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Abstract— In this paper, we propose a numerical ap-
proach to examine uniform ensemble controllability of lin-
ear ensemble systems. We show that the linear ensem-
ble defined on the Banach space of compactly supported
continuous functions is uniformly ensemble controllable
if the differentiation set associated with the ensemble is
dense, and only if the reachable set is dense, in the L2-
space. We also demonstrate that under certain conditions,
L2-denseness of the differentiation set is necessary for
uniform ensemble controllability of a linear ensemble sys-
tem. Then, we provide a tractable numerical method to test
the denseness of an arbitrary set in Hilbert space with a
quantifiable error bound, which informs uniform ensemble
controllability. We conduct several numerical experiments
to illustrate the efficacy and robustness of the proposed
numerical approach.

Index Terms— Computational methods, Large-scale sys-
tems, Linear systems

I. INTRODUCTION

THE problem of controlling a population of structurally
identical systems using a broadcast signal, known as the

ensemble control problem, has recently attracted considerable
attention due to its unexplored mathematical structure and
intimate relevance to numerous practical applications ranging
from quantum physics [1]–[3] and neuroscience [4]–[6] to
robotics [7]. In past decades, a research focus in ensemble
control theory was placed on investigating fundamental prop-
erties of ensemble systems, such as ensemble controllabil-
ity and ensemble observability [8]–[12]. Various specialized
techniques based on polynomial approximation [9], separating
points [13], representation theory [14], complex functional
analysis [15]–[17], statistical moment-based approaches [18],
[19] and convex-geometric approaches [20] were developed to
analyze these properties; however, most of these theoretical
developments were not suitable or tractable for numerical
implementation and may lead to unreliable or even erroneous
numerical results.
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The major challenge for numerically examining uniform
ensemble controllability arises from the nature of the un-
derlying state space of the ensemble, which is in general a
Banach space of compactly supported continuous functions.
In a Banach space, the sup-norm of a function cannot be
evaluated numerically with a quantifiable error bound through
discretizing the support of the function. In this paper, we pro-
vide a computationally tractable procedure to study uniform
ensemble controllability of linear ensemble systems. Our main
idea is to cast the problem of checking uniform ensemble
controllability on a Banach space as the problem of verifying
the denseness of a set in the L2-space, which is tractable by
leveraging additional geometric structures inherited in Hilbert
space.

This paper is organized as follows. In Section II, we provide
preliminaries of ensemble systems and uniform ensemble con-
trollability defined on Banach space. In Section III, we show
how the problem of analyzing uniform ensemble controllabil-
ity can be transformed to the problem of evaluating denseness
in the L2-space, so that numerical examination of uniform
ensemble controllability becomes possible. In Section IV, we
present several numerical experiments showing the efficacy
and robustness of the proposed numerical method.

II. PRELIMINARIES

In this section, we introduce ensemble systems defined on
a Banach space and the notion of uniform ensemble controlla-
bility. Specifically, we consider the ensemble of linear systems
indexed by the parameter β ∈ K for K = [β1, β2] ⊂ R, given
by

d

dt
X(t, β) = A(β)X(t, β) +B(β)u(t), (1)

where X(t, ·) ∈ C(K,Rn), a continuous function over K, is
the state; A(·) ∈ C1(K,Rn×n) and B(·) ∈ C1(K,Rn×m)
are matrices of continuously differentiable functions over K;
u : [0, T ]→ Rm is the piecewise constant control signal.

Definition 1 (Uniform Ensemble Controllability). The ensem-
ble in (1) is said to be uniformly ensemble controllable on
C(K,Rn) if for any X0(·), XF (·) ∈ C(K,Rn) and ε > 0,
there exists a piecewise constant control signal u(t) that steers
the ensemble from X0(·) to be within an ε-neighborhood
of XF (·) at time T with respect to the sup-norm, i.e.,
supβ∈K |XF (β)−X(T, β)| < ε.

Throughout this paper, we denote span (S) as the linear
span of a set S of vectors in a vector space, i.e., the set of all



finite linear combinations of vectors in S given by,

span (S) :=

{ k∑
i=1

λivi : k ∈ N+, vi ∈ S, λi ∈ R
}
.

