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Key Points 9 

 Correlation timescales in phytoplankton communities are longer in the subtropical gyres and shorter 10 
in regions of strong circulation 11 

 Spatial correlations in phytoplankton communities are strongly anisotropic along frontal zones and 12 
boundary currents 13 

 Ocean currents shape global patterns of temporal and spatial correlation scales in phytoplankton 14 
communities  15 
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Abstract 18 

Ocean circulation shapes marine phytoplankton communities by setting environmental conditions and 19 
dispersing organisms. In addition, processes acting on the water column (e.g., heat fluxes and mixing) 20 
affect the community structure by modulating environmental variables that determine in situ growth and 21 
loss rates. Understanding the scales over which phytoplankton communities vary in time and space is key 22 
to elucidate the relative contributions of local processes and ocean circulation on phytoplankton 23 
distributions. Using a global ocean ecosystem model, we quantify temporal and spatial correlation scales 24 
for phytoplankton phenotypes with diverse functional traits and cell sizes. Through this analysis, we 25 
address these questions: 1) Over what timescales do perturbations in phytoplankton populations persist?; 26 
and 2) Over what distances are variations in phytoplankton populations synchronous? We find that 27 
correlation timescales are short in regions of strong currents, such as the Gulf Stream and Antarctic 28 
Circumpolar Current. Conversely, in the subtropical gyres, phytoplankton population anomalies persist 29 
for relatively long periods. Spatial correlation length scales are elongated near ocean fronts and narrow 30 
boundary currents, reflecting flow paths and frontal patterns. In contrast, we find nearly isotropic spatial 31 
correlation fields where current speeds are small, or where mixing acts roughly equally in all directions. 32 
Phytoplankton timescales and length scales also vary coherently with phytoplankton body size. In 33 
addition to aiding understanding of phytoplankton population dynamics, our results provide global 34 
insights to guide the design of biological ocean observing networks, and to better interpret data collected 35 
at long-term monitoring stations. 36 

Plain Language Summary: 37 

Using a global model of the marine planktonic ecosystem, we quantify the temporal and spatial 38 
correlation scales of diverse types of phytoplankton. The timescales reflect the persistence of anomalies in 39 
time and the stability of the planktonic system. The spatial scales measure over what distances variations 40 
in phytoplankton populations are synchronous. We find that timescales and length scales vary with cell 41 
size, and that global patterns of correlation are shaped by ocean currents.  These results provide valuable 42 
insights for the design of ocean observing systems with a unique ecological perspective. We also discuss 43 
how regional differences in phytoplankton community correlation scales are relevant to interpret data 44 
collected at long-term monitoring stations.  45 

 46 
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 48 

1 Introduction 49 

Marine phytoplankton generate roughly half of the global net primary production [Field et al., 50 
1998]. Their community structure, including both size and taxonomic diversity, determines the local 51 
transfer of energy to higher trophic levels, as well as carbon export to the deep ocean [Legendre & Le 52 
Fèvre, 1995; Richardson & Jackson, 2007; Smetacek, 1999]. The mechanisms that shape the diversity of 53 
phytoplankton communities are complex and vary among ocean regions and temporal scales [Acevedo-54 
Trejos et al., 2015; Barton et al., 2010; Fuhrman et al., 2008; de Vargas et al., 2015]. Quantifying the 55 
temporal and spatial persistence of individual phytoplankton phenotypes and groups is essential for 56 
disentangling the underlying controls of phytoplankton diversity globally. This task, however, is difficult 57 
due to the continuous dispersal of phytoplankton communities and the sparseness of phytoplankton 58 
observations even in the most sampled regions of the ocean. Here, we quantify global temporal and 59 
spatial scales of correlation for a diverse set of modeled phytoplankton, spanning a broad range of cell 60 
sizes and traits. Specifically, we analyze 24 years of output from the Massachusetts Institute of 61 
Technology general circulation model (MITgcm), where a range of phytoplankton and their predators, as 62 
well as ocean biogeochemical cycles of N, P, Si, and Fe, are embedded in a high-resolution (1/5º) ocean 63 
state estimate. We address how temporal and spatial correlation structures vary across phytoplankton 64 
phenotypes, and how these properties are affected by circulation and mixing in the ocean surface. 65 
Additionally, we compare phytoplankton correlation scales to sea surface temperature and nitrate 66 
correlation scales.  67 

Several previous studies have analyzed the temporal and spatial scales of correlation of physical 68 
and chemical ocean properties, such as sea surface temperature (SST), sea surface height (SSH) and 69 
dissolved inorganic carbon (DIC), often with the purpose of informing the design of sampling strategies 70 
and observing systems [e.g., Kessler et al., 1996; Kuragano & Kamachi, 2000; Mazloff et al., 2018]. For 71 
example, Kessler et al. [1996] analyzed the scales of thermal variability in the equatorial Pacific using 72 
SST and thermocline depth data from the Tropical Atmosphere-Ocean moored buoy array, concluding 73 
that the distance between buoys needed to be reduced to adequately sample signals with periods between 74 
1 – 2 months. Kuranago and Kamachi [2000] used global spatial correlation scales obtained from 75 
altimeter data to design an optimal interpolation method that improved the correlation between 76 
interpolated satellite altimeter data and in situ sea levels from tide gauges. Most recently, Mazloff et al. 77 
[2018] addressed the needs for the biogeochemical-Argo floats observational networks in the Southern 78 
Ocean by estimating spatial correlation scales for oceanic dissolved inorganic carbon, heat content, and 79 
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carbon and heat exchanges. Their results suggested that a minimum of 100 Argo floats are required to 80 
monitor biogeochemical properties in the Southern Ocean [Mazloff et al., 2018]. Correlation scales are 81 
also necessary to improve optimal interpolation and data assimilation methods for operational forecasts 82 
and evaluation of high resolution ocean models [Gaillard et al., 2009; Glover et al., 2018; Ninove et al., 83 
2016]. 84 

Ocean currents are likely to play a key role in setting spatial and temporal correlation scales in 85 
biological and physical properties. For example, spatial correlations in surface chlorophyll have been 86 
found to decrease faster along currents than in more quiescent regions [Denman & Abbott, 1994]. In 87 
highly dynamic locations, power spectra of SST and chlorophyll are very similar, suggesting that 88 
dispersal by strong ocean currents is more important than ecological interactions in determining 89 
phytoplankton spatial patterns in these regions [Denman & Abbot, 1994]. At global scales, satellite 90 
chlorophyll length scales and mixing scales have been shown to vary seasonally and temporally in 91 
coherence with biological and physical factors such as upwelling and western boundary currents [Doney 92 
et al., 2003; Glover et al., 2018].  93 

Modelling studies also increasingly emphasize the role of physical dispersal in shaping the 94 
diversity of planktonic ecosystems [Adjou et al., 2012; Barton et al., 2010; Bracco et al., 2009; Clayton et 95 
al., 2013; Lévy et al., 2014]. For example, systematically introducing dispersal by vertical mixing, 96 
horizontal currents, and eddies increased phytoplankton diversity in an idealized model representing the 97 
North Atlantic and the Gulf Stream [Lévy et al., 2014]. At global scales, hot-spots of phytoplankton 98 
diversity appear related to ocean areas with high eddy-kinetic energy [Barton et al., 2010; Clayton et al., 99 
2013]. We follow-up on these modelling studies and investigate how the differences in the temporal and 100 
spatial scales of correlation for different phenotypes relate to current speed and cell size. The results of 101 
this study thus provide a framework to improve our understanding of the distribution of marine 102 
phytoplankton phenotypes and traits in the ocean. 103 

The goals of this study are: 1. to quantify and contrast patterns of temporal and spatial correlation 104 
scales for a broad range of model phytoplankton phenotypes, functional groups, and cell sizes, and 2. to 105 
discuss how these patterns vary across regions, and how dispersal by ocean currents and eddy activity 106 
affects them. We investigate variations across cell size because it is often considered a master trait 107 
constraining many physiological rates (e.g., growth rate and nutrient uptake kinetics), as well as predator-108 
prey interactions [e.g., B. Hansen et al., 1994; P. J. Hansen et al., 1997; Marañón et al., 2013]. After a 109 
brief description of the model and methodology, we organize this paper into two main sections. In the 110 
first part of our study we estimate correlation timescales. In essence, we ask: how long do perturbations in 111 



 5 

phytoplankton surface biomass persist? We hypothesize that phytoplankton populations that exhibit rapid 112 
temporal changes will have short correlation timescales that may be linked to strong dispersal and mixing 113 
of organisms or to high variability in environmental conditions imposed by either advection, mixing or 114 
air-sea interactions. In contrast, regions with relatively sluggish circulation and relatively invariant 115 
environmental conditions over time may have relatively long correlation timescales.  116 

