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Abstract— In robot-assisted minimally-invasive surgery
(RAMIS), force estimation remains a challenging issue. We seek
to estimate external forces based on available measurements
from the joint encoders and motor currents. To this end,
we propose a deep learning approach for end-to-end force
estimation on the da Vinci Surgical System that is trained using
data collected by both moving an instrument in free space and
by palpating a tissue phantom that has an embedded force
sensor for ground truth. The trained neural network provides
reasonable force estimates (within about 1N to 2N precision
given a full range of 10N) and is generalizable to other regions
of the robot workspace. We further show that our proposed
system can provide useful haptic feedback in a pilot study to
differentiate stiffness in various tissue phantoms.

Index Terms— deep learning, neural networks, force estima-
tion, surgical robotics, dVRK

I. INTRODUCTION

Proven to reduce post-operation trauma as well as other
risks, robot-assisted minimally invasive surgery (RAMIS)
has become a standard and well-established procedure. In
RAMIS, organs are manipulated via robotic instruments
inserted through small incisions, while an endoscopic camera
provides operators with live video. Real-time force sensing is
a desired capability in RAMIS to enable haptic feedback for
surgeons, giving the useful sense of touch that will help to
further decrease trauma during and after the operation. How-
ever, integrating force sensing for haptic feedback in surgical
robotic systems remains an open problem [1]. Attaching a
force sensor is challenging due to space, sterilizability, and
cost constraints.

This work presents a deep neural network to estimate
interaction forces, without a force sensor, on the da Vinci
Research Kit (dVRK) [2], which is an open-source platform
based on the first generation da Vinci R⃝ Surgical System (In-
tuitive Surgical Inc., Sunnyvale, CA). The da Vinci testbench
used in our system has two components: a surgeon’s console
and a patient side console. The surgeon’s console is a Master
Tool Manipulator (MTM), providing 7 DOF for dexterous
and natural tool manipulation, with an additional DOF for
gripper control. On the patient side, there is a Patient Side
Manipulator (PSM), controlled by the surgeon through the
MTM. The PSM does not sense interaction forces, but our
deep learning model provides end-to-end force estimation
by receiving joint velocities and joint torques as inputs and
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yielding Cartesian force in the X, Y and Z directions as
outputs. The estimated force from the PSM can then be used
to provide haptic feedback to the surgeon.

Internal dynamics of a surgical robot can be difficult to
model. Friction, wear and tear as well as other disturbances
within the internal structure of a robot are highly nonlinear.
On the other hand, a neural network can be easily retrained
with a force sensor and teleoperation data gathered from a
new surgical robot.

We perform both offline and online evaluation for our
neural network, comparing the neural network output to
forces measured by an external force sensor. We also carry
out a pilot study to evaluate whether the estimated force
can help operators to distinguish between phantom structures
emulating human tissues of different stiffness.

II. RELATED WORK

Previous works to estimate forces have been based on
either intrinsic feedback (positions, velocities, torques) or
extrinsic (external sensor) feedback, such as the endoscope
images, with approaches that are model-based, data-driven
or a combination of the two.

Our proposed method uses intrinsic feedback and is
completely data-driven. A similar approach was used by
Abeywardena et al. [3] but focused only on the estimation
of the grip force in a da Vinci instrument. Recently, Yilmaz
et al. [4] presented a neural network to estimate the internal
(dynamics) torque of the da Vinci; the internal torque was
then subtracted from the measured torque (based on the
motor currents) to estimate the external torque. Thus, this
approach can be considered as a combination of a data-driven
method and a model-based method. Instead of using deep
learning, some researchers use a combination of machine
learning and simulation/modeling, making use of a torque
observer [5] and neuro-evolutionary fuzzy systems [6].

Other methods use intrinsic feedback in model-based
approaches, including modeling of the Lagrangian dynamics
of the robot [7], changes in cable tension [8] and/or friction
in the transmission [9]. These approaches suffer from inac-
curacy in the estimation of the model parameters, as well as
from unmodeled effects.