Given two sets S and V of vectors in the same vector space,
we denote S + V as the sum of these two sets, namely,

S + V := {s+ v : s ∈ S, v ∈ V }.

Additionally, we say S is dense in V with respect to a metric
d (or d-dense in V as abbreviation), if for any v ∈ V and
ε > 0, there exists s ∈ S such that d(s, v) < ε.

Also, we denote ‖ · ‖2 and ‖ · ‖∞ as the 2-norm and the
sup-norm in Euclidean space, respectively, defined by

‖x‖2 =

( n∑
i=1

x2i

) 1
2

, ‖x‖∞ = sup
i∈[1:n]

|xi|,

where xi is the ith component of x ∈ Rn and [1 : n] denotes
the set {1, . . . , n}. Given a compact set K ⊂ R, we denote
‖ · ‖L2 and ‖ · ‖L∞ as the L2-norm in L2(K,Rn) and the
sup-norm in C(K,Rn), respectively, characterized by

‖f‖L2 =

( n∑
i=1

∫
K

|fi(s)|2 ds
) 1

2

,

‖f‖L∞ = sup
s∈K,i∈[1:n]

|fi(s)|,

where fi is the ith component of f . The inner product in
L2(K,Rn) is denoted by 〈·, ·〉L2 .

III. METHODOLOGY

In this section, we present the idea of analyzing uniform
ensemble controllability in the context of denseness in the
L2-space, which can be evaluated numerically via orthogonal
projections in Hilbert space.

A. From Denseness in Banach Space to Denseness in
Hilbert Space

The most straightforward way to study uniform ensemble
controllability of the ensemble in (1) is to compare its reach-
able set with the state space C(K,Rn). It is known that
the ensemble in (1) is uniformly ensemble controllable on
C(K,Rn) if and only if its reachable set, characterized by

L = span {Ak(·)B(·) : k = 0, 1, 2, . . .}, (2)

is dense in C(K,Rn) with respect to the topology induced
by the sup-norm. However, it is in general difficult to test
numerically whether L is dense in C(K,Rn) since the sup-
norm cannot be evaluated with a quantifiable error bound,
through discretization over K, which is the primary step
when implementing an existing algorithm on a computer for
checking uniform ensemble controllability.

To resolve this bottleneck, we devise a tractable framework
for studying uniform ensemble controllability numerically. An
essential step is to evaluate the denseness of L in C(K,Rn)
through a Hilbert-space setting. In the following, we provide a
necessary and a sufficient condition for checking the denseness

of L with respect to the sup-norm using the denseness of sets
in the L2-space. For ease of exposition, we denote L0 as the
set of constant Rn-valued functions over K.

Lemma 2. Let K = [β1, β2] ⊂ R. Consider L̃ := L0 ⊕
span {Pk(·) : k = 0, 1, 2, . . .} with Pk(·) ∈ C1(K,Rn)
satisfying Pk(β0) = 0 for some fixed β0 ∈ K. Then L̃ is dense
in C(K,Rn) with respect to the sup-norm if span {P ′k(·) : k =
0, 1, 2, . . .} is dense in L2(K,Rn) with respect to the L2-norm.

Proof. We will first prove this lemma for the one-dimensional
case, i.e., n = 1. Since the space of polynomials is dense
in C(K,R) with respect to the sup-norm, to show that L̃ is
dense, it suffices to prove that a basis of all polynomials, e.g.,
{Hα(β) := (β − β0)α : α = 0, 1, . . .}, is contained in cl(L̃),
where cl(L̃) denotes the closure of L̃ under the sup-norm. We
first note that 1 = H0 ∈ cl(L̃) since L0 ⊂ L̃. For monomials
Hα with α ≥ 1, we observe that for any β ∈ K, a0, . . . , aN ∈
R, it holds that

|Hα(β)−
N∑
k=0

akPk(β)|

=
∣∣∣∫ β

β0

[α(s− β0)α−1 −
N∑
k=0

akP
′
k(s)] ds

∣∣∣
≤
∫ β

β0

|α(s− β0)α−1 −
N∑
k=0

akP
′
k(s)| ds

≤ |K| 12
(∫ β

β0

|α(s− β0)α−1 −
N∑
k=0

akP
′
k(s)|2 ds

) 1
2

(3)

