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Abstract—We describe TESSE, an emerging general-purpose,
open-source software ecosystem that attacks the twin chal-
lenges of programmer productivity and portable performance
for advanced scientific applications on modern high-performance
computers. TESSE builds upon and extends the PARSEC DAG/-
dataflow runtime with a new Domain Specific Languages (DSL)
and new integration capabilities. Motivating this work is our
belief that such a dataflow model, perhaps with applications
composed in domain specific languages, can overcome many of
the challenges faced by a wide variety of irregular applications
that are poorly served by current programming and execution
models. Two such applications from many-body physics and
applied mathematics are briefly explored. This paper focuses
upon the Template Task Graph (TTG), which is TESSE’s main
C++ API that provides a powerful work/data-flow programming
model. Algorithms on spatial trees, block-sparse tensors, and
wave fronts are used to illustrate the API and associated concepts,
as well as to compare with related approaches.

Index Terms—workflow, dataflow, high-performance comput-
ing, exascale, graph, DAG

I. INTRODUCTION

TESSE (Task-based Environment for Scientific Simulation
at Extreme Scale) [1] attacks the twin challenges of pro-
grammer productivity and portable performance for advanced
scientific applications on massively-parallel hybrid systems
with complex disjoint memories. Of specific interest are ir-
regular computations which are hard to compose and execute
efficiently with mainstream parallel programming paradigms.

There are several source of the Irregularity in modern
advanced scientific applications. First, there is the irregularity
of the data itself: as greater simulation size and/or higher
precision are targeted dense data structures (uniform meshes,
dense tensors) must be replaced by their data-sparse coun-
terparts (adaptively-refined meshes, block-sparse and rank-
sparse tensors) to keep the simulation cost tractable. Second,
as applications become more complex (e.g., due to multiple
physics models being coupled) and as they seek greater
concurrency on increasingly heterogeneous hardware, it also
becomes necessary to execute multiple (potentially, dissimilar)
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operations in parallel. The ensuing irregularity and associ-
ated resource management and other issues are commonly
resolved by static partitioning of processors, or centralized
job stealing. Both approaches have been successful as long
as the computations involved were large enough to hide the
cost of scheduling and/or migration, the two pillars of most
of the existing solutions. Unfortunately, as exemplified by the
two paradigmatic science applications motivating TESSE (fast
tree-based computation on deeply refined numerical meshes,
and block-sparse tensor algebra in many-body quantum sim-
ulation) exploiting sparsity usually leads to highly irregular
fine-grained computation as well as highly data-dependent
data/work flows that are very dynamic in nature.

To be able to compose and execute efficiently the irreg-
ular computation patterns underlying these and other modern
scientific applications in TESSE we adopted the ideas of data-
flow and other flow programming approaches to raise the
level of abstraction beyond the relatively low-level APIs of
modern task-based programming models and runtimes. The
key innovation of TESSE is TTG, a flow programming model
inspired by earlier innovations such as Flow-Based Program-
ming (FBP) [2]. Unlike the earlier uses of flow programming,
the targets of TTG are modern scientific algorithms to be
deployed to current and near-future supercomputers, hence the
efficient utilization of hardware resources, distributed-memory,
and heterogeneity are all first-class concerns. Although the
key innovations of TTG are not tied to particular choice of
implementation, we implemented TTG as a library in C++ for
general applicability and close-to-metal efficiency.

TTG can be viewed as marrying the ideas of flow pro-
gramming models with the key innovations in the PARSEC
runtime [3] for compact specification of task DAGs, namely
the Parameterized Task Graph (PTG; section V) [4] in which
each edge represents a flow of data associated with a pa-
rameter identifying the particular data and, equivalently, the
receiving task. Simplistically, such a parameter represents a
loop index or data structure coordinate (e.g., integer tuple
addressing elements of a tensor). Thus, each edge and vertex
in PTG encodes several edges and vertices in a DAG of tasks,
allowing potentially massive task DAGs to be represented



compactly as well as instantiated across a narrow wave front
only as needed for execution. The algorithms of dense linear
algebra are naturally expressed within the PTG as a workflow
over mutable data that fully captures the lifetime of a datum
including whether it is created, read, written, modified, or
consumed by a given task. This parameterization combined
with the deep understanding of what tasks are doing with
data helps reduce resource utilization and data motion, and
enables efficient placement and scheduling through use of
temporal/spatial locality.

The TTG extends the idea of PTG by generalizing the
notion of parameters to arbitrary types and enabling data-
dependent selection of task dependencies, which allows to
dynamically build the DAG of tasks depending on computa-
tions within the predecessor tasks. The TTG implementation
replaces the standalone DSL for specifying PTG in PARSEC
by a high-level programming API realized as a modern C++
library (the 2017 ISO standard of C++ is used). The use of
modern C++ allows for type information to be utilized to
ensure correctness when constructing graph as well as for
optimizations (e.g. consuming data passed by rvalue refer-
ences). Lastly, TTG also introduces some concepts from flow
programming models, such as programmable terminals, that
were not part of PTG. Thus TTG is a major advance of the
successful idea of PTG towards general-purpose computation;
unfortunately, the general-purpose character of TTG makes it
challenging for TTG to retain all of the optimizations feasible
within the PTG; making TTG exploit the full capabilities of
PARSEC runtime is the focus on the ongoing work.

