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Abstract—Demand response (DR) has gained increasing im-
portance with the grid modernization and evolution of the
smart grid. Customer baseline load (CBL) informs the expected
consumption of the consumers and is an important factor in
DR management. To develop forecasting methods for CBL that
work satisfactorily is a major challenges faced by independent
system operators (IS0s) and otilities. Consequently, it is critical
that these methods are evaluated based on their performance.
The major objective of this paper is to empirically evaluate
the performance of CBL estimation from historical observations,
for residential customers. In addition to some well established
methods, we have used an artificial neural network regression for
estimating CBL. We use the CER smart meter data from 6435
residential and small industrial costomers collected between July
2009 to Dec 2010, for this evaluation. We performed the error
analysis of different methods using both the accuracy and bias
metrics.

Index Terms—Customer Baseline Load, Load Forecasting,
Demand Response

I. INTRODUCTION

The consumers around the globe expect an sustained and
on-demand supply of eleciricity, at all the time. In recent
years, the consumer consumption patterns have changed and
are expected to change further with introduction of new loads
such as, intelligent electronic equipment and electric vehi-
cles. Meeting the dynamically changing customer demands
is challenging for the grid operators as electricity cannot
be efficiently stored in substantial quantities. Operators must
organize the gpeneration and transmission grid so that demand
and supply exactly match, every moment of the day, every day
of the year, in every location. Most eleciric utilities serve a
variety of customers: residential, commercial and industrial.
Each class of customer have different consumption needs,
resulting in a differing load profile for each class. Accurate
forecasts of such consumption are necessary for suppliers,
financial institutions and other participants in electric energy
generation, transmission, distribution and trading. These fore-
casting issues have become more convoluted with the pene-
tration of distributed energy resources (DERs). The relatively
recent emergence of the smart grid technologies attempits to
address these challenges and facilitates new paradigms under
the umbrella of demand and response (DR) issues.
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A Demand and response in the smart prid

With the advent of smart grid technologies, the concept of
power delivery transcends to efficient energy delivery. This
ensures optimized generation, transmission, and consump-
tion over conventional eleciricity systems. The assimilation
of DERs necessitates the bidirectional information exchange
between consumers and the grid operators. The incentives
associated with roof-top solar panels transform a large number
of residential consumers to potential producers. This motivates
users participation in energy management and savings through
the DR mechanism. A key mission of the smart grid is to
manage DR for reducing peak electricity load and facilitate
consumers to participate in energy-saving programs [1]. The
duplex information flow through communication infrastructure
enables the control and scheduling of deferable or controllable
loads such as residential air-conditioners and electric heaters,
to optimize energy consumption and costs. An alternative
approach for DR management is to dynamically vary tariff
or incentives based on consumption. Essentially, the DR
management programs integrates the varying demand with the
market dynamics.

In the US, the Federal Energy Regulatory Commissions
(FERC) 745 order mandates that the DER owners have the
right to participate in the energy market [2]. The demand
reduction is treated as a supply source according to this
order. In addition, FERC instructs the independent system
operators (ISOs) and regional transmission operators (RTOs)
to remunerate the residential DER producers with locational
marginal price. However, appropriate compensation for DER
producers for demand reduction is not yet standardized [3], [4].
The FERC order 745 and its ratification by the Supreme Court
of the United States, forces the DR programs to heavily depend
on accurate forecasting of the energy consumption profiles of
customers, to decide on how the providers can fix tariff or
compensate the customers [5], [6].

B. Customer Baseline Load

The predicted consumption level, or the amount of elec-
tricity that a customer would have consumed in the absence
of any DR program, is defined as the Customer Baseline
load (CBL) [7]. This is different from the load forecasting
methods which predict the actual load to be consumed by a
customer irrespective of the DR scheme. The CBL can be
used to determine the incentive payment in DR programs is
a preferred approach for many operators [6]. The payment



settlement in Peak Time Rebate (PTR) programs are regulated
by the estimated CBL. The erroneous estimation of CBL
would adversely affect the performance of a DR program.
Thus, effectiveness of DR, necessitates accurate forecasting of
CBL [8]. Some of the well-established CBL calculation meth-
ods have been adopted by utilities for PTR. programs targeted
at large industrial customers [9]. Because this program is not
offered to the residential customers, the evaluation of CBL
calculation methods for these customers have gained limited
attention [10].

