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Abstract—The applications for wide area monitoring, protec-
tion, and control systems (WAMPC) at the control center, help
with providing resilient, efficient, and secure operation of the
transmission system of the smart grid. The increased proliferation
of phasor measurement units (PMUs) in this space has inspired
many prudent applications to assist in the process of decision
making in the control centers. Machine learning (ML) based
decision support systems have become viable with the availability
of abundant high-resolution wide area operational PMU data.
We propose a deep neural network (DNN) based supervisory
protection and event diagnosis system and demonstrate that it
works with very high degree of confidence. The system introduces
a supervisory layer that processes the data streams collected
from PMUs and detects disturbances in the power systems that
may have gone unnoticed by the local monitoring and protection
system. Then, we investigate compromise of the insights of
this ML based supervisory control by crafting adversaries that
corrupt the PMU data via minimal coordinated manipulation
and identification of the spatio-temporal regions in the multi-
dimensional PMU data in a way that the DNN classifier makes
wrong event predictions.
Keywords: Black box attack, wide area monitoring systems,
adversarial machine learning, PMU data analytics.

I. INTRODUCTION

The wide area monitoring, protection, and control
(WAMPC) system is a critical monitoring infrastructure for
the power transmission system in the smart grid. The secure,
reliable, resilient, and economical operation of the bulk power
system is primarily dictated by the WAMPC applications [1].
The availability of real time synchrophasor data from a group
of phasor measurement units (PMUs) have enabled many
critical WAMPC applications, such as stability monitoring,
wide area control, and supervisory protection [2]. The abun-
dance of high resolution measurements paves the way for the
data-driven intelligent applications. Further, the revolutionary
advancements in machine learning [3] have shown potential to
harness the data, to create highly reliable and efficient systems.

Previous research elaborates the concept of a supervisory
protection and event diagnosis framework based on machine
learning, for the WAMPC system [4]. The application can
be deployed at the control center and identifies dynamic
disturbances in the power systems by processing the data from
multiple PMUs in a given region. This forms a supervisory
layer that automatically detects any mis-operation that goes
undetected by the local monitoring and protection infrastruc-
ture [5]. Depending on the type of the event and the state of

the system, either a manual or automated response is initiated,
enhancing the resilience of the grid. One such application
utilized a machine learning classifiers and a set of features
that were chosen with the knowledge of the domain [4].

Deep neural networks (DNN) have been quite successful in
solving complex challenges in a range of domains, including
the smart grid [3]. Deep convolutional neural networks (CNN)
belonging to the family of DNN, have a distinct advantage of
automatic feature extraction and classification for multidimen-
sional data (so far, widely used for images). To the best of our
knowledge, in the power system domain, despite this automatic
extraction advantage of CNNs and their ready applicability to
WAMPC, CNNs have not been studied.
Motivation and Contributions: Motivated by this, we pro-
pose a deep CNN classifier to efficiently classify different
disturbances in the power systems. This classifier is trained
on a set of ground truths (disturbance data with labels). Then,
the trained classifier is deployed as a WAMPC application to
perform disturbance identification and supervisory protection
task. We demonstrate the efficiency of the proposed deep CNN
classifier with a simulated dataset of PMU data comprising of
different power system disturbances.

However, our major contribution is probing the susceptibil-
ity of this deep CNN classifier to adversarial perturbations.
We present a procedure for careful crafting of PMU data
manipulation attacks that can mislead our effective classifier.
We discuss this crafting technique to craft adversaries that
perform minimal manipulation of data transmitted by a small,
select subset of PMUs in a way that the resultant event
classification of the classifier becomes incorrect. This type of
attack is a black box attack, where the adversary does not have
any knowledge of the classifier and does not have any access
to the training data, but conjectures to identify the important
components of the data using simulated data and then proceeds
to perturb the real readings to result in the misclassification.

The rest of the paper is structured as follows. In Section II,
we discuss the background on the PMU infrastructure and their
vulnerability to cyber attacks. In Section III, the methodology
and the proposed architecture of the WAMPC application is
presented. An overview of black box attack on machine learn-
ing models is presented in Section IV. The experimental setup
and data creation are explained in Section V. In Section VI,
the performance of our machine learning model is evaluated
under adversarial attack. Section VII concludes the paper with
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a discussion of the scope for future work.