Some researchers adopt external feedback by using a
miniature force sensor to provide force estimation [10], [11],
[12]. These implementations require either creating a cus-
tomized tooltip or attaching the force sensor on an existing
tooltip/camera. This adds another layer of complexity to
the system and raises questions about cost, sterilizability
and compatibility with other medical devices [13]. Other
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Fig. 1 Block diagram of dVRK with neural network for external force estimation and haptic feedback via Cartesian
impedance controller

approaches based on external feedback involve extracting
visual cues from tissue deformation and using computer
vision to estimate forces [14], [15], [16], [17], [18], [19].
These demonstrate high accuracy in their setup and show the
potential of neural networks and computer vision algorithms
to extract force data; however, since they rely on visual
features, they may not generalize well to new tissues with dif-
ferent appearances. Also, as many of these implementations
are only shown to estimate force with a single component
(usually Z-axis), they may not be able to provide realistic
multidimensional haptic feedback for dexterous and natural
palpation movements.

Our contributions are as follows: (1) a purely data-driven
end-to-end force estimation algorithm, based on deep learn-
ing, that has the potential to generalize across tissues of
different stiffnesses, workspace configurations, and users’
behavior, and (2) a haptic feedback system integrated into the
dVRK infrastructure that has been validated by a pilot study.
Our method uses signals already measured by the system and
does not require additional sensors at runtime (an external
force sensor is required when collecting training data).

III. METHODOLOGY

A. Approach

In this work, we investigate an end-to-end approach, where
the neural network estimates the external forces given the in-
ternal position/velocity and torque measurements. The neural
network is trained by teleoperating the robotic instrument
in both free space and in contact with a phantom. A force
sensor placed under the phantom provides the ground truth
for training. Although using the measured joint position can
enable the network to better learn the robot dynamics, such
an approach may lead the neural network to learn the position
of the phantom. To prevent this, we do not pass the position
of the robot to the neural network, and use only the joint
velocities and torques, as shown in Fig. 1 and in Eq. 1:

Fext = NN
(︂
θ̇m, τm

)︂
(1)

In our preliminary testing, this worked about as well as an
implementation that also used the measured joint positions,
which indicates that joint positions have a small effect on the
robot dynamics. For instance, the patient side manipulator

(PSM) of the da Vinci contains mechanical counterbalances
and therefore the effect of gravity is minimal. If necessary,
a gravity correction term can be added to improve the force
estimation.

B. Deep Learning Model

We use the Keras library to implement a fully-connected
feedforward neural network, with Tensorflow as backend
[20], [21]. We started from a single layer network and
empirically increased the network complexity and searched
for the optimal hyperparameters. The resulting network has
5 hidden layers and each hidden layer has 250 neurons. Fig.
3 shows the complete data flow of the neural network. The
input dimension is 1200. The output dimension is 3, as the
ground truth Cartesian force has 3 components: X, Y and Z.
We use Leaky ReLU as the intermediate activation function.
The output layer uses the sigmoid activation function and the
values are scaled to the measured minimum and maximum
detected forces in the training data. We initialize our weights
using the He uniform initializer. Additionally, we choose
SGD over Adam, as it provides more effective generalization
in our tests. The learning parameters are set as follows: learn-
ing rate: 0.01, decay: 10−6 and momentum: 0.9. Nesterov’s
accelerated gradient descent is used for faster convergence.
The loss function is set to MAE (mean absolute error),
as when the network is used to provide haptic feedback,
transient and large-magnitude errors are not as noticeable as
long-lasting and small-magnitude errors.

C. Setup

Fig. 2 shows the complete setup in horizontal configu-
ration for both contact and non-contact scenarios as well
as the vertical configuration. The horizontal configuration is
used for both training and evaluation. However, the vertical
configuration is used only for evaluation. We use a Gamma
Force/Torque sensor (ATI Industrial Automation, Apex, NC)
to measure the Cartesian force acting on the phantom. The
force sensor’s sampling rate is set at 1,000 Hz. The phantom
is placed above the force sensor, secured by a large binder
clip, and its orientation is manually aligned with the robot
world coordinate system.
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	A	rotation	matrix	about	y-axis	(clockwise)	with	θ	=	90	degrees	is	
applied	to	measurements	from	the	force	sensor,	while	force	predictions	
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Vertical	Configuration:	has	positive	y-axis	going	into	the	force	
sensor	and	positive	x-axis	pointing	at	the	ground.	Data	is	obtained	

with	a	balanced	mix	of	contact	and	no-contact	samples.	
This	configuration	is	used	for	evaluation	only.