In the second part of our study we quantify the spatial patterns of correlation between each grid 117 
point and the surrounding waters. We ask: over what distances are variations in surface phytoplankton 118 
populations synchronous? We address this question in two-dimensions and discuss how the shape of the 119 
spatial correlation field contains information about the processes and physical features driving the 120 
correlation patterns. When the dispersal of phytoplankton is greater in one direction (i.e., anisotropic), 121 
such as along ocean currents, we hypothesize that elongated phytoplankton spatial correlation fields will 122 
resemble the physical features affecting it. In contrast, round correlation fields would develop when 123 
mixing or environmental forcing is approximately equal in all directions (i.e., isotropic). We discuss our 124 
results in the context of ocean dynamics and trait differences in phytoplankton groups, taking into 125 
consideration the scales of correlation found in previous studies for physical variables known to affect 126 
phytoplankton distributions. 127 

2 Model description 128 

We use output from a coupled physical-ecosystem model using the MITgcm 129 

[https://doi.org/10.6075/J0BR8QJ1; Jahn et al., 2019]. The physical component of the model uses the 130 

ECCO2 physical configuration with a resolution of 1/5º, permitting the formation of eddies and narrow 131 
currents [Menemenlis et al., 2008]. The ecosystem and biogeochemical components include a complex 132 
plankton community model, and resolve the cycling of carbon, phosphorus, nitrogen, silica, iron, and 133 
oxygen. The ecosystem model is based on Dutkiewicz et al., [2015], and incorporates both functional and 134 
size diversity of plankton (with parameterizations based on Ward et al., [2012]), resolving a total of 51 135 
plankton types (35 phytoplankton and 16 zooplankton). Phytoplankton are sub-classified into 6 functional 136 
groups: prokaryotes, picoeukaryotes, coccolithophores, diazotrophs, diatoms, and mixotrophic 137 
dinoflagellates (see supplemental Fig. S1).  All groups are modeled with Monod kinetics with constant 138 
C:N:P:Fe stoichiometry over time. Phytoplankton functional groups differ in nutrient requirements, 139 
maximum growth rates, pigment composition, and palatability to predators. Phytoplankton cell sizes 140 
increase logarithmically from 0.6 to 228 µm in diameter, with each functional group having a 141 
characteristic range of sizes (Fig. S1). Cell size determines differences in maximum growth rates, grazing, 142 
and sinking, as described in Dutkiewicz et al., [2019]. Following observations, the smallest phytoplankton 143 

https://doi.org/10.6075/J0BR8QJ1
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(the prokaryotes and picoeukaryotes) have the lowest nutrient affinity, and the fastest growing are in the 3 144 
µm cell size range [Marañon et al., 2013]. The zooplankton graze, using a Holling III function, on 145 
plankton 5 to 15 times smaller than themselves, but with a preference for 10 times smaller than 146 
themselves. 147 

The model represents with fidelity the regional and seasonal patterns of total chlorophyll and the 148 
distribution of chlorophyll concentrations between key size classes in the ocean surface (Fig. S2, S3).  149 

Output from this model has been used in previous studies on community structure [Benoiston et 150 
al., 2017; McParland & Levine, 2019; Tréguer et al., 2018]. Here we analyze 3-day means of biomass 151 
output for each of the 35 phytoplankton phenotypes over 24 years (1992-2016). We analyze surface 152 
(upper 10 m) averaged output from the physical and marine ecosystem model components. The 10 m 153 
output are representative of the mixed layer. Our study is focused on the mixed layer community and do 154 
not take into account the deeper “shade” communities such as in the deep Chl-a maximum. Additionally, 155 
we use surface current speed and sea surface temperature (SST) model output to provide context and 156 
discuss the correlation patterns obtained. 157 

3 Analysis of correlation scales 158 

We estimate temporal and spatial scales of correlation for each of the 35 phytoplankton types in 159 

the model simulation,  (mmol N m-3), (where ), as well as for total phytoplankton 160 

biomass ∑ 𝑃𝑖
35
𝑖=1   (mmol N m-3). The temporal correlation analysis indicates how fast the phytoplankton 161 

community at a particular location becomes uncorrelated with itself, while the spatial analysis shows how 162 
far the phytoplankton community at a given point varies in synchrony with the communities in 163 
surrounding locations.  164 

In order to identify the effects of dispersal, we focus our analyses on the intra-annual variability 165 
of phytoplankton biomass. For this reason, we first remove the seasonal and long-term fluctuations in the 166 
series. We remove seasonality by subtracting daily climatological mean fields from the surface biomass 167 
values. Additionally, we remove long-term fluctuations by subtracting a 90-day running average filter 168 
from the series. The method effectively dampens interannual variability and other long-term oscillations 169 
(Fig. S4). We refer to the resulting, derived data as biomass anomalies (𝑃𝑖

′) and use these data to estimate 170 
both the temporal and spatial correlation scales.  171 

While we perform the analyses for all phenotypes, we highlight the differences between 172 
phytoplankton functional groups by comparing organisms classified as gleaners and opportunists 173 
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throughout the results and discussion (Fig. S1). Gleaners and opportunists, also known as K- versus r-174 
strategists [Kilham & Hecky, 1988; Mac Arthur & Wilson, 1967], have strongly contrasting ecological 175 
dynamics and impacts on food webs and biogeochemical cycles [Dutkiewicz et al., 2009]. The gleaners 176 
are phytoplankton types with relatively high nutrient affinity that typically dominate in oligotrophic 177 
regions [Edwards et al., 2012]. The gleaners here include the four smallest size classes simulated by the 178 

model (i.e., prokaryotes and picoeukaryotes with ≤2m spherical diameter). In order to compare the same 179 
number of phenotypes, the opportunists are represented by the four smallest and most abundant size 180 

classes of diatoms (3 -10 m spherical diameter). The small diatoms can be considered opportunists 181 
because of their high maximum specific growth rates relative to other phytoplankton [Marañón et al., 182 
2013]. Diatoms such as these typically dominate during seasonal blooms [e.g., Bruland et al., 2001; Klais 183 
et al., 2011; Leblanc et al., 2018]. In order to analyze the relationships between cell size and timescales 184 

and spatial scales, we use a second classification to differentiate between small cells (≤3m; 7 185 

phenotypes) and large cells (>3m; 28 phenotypes). Hence, the small phytoplankton group includes all 186 
gleaners, the smallest of the opportunist diatoms, the smallest coccolithophore and the smallest 187 
diazotroph. All other phenotypes are included in the large phytoplankton group (Fig. S1). This 188 
classification is based both on typical allometric scaling for various phytoplankton rates [e.g. Marañón et 189 
al., 2013], and on the emergent properties of the present analysis (see sections 4.2.1 and 4.2.3).  190 

Additionally, we estimated correlation scales for sea surface temperature (SST) and nitrate (NO3) 191 
in order to provide context about the physical and chemical drivers of phytoplankton growth. In the next 192 
sections (sections 3.1 and 3.2), we describe the methods in terms of phytoplankton biomass only.  193 

3.1 Temporal correlation 194 

Temporal correlation scales for phytoplankton are estimated through the autocorrelation function 195 
of the biomass anomalies. For each model grid point, we calculate the temporal autocorrelation function 196 
(𝑟𝑖(𝜏)), where 𝜏 is the time lag in days.  The autocorrelation function (𝑟𝑖(𝜏)) is: 197 

𝑟𝑖(𝜏) =  
1

(𝑛−1)𝜎𝑖
2 ∑(𝑃𝑖,𝑡

′ − 𝑃𝑖
′̅)(𝑃𝑖,𝑡+𝜏

′ − 𝑃𝑖
′̅)      (1) 198 

where t refers to the model timestep in days, 𝑃𝑖
′̅ is the time mean of the biomass anomalies for each 199 

phenotype i, 𝜎𝑖
2 is the temporal variance of the biomass anomalies for each phenotype, and n is the 200 

number of data points. In general, autocorrelation is high at shorter time lags and decreases with 201 
increasing time. We define an autocorrelation decay timescale as the e-folding correlation timescale, 𝜏𝑒, 202 
which is the first lag (day) when the autocorrelation drops below 𝑟𝑖(𝜏𝑒) = 𝑒−1 ≈ 0.37. We call 𝜏𝑒 the 203 
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“correlation timescale” hereafter. E-folding timescales are a commonly used measure of decorrelation for 204 
intra-seasonal or “short-term” timescales, such those considered in this study. This method differs from 205 
integral timescales, which are the time lag at which the area under the autocorrelation function is 206 
maximum [Talley, 2011]. In general, integral timescales tend to be longer than timescales estimated using 207 
a fixed correlation threshold. We anticipate that locations where biomass anomalies are highly variable in 208 
time will have short correlation timescales, whereas locations that are stable through time will have long 209 
correlation timescales (Fig. 1a).  210 