II. BACKGROUND

The PMUs are primarily placed in the transmission system
at the generating stations, major junctions, and at substations.
However, they can also be placed in the distribution grid or in
any bus of interest. Essentially, a group of PMUs in an area
are connected to a regional phasor data concentrator (PDC),
and a set of PDCs are connected to a super PDC, to form a hi-
erarchical information-flow network that conveys the complex
dynamics of the power systems [6]. The PDC is either housed
at the control center or transmits data to the nearest control
center, which hosts the WAMPC applications. The measured
PMU data and control commands are transmitted over a wide
area communication network between the PMUs and their
corresponding control centers. The IEEE recommended the
C37.118 standard for PMU data communication, which relies
on TCP/IP protocol for flexible and timely data delivery, but
the applications still remain susceptible to cyber-attacks [7].

A. PMU data manipulation attacks

The PMU data manipulation attack (PDMA) is a type
of cyber attack where an adversary can alter some of the
PMU data. The resultant data manipulation may affect the
WAMPC applications at the control centers by introducing
errors in the control or decision support system [8]. This
sophisticated cyber attack utilizes rich domain knowledge to
carefully craft organized adversaries that remain blind to data
integrity check algorithms and cause damage to the power
grid without getting detected. This is the same as the false
data injection attack (FDIA), in which an adversary stealthily
compromises measurements from electricity grid sensors (e.g.
PMUs) in a coordinated fashion, and is capable of evading
detection by the power system bad data detection module.

The 2015 Ukraine Blackout is a classic example of an
adversarial opening that can lead to FDIA [9]. The adversaries
loaded malicious firmware into the communication network
field gateway devices. The password-protected access to sub-
station control center and ICS network was likely gained via
keystroke loggers. The control center data manipulation is
not difficult to achieve after gaining credentialed access. It
can be foreseen that the adversaries can locally manipulate
device parameters and corrupt measurements by building di-
rect access to field devices, such as PMUs. The man-in-the-
middle attacks can intercept the measurements and maliciously
manipulate their values by infiltrating into the communication
networks [10]. The success of Stuxnet attack rings the alarm
that even private wide-area networks or closed networks
with strict confidentiality are vulnerable to cyber security
threats [11].

Although most gross errors and outliers in the PMU mea-
surements can be detected by bad data detection during state
estimation, one can still circumvent it by maliciously selecting
a set of measurements with an intent to compromise [12]. Once
these PMU measurements are manipulated, the resulting cor-
rupted data may mislead the control centers to take unwanted

Fig. 1: Illustration of the proposed framework for the WAMS
application in the WECC system, the actual location of the
PMUs in Las Vegas area shown over a cropped portion of the
NASPI PMU location map [13].

actions (or not take any actions), resulting in outage events of
varying intensities.

III. FRAMEWORK AND METHODS

The framework for the proposed WAMPC application for
supervisory protection is shown in Fig. 1. A set of PMUs in
a geographical area (around Las Vegas) are connected to a
local PDC. The control center has access to the data stored in
the PDC and this data is fed as input to the application. The
raw PMU data were subjected to pre-processing and bad data
removal.

A. Data Preparation

The data streams from multiple PMUs are combined to form
a two-dimensional matrix representation. Although the PMUs
measure current, voltage, and frequency, the proposed decision
support system in the WAMPCS relies on the voltage and fre-
quency waveform to recognize disturbances. Motivated by the
significant reliability of deep CNN in classifying images [14],
[15], we create pseudo-color images of the two dimensional
PMU data matrix. The spatio-temporal PMU data voltage
and frequencies were individually normalized and quantized
to 256 intensity levels of each red, green, and blue colors.
The pseudo-color images for the voltage and frequencies were
appended along with the spatial coordinates to create an image
that maps the spatio-temporal PMU voltage and frequency
data.

The result of the conversion of spatio-temporal PMU data
to pseudo-images from raw PMU data through colormap is
illustrated in Fig. 2, where the graphs in Figs. 2a and 2b
represent the voltage and the frequency data of 10 PMUs
proximate to an event sampling at a rate of 60 frames per
second, for a duration of 5 seconds, and the third figure
(Fig. 2c) represents the corresponding colormap obtained by
putting the continuous readings of each PMU as a row of the
colormap. The resultant color pseudo-images were saved as
JPEG files which were fed as input to the deep CNN classifier.
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Fig. 2: The PMUs’ (a) voltage and (b) frequency waveforms
corresponding to a 3-phase fault. The corresponding colormap
image representations of (c) simulated PMU data

B. Deep CNN Model

The DNN is composed of a sequence of layers that are
individually parameterized by a set of weights and each layer
consists of units called neurons. The DNN for classification
of different types of data can be conceptualized as a nonlinear
functional mapping that takes an input and returns a class
label. The non-linearity in the network is introduced by the
activation function associated with each neuron. The CNN
is a type of feed forward DNN that exploits the hierarchical
pattern in data and decomposes complex patterns into smaller,
simpler and sparser patterns. CNNs are particularly suitable
for analyzing images, as they automatically extract reduced
dimensional features and feed them to the following layers
of the network to identify different classes of images. We
have adopted an LeNet [16] type CNN architecture with a
convolutional layer (with 5 × 5 kernels and ReLU activation
functions), followed by a max-pooling layer, and a two-layer
fully connected network with softmax activations, as shown in
Fig. 3.

