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Abstract— Most current surgical robotic systems lack the
ability to sense tool/tissue interaction forces, which motivates
research in methods to estimate these forces from other avail-
able measurements, primarily joint torques. These methods
require the internal joint torques, due to the robot inverse
dynamics, to be subtracted from the measured joint torques.
This paper presents the use of neural networks to estimate the
inverse dynamics of the da Vinci surgical robot, which enables
estimation of the external environment forces. Experiments with
motions in free space demonstrate that the neural networks can
estimate the internal joint torques within 10% normalized root-
mean-square error (NRMSE), which outperforms model-based
approaches in the literature. Comparison with an external force
sensor shows that the method is able to estimate environment
forces within about 10% NRMSE.

[. INTRODUCTION

Laparoscopic surgery brought the benefits of minimally
invasive surgery to patients. At the same time, it created
challenges for surgeons who had to operate with long,
straight instruments through small incisions while viewing
images of the internal anatomy captured by a laparoscope
inserted through another small incision. Robotic assistance
was introduced to solve both the loss of dexterity and poor
hand/eye coordination encountered in laparoscopic surgery.
For example, the da Vinci® Surgical System (Intuitive
Surgical Inc., CA) provides wristed instruments on the Pa-
tient Side Manipulators (PSMs) that are teleoperated by the
surgeon via the Master Tool Manipulators (MTMs), while
viewing stereo images from a stereo laparoscopic camera.
These advantages came at a cost, however, which was that
the surgeon completely lost the sense of touch [1]. This had
already been compromised by the shift from open surgery,
where the surgeon’s hands could directly palpate tissue, to
laparoscopic surgery, where forces were transmitted to the
surgeon’s hands via the instruments. Experienced robotic
surgeons learned to estimate forces through other cues, such
as the tautness of suture or the discoloration of tissue being
stretched, but it is widely believed that surgical performance
would be improved by the addition of haptic feedback.

There are several challenges to achieving haptic feedback
in a telesurgical system. First, it is difficult to integrate force
sensors on the instrument tips, especially considering that
the instrument must survive several cycles of cleaning and
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Fig. 1: The da Vinci Research Kit: (a) Master Tool Manip-
ulator (MTM) (b) Patient Side Manipulator (PSM)

sterilization. Installing a force sensor in the non-sterile part
of the robot (i.e., above the instrument) is also challenging
because it would require good force estimation algorithms
that account for the highly nonlinear cable-driven design of
the instruments. There are also practical difficulties in imple-
menting and testing solutions because commercial systems
such as the da Vinci do not allow researchers to directly
control the robot arms. Fortunately, the widespread adoption
of open research platforms such as the da Vinci Research
Kit (dVRK) [2], Fig.1, and the Raven II robot [3] enables
researchers to implement and test different controllers, and
ultimately to share working solutions with the community.

This paper presents a neural network (NN) approach to
estimate the inverse dynamics of the da Vinci PSM. The
neural network can be used to control the PSM, for example
to implement a computed torque controller, but the focus of
this paper is to estimate the external torques/forces acting on
the joints by subtracting the internal torques/forces (neural
network outputs) from the measured torques. The method is
implemented and tested on the dVRK.

II. RELATED WORK

The lack of haptic feedback in telesurgical systems has led
to a significant amount of research. Some of this research
has focused on developing miniaturized sensors that can
be mounted on instrument tips. Researchers at DLR have
developed a small 6-axis force sensor placed at the tip of
the MIRO surgical robot [4]. Capacitive sensors that can
be placed inside the forceps jaws of the Raven II surgical
systems have been proposed in [5]. Strain gauges can also
be printed on top of the da Vinci tool tip as described in [6].



However, these approaches that require modifications to the
instrument structure also pose limitations on the functionality
and may not be applicable under all operational settings.

In order to obtain force measurements without addi-
tional sensors, force estimation methods can be used. Such
approaches have been investigated starting with the first
surgical robot prototypes like the Black Falcon [7]. One
of the issues observed in the early attempts has been the
transmission of robot coupling/internal dynamic forces to
the operators in free motion. To solve this issue, in [8], a
Coulomb friction compensator was proposed to improve the
force estimation results on a customized da Vinci patient side
manipulator. In [9], a cable tension estimator was developed
to eliminate the effects of cable elasticity in the Raven
IT system. In [10], a sliding mode perturbation observer
was developed for the estimation of grasping force on a
customized da Vinci gripper.