≤ |K| 12 ·
∥∥αHα−1(·)−

N∑
k=0

akP
′
k(·)
∥∥
L2 , (4)

where |K| = β2−β1 and (3) comes from Hölder’s inequality.
Taking supremum of β over K on both sides of (4) yields

‖Hα(·)−
N∑
k=0

akPk(·)‖L∞

≤ |K| 12 ·
∥∥αHα−1(·)−

N∑
k=0

akP
′
k(·)
∥∥
L2 . (5)

Now if the span of {P ′k(·) : k = 0, 1, 2, . . .} is dense in
L2(K,R) with respect to the L2-norm, then the right-hand
side of (5) can be made arbitrarily small, which concludes
that cl(L̃) contains Hα, for any α ≥ 1.

For the cases with higher dimensions, i.e., n ≥ 2, following
the same logic above, it suffices to replace the term Hα in
above equations with Hαei, where ei ∈ Rn denotes the ith

vector in the standard basis of Rn. So for any β ∈ K and
a0, . . . , aN ∈ R, we have that

∥∥Hα(·)ei −
N∑
k=0

akPk(·)
∥∥
∞

≤ |K| 12 sup
j∈[1:n]

(∫ β

β0

|{αHα−1(s)ei −
N∑
k=0

akP
′
k(s)}j |2 ds

) 1
2

,



≤ |K| 12 ·
∥∥αHα−1(·)ei −

N∑
k=0

akP
′
k(·)
∥∥
L2 , (6)

where {·}j denotes the jth component of an Rn-valued vector.
Hence, taking supremum of β over K on both sides of (6)
yields (5) for multi-dimensional case so that the proof is
concluded.

Lemma 3. Let K = [β1, β2] ⊂ R and L be defined as in (2).
Then, L is dense in C(K,Rn) with respect to the sup-norm
only if it is dense in L2(K,Rn) with respect to the L2-norm.

Proof. If L is dense in C(K,Rn), then for any f ∈ C(K,Rn),
there exists a sequence of functions {gm}∞m=1 ⊂ L such that
‖f − gm‖L∞ → 0 as m → ∞. Hence, for the L2-norm of
f − gm, we have:

‖f − gm‖L2 =

( n∑
j=1

∫
K

|fj(β)− gmj (β)|2 dβ
)1/2

≤
√
n|K|‖f − gm‖L∞ → 0

as m→∞, which suggests that L is dense in C(K,Rn) with
respect to the L2-norm. Therefore, considering the fact that
C(K,Rn) is dense in L2(K,Rn) with respect to the L2-norm,
we conclude that L is L2-dense in L2(K,Rn).

Following Lemma 2, we introduce the notion of differentia-
tion set, which helps verify uniform-denseness of L, and thus
examine uniform ensemble controllability of the ensemble in
(1).

Definition 4 (Differentiation Set). Given the ensemble in (1),
the set

L′ := span
{ d

dβ
(Akbj) : j = 1, . . . ,m; k = 1, 2, . . .

}
(7)

is called the differentiation set associated with the ensemble
in (1), where bj(β) ∈ Rn denotes the jth column of B(β).

Remark 1. Note that compared to the reachable set L in (2),
the index k in (7) is taken from 1 instead of 0.

Now let us take a look back on the linear ensemble in (1).
When its drift and control vector fields satisfy A(β0) = 0 for
a fixed β0 ∈ K and B(β0) has full row-rank, respectively, we
can define Pkj(·) := Ak(·)bj(·) so that Pkj(β0) = 0 for any
j = 1, . . . ,m; k = 1, 2, . . .. It then follows from Lemma 2
that this ensemble is uniformly ensemble controllable on
C(K,Rn) if its differentiation set is dense in L2(K,Rn).
On the other hand, by the contraposition of Lemma 3, the
ensemble is not uniform ensemble controllable on C(K,Rn)
if L is not L2-dense in L2(K,Rn). In summary, we have
the following theorem establishing a connection between the
uniform ensemble controllability of a linear ensemble and L2-
denseness of its reachable set and differentiation set.