IV. ADVERSARY CRAFTING

A. Threat and Attack Model

Cyber-security of a system is based on three major pil-
lars, confidentiality, integrity, and availability (CIA) [17]. We
assume that the adversary launches a malicious attack by
intelligently modifying the PMU measurements, violating the
integrity. Authentication and non-repudiation of information
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Fig. 3: Architecture of the deep CNN classifier

are critical to maintain the integrity in the smart grid [18]
and Section II-A briefs the threats that may compromise these
aspects.

The attack assumptions made in this paper are based on
the susceptibility of PMU measurements to adversarial ma-
nipulation. There are four approaches to manipulating PMU
measurements: (i) compromising PMUs locally with either
physical access or by manipulating the transducer readings;
(ii) intercepting and forging data packets during their transit
to the control center; and (iii) modifying data at control center
database [19]. (iii) modifying data at control center database
[19]. Note that if an attacker gains physical access to the
PMUs, the sensed data can be manipulated at the output of
the voltage and current transducers or by infecting the PMU
firmware.

(iv) In a more realistic situation, an attacker may start with
an Internet Protocols (IPs) scan to identify all the connected
hosts and to find any open or vulnerable ports that are accessi-
ble and can help the attacker get access to the PMU [20]. The
attacker may also use phishing [21] and password pilfering
attacks [22] to gain access to the control center. Modbus and
distributed networking protocol 3.0 (DNP3) are two commu-
nication protocols used for PMU data communication, which
are vulnerable to scanning attacks [23]. Modbus transmits data
in plaintext, with no encryption, making the data vulnerable
to sniffing or tampering by hackers.

B. Adversary crafting

The weights and biases of the CNN are determined during
the training phase in a way that minimizes a cost function. A
DNN model can be expressed as a multidimensional function:
F : X 7→ Y , where X is the input data and Y is an output
vector of the class labels. The goal of the adversary is to craft
an input X∗ = X + δx by introducing a perturbation δx, that
minimizes the following objective function.

argmin
δx
‖δx‖ s.t. F (X + δx) = Y ∗ (1)

Here, Y ∗ is the new class label specified by the adversary.
The adversaries craft attacks by finding δx that such that the
DNN does not predict the actual class of the event (predicts
something else, or cannot differentiate it from the norm). The
fast-gradient sign method efficiently computes the adversarial
perturbations for a given classifier [24]. However, it sometimes
lead to sub-optimal solutions and does not provide a close
approximation of the optimal perturbation. The signed change
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in derivative is the foremost method for crafting adversaries,
however it does not ensure minimal perturbation of the input.
The DeepFool algorithm alleviates these limitations and com-
putes optimal perturbations that can alter the class label [25].
Therefore, in this paper, we have used the DeepFool to craft
adversaries.

Our major objective is to craft adversaries that could mislead
the ML classifier to predict incorrect class labels from the data.
The adversaries are crafted over the PMU data pseudo-images.
The change in a pixel value of the image by the adversary
corresponds to the change in the data point recorded by the
PMU that maps to that that pixel.

V. SIMULATION

A. Data creation

In order to carry out a comprehensive evaluation, we created
a simulated PMU dataset with sufficient number of distur-
bance events under various operating conditions. We used
the positive sequence load flow (PSLF) dynamic simulation
tool [26] from General Electric (GE) for creating simulated
PMU events corresponding to different event classes. In order
to simulate actual operating conditions of the grid, we used
a 2008 Heavy Summer load flow base case for the WECC
system [5]. A total of 299 time-synchronized voltage and
frequency probes were placed in the WECC model at key
buses, which approximately correspond to the actual location
of PMUs in the WECC system. The data rate for the PMUs
were fixed at 60 frames per second. The experimental setup
is explained in a greater details in [5]. For the experiments
in this paper, we considered 3 different types of events, fault,
loss of generation, and synchronous motor switching off.

Test cases for fault were simulated at the buses with base
voltage greater than 120 kV. The fault duration was kept 0.15 s.
For simulating the loss in generation the generators above
300 MW were switched off at the trigger point. Synchronous
motors were switched off one at a time to create events labeled
as synchronous motor-off.