To overcome problems with cable-tendon driven surgical
manipulators, different actuator/transmission systems and
force estimation schemes have also been developed, such
as a pneumatic forceps mechanism and pressure based force
estimation method [11], a rigid rod driven mechanism with
strain gauges on the shafts for force estimation [12], and
a rigid transmission system with load cell based estimation
[13]. In [14][15], a disturbance observer and neural network
based inverse dynamics was utilized to estimate external
forces on a rigid link driven robotic forceps prototype.

With the development of the da Vinci Research Kit
(dVRK), many research groups have started developing dy-
namic identification and external force estimation methods
for the da Vinci systems. In [16], an explicit physics-based
dynamic model of the dVRK PSM was developed and
parameters of this model were identified together with the
free motion torques to estimate external forces under quasi-
static external loading. In [17], an LMI method was utilized
for dynamic parameter and joint torque identification of both
the MTMs and PSMs without external force estimation. In
[18], a linearized model of the PSMs was obtained and the
parameters were identified with least squares optimization.
External forces/torques were also estimated by filtering out
the free motion torques. In [19], an open source convex
optimization based toolbox was proposed for dynamic model
identification of the dVRK. All of these approaches assume
an explicit dynamic model for the system and attempt to
identify the parameters of the respective models with the
robot following an automated optimal excitation trajectory.

In this work, we are following a similar approach with a
key difference: the inverse joint space dynamics is identified
by black box models in the form of neural networks for
each joint, whose complexity can be increased and updated
to adapt to various operating conditions. This approach can
also help reduce the fitting errors in the explicit model-based
approaches. A similar neural network based approach has
been proposed in [20] for a 3-DOF Planar Twin-Pantograph
haptic interface. However, unlike our approach, a single

neural network has been trained for the robot, and training
has been performed with a random persistent excitation
trajectory.

In the proposed method, identification is performed with
the operator in the loop: as the operator controls the slave
in the workspace of the robot, dynamic identification is per-
formed without a need for an automated excitation trajectory.
This also helps reduce the discrepancy between the surgical
workspace and the excitation trajectory. Furthermore, the
method is flexible as it can also provide a basis for deep
neural networks that can be trained with data from different
operations/instruments/surgeons.

Yet another approach is the use of deep learning to
estimate external forces by training a deep neural network
using system state measurements from the robot such as
current and position as the network inputs and external sensor
measurements as the training data. Such a setup has been
used in [21] using an external force sensor, to estimate the
grasping forces on a custom da Vinci gripper. However, the
proposed approach is fundamentally different from this ap-
proach because it does not require a force sensor for training.
In [22], interaction forces are estimated using deep neural
networks and external camera images as the inputs with a
force sensor used to provide the ground truth. Our approach
makes use of the fact that the fundamental relationship
between external forces and joint currents/torques is well
known and this can be exploited to obtain accurate external
force estimates from joint torque and position measurements
without the use of external sensors for ground truth.

III. INVERSE DYNAMICS IDENTIFICATION AND
EXTERNAL FORCE ESTIMATION

The force estimation method proposed in this paper is
composed of two parts. First, identification of the inverse
dynamic model of a dVRK PSM is performed by training
a set of neural networks, as the robot is telemanipulated in
free motion by an operator in the loop. Once the inverse
dynamics is obtained, the identified dynamic torques are
filtered out from the joint torque measurements and using the
robot Jacobian, external forces exerted on the end effector of
the robot can be estimated. First, the neural network based
dynamic identification method is explained.

A. Neural Network-based Dynamic Identification of the
dVRK PSM

The dynamic model of a dVRK PSM can be described by
the joint space equation:

M(q)§+Clg:4) + G(@) + F(Q) + Tine =7 (1)

where ¢, ¢ and ¢ represent the joint position, velocity and
acceleration vectors, M, C' and GG denote mass/inertia matrix,
Coriolis and centrifugal force/torque and gravity vectors, [
represents the friction force/torque vector, 7;,. is the internal
force/torque vector representing the uncertain internal forces
in the robot and 7 denotes the actuator force/torque vector,
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Fig. 2: Neural network for inverse dynamics identification

respectively. Since the dVRK utilizes tendon-driven mecha-
nisms for both motion and force transmission, it is difficult to
identify the dynamic model accurately due to the uncertain
system parameters, friction, elongation and elasticity. As a
result, the dynamic terms in (1) are not exactly known,
however a lumped model can be defined to provide the sum
of these effects:

where ¢ and ¢ are the model inputs, H is the lumped
internal dynamics model of the robot and 74y, is the inverse
dynamics torque estimate.