In this paper, the CBL estimation methods are extensively
evaluated for residential customers similar to [7]. In addition
to the widely used methods for industrial CBL estimation, we
also evaluate a method based on neural network regression.
The Section II discusses the methods in detail, Section III
describes the evaluation metrics, and Section IV summarizes
the results, followed by the conclusion in Section V.

II. METHODS

We consider three established kinds of CBL estimation
methods that are popular among IS0s [11]. These are XofY,
exponential moving average, and the regression methods.
Many attempts have been made in the literature to enhance the
performance of these methods by either modifying the tunable
parameters or by refine the input data [12]. The XofY methods
have been divided into three categories, namely HighXofY,
LowXofY and MidXofY. In the moving avarage category we
consider the exponential moving average method and for
regression, we chose the artificial newral network (ANN).

A HighXofY Method

We define the non-DR days as the days for which DR
events are absent HighXofY method selects ¥ non-DR days
excluding weekends and holidays. Let C be the set of all
customers, and T' be the set of hourly time-stamps in a day.
X number of days are selected from the chosen ¥ non-DR
days according to a specific criteria based on consumption.
The baseline load for is defined as the average consumption
of the X days. The HighXofY CBL of customer n € O for
time-stamp ¢ € T for day d is expressed as:

Bfighxa_r}’{d‘ t} - l Z
= deHigh( XY d)

Here, I,(d,t) is the load consumed by n'" customer on d*"
day at time ¢. The New York ISO (NYISO) uses this method
for CBL calculation with parameters X = 5 and ¥ = 10, and
we have adopted the same parameters in this study.

ln(d, t) (TI-A)

B. LowXofY Method

This method does the opposite of HighXofY. It chooses X
number of lowest consumption days out of ¥ days to calculate
the baseline. The LowXofY CBL of customer n € C for time-
stamp ¢ € T on day d is defined as follows:

1
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For the simulations in this paper, we have chosen X and V'
as 4 and 5 based on [6].

C. MidXofY Method

This method rejects some of the low and high consumption
days and the remaining X consumption days in between, are
used for estimating the CBL.
et X <Y (Y -X)®%2=0,and Z2 = (¥ —X)/2. In
this method, the Z-lowest and Z-highest consumption days
are excluded and, the remaining X days are used in the CBL
calculation. The MidXofY CBL of customer n € C for time-
slot £ € T on day d is expressed as follows:

3
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We chose X = 4 and ¥ = 6, for the simulations in this paper.

D. Exponential Moving Average Method

The historical consumption pattern of consumers are given
due importance in this method. The initial average load of a
consumer is computed and the exponential moving average is
computed continuously, with the arrival of new observations.
The estimated baseline is expressed as:

Sn(drt) = 23 la(dyt)  (ILD)
j=1

Here, = is a constant with a value between 1 and k. It
represents the number of days considered for determining the
initial average load for consumer n € C for time-stamp ¢t € T,

The exponential moving average baseline for j*" day, with
T < j < k is expressed as:

Su(dy,t) = 6.5n(dy-1,8) + (1 - O)ln(dy,t)  (I-D)

where, 4 is a constant with a value between 0 and 1. It can be
observed that the relative importance of the load consumption
for each day, in the calculation of exponential moving average
baseline, decreases exponentially with time. The CBL for
customer n £ C for day d at time-slot ¢t € T is estimated
as:

By (d, t) = Sn(dy, t) (II-D)

One of the limitations of this method is its inability to estimate
baseline for days earlier than d.,;. To alleviate this, the
DR programs ensure that data for sufficient number of days
are taken into account while calculating the initial average
load. This methodology is employed by the NewEngland ISO
(ISONE). For a new consumer in the DR program, they
estimate the initial baseline load as the hourly average of the
preceding five business days, rejecting holidays and irrelevant
event days. This method of initial baseline calculation is also
known as CBL6 and is expressed mathematically as:

8
S5 = ZELKWh,

After calculating CBL6, the CBL for the new consumer is
calculated according to equation I1-D, with § = 0.9. The CBL

(1I-D})
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is estimated for each day, excluding weekends, holidays, and
event days. The choice of § = 0.9 implies that 90% of the
importance is given to the previous day’s CBL and 10% of
the importance is given for the current day consumption, for
estimating CBL.