The voltage phasors and frequency readings corresponding
to each disturbance event were recorded by all the 299 PMU
probes. Not all the PMUs in the network will capture the
prominent disturbance signatures. The PMUs closer to the
disturbance will capture event signatures, which fade with
increasing electrical distance from the source, more faithfully
compared to the farther PMUs. Therefore, we considered the
10 PMUs with the most strong signature, that are close to the
disturbance. In the real world scenario, each control center
will have access to one or more PDC, which aggregates
measurements from a group of PMUs in its geographic area.

We consider a disturbance pattern length of 5 s—0.5 s
before the trigger and 4.5 s after the trigger. Voltage and
frequency data streams from 10 PMUs at a sampling rate
of 60 frames per second, were aggregated to form pseudo
color images, as mentioned in Sec III-A. Each image has a
dimension of [300×20×3] comprising of 300 time points, 10
voltage and 10 frequency measurements, and 3 fundamental
color intensities. Each image represents the instance of a

Fig. 4: The color-map pseudo-image representations of the
simulated PMU data with adversarial perturbation.

TABLE I: Case I: Classification accuracy for the binary
classifier

Class Accuracy (%) Accuracy after

adversarial attack (%)

Fault 100 89.2

Loss of Generation 100 93

Synchronous motor - OFF 94 82

disturbance. The data-set consisted of 344 instances of faults,
140 instances of loss of generation, and 21 instances of
synchronous motor switching events (a total of 505 images).

VI. RESULTS AND INTERPRETATION

The data-set comprising of the pseudo-images were fed as
input to the CNN classifier. In order to simulate the black box
setting, we implemented the CNN classifier in two different
environments, Keras [27] and Tensorflow [28]. We trained the
CNN using the Keras back-end, then generates adversarial
images and used them to attack a CNN trained on TensorFlow.
As the attacker does not have access to the parameters of the
TensorFlow model, this setup represents a black box attack.
We used 10-fold cross validation to assess the performance of
the classifier. The data set was divided into 10-equal groups
with elements chosen at random. At each fold, 9 groups were
combined to form the training set and one group was used for
testing. The reported accuracy is an average of the 10-folds.

We conducted two sets of experiments. In the first case,
we considered a binary classifier, that is trained on a set of
disturbance and steady state data. The goal of the adversary
in this case was to create perturbations such that the the
disturbance waveform is classified as a normal steady state
phenomenon. The classification performance without and with
adversarial crafting are summarized in Table I. We note that
the results without adversarial crafting illustrates the use of
our deep CNN classification framework for classification of
disturbances. The high accuracy in non-adversarial scenario
demonstrates the efficacy of our framework in classification.
It can be observed that the minimal adversarial perturbations
can blind the classifier to some of the disturbances.

In the second case, we crafted attacks such that the true
class label of a disturbance was mis-classified as another dis-
turbance, e.g., a fault is classified as a generation loss or syn-
chronous motor switching off event. The overall classification
accuracy of the CNN classifier was 93.8%, with adversarial
manipulations the accuracy dropped to 82%. Although the
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reduction in accuracy is only 11% that still means that on
an average 35 events were misclassified, which in our opinion
is 35 too many due to the critical nature of the events (total
events studied was 344). The masking or mis-classification of
a crucial event like a fault may result in the control actions that
are not desired and may lead to operational disruptions and
cascaded failures. Fig. 4 shows a pseudo-image corresponding
to fault data shown in Fig. 2, with adversarial perturbation, that
is predicted as a generation loss by the deep CNN classifier.

VII. CONCLUSION AND FUTURE WORK

We presented a machine learning assisted WAMPC ap-
plication for disturbance detection in the transmission grid.
The data driven control center application processes PMU
measurements in a geographical area and is based on the deep
CNN classifier. The vulnerability of the deep CNN classifiers
to adversarial manipulations in the PMU data, was shown. We
demonstrated a black box attack on the deep CNN classifier,
where an adversary modifies the input PMU data selectively.
The selective manipulation of the PMU data is dictated by its
crafted adversarial pseudo-image representation. The change
in pixel values of the image directly correspond to the spatio-
temporal modifications of the PMU data. We demonstrated
an intelligent adversary crafting technique that can attack
sophisticated machine learning based decision support systems
in the smart grid without being detected.

The future work will focus on a more complete evaluation
with other disturbances in the power system such as load
switching and capacitor switching. The other focus will be
on techniques to detect the adversarial manipulations and on
enhancing robustness of the machine learning models deployed
in WAMPC systems.