The crux of the proposal in this paper is to obtain H,
and to identify the lumped robot dynamics, with a set of
neural networks. A neural network can be used as a black
box model to approximate the nonlinear relationship between
robot joint states (position, velocity) and the joint torques
without the need for an explicit robot model. In this paper, we
are trying to approximate this function without acceleration
measurements, as these measurements can be quite noisy,
however they can also be used if good measurements are
available. Also, in this paper, a separate neural network is
utilized for each joint, with a total of 6 neural networks for
the combined manipulator (excluding the gripper axis), and
each neural network (see Fig. 2) includes:

e One input layer with 12 neurons for the position and
velocity measurements of each joint

e One hidden layer with 100 neurons

e One output layer with 1 neuron representing the indi-
vidual predicted actuator torque
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Fig. 3: The relation between joint states (x and y axes) and
actuator force/torque (color scale) during training operation
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Fig. 4: Offline training of each neural network

Here, each neural network has input measurements from
all the robot joints, but the output is the torque/force estimate
for the respective joint. Thus each joint’s identification error
is used to train the respective neural network, and this
provides better performance than a single neural network
with multiple outputs where different scales of the mea-
surements becomes an issue. The NN learning process is
achieved by back-propagation and Bayesian Regularization.
This approach has been selected for training as it can provide
good generalization for difficult and noisy datasets [23]. In
the multilayer network structure, the tan-sigmoid transfer
function (tansig) and linear transfer function (purelin) have
been used for the hidden and output layers, respectively.
Initial weight and bias values were selected randomly and
then updated according to adaptive weight minimization
(regularization) with the chosen algorithm.

For training, the position, velocity and torque data, ¢, ¢ and
T, are recorded as the dVRK is unilaterally teleoperated by
an operator providing different poses and velocities via the
MTM. The training dataset contains about 415,000 samples.
In Fig. 3, the x and y axes present velocity and position
measurements, respectively, and the color scale shows the
measured force/torque acting on the actuators. As the robot
moves in free motion, the external force exerted on the
robot is known to be zero, which means that the measured
joint torques are purely due to inverse dynamics. The error
variable to be minimized by the networks is the difference
between the neural network estimate and the measured
torques in free motion so that the neural network can be
trained to estimate the joint torque due to inverse dynamics
in free motion. The optimal weights to minimize the error
are found through back propagation, as shown in Fig. 4. In
this paper, training was performed offline, but it could be
performed online with adaptive neural networks [24].

B. External Force Estimation

When there is an external force/torque applied to the end
effector of a surgical robot, the generalized dynamic equation
in joint space is:

M(q)iq+ C(q,q) + G(q) + F(§) + Tint + Teat =7 (3)

where 7., is the external force/torque vector acting on each
joint. The external force/torque can be calculated by sub-
tracting the inverse dynamics torque estimated by the trained
neural network, 74, defined in (2), from the measured
actuator force/torque 7:

Text =T — 7A—alyn (4)



Fig. 5: External force estimation with the trained network

Utilizing the Jacobian matrix of the robot (J) and the
external joint torques/forces, the external force acting on the
tool-tip in Cartesian space (see Fig. 5), can be estimated as:

Fewt = JﬁT%ezt (5)

This estimate can then be compared with an external force
sensor for validation, as described in the next section.