3.2 Spatial correlation 211 

We next calculate the phytoplankton spatial scales of correlation from the biomass anomaly time 212 
series. This analysis correlates time series of biomass anomaly at each grid point to that of surrounding 213 
grid points to assess the similarity of population dynamics in space (e.g., Fig. 1b). We calculate the spatial 214 

correlation field 𝑟𝑖(ℎ𝑥 , ℎ𝑦), where ℎ𝑥 and ℎ𝑦 are horizontal distances away from a grid point of interest k, 215 

which has coordinates 𝑥𝑘 , 𝑦𝑘. To simplify the notation, we drop the coordinates subscripts and define 216 

𝑟𝑖(ℎ𝑥 , ℎ𝑦) = 𝑟𝑖(ℎ) as: 217 

𝑟𝑖(ℎ) =  
∑(𝑃𝑖,𝑘

′ −𝑃𝑖,𝑘
′̅̅ ̅̅ ̅)(𝑃𝑖,𝑘+ℎ

′ −𝑃𝑖,𝑘+ℎ
′̅̅ ̅̅ ̅̅ ̅̅ )

𝜎𝑖,𝑘𝜎𝑖,𝑘+ℎ
 ,       (2) 218 

here  𝜎𝑖,𝑘and 𝜎𝑖,𝑘+ℎ are the standard deviations of the biomass anomalies series of each phenotype i at the 219 

grid point k, and at k plus a given distance (k+h), respectively. We evaluate the correlation between the 220 
central grid point and all grid points within 15º of latitude and longitude in order to avoid comparing 221 
phytoplankton dynamics at distant locations, for example across ocean basins. For computational 222 
efficiency, we do not calculate the length scales for every grid point, but central grid points are selected 223 
once every 10 grid points (2˚ of latitude and longitude) globally. In regions with horizontal current speeds 224 
higher than 20 cm s-1, we calculate the length scales every 2 grid points (~0.4˚). 225 
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 226 

Figure 1. Diagrams of the methods used to estimate phytoplankton temporal and spatial scales of 227 
correlation. a. Idealized examples of the autocorrelation function for locations with long and short 228 
timescales. The timescale value, 𝜏𝑒, is defined as the time lag when the autocorrelation function falls 229 
below 𝑒−1  and is marked for the short timescale example. b. Idealized example of spatial correlation 230 
field and its corresponding 2D Gaussian fit. The central grid point k is marked with red + marker. The 231 
major and minor axes length scales are defined using the e-folding contour (�̂�𝑖(ℎ) = 𝑒−1) of the fitted 2D-232 
Gaussian (outer ellipse, bold black line). In this example, the major axis length is the distance between the 233 
two black dots located in the east – west direction, and the minor axis length is the distance between the 234 
two white dots located in the north – south direction. The inner ellipse (dashed black line) represents 235 
�̂�𝑖(ℎ) = 0.5 for reference. 236 
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In general, points closer to the central grid point are highly correlated, whereas points further 237 
away are less correlated (Fig. 1b). Correlation fields can be either isotropic or anisotropic. For example, 238 
population dynamics along a zonal front could be correlated over a great distance of longitude, but 239 
decorrelate rapidly with latitude. Along Western Boundary Currents, such as the Gulf Stream, spatial 240 
correlation could be high in the direction of the current but low across the orthogonal axis of the current. 241 
Alternatively, the correlation could be equal in all directions (isotropic). The shape of the correlation field 242 
therefore contains information about the underlying processes that link adjacent ocean regions. Thus, to 243 
approximate correlation length scales, we fit an ellipsoidal or two-dimensional Gaussian function �̂�𝑖(ℎ) to 244 
the correlation field: 245 

ln(�̂�𝑖(ℎ)) =  − [
[(𝑥𝑘+ℎ−𝑥𝑘) 𝑐𝑜𝑠(𝜃)+(𝑦𝑘+ℎ−𝑦𝑘) 𝑠𝑖𝑛(𝜃)]2 

𝑎2 +
[(𝑥𝑘+ℎ−𝑥𝑘) 𝑠𝑖𝑛(𝜃)+(𝑦𝑘+ℎ−𝑦𝑘) 𝑐𝑜𝑠(𝜃)]2

𝑏2 ], (3) 246 

where, x and y refer to the coordinates of the central grid point k (xk, yk) and its neighbors (xk+h, yk+h). The 247 

parameters a and b are the two axes of the Gaussian fit to the correlation field, and  is the angle. If a is 248 
equal to b, the correlation field is isotropic or equal in all directions (i.e., a circle). If a and b are different, 249 
the correlation field is anisotropic or elongated (i.e., an ellipse). The longest of the two axes is referred as 250 
the major axis and the shortest as the minor axis. We use the major-to-minor axes aspect ratio (AR = 251 
max (𝑎, 𝑏)/min (𝑎, 𝑏)) to determine whether the shape of the fitted ellipse is anisotropic or isotropic. The 252 
angle 𝜃 is given as absolute values ranging from 0º to 180º, such that if 𝜃  is 0º or 180º it means that the 253 
correlation field is elongated zonally or along lines of constant latitude. If 𝜃 is 90º the correlation field is 254 
elongated along lines of constant longitude (i.e., meridionally elongated). 255 

Parameters a, b and  are estimated using a weighted least-squares fit to the Gaussian function, 256 

where the weight  decreases the importance of fitting locations further away from the grid point 257 

k. A priori parameter guesses ( ) are defined by finding the maximum zonal and meridional 258 

distances from the center k to the contour 𝑟𝑖(ℎ) = 0.5, and the corresponding angle. A priori values are 259 
assigned a 90% uncertainty. This 2D Gaussian fit methodology is based on the approach used for spatial 260 
scales of heat and carbon content in the Southern Ocean by Mazloff et al. [2018], where the importance of 261 
a priori parameter guesses and uncertainty considerations is stressed. As spurious correlations may 262 
develop at long distances, the a priori guess and weighting factors used in our application ensure that the 263 
structure closest to the point of interest is influential in determining the shape of the ellipse. Various other 264 
functions and models have been used to fit spatial correlation coefficients, however the 2D Gaussian 265 
approach has been shown effective in determining physical length scales in the ocean [Kuranago and 266 
Kamachi, 2000; Mazloff et al., 2018].  The strength of our approach fitting a 2D Gaussian function to 267 
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spatial correlation fields is that it allows us to test in a systematic way across the oceans whether 268 
correlation fields tend to be elongated or isotropic. 269 

4 Results  270 

4.1 Model environment 271 

To contextualize the temporal and spatial correlation analysis, we first describe the simulated 272 
global patterns of climatological mean phytoplankton biomass (mmol N m-3), SST (ºC), ocean sea surface 273 
current speed (cm s-1), and eddy kinetic energy (cm2 s-2). Eddy kinetic energy, or the energy associated 274 

with turbulent motions in the ocean, is calculated as 𝐸𝐾𝐸 =  
1

2
 (𝑢′2̅̅ ̅̅ + 𝑣′2̅̅ ̅̅ ), where (𝑢′, 𝑣′) are horizontal 275 

velocities anomalies from the climatological mean [e.g., Richardson, 1983]. While current speed is a 276 
measure of the magnitude of ocean currents, EKE is a measure of the magnitude of variability in currents 277 
through time.  278 

The model captures global patterns of phytoplankton biomass: subtropical gyres exhibit low 279 
annual average phytoplankton biomass, while high biomass exceeding 3 mmol N m-3 is found in the high 280 
latitudes, equatorial regions, and major coastal upwelling areas (Fig. 2a). Strong gradients in annual 281 
average sea surface temperature are apparent, for example crossing from the South Pacific subtropical 282 
gyre into the Southern Ocean or from the subtropical to subpolar North Atlantic (Fig. 2b).  283 