Horizontal	Configuration:	has	positive	y-axis	going	into	the	force	
sensor	and	positive	z-axis	pointing	up	from	the	ground.	Data	is	obtained	with

a	balanced	mix	of	contact	and	no-contact	samples.	This	configuration	
is	used	for	both	training	and	evaluation.

Fig. 2 dVRK testbench is shown with da Vinci robot arm in both horizontal and vertical configurations. The phantom
is always placed directly on the ATI network force/torque sensor, all secured by a large binder clip.
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Fig. 3 Overview of dataflow, neural network architecture and sliding window methods. Sliding window method A
(shifting by 100 raw datapoints) is used for training only, while method B (shifting by 1 raw datapoint) is used for
both offline and online evaluation.

D. Data Collection

We teleoperate the PSM and smoothly palpate the phan-
tom at different intervals, imitating realistic movements in
a surgery. We also include spontaneous movements with
varying velocities and contact forces. As shown in Fig. 5,
we try to have a balanced mix of no-contact (free space
movement without any touching by the robot arm) and
with-contact (smooth pokes at various angles and intervals)
data. When gathering no-contact data, we put the PSM in

various positions, including near joint limits. All this ensures
a diverse range of data for effective learning, helping the
neural network to discern contact from no-contact and to
estimate force accurately at as many PSM positions in the
workplace as possible. The robot gripper is not used and
kept closed during teleoperation, as we are more interested
in the palpation force of the robotic arm with respect to the
phantom. We capture the data through Rosbags [22].

Within each bag, there is a timestamp for each data value.



Fig. 4 dVRK testbench horizontal configuration for pilot
study. A small round marker is attached to the tip to
prevent damage to soft phantoms. Also depicted are the
phantoms used in the pilot study, with increasing order
of stiffness from left to right. The neural network is
not trained on them. They are set to equal height and
covered with a drape during the pilot study.

The da Vinci’s sampling rate is set to 1,000 Hz. For this
work, we use only the robot’s joint velocity and joint torque
data. Velocities are estimated from the encoders using the
algorithm in [23] and torques are calculated using motor
current measurements.

Table I summarizes the dataset sizes used in this paper and
the approximate corresponding duration given the sampling
rate of 1000 Hz. The training and the validation sets have a
standard ratio of 80 to 20. The validation set is not trained
on, but is used after every epoch during training to minimize
overfitting. Both offline evaluation sets have approximately
the same size for ease of comparison and analysis. As
evidenced by the duration, many ROS bags are collected
over the course of several weeks in order to form such large
datasets.

E. Data Processing

Although both the da Vinci and the force sensor’s sampling
rates are set to 1,000 Hz, the topics are not synchronized
with each other. As shown in Fig. 3, given that there is a
large amount of data generated due to the high sampling rate,
we use piece-wise linear interpolation, which is sufficiently
precise in aligning data from both sources.

Since we keep the gripper closed, we consider only the

TABLE I Summary of datasets. The number of raw
datapoints for each set is shown, along with the corre-
sponding duration given the sampling rate of 1000 Hz.
H: Horizontal Configuration. V: Vertical Configuration

Set Size Duration
Training (H) 17,862,662 5.0 hours

Validation (H) 4,465,655 1.2 hours
Offline Evaluation (H) 359,921 5.9 minutes
Offline Evaluation (V) 345,060 5.8 minutes

velocity and joint torque of the remaining six joints. Fig. 3
also depicts two sliding window strategies. Sliding window
method A is only used for training, while method B is
employed for both offline and online evaluation. We notice
that using method B for training yields poorer predictive
performance than using method A. Additionally, method B
can capitalize on the high sampling rate of the da Vinci robot,
which is particularly necessary during online evaluation in
order to provide fast and smooth feedback. For both methods,
each raw datapoint has 12 attributes. We group every 100
consecutive raw data points into a sample, yielding 1200
attributes per row for input to the neural network. For
ground truth Cartesian force values, for every row of data
(sample) previously mentioned, we use the force vector
label (containing X, Y and Z components) of the 100th raw
datapoint as the target prediction for that entire row. The only
difference between the two sliding window strategies is that
method A shifts the window by 100 raw datapoints, while
method B shifts the window by 1 raw datapoint. Overall, the
sliding window mechanism serves to give the neural network
a sense of memory, enabling it to take into account backlash
and hysteresis to make effective predictions for the current
timestep.