Theorem 5. Consider the ensemble of linear systems in (1)
with its reachable set L defined as in (2) and its differentiation
set L′ defined as in (7). Assume that there exists β0 ∈ K
such that A(β0) = 0. Then, the ensemble in (1) is uniformly
ensemble controllable on C(K,Rn)

(i) if L′ is dense in L2(K,Rn) with respect to the L2-norm
and rankB(β0) = n;

(ii) only if L is dense in L2(K,Rn) with respect to the L2-
norm.

Proof. Since condition (ii) is straightforward to obtain from
Lemma 3, we focus on proving condition (i) of this theorem.

Let L0 be the set of constant Rn-valued functions over K,
and C0 ⊂ C(K,Rn) denote the set of continuous functions
over K that vanish at β0, i.e., C0 := {h ∈ C(K,Rn) :
h(β0) = 0}. If L′ is dense in L2(K,Rn), then as a result
of Lemma 2, it holds that the set L̃ = L0 ⊕ L1, where
L1 := span {Akbj : j = 1, . . . ,m; k = 1, 2, . . .}, is dense
in C(K,Rn). We observe that all elements in L̃ that vanish
at β0 ∈ K must lie in L1. Now, if rankB(β0) = n, there
exists γ1, . . . , γm ∈ R such that f(β0) =

∑m
j=1 γjbj(β0).

Then, we may approximate f̂(·) := f(·)−
∑m
j=1 γjbj(·) ∈ C0

using elements in L1. Namely, for any ε > 0, there exists
N > 0, cij ∈ R such that

∥∥f̂ − N∑
i=1

m∑
j=1

cijA
ibj
∥∥
L∞ < ε. (8)

Substituting f̂ = f −
∑m
j=1 γjbj into (8) yields ‖f −∑m

j=1 γjbj −
∑N
i=1

∑m
j=1 cijA

ibj‖L∞ < ε, which implies
that f can be uniformly approximated by

∑m
j=1 γjbj +∑N

i=1

∑m
j=1 cijA

ibj ∈ L, and hence concludes the proof.

Next, we demonstrate that under certain conditions, L2-
denseness of L′ is also necessary for the uniform-denseness
of L. Therefore, examining uniform controllability of a linear
ensemble is fully equivalent to checking L2-denseness of its
differentiation set.

Theorem 6. Consider the ensemble of linear systems in (1)
with its reachable set L defined as in (2). Assume that A′ is
non-singular, A′ commutes with A, i.e., A′A = AA′, and b is
constant over K. Then, L is dense in C(K,Rn) with respect
to the sup-norm only if L′ is dense in L2(K,Rn) with respect
to the L2-norm.

Proof. Since C(K,Rn) is dense in L2(K,Rn) with respect
to the L2-norm, for any g ∈ L2(K,Rn), there exists f ∈
C(K,Rn) such that ‖g − f‖L2 < ε. Then, we prove that f
can be approximated using elements in L′ with respect to L2-
norm. Since A′ is non-singular over K, it suffices to show A′f
can be approximated using elements in L′ under the L2-norm.
This is because for any h ∈ L′, it holds that

‖(A′)−1h− f‖L2 = ‖(A′)−1(h−A′f)‖L2

≤
(∫

K

‖(A′)−1(β)‖22 · ‖(h−A′f)(β)‖22 dβ
) 1

2

≤ ( sup
β∈K
‖(A′(β))−1‖2) · ‖h−A′f‖L2 ,

where ‖(A′(β))−1‖2 denotes the matrix 2-norm of (A′(β))−1,
and the supremum is finite since A′ is non-singular over K.
If L is dense in C(K,Rn) with respect to the sup-norm,
then for any f ∈ C(K,Rn) and ε > 0, there exist N > 0,
ckj ∈ R such that ‖f −