Simulated mean ocean current speeds and eddy kinetic energy (EKE) values in Fig. 2c,d agree 284 
well with those estimated from global drifter data [Lumpkin & Johnson, 2013]). In the Southern Ocean, 285 
the ACC shows both strong jets and regions of weaker current speed (Fig. 2c), and its position is bounded 286 
by ocean fronts [Lumpkin & Johnson, 2013]. The Sub-Antarctic Front at ~55ºS corresponds to the 287 
northern boundary, while the Southern Boundary Front (typically with SST < 0º) limits the ACC to the 288 
south [Carter et al., 2008]. The equatorial current systems are prominent in the Atlantic, Indian and 289 
Pacific Oceans with mean speeds higher than 40 cm s-1 (Fig. 2c). The model resolution is eddy-permitting 290 
and resolves regions of high current speeds and enhanced EKE associated with narrow western boundary 291 
currents and their corresponding extensions (Fig. 2c,d). All major western boundary currents are 292 
prominent in the climatological mean current speed: the Gulf Stream (GS), the Kuroshio Current (KC), 293 
the Agulhas Current (AC), the Somali Current (SC) and the Brazil Current (BC). Correspondingly, EKE 294 
is high in eddy dominated regions, as well as in the path of the North Brazil Current (NBC) and the 295 
Brazil-Malvinas Confluence (BMC). EKE is also high in the equatorial currents due to the energy of 296 
tropical instability waves [Chelton et al., 2000; Lumpkin & Johnson, 2013]. The eastern North Pacific, 297 
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eastern South Pacific, eastern South Atlantic, and western South Atlantic have low EKE and correspond 298 
to regions classified as “eddy deserts” [Lumpkin & Johnson, 2013]. 299 

 300 

 Figure 2. Model annual average: a. total surface phytoplankton biomass, b. sea surface temperature 301 
(SST), c. surface current speed, and d. eddy kinetic energy (𝐸𝐾𝐸). Ocean currents and gyres discussed 302 
throughout the text are indicated in c.: AC – Agulhas Current, ACC – Antarctic Circumpolar Current, BC 303 
– Brazil Current, BMC – Brazil – Malvinas Confluence, GS – Gulf Stream, KC – Kuroshio Current, KCE 304 
– Kuroshio Current Extension, LC – Labrador Current, NAC -  North Atlantic Current, NBC – North 305 
Brazil Current, NPSG – North Pacific Subtropical Gyre, SC – Somali Current, and SPSG – South Pacific 306 
Subtropical Gyre. Markers in c. indicate the location of illustrative regions also used in Fig. 6e. Long-307 
term monitoring stations ALOHA (A Long-term Ocean Habitat Assessment) and BATS (Bermuda 308 
Atlantic Time Series), also referred to in Fig. 8f-g, are marked for reference. 309 

In our analysis, we consider separately the four smallest phytoplankton types with the highest 310 
nutrient efficiencies (“gleaners”) and the four fastest growing types (the four smallest diatoms, the 311 
“opportunists”). Gleaners dominate in the most oligotrophic parts of the ocean, while the opportunists 312 
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dominate in the highly productive regions (Fig. 3a, b, S1). We also examine how cell size impacts our 313 

results and differentiate “small” ( 3m) and “large” (> 3m) phytoplankton (Fig. 3c, d, S1).  We 314 
separate phytoplankton by size in this manner because the allometric scaling for specific growth rates has 315 

a unimodal shape: it peaks for cells approximately 3m in equivalent spherical diameter but decreases for 316 
smaller and larger cells [Dutkiewicz et al., 2019; Marañón et al., 2013]. Much like for gleaners and 317 
opportunists, small phytoplankton dominate in oligotrophic regions while larger phytoplankton dominate 318 
in more seasonal and eutrophic regions (Fig. 3c, d). 319 

 320 

 321 

Figure 3. Model annual average: a. total gleaners phytoplankton biomass (i.e., the 2 prokaryotes and 2 322 

picoeukaryotes with ≤2m spherical diameter); b. total opportunists phytoplankton biomass (i.e., the 4 323 

smallest diatoms with spherical diameter raging from 3 to 10 m); c. small phytoplankton biomass 324 
(including 2 prokaryotes, 2 picoeukaryotes, 1 coccolithophore, 1 diazotroph, and 1 diatom); and d. large 325 
phytoplankton biomass (including 4 coccolithophore, 4 diazotrophs,  10 diatoms, and 10 mixotrophic 326 
dinoflagellates). Contours indicate lines of constant SST (ºC; contours are the same as Fig. 2b). 327 

 328 
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4.2 Phytoplankton correlation timescales (𝜏𝑒) 329 

4.2.1 Correlation timescales and ocean dynamics 330 

In general, the phytoplankton correlation timescales, or 𝜏𝑒, estimated from biomass anomaly time 331 
series are shorter than 30 days. The median phytoplankton 𝜏𝑒 is 18.7, 19.5, and 18 days for gleaners, 332 
opportunists, and total biomass, respectively (Fig. 4). Correlation timescales of 30 days or shorter for 333 
gleaners, opportunists, and total biomass correspond to 85, 68.5, and 95.9% of ocean area, respectively. 334 
Correlation timescales of 15 days or shorter for gleaners, opportunists, and total biomass correspond to 335 
37, 37, and 48.5% of the ocean area, respectively.  336 

337 
Figure 4. Correlation timescales, τe,  estimated for a. total biomass b. opportunists, and c. 338 

gleaners. Gleaners include the four smallest size classes simulated by the model (i.e., prokaryotes 339 

and picoeukaryotes with ≤2m spherical diameter), and opportunists include the four smallest 340 

size classes of diatoms (3 -10 m spherical diameter). In the case of total biomass, the 341 

correlation timescale is calculated from total biomass anomaly time series. In the case of 342 

gleaners and opportunists,  τe is estimated individually for each phenotype in the group and then 343 
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averaged. White regions indicate where total biomass is below 10-6 mmol N m-3 or group 344 

biomass is below 1% of total biomass. Contours indicate lines of constant SST (ºC; contours are 345 

the same as Fig. 2b). The color scale is logarithmic to improve visualization and comparison 346 

between maps. d. The bars represent the area-weighted, normalized frequency distribution of 347 

global correlation timescales for total biomass anomalies, gleaners and opportunists. Solid lines 348 

represent the corresponding probability density functions. Vertical dashed lines represent the 349 

median value for each group. 350 

Here we differentiate and discuss regions of the ocean with short (𝜏𝑒  15 days) and long (𝜏𝑒 > 15 351 
days) correlation scales.  The overall spatial patterns in 𝜏𝑒 between gleaners, opportunists, and total 352 
biomass are qualitatively similar. Short correlation timescales (<15 days) occur in the Southern Ocean 353 
(Fig. 5b, d), Equatorial zones, and subpolar North Pacific (Fig. 4a-c), as well as in in Western Boundary 354 
Currents such as the Gulf Stream (Fig. 5a, c). Short correlation timescales along the westward travelling 355 
Equatorial Currents (located to the north and south of the equator) in the Pacific and Indian Oceans, and 356 
to a lesser extend in the Atlantic, may be tied to variable currents  [Masumoto et al., 2005] and tropical 357 
instability waves [Han et al., 2008; Kessler et al., 1996], which generate high-frequency variations in the 358 
environmental conditions in this region [Han et al., 2008; Kessler et al., 1996; Lyman et al., 2005]. 359 
Correlation timescales are short in the Subpolar North Pacific but do not correspond closely to enhanced 360 
currents or EKE (Fig. 2c, d). However, this short 𝜏𝑒 area coincides with the location of the Aleutian Low, 361 
a zone of high storm frequency comprising the Subpolar North Pacific and Bering Sea [Pickart et al., 362 
2009]. Correlation timescales are also short in the Antarctic Circumpolar Current (ACC), but increase 363 
both north and south of the ACC (Figs. 4a-c; 5b, d).  364 

In contrast, longer phytoplankton 𝜏𝑒 (>15 days) occurs in subtropical regions and large parts of 365 
the Southern Ocean, specifically north of the Subtropical Front at ~45ºS and south of the Sub-Antarctic 366 
Front at ~55ºS, approximately denoted by the 6 and 12ºC contours, respectively [Carter et al., 2008]. 367 
These areas of very long correlation timescale broadly, though not exclusively, coincide with regions of 368 
low current speed and low EKE (Fig. 2c, d).  369 

Compared with gleaners, opportunist phytoplankton exhibit stronger spatial gradients in 370 
correlation timescales (compare Fig. 4b-c). Opportunists have both shorter and longer correlation 371 
timescales than gleaners depending on the region (Fig. 4d). Regions of long correlation timescales for 372 
opportunists are primarily found in the subtropical gyres and in polar zones, with portions of the 373 
subtropical and subpolar regions having long 𝜏𝑒 of up to several months. The longest correlation 374 
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timescales for opportunists (exceeding 100 days) are found in the Subtropical Front at ~45ºS extending 375 
from the coast of Chile to the south of Australia (Fig. 4b, Fig. 5d), and the shortest timescales are found in 376 
the central Equatorial Pacific and Subpolar Pacific (Fig. 4b). In contrast, correlation timescales for 377 
gleaners are more uniform in space (Fig. 4c) and exhibit a slightly narrower distribution of timescales 378 
globally (Fig. 4d). The longest correlation timescales are found in the Subtropical Front at ~45ºS off the 379 
coast of Chile and east of the Weddell Sea area of the Southern Ocean up to 60ºE (Fig. 4c, Fig. 5e). The 380 
shortest timescales are found north of the equator in the central Pacific (Fig. 4c). 381 