IV. EXPERIMENTS

A. Offline Evaluation

As shown in Fig. 2, we collect data in both horizontal
and vertical configurations to evaluate our neural network.
Fig. 5 demonstrates our data collection method, in which we
ensure a wide range of no-contact and contact scenarios, such
as poking with the tip or edge of the gripper. The phantom
is the same as the one used in training.

B. Haptic Feedback Pilot Study

For online validation, we conduct a pilot study in horizon-
tal configuration with three scenarios: (1) no force feedback,
(2) force feedback from the neural network, and (3) force
feedback from the force sensor under the phantom. The
participants of this pilot study are the last three authors of this
paper. Note that the first and second authors collected all the
training data, so the pilot study also tests the neural network’s
potential to generalize to multiple users. The participants are
asked to palpate three phantoms of low, medium and high
stiffnesses, shown in Fig. 4. These phantoms are covered
under a drape and their order is shuffled before a participant
is engaged in a test scenario. Their heights are set to be equal,
and decoys under the drape are used to prevent participants



Fig. 5 Various scenarios on the same phantom are shown during data collection as well as offline evaluation. There is
neither gripping nor pulling during teleoperation, as we are more interested in the palpation force with respect to the
phantom.

from guessing based on visual cues, as shown in Fig. 4.
For the no feedback case, the participants teleoperate with
no haptic feedback upon contact. For the neural network
feedback case, teleoperation occurs with force feedback
from the neural network. For the force sensor feedback
case, teleoperation occurs with force feedback drawn directly
from the force sensor with no modification. Force feedback,
which occurs at approximately 1000 Hz, is implemented
by reversing the direction of the predicted force (either
drawn from the neural network or the force sensor) and then
applying it on the MTM.

The participants are aware of the scenario they are cur-
rently in (no feedback, neural network feedback or force
sensor feedback). In each scenario, while the test phantoms
are presented to participants at random, participants are
allowed to revisit previous phantoms as much as they need.
Before proceeding to the next scenario, participants must
give a final ranking of the three phantoms in the current
scenario. A participant must be able to rank the stiffness of
all 3 phantoms correctly and confidently in order to be given
an A (able to discriminate). A participant who is able to do
so with low confidence is given a G (correct but uncertain
guess). A participant who is not able to rank all three
phantoms correctly is given a U (unable to discriminate).
Redoing a previously completed scenario is not allowed. The
same process is applied for all three scenarios (no feedback,
neural network feedback and force sensor feedback). Each
participant takes part in the pilot study individually, with no
other participants present for all three scenarios.

V. RESULTS

A. Offline Force Prediction

Fig. 6 shows offline evaluation results for both horizontal
(left) and vertical (right) configurations. For the vertical
configuration, as mentioned in Fig. 2, a rotation is applied
to the force sensor data so that the readings remain aligned
with the robot world coordinate system. The red curves show
the error, calculated by subtracting predicted values from
measured values. Zoomed insets depicting predicted values
(blue) and ground truth values (orange) are used to highlight

areas with particularly good and bad alignment, revealing the
strengths and weaknesses of our neural network in different
intervals.

Table II summarizes the offline evaluation results, showing
both Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE). We notice that the neural network performs
better in the horizontal configuration than the vertical config-
uration, evidenced by the lower MAEs and RMSEs of plots
on the left hand side. As shown on the horizontal config-
uration plots, the prediction curve (blue) closely embraces
the ground truth curve (orange). Minor errors, in which the
network incorrectly predicts a force when there is none, are
also detected, as can be seen in the Y-component and Z-
component plots of the horizontal configuration and the X-
component plot of the vertical configuration.