∑N
k=0

∑m
j=1 ckjA

kbj‖L∞ < ε. Since



A′ commutes with A and b is constant over K, we have
d
dβ (A

kbj) =
∑k
j=1A

k−jA′Aj−1bj = kA′Ak−1bj . Hence, it
holds that∥∥A′(f− N∑

k=0

m∑
j=1

ckjA
kbj)

∥∥
L∞ =

∥∥A′f−∑
k,j

ckjA
′Akbj

∥∥
L∞

=
∥∥A′f − N∑

k=0

m∑
j=1

ckj
k + 1

d

dβ
(Ak+1bj)

∥∥
L∞ < εM,

where M := supβ∈K ‖A′(β)‖∞ and ‖A′(β)‖∞ denotes the
matrix infinity-norm of A′(β). Therefore, we have∥∥A′f − N∑

k=0

m∑
j=1

ck
k + 1

d

dβ
(Ak+1bj)

∥∥
L2

≤
(
n

∫
K

∥∥A′f −∑
k,j

ck
k + 1

d

dβ
(Ak+1bj)

∥∥2
L∞dβ

) 1
2

≤ εM
√
n|K|,

which implies that A′f can be approximated by elements in
L′ in the L2-sense.

Remark 2. It is worthwhile to mention that, unlike Theorem 5,
the above theorem does not require A to vanish somewhere on
K. Whether the converse of Theorem 5(i) holds true without
imposing additional assumptions remains an open problem to
our best knowledge.

B. Numerical Examination of Denseness in Hilbert
Space

So far, we have shown that the examination of uniform
ensemble controllability of the ensemble in (1) can be achieved
through checking the denseness of its reachable set and its
differentiation set in L2(K,Rn). This result makes it possible
to numerically evaluate uniform ensemble controllability by
leveraging the geometric structures inherited in a Hilbert
space.

Lemma 7. Let {φi}∞i=1 be a basis of L2(K,Rn) and S :=
span {Pk, k = 0, 1, . . .} with Pk ∈ L2(K,Rn). Then, S is
dense in L2(K,Rn) if and only if

lim
k→∞

‖(Id −Q∗k(Q∗kQk)−1Qk)φi‖2 = 0,

for all i = 1, 2, . . ., where Qk, k = 1, 2, . . ., is a linear
functional defined by

Qk : L2(K,Rn)→ Rk, φi 7→

〈P1, φi〉L2

...
〈Pk, φi〉L2

 (9)

where Q∗k is the adjoint operator of Qk; and Id is the identity
operator in L2(K,Rn).

Proof. Let us consider a finite truncation of S , denoted as
Sk = span {Pj , j = 0, 1, . . . , k}. It is known that the distance
between φi and Sk, denoted as rk(φi) can be explicitly written
as

rk(φi) := min
v∈Sk

‖φi − v‖L2

= ‖(Id −Q∗k(Q∗kQk)−1Qk)φi‖2,

where Qk is defined as in (9). Therefore, φi ∈ cl(S) if and
only if limk→∞ rk(φi) = 0, which concludes the proof.

Following Theorems 5, 6, and Lemma 7, a pseudo-code de-
scribing the procedure to test uniform ensemble controllability
of linear ensembles with continuously differentiable drift and
control vector fields A(·) and B(·) satisfying A(β0) = 0 and
rank B(β0) = n for some β0 ∈ K, respectively, is presented
in Algorithm 1, where Aᵀ denotes the transpose of the matrix
A.

Algorithm 1 Numerical test of uniform ensemble controlla-
bility

function IS ENSEMBLE CONTROLLABLE(A(·), B(·))
Initialize: {φi}∞i=1 as basis of L2(K,Rn),

ε as error tolerance,
N1, N2 as positive integers.

for i← 1, 2, . . . ,m do
Assign bi(·) to be the ith column of B(·).
Compute Ai(·) = [bi(·), A(·)bi(·), · · · ,

AN1(·)bi(·)] symbolically.
end for
Compute L1(β) =

[
A1(β) · · · Am(β)

]
,

and L2(β) =
d
dβL1(β).