REFERENCES

[1] A. Ashok, M. Govindarasu, and J. Wang, “Cyber-Physical Attack-
Resilient Wide-Area Monitoring, Protection, and Control for the Power
Grid,” Proceedings of the IEEE, vol. 105, no. 7, pp. 1389–1407, July
2017.

[2] “The Modern Grid Strategy: A Vision for the Smart Grid,” june 2009.
[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,

no. 7553, p. 436, 2015.
[4] M. Biswal, Yifan Hao, P. Chen, S. Brahma, H. Cao, and P. De Leon,

“Signal features for classification of power system disturbances using
pmu data,” in 2016 Power Systems Computation Conference (PSCC),
June 2016, pp. 1–7.

[5] M. Biswal, S. M. Brahma, and H. Cao, “Supervisory Protection and
Automated Event Diagnosis Using PMU Data,” IEEE Transactions on
Power Delivery, vol. 31, no. 4, pp. 1855–1863, Aug 2016.

[6] “Use of synchrophasor measurements in protective
relaying applications,” Report of PSRC Working Group,
2012. [Online]. Available: http://www.pes-psrc.org/Reports/
UseofSynchrophasorMeasurementsinProtectiveRelayingApplications\
final.pdf

[7] “IEEE standard for synchrophasor data transfer for power systems,” pp.
1–53, Dec 2011.

[8] J. Wang, D. Shi, Y. Li, J. Chen, H. Ding, and X. Duan, “Distributed
framework for detecting pmu data manipulation attacks with deep
autoencoders,” IEEE Transactions on Smart Grid, vol. 10, no. 4, pp.
4401–4410, July 2019.

[9] G. Liang, S. R. Weller, J. Zhao, F. Luo, and Z. Y. Dong, “The 2015
ukraine blackout: Implications for false data injection attacks,” IEEE
Transactions on Power Systems, vol. 32, no. 4, pp. 3317–3318, July
2017.

[10] Y. Yuan, Z. Li, and K. Ren, “Quantitative analysis of load redistri-
bution attacks in power systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 23, no. 9, pp. 1731–1738, Sep. 2012.

[11] D. Kushner, “The real story of stuxnet,” IEEE Spectrum, vol. 50, no. 3,
pp. 48–53, March 2013.

[12] X. Liu, Z. Bao, D. Lu, and Z. Li, “Modeling of local false data injection
attacks with reduced network information,” IEEE Transactions on Smart
Grid, vol. 6, no. 4, pp. 1686–1696, July 2015.

[13] “NASPI PMU map March 2017,” 2017. [Online]. Available: https:
//naspi.org/node/749

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[16] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[17] V. Y. Pillitteri and T. L. Brewer, “Guidelines for smart grid cybersecu-
rity,” NIST Interagency/Internal Report (NISTIR), Tech. Rep. 7628 Rev
1, 2014.

[18] Y. Yan, Y. Qian, H. Sharif, and D. Tipper, “A survey on cyber security for
smart grid communications,” IEEE Communications Surveys Tutorials,
vol. 14, no. 4, pp. 998–1010, Fourth 2012.

[19] G. Liang, J. Zhao, F. Luo, S. R. Weller, and Z. Y. Dong, “A review
of false data injection attacks against modern power systems,” IEEE
Transactions on Smart Grid, vol. 8, no. 4, pp. 1630–1638, July 2017.

[20] E. D. Knapp and R. Samani, Applied cyber security and the smart grid:
implementing security controls into the modern power infrastructure.
Newnes, 2013.

[21] H. Holm, W. R. Flores, and G. Ericsson, “Cyber security for a smart
grid - what about phishing?” in IEEE PES ISGT Europe 2013, Oct 2013,
pp. 1–5.

[22] A. Stefanov and C. Liu, “Cyber-power system security in a smart grid
environment,” in 2012 IEEE PES Innovative Smart Grid Technologies
(ISGT), Jan 2012, pp. 1–3.

[23] K. Coffey, R. Smith, L. Maglaras, and H. Janicke, “Vulnerability analysis
of network scanning on scada systems,” Security and Communication
Networks, vol. 2018, 2018.

[24] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[25] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple
and accurate method to fool deep neural networks,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2016, pp. 2574–2582.

[26] GE, “PSLF.” [Online]. Available: https://www.geenergyconsulting.com/
practice-area/software-products/pslf

[27] F. Chollet et al., “Keras,” https://keras.io, 2015.
[28] A. Martı́n et al., “TensorFlow: Large-scale machine learning on

heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

Authorized licensed use limited to: University of Gothenburg. Downloaded on July 27,2020 at 23:24:15 UTC from IEEE Xplore.  Restrictions apply. 


