signal’s rising envelope. However, as
shown in Fig. 9(b), when the jamming signal f; is at a higher
frequency than the Eigenmannia’s own signal fg, the phase of
the beat signal is leading that of the reference signal during
the beat signal’s falling envelope; while it is lagging the phase
of the reference signal during the beat signal’s rising envelope.
Therefore, by extracting the amplitude change information in
the beat signal as well as the phase relationship between the
reference signal and beat signal, the JAR algorithm is capable of
telling the Eigenmannia whether or not it should tune its emitting
frequency to a higher or lower frequency to avoid potential
jamming.

B. Optical Implementation of JAR for RF Systems

Due to the spectral scarcity and dramatic increasing demand
of mobile RF devices/systems, inadvertent jamming is unavoid-
able. Inadvertent jamming is one type of jamming that comes
from a friendly source, i.e. a nearby mobile radar, and is usually

Authorized licensed use limited to: University of Georgia. Downloaded on January 05,2021 at 22:55:37 UTC from IEEE Xplore. Restrictions apply.



FOK: REVIEW: NEURAL-INSPIRED PHOTONIC FUNCTIONAL SYSTEMS FOR DYNAMIC RF SIGNAL PROCESSING

Positive Zero Crossing Pulses Phase Lead

Reference ZeroX
Signal Unit
W

Jamming Signal
f

Receiver

Frequency
#or§ or stay

Logic Unit

Combiner

Amplitude
Unit
Beat Signal

Envelope Envelope

¢ e,
I MUIW'WIU] W}N\\L .

Beat Signal Inverted and
Delayed Envelope

Rising
envelopes

Fig. 10. Illustration of the JAR design and the four functional units — ZeroX
unit, Phase unit, Amplitude unit, and Logic unit in JAR.

aimless and unforeseen. However, inadvertent jamming is as
harmful as intentional jamming [52], [53] if jamming is not
properly mitigated. Conventionally, inadvertent jamming could
be avoided by careful spectral assignment, however, due to the
spectral scarcity, mobility of RF systems, and the closely packed
applications in the RF spectrum, it is becoming unrealistic to
avoid inadvertent jamming through spectral assignment. There-
fore, there is a critical need to identify an effective solution
to tackle inadvertent jamming, which convention solution for
intentional jamming will not work on inadvertent jamming. By
examining the jamming issue in Eigenmannia, it has shown
much similarity as in inadvertent jamming — meaning that the
JAR in Eigenmannia could be a promising solution to inadvertent
jamming in our wireless system. The biological JAR is working
in the hundreds of Hz frequency range, using photonics to mimic
JAR will able to bring the operation frequency to hundreds of
MHz to tens of GHz range.

The JAR in Eigenmannia mainly consists of four functional
blocks, as shown in Fig. 10 [41]-[44], they are (1) Zero-crossing
point detection unit (ZeroX unit), (2) Phase detection unit (Phase
Unit), (3) Amplitude unit, and (4) Logic unit. The ZeroX unit
identifies the positive zero crossing points in the reference
signal. Then, the Phase unit compares the phase relationship
between the reference signal and the beat signal at the identified
positive zero crossing points, and determine if the phase of the
beat signal is leading or lagging that of the reference signal.
Next, the Amplitude unit takes the envelope of the beat signal
and identifies if the beat signal envelope is rising or falling in
amplitude. Finally, the Logic unit takes the phase and amplitude
information from the outputs of the Phase unit and Amplitude
unit and determines if the emitting frequency of the Eigenmannia
should be remained, increased, or decreased. In Eigenmannia,
the JAR is only enabled if the frequency difference between the
Eigenmannia emitting frequency and the jamming frequency are
within the jamming range, otherwise, the emitting frequency is
maintained.

The photonic implementation of JAR is shown in Fig. 11.
The major devices to achieve the JAR is semiconductor optical
amplifier (SOA), and various photonic phenomena in SOA is
being utilized. SOA has been used as a spiking processing device
for mimicking neuron behavior with picosecond response time,
and here, SOA’s application in implementing JAR is discussed.

5323

000

DFB 1 EOM 1 SOA1

DFB2 gassg EOM 2

Beat Signal

Amplitude Unit
DFB 3 pmmmm EOM 3

DFB 4

Fig. 11. Experimental setup of the photonic JAR that consists of the four
functional units — ZeroX unit, Phase unit, Amplitude unit, and Logic unit.
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Fig. 12. Experimental results of the photonic-based JAR. Top curve: input;
bottom curve: output. (a) ZeroX unit — positive zero crossing points of the
reference signal (top blue) are identified and represented by the bottom red
pulses. (¢)—(d) Phase unit — the output amplitudes (bottom blue) are high for
phase lag and are low for phase lead. (b) Amplitude unit — rising and falling
in beat signal envelope amplitude (top red) are distinguished, a high output
represents rising in amplitude and a low output represents falling in amplitude
(bottom blue).

First, the reference signal from a voltage control oscillator
(VCO) and the beat signal are modulated onto three optical
carriers generated from distributed laser diodes (DFB 1-3) at
different wavelength. As the reference signal (Blue waveform
in Fig. 12(a)) enters the SOA1, it induces self-phase modulation
and causes spectral broadening in the optical spectrum. An
optical filter is used to select the portion of the optical spectrum
that corresponding to the positive zero crossing point at the
reference signal, resulting in pulses at each positive zero crossing
points, as shown by the red waveform in Fig. 12(a). Then, the
zero-crossing point pulses together with the beat signal (pink
curves in Fig. 12(c) and (d)) are launched to SOA2.