IV. EXPERIMENTS AND RESULTS

This section describes the experiments conducted to val-
idate the inverse dynamics identification and external force
estimation. Also, a set of palpation experiments, performed
on different phantom surfaces, for stiffness differentiation
are provided as a case study. In the experiments, the da
Vinci PSM was unilaterally teleoperated by a human op-
erator with an MTM and all the identification/estimation
results were performed offline with post-processing. In the
experiments, the dVRK communicates with the computer
through FireWire and the data is captured at 1 kHz. Figure
6 shows a block diagram of the dVRK controller hardware;
a more detailed description of the system can be found in
[2]. The updated velocity estimation algorithm from [25]
was used. The torque measurement 7 is obtained by the
multiplication of the measured current values with motor
torque/force constants. The data is published as ROS topics
and is recorded as rosbags for offline processing on Matlab
Simulink. To evaluate the performance of the estimation
method, the normalized root mean square errors (NRMSE)
between the actual and estimated forces/torques can be found
using the formula given in [18]:

SN [9(n) — y(n))2

1
NRMSE; = \/N (6)
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Fig. 6: dVRK controller hardware for one channel

TABLE I: Error values (NRMSE* or RelE™) of joint force
(f) or torque (7) in free-motion for proposed method (PM)
compared to other reported methods

[ Method | T1 | T2 | f3 ] T4 | 75 | 76|
PM* 4.37 3.51 4.99 4.70 6.28 6.80
[18]* 5.92 5.78 18.84 10.41 16.84 | 22.96

SNN* 13.88 10.87 14.64 13.57 19.92 | 20.50
PMT 18.40 11.19 13.95 12.10 | 21.23 | 22.39
71t 22.07 | 31.55 | 29.55 11.93 35.10 | 45.30
[191F 9.30 17.80 19.10 13.40 | 2390 | 21.30

Here, N is the number of samples in the time series data from
the experiments, y is the vector of reference force/torque, ¥
is the vector of estimated force/torque of y, and y(n) and
(n) are the n'™ samples of y and ), respectively.

However, in [17] and [19], the identification performances
were evaluated by calculating relative prediction error by the
following formula:

SN [5(n) — y(n))?
S lyn)?

In this paper, both formulas have been used to make compar-
isons with the results in the mentioned papers. In this paper,
errors with superscript + are computed using the relative
prediction error (7), and those with the superscript * are
calculated using the NRMSE (6).

7
19l @

A. Validation of Dynamic Identification

In the first experiment, the neural network outputs and the
measured inverse dynamics forces/torques from the actuators
in free motion are compared. For this experiment, a test data
set was collected separately from the training set with the
operator unilaterally controlling the robot in free motion for
both datasets. It can be seen in Fig. 7 that the measured
force/torque and estimated force/torque by the neural net-
work are very close and dynamic identification is realized
accurately on each joint with NRMSE of less than 10%, as
shown in Table I. Table I also shows the comparison of the
errors with the proposed method (PM) to results in various
papers using the previously mentioned metrics. Also, to serve
as a reference, a single neural network (SNN), similar to [20],
has been trained using the Levenberg-Marquardt method,
with 12 inputs (joint variables) and 6 outputs (torques) and
100 hidden neurons. It can be seen that the results obtained
with the proposed method are generally better than the prior
results in the literature, and the use of neural networks for
each joint provides an improvement over the SNN.

B. Validation of External Force Estimation

The second experiment was conducted to validate the force
estimation in the Cartesian X, Y and Z axes using a force
sensor. A Gamma F/T Sensor (ATI Industrial Automation,
Apex, NC, USA) was fixed to a platform so as to have the
same frame orientation as the dVRK base. Also, a 3D printed
apparatus with square holes was mounted to the top of the
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Fig. 7: Joint torque identification results

Fig. 8: Test setup used in validation experiments. Contact in
(a) X-axis, (b) Y-axis, (c) Z-axis

sensor for the purpose of touching in each axis separately,
as illustrated in Fig. 8. Figure 9 shows the comparison of
measured forces and estimated forces when the end effector
is in contact with the sensor, with results summarized in
Table II. When there is contact with the sensor, it can be
observed that estimation results of each axis are in agreement
with the force sensor outputs with less than 10% error in
each axis. However, the fact that the robot was not always
in direct contact with the sensor, but rather with an apparatus
that was mounted on top of the sensor, and had contact at
locations other than the tip, may account for some of the
errors observed. Table II also compares the force estimation
errors obtained in this experiment with the results provided
in [18], which is the only cited paper that uses a similar
dVRK setup and has performed dynamic contact with a force
sensor for validation of force estimates. While the exact
experiment setup cannot be replicated, it can be seen that
the performance of the proposed approach is comparable.