E. Neuwral network Regression Method

This method uses multiple regressions based on neural net-
work to calculate the baseline. The structure of a feed-forward
neural network (NN) is shown in figure II-E. The network
diagram shown has three layers; input, hidden, and output
layer. Each layer consists of one or more nodes connected
by links or weights. The feed-forward NNs allow signals to
travel one way only; from input to output. The raw data fed
into the network, is processed by the input nodes. The hidden
node activity is determined by the output of the input units,
the weights between the input and hidden layer nodes, and the
non-linear activation function inside the hidden layer nodes.
The output depends on the hidden nodes output, the weights
between hidden and output nodes, and the activation function
of the output nodes. The NN model is simply a nonlinear
function from a set of input to a set of output variables,
controlled by a set of adjustable parameters or weights [13].
The weights are adjusted by a process of training. The NN are
trained by minimizing the error between a set of known input
and and output data, in an iterative process. Once trained, the
NNs can be used for prediction by applying new input data.

From the context of determining CBL, the NN is fed with
an input from energy consumed from past few days and the
desired output is to estimate the CBL for the current day. The
error from the predicted and actual value are fed back to the
network and weights are adjusted recursively to improve the
prediction of following day.

Let a set of days upto the current day d is, Doo,d) =
dy,...,dp. The CBL for customer i £ C on day d for time-
slot ¢t £ T is expressed as:

M
BYN(d,t)= ) W (Z Winln(dy, t) + W3 ) +wiH
1 1

Here, W denotes the weight between mth the hidden
layer node and the output layer node. Wjﬂn denotes the weight
between j** input layer node and m'™" the hidden layer node.
The bias corresponding to Input layer and hidden layer are
represented as W) and W', The weights and biases were
determined through a Levenberg-Marquardt algorithm. The
weights and biases were initialized randomly. The number
of hidden layer weights controls the non-linearity of the NN
model and is a determining factor for fimess of the regression.
We chose the number of hidden layer as 10 based on a hit and
trial approach. The number of input nodes were chosen as 5
which implies the load consumption of past five business days,
were fed as input to the NN.

ITI. EVALUATIONS

The smart meter technology provides utilities a large amount
of data at measurement rates of typically half hour or less.
Thus, the smart meter infrastructure promises efficient exe-
cution of DR schemes for residential customers by providing
the grid with near real-time energy consumption. This also
provides the customers with an opportunity to either manage
the load or enroll into DR incentive programs [14], [15]. This
motivated us to consider the smart meter data to evaluate the
estimation of CBL.

A. The CER dataset

The Irish Commission for Energy Regulation (CER) estab-
lished a Smart Metering Project Phase 1 in late 2007 with the
objective of setting up and running smart metering trials [16].
As part of this phase, a number of smart metering technology
trials were conducted and the associated data is published
to support research and analysis. For the simulations in this
paper, we considered smart meter data collected between July
2009 to December 2010, for 6435 residential consumers. We
considered the benchmark data from customers’ consumption
in the traditional fixed rate tariff environment

B. Performance metrics

To evaluate the error performance of the CBL methods, we
use two metrics, accuracy and bias [6].

The Mean Absolute Error (MAE) is used to quantify the
accuracy of methods. The MAE of CBL accuracy is defined
as:

_ > nec 2dep 2ter |bnld,t) —
|C|| DT
where, C is the set of all customers, D is the set of all days
in the dataset, and T is the set of hourly time-slots in a day.
Lower value of the MAE indicates higher the accuracy.