The beat signal is the strong pump that could induce cross-gain
modulation in the SOA, while the zero crossing point pulses are
the weak probe that experience cross-gain modulation. If the
phase of the beat signal is leading, the beat signal depletes the
carriers in the SOA, such that the zero crossing pulses experience
very weak or no gain — a weak output is resulted. However, if
the phase of the beat signal is lagging, the zero crossing pulses
leaves the SOA before cross gain modulation is induced by the
beat signal, therefore, the zero crossing pulses will have strong
output power. In short, a “0” is resulted if the phase of the beat
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Fig. 13.  The logic flow chat of the logic unit. Vpgasg: Phase information
from the Phase unit; VanMprLiTUDE: Amplitude information from the Ampli-
tude unit; Vyco: Current setting at the Vco; Venable: Output from the low
pass filter determining if the jamming frequency is within the jamming range.

signal is leading, while a “1” is resulted if the phase of the beat
signal is lagging, as shown in Fig. 12(c) and (d). The amplitude
unit takes the beat signal envelope and launches it to SOA3
together with a continuous light wave from DFB 4. With the
beat signal envelope as the pump light to deplete the carrier
in the SOA, an inverted copy of it is resulted at the DFB 4
output. Relative delay is introduced between the inverted copy
and non-inverted copy of the beat signal envelope, such that a
weak output is resulted during the falling beat signal envelope
while a strong output is resulted during the rising beat signal
envelope, as shown in Fig. 12(b).

In the photonic JAR, an electrical low pass filter (LPF) is used
to determine whether the JAR should be enabled. If the frequency
difference between the reference signal and jamming signal is
smaller than the LPF frequency, i.e. within the jamming range,
then JAR is enabled, and the reference frequency will either
move higher or lower according to the result from the JAR;
otherwise, the JAR is disabled, and the reference frequency is
maintained.

Fig. 13 shows the operation principle of the logic circuit.
Since the amplitude and phase information are now down to
a low frequency range, determined by the frequency difference
between fr and fj. i.e., same as the beat signal envelope (i.e.,
around 200 MHz), an Arduino Due is used instead of photonic
circuit to implement the Logic unit.

Once the JAR is enabled to shift the reference signal frequency
step by step, the Logic unit also responsible to determine when
to stop the shifting of frequency. The shifting of reference signal
frequency should stop once the jamming frequency is out of the
jamming frequency range of the reference signal from the first
Eigenmannia. Fig. 14 shows the spectral waterfall measurement
of the photonic JAR in action. The jamming signal is approach-
ing the Eigenmannia from either lower or higher frequency and
the JAR helps the Eigenmannia to keep its emitting frequency to
be out of the jamming frequency range. The photonic JAR will
also work when the reference signal is modulated digitally or
analogy. The photonic JAR supports frequency from hundreds
of MHz to tens of GHz, with jamming sensitivity defined by the
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Fig. 14.  Spectral waterfall measurement of the photonic JAR in action with
sinusoidal reference signal fg and jamming signals f; = 150 MHz. (a) fj is
approaching fr from the low frequency side and triggers the JAR, (b) fj is
approaching fr from the low frequency side and triggers the JAR, and then is
moved away, (c) fj is approaching fr from the high frequency side and triggers
the JAR, (d) f; is approaching fr from the high frequency side and triggers the
JAR and then is moved away.
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Fig. 15. Phase noise improvement of a VCO using the JAR based phase lock
loop.

bandwidth of the RF low-pass filter. The major advantage of JAR
for avoiding inadvertent jamming is its effectiveness towards an
unknown jamming frequency with no prior knowledge needed,
its wide operation frequency range, and its analog processing.
However, intensive research is still needed to modify the JAR
for scenario with multiple jammers.

Besides using the photonic JAR for inadvertent jamming,
another application is to use the ZeroX unit and Phase unit
for detecting the phase difference in a phase lock loop [39].
Experimental demonstration shows that the photonic JAR based
microwave phase lock loop has significantly suppressed the
phase noise of a voltage-controlled oscillator (VCO) by 25 dB,
as shown in Fig. 15.

IV. SUMMARY AND DISCUSSION

Interdisciplinary applications of neural science have been a
very interesting field to explore and there are a lot of useful
neural algorithms that could be a good candidate for solving
long lasting challenges in human technologies. Neural algo-
rithm has undergone hundreds of million years of evolution
and are optimized to effectively perform designated tasks. In
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just a short ten years, intensive research has been focusing on
the photonic demonstration of spiking neuron, synapse, neu-
ral network, and various small scale neural algorithms, that
could essentially allow the effective but slow neural algorithm
to operate at a fast time scale of picoseconds [47]. Photonic
implementation of small scale functional neural algorithms is
not trivial. First, most functional neural algorithms are hard to
dissect and understand even by neuroscientist. Very often, neural
behaviors are being observed without a clear explanation of how
it works. Therefore, implementing functional neural algorithm
requires the identification of well-studied neural algorithm, eval-
uation of the potential benefit to human society, translating the
neural algorithm to an engineering problem, and implement-
ing the engineering-translated neural algorithm using optical
phenomena.

This paper discusses the idea of marrying photonics with
neural science and presents a number of neural-inspired pho-
tonic circuits that mimic various neural functional algorithms
using optical devices and optical phenomena. Neural algorithms
have find its value in solving challenges in various RF sig-
nal processing applications, by providing efficient, accurate,
and task-specific capabilities. The photonic implementation of
neural algorithms that are introduced in this paper including
angle-of-arrival measurement, 3D indoor localization, phase-
lock-loop, and inadvertent jamming avoidance in wireless RF
systems. There are still lots of hidden treasure in the nature that
are waiting to be explored and could be an effective solution to
the challenges we are facing in the modern society.
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