There is also a considerable amount of sudden spikes in
the red error curve for both horizontal and vertical configu-
rations. Many of these error spikes do approach the highest
magnitudes of force exerted in all three components across
horizontal and vertical configurations, as evidenced in both
Fig. 6 and Table II. While some of these error spikes are due
to the neural network completely missing the estimation, in
situations where the neural network obtains a fairly precise
estimation of the force, a small phase shift or lag in the
prediction curve can also cause high-magnitude error spikes.
An example of such a lag can be seen in zoomed inset
between 180s to 210s in the horizontal configuration’s Y-
component plot (Fig. 6). When the configuration is switched
to be vertical, the neural network generalizes well in the Y-
axis but shows more error in predictions in the X and Z-axes.

The prediction error of the neural network seems to follow
a normal distribution. From Table II, we notice that the
mean value of prediction error is very close to 0N. Also,
the low standard deviation values in Table II are reflected
in the bottom figures of Fig. 6 by the concentration of
the probability density curves’ peaks near 0N. The density
of prediction error further away from 0N quickly becomes
negligible. Overall, the prediction is smooth and accurate to
about 1N for the horizontal configuration and 2N for the
vertical configuration, with the maximum magnitude of the
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Fig. 6 Offline evaluation results and statistical analysis for horizontal (left) and vertical (right) configurations as depicted
in Fig. 2. The results are generated by palpating with different angles, intervals and intensities as previously shown
in Fig. 5. The red curve shows the prediction error with respect to ground truth data, with zoomed insets depicting
actual predictions (blue curve) versus ground truth values (orange curve) to highlight the neural network’s strengths
and weaknesses in different intervals. For the top six plots, the Y-axes show force (N) and the X-axes depict time (s).
The six plots at the bottom show the error distribution for both horizontal and vertical configurations, normalized so
that the probability density integrates to 1 for each curve. The density curve resembles a bell curve, revealing a normal
distribution with the prediction error concentrating near 0N for both horizontal and vertical configurations.



TABLE II Summary of key metrics for offline evalua-
tion results (in N). MAE, RMSE, Mean and STDev are
calculated on the prediction error. Min and Max refer
to minimum and maximum recorded ground truth force
in the corresponding configuration.

Configuration Horizontal Vertical

X-component

MAE: 0.12
RMSE: 0.26
Mean: -0.02
STDev: 0.26
Min: -5.92
Max: 4.26

MAE: 0.50
RMSE: 1.20
Mean: -0.47
STDev: 1.11
Min: -9.95
Max: 1.01

Y-component

MAE: 0.11
RMSE: 0.22
Mean: -0.03
STDev: 0.22
Min: -3.67
Max: 4.83

MAE: 0.16
RMSE: 0.28
Mean: 0.07
STDev: 0.27
Min: -3.44
Max: 3.15

Z-component

MAE: 0.16
RMSE: 0.40
Mean: -0.07
STDev: 0.40
Min: -9.00
Max: 1.31

MAE: 0.52
RMSE: 1.28
Mean: 0.43
STDev: 1.21
Min: -7.02
Max: 2.67

TABLE III Pilot study results. A: able to discriminate
all three phantoms correctly and confidently, G: correct
but uncertain in discrimination of all three phantoms,
U: unable to discriminate all three phantoms

Participant Test Scenarios
No Feedback NN Feedback ATI Feedback

I U A A
II G A A
III A A A

exerted force being approximately 10N.

B. Haptic Feedback Pilot Study

This subsection demonstrates that the neural network’s
predictions, though prone to errors, are actually usable for
palpating and stiffness discrimination in real-time conditions.
Table III outlines the pilot study results, showing three sce-
narios from left to right respectively: no feedback, neural net-
work feedback and force sensor feedback. Though allowed to
revisit previous phantoms, the participants are able to finish
all their scenarios in about 10 minutes (including the time
to rearrange phantoms before each scenario). Participants of
the user study are able to rank the stiffnesses of the three
phantoms correctly when palpating using force feedback
from the neural network. With no force feedback, only one
user is able to discriminate correctly and confidently, while
the remaining participants are either unable to rank or only
able guess correctly with high uncertainty. As expected, in
the force sensor feedback case, all users are able to rank
the phantoms correctly and confidently. The neural network
feedback does not feel as smooth as the feedback from the
sensor, yet that does not affect the overall sense of touch and
how the users rank the phantoms.