382 
Figure 5. Regional examples of correlation timescales: a. Average 𝜏𝑒 estimated from biomass 383 

anomalies of gleaners in the Gulf Stream, and b. in the Antarctic Circumpolar Current (ACC) 384 

region. c. Average 𝜏𝑒 estimated from biomass anomalies of opportunists in the Gulf Stream, and 385 

d. in the ACC region. Current velocity vectors are indicated by black arrows and the color scale 386 

is truncated at 35 days to improve visualization. Low biomass areas (group biomass below 1% of 387 

total phytoplankton biomass) are masked in white.  388 
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Using the same methodology as we did for estimating phytoplankton correlation timescale (see 389 
section 3), we estimated correlation timescales for SST and surface NO3 using the MITgcm model output. 390 
SST exhibits long timescales exceeding 45 days in subtropical and certain temperate latitudes, while polar 391 
and tropical latitudes and areas of high kinetic energy show correlation timescales under 45 days and 392 
down to 15 days (Fig. S5a). Long persistence of SST anomalies, typically 3-5 months, is known to occur 393 
in the North Atlantic and North Pacific Oceans, as a consequence of the high heat capacity of the ocean 394 
[Deser et al., 2003; Frankignoul, 1985; Frankignoul & Hasselmann, 1977; Kushnir et al., 2002]. Surface 395 
NO3 correlation timescales exhibit long timescales in subpolar latitudes and short timescales in the 396 
tropical and subtropical oceans, as well as polar regions (Fig. S5b). In tropical and sub-tropical oceans, 397 
phytoplankton growth quickly consumes any nitrate available (e.g., nutrients supplied by the passing of 398 
eddies), yielding short NO3 correlation timescales. In regions with deeper winter mixed layers and 399 
seasonal limitation of phytoplankton growth by temperature or light, nutrients may accumulate, leading to 400 
longer NO3 correlation timescales. Our analysis also shows that, in most of the ocean, phytoplankton 401 
timescales are shorter than the timescales of both SST and NO3 (Fig. S5c, d). This contrast is consistent 402 
with the different dominant timescales of the processes influencing each variable: days to weeks in the 403 
case of phytoplankton growth and weeks to months in the case of SST, for example. In regions of high 404 
EKE, such as the Gulf Stream, the differences between SST, NO3 and phytoplankton correlation 405 
timescales are relatively small, suggesting that in these regions the dynamics of biotic and environmental 406 
conditions are tied to ocean mixing and currents (Fig. S5c, d).  407 

In agreement with our estimates, chlorophyll correlation timescales in the North Atlantic Ocean 408 
show shorter timescales than measured for the physical variables [Boss et al., 2008]; while Denman and 409 
Abbot [1994] found equal timescales for SST and chlorophyll in dynamic areas of the California Current 410 
System region. As expected, we find a tighter relationship between nitrate timescales and phytoplankton 411 
timescales, particularly within nutrient limited areas in the tropics and subtropics, where light is sufficient 412 
to sustain phytoplankton growth year-round. 413 

Overall, phytoplankton populations and total biomass in most of the ocean have relatively fast 414 
decorrelation timescales, and opportunists and gleaners exhibit similar spatial patterns in correlation 415 
timescales that differ in magnitude. Next, we examine more closely how these spatial patterns and 416 
differences across gleaners and opportunists in correlation timescale may be linked to variations in current 417 
speed in the ocean and cell sizes across phytoplankton types. 418 

4.2.2 Correlation timescales and current speed 419 
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For both gleaners and opportunists, short correlation timescales ( 15 days) occur more 420 
frequently where mean current speed is relatively high (Fig. 6a-d). Conversely, long correlation 421 
timescales (>15 days) occur more frequently where mean current speed is relatively low (Fig. 6a-d). This 422 
is more clearly represented in the marginal frequency distributions (Fig. 6c, d) by the larger area of blue 423 
bars (short timescales) at current speeds >10 cm s-1, in comparison to the area of red bars (long 424 
timescales) for the same speeds. In areas of strong advection by currents, such as the Gulf Stream, 425 
Kuroshio Current, or Antarctic Circumpolar Current, short correlation timescales of the phytoplankton 426 
biomass anomalies may be due to dispersal of phytoplankton driven by advection, assuming upstream 427 
phytoplankton communities are different from the location of interest. Similarly, short correlation 428 
timescales of the phytoplankton community also occur where horizontal mixing due to mesoscale and 429 
submesoscale processes facilitates dispersal, such as in Equatorial zones and Western Boundary Currents 430 
[Abernathey & Marshall, 2013; Cole et al., 2012].  431 

 432 

Figure 6. Relationship between current speed, timescales and environmental variability. Contour plots 433 
show the bi-variate normalized frequency distribution of correlation timescales with respect to current 434 
speed for a. gleaners and b. opportunists. Histograms show normalized frequency distributions of current 435 
speed and their corresponding probability density functions summarized for areas with short timescales 436 

(15 days) and long timescales (>15 days) for c. gleaners and d. opportunists. The probability density 437 
functions for the whole ocean (black line) are shown for reference. The distribution of current speeds for 438 
areas with short and long timescales are significantly different (Smirnoff-Kolmogorov test, p<0.01). In 439 
plots a. to d., the frequency of grid points is area-weighted, and normalized to the maximum frequency in 440 
the dataset.  e. Relationship between current speed and variance in sea surface temperature anomalies at 441 
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six 1º by 1º illustrative regions: the Antarctic Circumpolar Current at the South Pacific and South Atlantic 442 
portions (ACC at 141ºW, 57ºS and 57ºW, 57ºS, respectively), the North Pacific Subtropical Gyre 443 
(NPSG), the South Pacific Subtropical Gyre (SPSG), the Kuroshio Current (KC) and the Gulf Stream 444 
(GS). Regions are color coded and ordered from colder (dark blue) to warmest (dark red), according to 445 
mean SST. The corresponding locations are indicated in Fig. 2c using the same markers.  446 

In addition to the dispersal of organisms, both advection and mixing introduce environmental 447 
variability, including temperature, nutrients, and light, which can influence phytoplankton growth. 448 
Regions of stronger currents and EKE tend to have greater variability in SST anomalies [Deser et al., 449 
2010], for example. We find a similar pattern linking current speed to SST variance in our model (Fig. 450 
6e). For 6 selected, illustrative regions, SST variance through time increases with mean current speed. 451 
Thus, the increased variability in the environment through time is likely to promote shorter correlation 452 
timescales within the phytoplankton populations. The present analysis in a Eulerian framework is, 453 
however, unable to differentiate whether the correlation timescales are more closely tied to rapid transport 454 
of organisms or intermittent favorable conditions for phytoplankton growth. We suggest that further study 455 
using a Lagrangian perspective will be useful to separate the different effects. 456 

4.2.3 Correlation timescales and cell size 457 

In order to evaluate why gleaners and opportunists have different correlation timescales, we 458 
consider the ecological importance of cell size. Cell size is a critical trait constraining important 459 
physiological rates, such as the growth rate [e.g., Marañón et al., 2013], and predator – prey interactions 460 
[B. Hansen et al., 1994; P. J. Hansen et al., 1997]. We find that in vast ocean areas, large phytoplankton 461 
tend to have longer correlation timescales, while small phytoplankton tend to have shorter correlation 462 
timescales (Fig. 7b). In Fig. 7, red means that correlation timescale becomes shorter with increasing cell 463 
size (negative relationship), while blue means that correlation timescale becomes longer with increasing 464 
cell size (positive relationship). Because the number of species present in the community (here defined as 465 
phytoplankton phenotypes with abundance larger than 1% the total biomass) varies in space (Fig. 7a), this 466 
pattern linking cell size to correlation timescale spans a different number of cell sizes or phenotypes by 467 
location.468 
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469 
Figure 7. Analysis of the relationships between timescales and cell size. a. Total number of 470 
phytoplankton phenotypes (“richness”), defined as the number of phytoplankton phenotypes with 471 
abundance larger than 1% the total biomass in each grid point. Relationship (Pearson correlation 472 
coefficient, r) between cell size and correlation timescales (𝜏𝑒) for b. all cell sizes, c. only phytoplankton 473 

smaller  3m, and d. only larger phytoplankton >3m. Note that cell size increases logarithmically (Fig. 474 
S1). White patches in b-d mask areas where linear correlations are non-significant (p>0.1). Areas marked 475 
with a square and an inverted triangle mark the locations used for e. two scatter plots with contrasting 476 
examples of relationships between cell size (bottom x-axes) and correlation timescales. For reference, the 477 
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top x-axes show the corresponding carbon specific maximum growth rates (d-1), which peak at a cell size 478 

of 3 m. The scatter plots show the timescales of all phenotypes at grid points in an area of 1º by 1º 479 
centered at 138.9ºW 60.7ºS and 156.7ºW 7.5ºS (Southern Ocean and Central Equatorial Pacific, 480 
respectively. Different phenotypes are identified with different marker colors. We fit a second-order 481 
polynomial function to the relationship between cell size and 𝜏𝑒 relationships at each grid point (gray 482 
lines). The thick black line shows the average fit for all grid points.  483 