Compute M1 =
∫
K
Lᵀ(β)L1(β) dβ,

and M2 =
∫
K
Lᵀ
2(β)L2(β) dβ.

for i← 1, 2, . . . , N2 do:
Compute c1 =M−11

∫
K
Lᵀ
1(β)φi(β) dβ,

and c2 =M−12

∫
K
Lᵀ
2(β)φi(β) dβ.

Compute the residuals as
r1(φi) = ‖

∫
K
[φi(β)− L1(β)c1] dβ‖2,

r2(φi) = ‖
∫
K
[φi(β)− L2(β)c2] dβ‖2.

if r1(φi) > ε then
return False.

end if
if r2(φi) > ε then

if A′ is non-singular, A′ commutes with A,
and b is constant then

return False.
else

return Unknown.
end if

end if
end for
return True.

end function

In Algorithm 1, we set an error tolerance ε > 0; then
truncate L and L2(K,Rn) into LN1

:= span {Akbj : k =
0, 1, . . . , N1; j = 1, . . . ,m} and span {φi : i = 1, . . . , N2},
respectively. Although we can approximate the reachable set
L using its truncation LN1 arbitrarily well with sufficiently
large N1, it remains to discuss the error of the ensemble
controllability analysis due to the finite truncation of reachable
set.

Let us define L0 = ∅ and Lk := span {Albj : l =
0, 1, . . . , k; j = 1, . . . ,m}. Then, by the definition of Lk, k =
1, 2, . . ., we have Lk ⊂ Lk+1, k = 0, 1, 2, . . .. Therefore, we



can decompose Lk+1 into two subspaces that are orthogonal to
each other, denoted as Lk+1 = Lk⊕Wk, where ⊕ denotes the
direct-sum of two sets. By iteratively applying this orthogonal
decomposition, we have

Lk = Lk−1 ⊕Wk−1 = Lk−2 ⊕Wk−2 ⊕Wk−1 = · · ·
= L0 ⊕W0 ⊕ · · · ⊕Wk−1 =W0 ⊕ · · · ⊕Wk−1, (10)

for all k = 2, 3, . . ..
Now given a fixed f ∈ L2(K,Rn), for every ε > 0,

there exists N > 0 s.t. ‖PLf − PLN
f‖L2 < ε. We write

PLN
f =

∑N
i=0

∑m
j=1 gijwij , where wij , j = 1, . . . ,m is a

set of orthonormal basis of Wi defined in (10). Then, the
error between projecting f onto the truncated reachable set
Lk and onto the full reachable set L is ‖PLf − PLk

f‖L2 ≤
‖PLN

f−PLk
f‖L2+‖PLf−PLN

f‖L2 <
∑N
i=k+1

∑m
j=1 g

2
ij+

ε, which implies that the projection error resulting from the
finite truncation of the reachable set can be bounded above
by gij’s. Following the same analysis above, we can also
bound the error of projecting f onto finite truncation of the
differentiation set. Therefore, Algorithm 1 presents a tractable
numerical approach to study uniform ensemble controllability
of systems defined on a Banach space.

IV. NUMERICAL EXPERIMENTS

In this section, we present several numerical experiments
demonstrating the efficacy of the proposed numerical ap-
proach. We choose the basis of L2(K,R2), denoted as φi, i =
1, 2, . . . , N2, given by φ2i−1 = (0, xi)ᵀ and φ2i = (xi, 0)ᵀ.
If not specifically mentioned, we select the parameters in
Algorithm 1 as ε = 10−3, N2 = 20, and vary N1 from 1
to 20.

We first present an example, in which the ensemble system
is theoretically identified to be uniformly ensemble control-
lable. We verify this result using our proposed numerical
approach.

Example 1. Consider an ensemble of harmonic oscillators
indexed by β ∈ [−1, 1], given by

d

dt
X(t, β) = βAX(t, β) +Bu(t)

= β

[
0 −1
1 0

]
X(t, β) +

[
1 0
0 1

]
u(t). (11)

This system is uniformly ensemble controllable because
rank(A) = rank(B) = 2 [21].