TABLE II: Normalized RMS error values (NRMSE) of
Cartesian force (F') in contact and free-motion

[Method | F» | F, | F: |
PM* | 680 | 986 | 445
[18F | 826 | 596 | 6.10

C. Stiffness Identification

To demonstrate the feasibility of the proposed method for
clinical purposes, a palpation case study was also performed.
The goal was to differentiate the relative stiffness values of
three different phantoms by touching 7 random points on
each phantom, as shown in Fig. 10. The phantom in Fig.
10(a) has the lowest stiffness and the phantom in Fig. 10(c)
has the highest stiffness. During the experiments, force and
position data were recorded, external forces were estimated
with the proposed algorithm and these were plotted with
respect to changes in tool position, as shown in Fig. 11.
Stiffness can be determined from the slope of these plots. As
the exact stiffness values of the phantoms were not available,
the same calculation was performed with the measurements
from the force sensor placed under the phantoms. Table III
shows consistent estimates of the average stiffness for each
phantom by the proposed method (PM) and force sensor
(FT). This result shows that the proposed method can be
useful in applications such as tissue differentiation which
could be of practical use to surgeons.

D. Discussion

When compared with existing identification and estimation
results in the literature on the dVRK, the method in its
current form has comparable or better error rates. However,
the main advantage of the proposal is the learning nature
of the identification method and it can be improved with
more datasets and training. It is also versatile when compared
with other identification/estimation methods. In the current
implementation, training, identification and estimation have
been performed off-line, but this is purely an implementation
issue. Even if the neural network is trained offline, it can be
used in a real-time application. Also, it should be possible
to implement an adaptive neural network to enable real-time
training. This would mean that training can be performed by
the surgeon/operator as the method does not require an op-
timal excitation trajectory, given that sufficient excitation is
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provided by the human operator. The presented experiments
were performed on a single PSM with a single instrument, so
it is possible that real-time training updates may be required
when applying the neural network to different PSMs and
instruments. Also, during a surgical operation, robot dynam-
ics is subject to changes as the robot is coupled with the
environment at various contact points, including the trocar.
Therefore, a lumped black box approach that can achieve
real-time identification would be more robust compared with
explicit model based approaches which could suffer from
model uncertainties due to interaction with the environment.
One possible application of the proposed method would be
to enable surgeons to perform identification before/during

TABLE III: Estimated stiffness values for each phantom
using proposed method (PM) and force/torque sensor (FT)

Phantom #1 Phantom #2 Phantom #3

Method PM FT PM FT PM FT
(N/m) (N/m) (N/m) (N/m) (N/m) (N/m)
P1 237.74 | 238.84 | 499.23 | 388.64 | 738.11 | 799.08
P2 25522 | 225.13 | 556.89 | 530.37 | 690.36 | 818.21
P3 281.45 | 249.96 | 525.62 | 517.47 | 857.74 | 806.83
P4 216.06 | 260.33 | 456.74 | 489.32 | 714.23 | 856.99
Ps 24378 | 252.18 | 479.41 | 533.21 759.9 806.04
P6 268.47 | 219.14 | 499.17 | 501.38 | 697.89 | 856.78
P7 224.03 | 24526 | 465.45 | 522.67 | 761.48 | 807.65
Avg(K) | 246.68 | 241.55 | 497.50 | 497.58 | 745.67 | 821.65

the surgical operation for identification and elimination of
trocar interaction forces. Another limitation of the current
implementation is that the training workspace did not cover
the whole robot workspace, but this can be corrected by
combining data from multiple training sets. Furthermore, the
method can be augmented by the use of deep learning as
extensive amounts of data are being gathered from different
dVRK and da Vinci setups around the world. Finally, we
have provided force estimates from the tip on three axes,
but this was due to limitations in the experiment setup. A
mounting apparatus for the force/torque sensor and a grip
force sensor is required, but the proposed method is capable
of handling estimation in these axes as well.

V. CONCLUSIONS

We proposed a neural network based inverse dynamics
identification method for the da Vinci patient side manip-
ulators and, using this identification method, we obtain a
simple and robust way to filter out the dynamic components
from the joint torque measurements for the estimation of
the external forces. The method does not require a ground
truth sensor and is easy to implement. With experiments,
we have demonstrated that both the identification and ex-
ternal force estimation methods have results comparable to,
or better than, similar methods used on the dVRK. The
method can be improved with more training and real-time
implementation. Different neural network architectures can
also be implemented for better performance.
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