 We separated the connections between cell size and correlation timescale into two size classes: 484 

the 7 phenotypes that are 3m or smaller, and the 28 phenotypes larger than 3m (Fig. 7c, d). Though 485 
there are many regions with no significant relationship between cell size and correlation timescale (white 486 
areas in Figs. 7b-d), small and large phytoplankton phenotypes exhibit contrasting relationships between 487 
correlation timescale and cell size in some regions. In the Southern Ocean, correlation timescales are 488 

shorter with increasing cell size for small phytoplankton (≤3m; Fig. 7c), but longer with increasing cell 489 

size for large phytoplankton (>3m; Fig. 7d). In the Tropical Pacific, correlation timescale is longer with 490 

increasing cell size for small phytoplankton (≤3m; Fig. 7c), but is shorter with increasing cell size for 491 

larger phytoplankton (>3m; Fig. 7d). Upon further inspection, we find that the relationship between cell 492 
size and correlation timescale for locations in the tropics is characterized by a “humpback” shape or 493 
convex curve, whereas the relationship for locations in the Southern Ocean is characterized by a “U” 494 
shape or concave curve (Fig. 7e).   495 

The distinct and spatially coherent regional patterns in the relationship between cell size and 496 
correlation timescales, particularly the concave and convex patterns with an inflection point occurring at 497 

around 3-5m (Fig. 7e), suggest an underlying ecological origin. Phytoplankton in the 3-5m size range 498 
have higher growth rates than both smaller and larger phytoplankton [e.g., Marañón et al., 2013], as 499 
parameterized in our model. They also have relatively high nutrient and light affinities compared with 500 
larger phytoplankton [e.g., Edwards et al., 2012]. These opportunist phytoplankton are therefore well-501 
positioned to take advantage of pulses of nutrients, however scarce. In nutrient limited regions of the 502 
ocean (such as the Tropical Pacific, Fig. 7e), we speculate that the relatively long correlation timescale of 503 
opportunist phytoplankton may be caused by episodic blooms due to nutrient anomalies, for example 504 
driven by the passage of eddies [Chelton et al., 2011]. Microzooplankton predators ultimately graze down 505 
the bloom, but returning to the pre-bloom biomass takes longer because the peak of the bloom of these 506 
phenotypes is higher in magnitude. Phytoplankton larger and smaller than these fast-growing 507 
opportunistic phytoplankton would not bloom to the same extent, either due to their higher nutrient 508 
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requirements or because they are grazed down more quickly than the blooming opportunist, thus yielding 509 
faster decorrelation timescales. 510 

In regions with generally high nutrient supply (such as the Southern Ocean, Fig. 7e), the 511 
underlying dynamics may be different. The U-shaped pattern here may reflect three contrasting regimes 512 

for very small (0.6 - 2 m), small (3 - 5 m), and large phytoplankton (>5 m). The smallest 513 
phytoplankton in this region have very low and relatively constant biomass (Fig. 3a). Small 514 

phytoplankton (3 - 5 m) have rapid growth timescales, but they are also grazed readily by 515 
microzooplankton grazers, such that blooms do not persist for long. In contrast, large phytoplankton (>5 516 

m) have large microzooplankton grazers [e.g., B. Hansen et al., 1994], which have lower specific 517 
ingestion and growth rates than smaller microzooplankton [e.g., P. J. Hansen et al., 1997], as captured in 518 
the model parameterization [Ward et al., 2012]. In habitats such as this, the growth of the largest 519 
phytoplankton would be periodically decoupled from their grazers, allowing a positive biomass anomaly 520 
to persist for a longer duration than for smaller phytoplankton. This may explain the very long correlation 521 
timescales for the largest phytoplankton types. Thus, the concave and convex shaped patterns in Fig. 7e 522 
may reflect the relative importance of distribution patterns (Fig. 3c, d), resource acquisition, growth traits, 523 
and predator-prey imbalances in shaping the persistence of phytoplankton anomalies.  524 

4.3 Spatial scales of correlation 525 

4.3.1 Length scales and ocean dynamics 526 

Over what distance do phytoplankton populations vary synchronously? To answer this, we 527 
calculated the spatial correlation structure of phytoplankton populations on a point by point and 528 
phenotype by phenotype basis with no time lags. A feature of our analysis is that we are able to quantify 529 
the shape of the correlation fields, not just the correlation length scales. A key shape property is the aspect 530 
ratio of spatial correlation structure. If the aspect ratio is equal to one, (AR=1), the spatial correlation is 531 
roughly equal in all directions; we term this isotropic. Isotropic correlation structures may be due to 532 
horizontal mixing homogenizing local properties, such as nutrient concentrations and temperature, or 533 
equal dispersal of organisms in all directions. An elongated spatial correlation field has AR>1, possibly 534 
indicating the presence of strong advection or persistent frontal zones (Fig. 8). We call this type of 535 
correlation structure anisotropic.  536 

In general, spatial correlation patterns are similar for gleaners and opportunists (Fig. 9a-d, S8). 537 
The longest correlation scales (major axis) occur in the Subpolar oceans exceeding 2000 km (Fig. 8a, Fig. 538 
9a, b), and coincide roughly with the position of strong frontal zones in both hemispheres, and with the 539 
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location of the ACC in the Southern Ocean (Fig. 2b-d). Major axis length scales range between 150 km 540 
and 500 km in the Equatorial regions (Fig. 8c) and between 150 km and 250 km along boundary currents 541 
(Fig. 8b, d). The shortest major axis scales, up to 100 km, occur in Subtropical regions (Fig. 8f) and in 542 
some areas near Western Boundary Currents and their corresponding extensions (Fig. 9a, b). Previous 543 
studies have suggested long correlation length scales in phytoplankton can be achieved via rapid 544 
advection and turbulent mixing [Lévy et al., 2014]; where as long correlation length scales in SST have 545 
been also attributed to synoptic forcing over large distances leading to uniform conditions in the upper 546 
ocean [Hosoda and Kawamura, 2005]. The minor axes are, by definition, shorter than the major axes 547 
(Fig. 9c-d), but exhibit similar spatial patterns as for major axes correlation length. In general, the 548 
orientation of the correlation structures aligns well with the direction of the mean flow (Fig. 8). 549 

 550 

We find that, regardless of regional differences in correlation length scales, the spatial 551 
correlations of phytoplankton biomass anomaly in the ocean is strongly anisotropic (Fig. 9e, f). The total 552 
ocean area with isotropic correlation fields (AR=1) is very small and aspect ratios below 2:1 (AR<2) 553 
represent only 8.5% and 12.3% of the global ocean for gleaners and opportunists, respectively. The 554 
median AR for gleaners and opportunists is 2.9 and 3.1, respectively (Fig. S8). High aspect ratios ranging 555 
between 2.5 to 5 occur along the Antarctic Circumpolar Current and Western Boundary Currents (Fig. 8a, 556 
c, d). In some cases, the elongation of the correlation contours due to the presence of an ocean current is 557 
most obvious near the core of the current, but decreases rapidly away from the center of the current (Fig. 558 
8e). The effect of some of the narrow boundary currents is apparent in the Alguhas Current flowing 559 
southward along the east coast of South Africa, the Kuroshio Current to the southwest of Japan, and the 560 
Somali Current along the coast of Somalia and Oman in the western Indian Ocean (Fig. 9e, f). The most 561 
elongated shapes (AR>6) are found within the Eastern Equatorial regions (Fig. 8c), and roughly 562 
coinciding with major extratropical ocean fronts (Fig. 9e, f), including the Subpolar Front in the North 563 
Pacific (approximately located between 40ºN and 45ºN, at isotherms ranging from 9ºC to 18ºC [Yuan & 564 
Talley, 1996]), the Subpolar Front in the North Atlantic (which typically follows the NAC, and is 565 
approximately located south of the 18ºC SST contour in Figs. 9e, f), and the region between the Southern 566 
and Subantarctic Fronts in the Southern Ocean (typically defined by the 6 ºC and 12ºC SST contours), 567 
including the Polar Front [Carter et al., 2008]). The meridional length scales (i.e., minor axis, orthogonal 568 
to the front) become shortened in the vicinity of the front, while zonal length scales are long. For 569 
example, in the South Pacific sector of the ACC (Fig. 8a, Fig. 9), the average flow of the ACC is roughly 570 
west to east and AR=4. 571 
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 572 