Figure 1 shows the heatmap describing the residuals of pro-
jecting each basis function φi onto the truncated differentiation
set of the ensemble in (11). It can be observed from this figure
that as N1 increases, the residuals for each basis function
decrease and they are below the error tolerance ε = 10−3

. Therefore, by condition (i) of Theorem 5, we conclude that
the ensemble in (11) is uniformly ensemble controllable on
C([−1, 1],R2), up to an ε-tolerance.

In the following examples, we use the developed numerical
approach to study two linear ensembles, for which theoretical
verification of uniform ensemble controllability is difficult.

2 4 6 8 10 12 14 16 18 20

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

11

12

13

14

15

16

17

18

19

20
-6

-5

-4

-3

-2

-1

0

Fig. 1: Results of Example 1. All basis functions yield a residual smaller
than ε = 10−3 when N1 = 20. Hence, the ensemble in (11) is uniformly
ensemble controllable on C([−1, 1],R2).

Example 2. Consider an ensemble of linear systems indexed
by β ∈ [−1, 1], given by

d

dt
X(t, β) = θ(β)

[
1 −1
1 1

]
X(t, β) +

[
1 0
0 β + 1

]
u(t), (12)

where θ(β) = β(β2−0.25). Appying the developed numerical
algorithm, in Figure 2 we display the heatmap describing
the residuals of projecting each basis function φi onto the
truncated reachable set L. Since increasing the number of basis
elements does not yield a decreased residual to be within the
ε-threshold, we learn that L is not L2-dense in L2(K,Rn).
We also observe that θ vanishes at β = 0,±0.5, at which the
matrix

[
1 0
0 β+1

]
is of full-rank. Therefore, Theorem 5 applies.

By the contraposition of condition (ii), we conclude that the
ensemble in (12) is not uniformly ensemble controllable on
C([−1, 1],R2).
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Fig. 2: Results of Example 2. Since r1(φ1) does not decrease to be within the
threshold, we conclude that the ensemble in (12) is not uniformly ensemble
controllable on C([−1, 1],R2).



Example 3. Consider an ensemble of linear systems indexed
by β ∈ [−1, 1] given by,

d

dt
X(t, β) =

[
α(β) −ω(β)
ω(β) α(β)

]
X(t, β) +

[
1 0
0 1

]
u(t), (13)

where α(β) = β3 − 0.25β + 1 and ω(β) = β4 − 0.89β2 +

1.16. If we let A(β) =
[
α(β) −ω(β)
ω(β) α(β)

]
, then A′(β) =[

3β2−0.25 −(4β3−1.78β)
(4β3−1.78β) 3β2−0.25

]
. Although A does not vanish on

[−1, 1] so that Theorem 5 no longer applies, it is not hard
to verify that A′ is non-singular on [−1, 1] and A′ commutes
with A. Hence we can apply Theorem 6 to detect uniform
ensemble uncontrollability of the ensemble in (13) through
Hilbert space settings.

Figure 3 illustrates the heatmap describing the residuals of
projecting each basis function φi onto the truncated differ-
entiation sets of the ensemble in (13). Since increasing the
number of basis functions does not yield a decreased residual
to be within the ε-threshold, this differentiation set is not
dense in L2([−1, 1],R2). Therefore, by the contraposition of
Theorem 6, the ensemble in (13) is not uniformly ensemble
controllable.
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Fig. 3: Results of Example 3. Since several basis functions, e.g., φ1, φ2, do
not yield a residual smaller than ε, we conclude that the ensemble in (13) is
not uniformly ensemble controllable on C([−1, 1],R2).

V. CONCLUSION

In this paper, we study uniform ensemble controllability of
a linear ensemble system defined on Banach space from a
numerical perspective. We show that such a linear ensemble
is uniformly ensemble controllable if its differentiation set
is dense, and only if its reachable set is dense, in the L2-
space. We further show that under certain conditions, uniform
ensemble controllability of a linear ensemble implies L2-
denseness of its differentiation set as well. These results enable
a numerical examination of uniform ensemble controllability
through projecting basis functions of a Hilbert space onto the
reachable set and differentiation set of the ensemble system.
We further provide theoretical analysis on the error bound of

the proposed numerical approach. Our method is applicable
to linear ensemble systems that may not be fully analyzed by
existing theoretical approaches.
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