The estimation bias plays a significant role in assessing the
performance of an estimator. The bias associated with each of
the CBL estimation methods is expressed in equation (I1II-B).

i > 1ec 2deD 2ter \bnld,t) — In(d, )
ICl|DIIT|

In(d, )]

III-B
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(I- EEIE CBL methods with positive bias overestimate the cus-

tomers’ actual consumption and vice-versa.
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Fig 2. CBL estimaies for one randomly chosen customer. Different colors
mpresent different half-hourly time Windows.

IV. RESULTS

CBLs calculated for a one customer chosen randomly
with different methods described in Section Il are shown in
fipure 2. Although the figures can't be interpreted to extract
relevant information regarding performance, they demonstrate
the difference in CBL estimate patterns. The NN regression
showed more outliers in the estimate, compared to other
methods. The individual error metrics computed for the same
customer is shown in figpure 3. The MAE is the lowest for
LowXofY or method and correspondingly has highest accuracy,
however has a negative bias. This implies that the CBL may
underestimate the actual consumption. The MAE as a function
of bias for the same customer is shown in figure 4. The X-
axis in this figure represents accuracy or MAE tWhh and

I

Fig. 3. Emors and biases for one costomer.
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Fig. 4. Emor performance for one customer

the Y-axis represents the estimation bias in AWh'h. Methods
above and below the zero bias line or the X-axis show positive
and negative bias, respectively. This indicates that the Neural
Network has minimum bias while having comparable MAE
with other methods. The bias of exponential moving average
method is also relatively small compared to other methods.
However, the NN has the lowest MAE and the least bias,
implying it to be the the most preferred approach. The NN
is a data driven method and the convergence of the weights
plays a significant role in the accuracy of prediction. As
the weights are initialized randomly, the converged weights
could have some variation. The NN resulis reported in this
manuscript is the average of 100 independent runs. However,
this result could not be generalized for all the customers.
The performance of the methods largely relied on the data
consuption patiern of the customer. To quantify which method
results in minimum accuracy for how many customers, we
derived a statistics. This is summarized in figure 5. To our
surprise, We found that, the MidX ofY method results in highest
accuracy for most of the consumers, followed by exponential
moving average and NN methods. This is confusing, because
there is no one method can be suggested that works best for
all the customers. To resolve this, a cumulative evaluation
of CBL performance of all the customers was carried out
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Fig. 6. Cumulative ermor performance for all the customers.

This mean that, although one method might not be the most
suitable one for one customer, cumulatively one method can be
recommended for a set of customers for a utility to maximize
accuracy and minimize bias. The CBL for all the customers
cumulatively taken together, was calculated using each esti-
mation method and the error metrics for all the methods were
computed. The cumulative errors for different methods are
shown in figure 6. It was observed that the exponential moving
average has the minimum MAE and the highest accuracy
among all the CBL estimation methods. Moreover, the NN
shows comparable performance for residential customers with
lesser bias than exponential moving average, but with slightly
lower accuracy.

V. CONCLUSION

We presented a comparative performance assessment of
methods to calculate CBLs for residential customers. Our
finding indicated that, not one method can be attributed as the
most efficient method for CBL estimation and the efficiency
of methods are largely dependent on individual customer con-
sumption patterns. However, when the consumption patterns
of a group of customers are aggregated to estimate the CBL,
we found that both the NN and exponential moving average
methods show superior performance. If the bias is taken into
consideration the NN regression emerges as the most efficient
method. It should be noted that, this conclusion is derived from
a subset of the the CER smart meter data, which might not lead
to generalization. Similar evaluations can be performed over

historical data-set of an ISO, to decide the CBL estimation
method that would be preferable. In addition, the financial
impact of the accuracy and bias of each CBL estimation
method depends on the type of PTR program. In summary,
along with accuracy and bias, PTR program and operational
issues will drive the decisions for the utilities to opt for a
particular CBL calculation method.

The future work will focus on integrating the weather
variables and conduct the experiments by considering the PTR

Programs.
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