Figure 8. Spatial correlation structures (color background) and corresponding 2D Gaussian fit (red ellipse 573 
marking the �̂� = 𝑒−1 contour) obtained from the biomass anomalies of the smallest gleaner in key regions 574 
of interest. The central grid point k for each spatial correlation structure is marked with a red + symbol. 575 
Mean velocity vectors are shown in black, emphasizing the elongation of correlation length scales along 576 
currents at a. the Antarctic Circumpolar Current, b. the Kuroshio Current, c. the eastern Equatorial 577 
Pacific, d. the Gulf Stream, and e. the Malvinas Current. Spatial correlation for the long-term 578 
observational stations ALOHA (A Long-term Oligotrophic Habitat Assessment) in Hawaii, and BATS 579 
(Bermuda Atlantic Time-series Study) are shown in f. and g., respectively. Each spatial correlation 580 
structure details its corresponding axes length scales (a and b), the major-to-minor aspect ratio (𝐴𝑅 =581 
 𝑚𝑎𝑥 (𝑎, 𝑏)/𝑚𝑖𝑛 (𝑎, 𝑏)), and the angle of orientation (𝜃). 582 
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 583 

 584 

Figure 9. Spatial correlation scales of gleaners and opportunists: a., b. major axis, c., d. minor axis, e., f. 585 
major-to-minor aspect ratio, and g. h. angles. Angles are reported from 0º to 180º, such that meridional 586 
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patterns correspond to 90º and zonal patterns correspond to either 0º or 180º.  White areas are where 587 
opportunist biomass is very low (group biomass below 1% of total phytoplankton biomass). 588 

 589 

Our estimates of phytoplankton population correlation length scales broadly agree with regional 590 
length scales estimated from physical and chemical variables from the same model simulation (Fig. S6, 591 
S7) and from previous studies [Hosoda & Kawamura, 2005; Kessler et al., 1996; Kuragano & Kamachi, 592 
2000; Mazloff et al., 2018]. In general, phytoplankton and environmental correlation length scales are 593 
long in the Southern Ocean and Equatorial Pacific, but shorter in western boundary currents and 594 
subtropical regions. A recent analysis of satellite derived and simulated values of low-passed filtered 595 
SSH, SST, heat and carbon content in the Southern Ocean suggests large correlation length scales on the 596 
order of 500 km to 4000 km zonally and 500 and 1000 km meridionally [Mazloff et al., 2018]. Zonal 597 
length scales from in situ SST and thermocline depth in the Equatorial Pacific are about 10.2º (~1110 km) 598 
and 11.6º (~1280 km), respectively [Kessler et al., 1996]. In the Kuroshio region, the spatial correlation 599 
analysis of satellite SST revealed correlation length scales between 78 and 230 km, with the smallest 600 
length scales observed in the most dynamical regions [Hosoda and Kawamura, 2005]. In a global analysis 601 
using TOPEX-POSEIDON SSH anomaly data from 1993 to 1996, Kuragano and Kamachi [2000] found 602 
large zonal length scales in the Equatorial region (1300 – 2600 km), as well as in the Subpolar gyres (470 603 
– 960 km) and small length scales in the Subtropical gyres and boundary currents (100 – 260 km). 604 
Though we do not directly correlate the length scales of physical variables to the modeled phytoplankton 605 
variables in this study, the available evidence suggests that the gradients in correlation length scales are 606 
qualitatively similar.  607 

4.3.1 Length scales and current speed 608 

As with the earlier discussion of correlation timescales, we now consider how correlation length 609 
scales may be tied to advection. In this case, the relationship between current speed and length scales or 610 
aspect ratio is complicated due to the many possible drivers of spatial correlation structure.  611 

Very large length scales and aspect ratio can occur in areas of the ocean with relatively low 612 
average current speed, due to large-scale uniform synoptic forcing [e.g., Hosoda and Kawamura, 2005]. 613 
Turbulent mixing may also disperse and homogenize phytoplankton further away from the region of 614 
direct influence of an ocean current. Western Boundary currents have elongated spatial correlation fields, 615 
but their length scales are shorter and aspect ratios smaller.  For example, the correlation structure in the 616 
poleward flowing Gulf Stream (Fig. 8d) has a smaller aspect ratio than the zonal ACC (Figs 8a). This 617 
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suggests that when the direction of the correlation structure is across strong environmental and biomass 618 
gradients, such as the Gulf Stream flowing northward from tropical to temperate waters (Fig. 8d), 619 
synoptic atmospheric forcing and eddy activity along the current edges modify the major and minor axes. 620 
This creates overall smaller and less elongated correlation structures than in zonal currents. The short 621 
minor axis length scales in Western Boundary Currents also reflect the limited cross-jet exchange with the 622 
adjacent water masses.  623 

 624 

Figure 10 a. Frequency distribution of global aspect ratios from biomass anomalies of gleaners and 625 
opportunists for areas with length scales below 300 km. The 25th percentile of both distributions is found 626 
at approximately AR = 2 (black dashed line). This value is used as a threshold for the comparisons of 627 

frequency distributions of current speed in areas with very elongated correlation structures (AR  2) and 628 
more isotropic structures (AR < 2) for gleaners (b.) and opportunists (c.). Distributions of current speed 629 

with AR  2 and AR < 2 are significantly different (Smirnoff-Kolmogorof test p < 0.01). 630 

If we focus on only those regions with a major axis length scale less than 300 km (i.e., the 631 
maximum length scales found at boundary currents), a clearer picture of the relationship between current 632 
speed and the elongation of correlation structures emerges. This subset of the global ocean represents 633 
51.2% and 59.7% of the ocean area for gleaners and opportunists, respectively. The subset includes 634 
western boundary currents, coastal upwelling areas and subtropical gyres, but excludes the Southern 635 
Ocean, open waters in the North Pacific, the central and eastern North Atlantic, and certain equatorial 636 
areas. Differences in the distribution of AR for gleaners and opportunists are negligible for this subset 637 
(Fig. 10a), as for the entire global results (Fig. S8). The median AR of the subset is 2.36 for gleaners and 638 
2.34 for opportunists, and the first quartile is approximately AR = 2 for both types of phytoplankton (Fig. 639 
10a). We use this threshold to distinguish regions with more or less anisotropic correlation structures. 640 
Elongated correlation structures (AR > 2) are more common in regions of relatively high current speed, 641 
and more isotropic correlations structures (AR < 2) are more common in regions of relatively low 642 
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currents speeds (Fig. 10b, c). Thus, we conclude that current speed is an important factor affecting the 643 
spatial correlation of phytoplankton communities in this subset of the global ocean.  Nevertheless, some 644 
regions of strong advection have low aspect ratios. This effect occurs mainly in the eastward extensions 645 
of Western Boundary Currents, which are ocean regions characterized by large numbers of eddies 646 
[Chelton et al., 2011]. In these eddy dominated areas, the dispersing effect of turbulent mixing in all 647 
directions is a relatively important driver of tracer distributions compared with other regions of the ocean.  648 

 649 

Figure 11 Analysis of the relationship between cell size and aspect ratio (AR) derived from length scales 650 
of correlation: a. Pearson correlation coefficient (r) of the relationship between cell size and AR 651 
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considering all significantly abundant phytoplankton phenotypes. The number of the significantly 652 
abundant phytoplankton phenotypes used in the correlation is the same as Figure 7a.; b. Same analysis as 653 

panel a., but considering only phenotypes  3m; c. Same analysis as panel a., but considering only 654 

phenotype > 3m. 655 

4.3.2 Length scales and cell size 656 

Smaller phytoplankton have, on average, larger aspect ratios than larger phytoplankton cells (Fig. 657 
11a; indicated by areas of negative correlation, in red, between aspect and cell size). The negative 658 
relationship between cell size and aspect ratio is most apparent in the Southern Ocean, Western Boundary 659 
Currents, and the Subtropics (Fig.11a). Similar spatial patterns are observed when we analyze large 660 

phytoplankton (≥ 3m; Fig. 11c), with mostly negative correlations between cell size and aspect ratio. 661 

For small cells (< 3m; Fig. 11b), correlations between aspect ratio and cell size are negative in the 662 
tropics but more varied and equivocal elsewhere, likely due to the fewer number of taxa included in this 663 
category. We speculate that the overall negative relationship between aspect ratio and cell size may be 664 
related to the abundance of each phytoplankton phenotype, which generally decreases with size. Smaller 665 
phytoplankton have larger populations and disperse greater distances than do larger phytoplankton 666 
[Villarino et al., 2018]. 667 