VI. DISCUSSION

We have considered other deep learning approaches, such
as recurrent neural networks (RNNs), that yield highly
accurate force predictions. However, we decided to use

fully-connected feedforward networks because they allow
for rapid training and deployment, while still delivering
sufficiently robust and usable predictions. Ease of training
and deployment are crucial to us as we strive for complete
generalizability of force sensing to different phantoms, dif-
ferent instruments and perhaps even different PSMs in our
future work. Nevertheless, inspired by the powerful concept
of memory from RNNs, we do implement the sliding window
mechanism for our neural network to take advantage of the
raw inputs’ temporal structure.

Our results demonstrate that our neural network is capable
of providing useful force feedback without sensors at test
time. We choose not to use joint positions in order to avoid
the risk that the neural network learns a palpation map that is
specific to the training phantom. Through the palpation study,
we show that the network has the potential to generalize to
new phantoms on which it has not been trained. We do notice
that a user’s ability to discriminate seems very hampered
without feedback. The network’s predictions help users feel
the stiffness of the phantoms with performance comparable
to that obtained with use of a physical force sensor.

Since the neural network has to learn a diverse range of
contact scenarios as shown in Fig. 5, it gains some gener-
alizability, with sacrifices in precision. Nevertheless, since
RAMIS operations typically involve a wide array of contact
situations, it is more imperative that our neural network is
able to handle them all within reason. We discovered during
the haptic feedback pilot study that consistent magnitude
errors do not pose a significant issue. Rather, it is the neural
network’s flexibility allowing feedback at various contact
angles, as depicted in Fig. 5 and Fig. 4, that provides a
realistic sense of touch for the participants of the pilot study.

Although our study only analyzes two configurations, it
can be argued that the data generated from these two config-
urations are quite representative of all possible scenarios in
our testbench. For example, another potential vertical config-
uration is the mirror of the current vertical configuration, in
which the phantom is rotated 90 degrees anticlockwise from
the horizontal configuration. In this case, the same rotation
matrix can be applied, but with a different angle, to transform
the force sensor labels to the approximate coordinate space
of the neural network’s sense of direction.

While our network cannot learn the complete dynamics
model as the mass/inertia matrix, coriolis/centrifugal forces,
and gravity depend on the joint positions, our results suggest
that the effect of the da Vinci PSM dynamics is relatively
small. Other factors that depend primarily on velocity, such
as friction, may have greater influence. Elements such as
friction, backlash and hysteresis can be challenging to model
accurately, as they are dependent on the individual robot arm.
By casting the problem of internal dynamics modeling as a
deep learning problem, we are able to reduce the complexity
and create a predictive system that is robust to variations.

We use a force sensor mounted under the phantom to
approximate the force at the instrument tip. There may be
some discrepancy, for example, due to the deformation of the
intervening phantom. We are currently working to quantify



this possible discrepancy by using a different robot, with a
wrist-mounted force sensor, to palpate the phantom while
reading values from both force sensors.

Although our study has demonstrated the viability of an
end-to-end neural network for estimating external force, one
question remaining is how to implement such a system in
practice. In particular, it remains to be seen how well a neural
network trained on one PSM and one instrument will work
for a different PSM and/or a different instrument, even of
the same type. Retraining the neural network in the field, for
example, prior to or during a surgery, would be challenging if
the training requires a force sensor placed in the environment.
One approach is to investigate whether it is possible to fine-
tune the model using only free-space manipulations to learn
the internal dynamics of a new robot arm and/or instrument.

VII. CONCLUSION

We have demonstrated that a neural network can provide
useful force estimation in both offline and online evaluation.
Future work will further evaluate the method’s generalizabil-
ity, such as testing on a different da Vinci arm and instru-
ments of the same type to see whether different amounts
of wear and tear would affect accuracy. Also, more tissue
handling methods such as pulling, lifting and gripping the
tissue can be explored. It would be interesting to do online
learning so that the network can adapt to a new phantom
as the user is palpating it, thus streamlining the training
and validation process. This approach could be the first step
in creating a general force estimation method that can be
adapted at test time to a variety of robot architectures and
procedures.
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