5 Discussion and conclusions 668 

In this study, we estimated global timescales and spatial scales of correlation in a state-of-the-art 669 
physical-ecosystem ocean model, with 35 simulated phytoplankton phenotypes covering a broad range of 670 
phytoplankton functions and sizes. By calculating and using biomass anomalies, we focus on the intra-671 
annual variability of phytoplankton biomass, which is more likely to reflect the effects of dispersal. The 672 
correlation timescale analysis provides information about the persistence of anomalies and the stability of 673 
the planktonic system. The results from the spatial correlation analysis indicate the extent of regions in 674 
the ocean which act in concert, driven by advection, mixing, synoptic events, or a mixture of all these 675 
drivers.  676 

Although the model we use here is unique in its ecosystem complexity, it still only represents a 677 
few tens of phytoplankton phenotypes compared to the many thousands of species in the real ocean. 678 
Additionally, the model resolution is about 18 km, which permits the development of eddies and narrow 679 
currents, but does not capture sub-mesoscale processes. Sub-mesoscale processes are also likely to affect 680 
both spatial and temporal timescales of phytoplankton communities, and understanding their impacts 681 
would require investigating model output at much higher spatial resolution and temporal frequency.  682 
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Even though the model resolution is nominally 18 km, coastal regions and inland seas may not be 683 
simulated with fidelity. Therefore we focus our interpretation of the results on the pelagic ocean.  684 

The results presented in this study should be considered only as a first step in defining the 685 
phytoplankton community correlation scales globally. Previous studies of biogeochemically important 686 
scales in the oceans have been mostly limited to satellite chlorophyll [Doney et al., 2003; Fuentes et al., 687 
2000; Glover et al., 2018]. These previous studies have largely focused on quantifying the impact of 688 
mesoscale features, and using different methodologies to overcome data gaps due to the presence of 689 
clouds. In a different type of study, Henson et al., [2016] used model output from Earth System Models to 690 
explore the role of temporal and spatial scales on trend detection in several biogeochemical variables (e.g. 691 
chlorophyll, primary production, pH), and their implications for Earth observing systems. In that study, 692 
the footprint of existing and planned timeseries stations were obtained based on statistical similarity in 693 
terms of means and variability for surrounding grid cells. 694 

Here, for the first time, we instead look at timescales and spatial scales of correlation of 695 
ecological variables, and we provide robust point by point evaluations of these scales. Our results can thus 696 
provide information for any future observing system design from an ecologically relevant perspective. For 697 
instance, we find that regions with fast currents are more likely to exhibit short correlation timescales 698 
(Figs. 4-6). Conversely, in more quiescent regions such as the cores of the subtropical ocean gyres, 699 
phytoplankton anomalies persist for long periods. As such, observing these different systems would 700 
require different sampling strategies: much more frequent in the former than the latter. In the northern 701 
hemisphere high latitudes, mesoscale currents and eddy activity imprint a signal of short timescales (Fig. 702 
5 a, c), again suggesting that monitoring systems in these regions would require more frequent sampling. 703 
Phytoplankton timescales are shorter than the timescales of physical and chemical variables that control 704 
phytoplankton growth, such as temperature and nitrate. In the case of temperature, the large heat capacity 705 
of the ocean imprints a general pattern of long timescales on the order of several months. In the case of 706 
nitrate, the decoupling of timescales is prevalent at high latitudes where light, rather than nutrients, is a 707 
seasonal limiting factor for phytoplankton growth. 708 

Monitoring of different types of phytoplankton is also likely to be complicated. The relationships 709 
between correlation timescales and cell size are noisy and complex, but exhibit spatial coherence globally 710 
suggesting underlying dynamical or ecological origins. Overall, we find that larger phytoplankton tend to 711 
have longer correlation timescales than smaller phytoplankton (Fig. 7b), but there are contrasting patterns 712 

for the smallest (≤3m) and largest (>3m) phytoplankton, as well as by region (Fig. 7c-e). We separate 713 
phytoplankton into these two size categories as observations suggest that there are contrasting patterns of 714 
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correlation between growth rates and size: growth rates increase with cell size in the smaller category and 715 
decrease with size in the larger category [e.g. Marañón et al., 2013]. This characteristic is also captured in 716 
the model configuration and emergent in the correlation timescales results (Fig 7e). In the Southern 717 
Ocean, correlation timescales decrease with increasing body size for small phytoplankton (negative 718 
relationship), but increase with body size for larger phytoplankton (positive relationship). Conversely, in 719 
the subtropics correlation timescales increase with body size for small phytoplankton (positive 720 
relationship), but decrease with increasing body size for larger phytoplankton (negative relationship). The 721 
relationships can be thus characterized by a “humpback” shape or convex curve in the subtropics, and by 722 
a “U” shape or concave curve in the Southern Ocean (Fig. 7e).  These patterns may reflect trade-offs 723 
between resource acquisition and predation. In the model, the smaller category has nutrient affinity 724 
decreasing with cell size [e.g., Edwards et al., 2012], the growth rate increasing [Marañón et al., 2013], 725 
and the predators grazing rates decreasing [Hansen et al., 1997]. In the larger size class, nutrient affinity, 726 
grazing, and growth rate all decline with cell size [e.g., Edwards et al., 2012; B. Hansen et al., 1994; 727 
Marañón et al., 2013]. These factors lead to different regional distributions, with the smaller category 728 
having a much more regionally uniform distribution (Fig. 3). Monitoring the differences in correlation 729 
scales between phytoplankton phenotypes could therefore help us understand some of the major 730 
controlling mechanisms across sizes. These differential relationships between cell size and correlation 731 
timescales also imply that sampling frequency may need to be different for different phytoplankton 732 
phenotypes. 733 

Our study of correlation length scales provides a mechanism to understand how far (in distance) a 734 
single station observation can provide insight into phytoplankton community dynamics. We find that the 735 
global ocean is predominantly anisotropic (Fig. 9, S8). The strongest anisotropic features are zonal, along 736 
the equatorial region, in the ACC, and along major ocean fronts. In such regions an observational site will 737 
provide context and insight for extensive regions in the east-west direction, but less insight to the north 738 
and south. Elongated spatial correlation fields also occur in Western Boundary Currents, but their length 739 
scales are shorter because of strong eddy mixing, limited cross-jet exchange, and meridional variations in 740 
local forcing, such as heat fluxes. Thus, biological measurements taken within a current jet provide 741 
insight about processes along-flow, but very little information of across-current processes. More isotropic 742 
correlation structures are present where current speeds are low and where eddies or recirculation disperse 743 
phytoplankton equally in all directions. In contrast with correlation timescales (Fig. 7b-e), the correlation 744 
length scales have a predominantly negative relationship with cell size across most areas of the ocean 745 
(Fig. 11). This implies that resolving spatial dynamics of large cells requires denser spatial observations 746 
than for small cells, and that this relationship does not vary strongly in space.  747 
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Our results could also be a starting place to explore implications for our existing observing 748 
systems. For instance, the correlation timescales for total biomass at ALOHA and BATS are 13 and 6 749 
days. Given that sampling at these stations is monthly, our results suggest that transient non-seasonal 750 
changes to their phytoplankton communities are not adequately captured by the current sampling strategy 751 
(though clearly seasonal and interannual variability are captured by these sites). The spatial correlation 752 
structures and fitted ellipses we calculated for these locations (Fig. 8f, g) indicate the regions that will 753 
have similar responses to what is seen at these timeseries sites. For a small prokaryote, the major axis 754 
length scales we estimate for these two locations are 41.1 and 680.6 km. Thus, suggesting that any 755 
variability seen at the timeseries may be relevant only over these spatial scales, and the stations do not 756 
provide insight into the full subtropical gyres as is sometimes assumed. 757 

This study thus offers a quantitative, global-scale estimation of the temporal and spatial scales of 758 
correlation in phytoplankton communities, with a unique ecological perspective that cannot be obtained 759 
with current observations alone. Its results provide unprecedented background information to explore 760 
regional differences, as well as differences between sub-populations of the planktonic system. 761 
Understanding the scales of correlation of different phytoplankton phenotypes can also influence our 762 
understanding of global patterns of distribution of their predators, including zooplankton and larval fish. 763 
As in the case of correlation scales from physical ocean variables, this information can potentially aid in 764 
the design of biological ocean observing networks and monitoring campaigns by guiding decisions about 765 
optimal sampling frequency and distance between monitoring stations in different regions. This is 766 
particularly important as new biological sampling methods capable of acquiring massive amounts of data, 767 
such as genomics and biogeochemical-Argo, become more widely used in the study of marine microbial 768 
ecology.  769 
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