The main contributions and innovations of TTG are:
• A practical and modern C++ API for dependence pro-

gramming (spanning work and data flow) of scientific
applications on extreme-scale, hybrid supercomputers,
which eliminates much of the clutter and programmer
overhead that inhibits programmer productivity.

• TTG as a programming model abstracts details of the
underlying runtime, and the present TTG implementation
is designed to be portable onto multiple runtimes; it
currently leverages the very distinct MADNESS and
PARSEC parallel. The rich PARSEC ecosystem with
its strong support of distributed hybrid architectures is
presently our main target for performance portability.

• Use compile time and runtime information to efficiently
manage the lifetime of data in different memory spaces.

• Generalizing the parameterization of tasks introduced by
PARSEC’s PTG to support irregular (sparse) computation
in multiple settings.

In the following, we briefly describe the motivating MAD-
NESS and TILEDARRAY scientific applications, and in the
related work section describe the PARSEC runtime.

II. MOTIVATING APPLICATIONS

Adaptive Numerical Integro-differential Calculus
MADNESS [5] employs adaptive multiresolution algo-

rithms and separated representations for efficient computa-
tion in many dimensions with guaranteed precision [6] with

applications in chemistry [7], [8], and multiple fields of
physics [9], [10]. To guarantee precision, each function has an
independent and dynamically refined “mesh,” and composing
functions or applying operators can change the mesh refine-
ment. These meshes are represented as 2d-trees, where d is
the dimensionality of the problem, and typically are poorly
balanced and change very dynamically. Hence, computing with
such trees on a parallel machine poses significant challenges.

Block-Sparse Tensor Algebra for Electronic Structure

Predictive treatment of quantum n-body electronic structure
for realistic systems is only feasible by exploiting block-
/element/rank sparsity. For example, the simple MP2 method
solves (1) for unknown tensor t:

0 = vijab + tijacf
c
b + tijcbf

c
a − tikabf

j
k − tkjabf

i
k (1)

(with Einstein summation convention). A naive algorithm has
O(n5) cost, with n proportional to the number of atoms. How-
ever, with rank-compressed form the cost is O(n), enabling
applications to hundreds of atoms on a single CPU [11].

Data sparsity of t in (1) unfortunately yields non-uniformly
rank-sparse blocks for which there are no known equivalents
to highly-efficient dense-matrix algorithms, such as SUMMA
[12]. Task-based composition is a natural choice for parallel
data-sparse tensor algebra by automating (1) mapping of
irregular computation onto physical processor grid, (2) flow
of data through the memory hierarchy, and (3) load balance
including overlap of algorithmic steps.

To explore the potential of task-based computation for
data-sparse tensor algebra some of us developed TILEDAR-
RAY [13], a modern C++ library for parallel tensor algebra.
TILEDARRAY is implemented on top of task-based parallel
runtime of MADNESS. The current form of TILEDARRAY,
already useful in practice, is limited by the relatively simple
MADNESS runtime. We expect that moving TILEDARRAY
to TESSE and TTG will enable 1) improved performance
for both dense and block-sparse tensor algebra, 2) simplified
development by automating management of resources, 3) com-
putation on CPU/accelerator platforms, and 4) less-structured
work patterns characteristic of data-sparse tensor algebra.

III. TTG— TEMPLATE TASK GRAPH

In this section, we provide a brief introduction to the TTG
with more detail provided in Section IV.

Central concepts are:
• TaskId: A unique identifier for each task. For example, if

computing on a vector it might be the vector/loop index,
or if computing on a database it might be the name of a
record, or in a matrix-multiplication algorithm it might be
the triplet of integers identifying the tiles being operated
upon. The only constraint on the type of TaskId is that
it be hashable. The TaskId is used by the runtime to
identify the compute resource (process rank, gpu, etc.) for
the task using an optional user-defined map, and when a
task sends data to a successor the same map is used to
route data. This map is thus the primary tool for balancing



load and data. A TaskId of type void implies a singleton
task on process rank zero.

• Terminal: Each input argument and output result of
a (template) task are exposed to the programmer and
runtime as a Terminal. A task propagates a result or
output value to a successor task by sending the value
and the successor’s TaskId to the appropriate output
Terminal. Broadcast to multiple values of TaskId is
supported. By default, an input Terminal is a single-
assignment variable, this property being used by the run-
time to determine when arguments of a task are available.
However, an input Terminal is programmable and, for
instance, could perform a reduction operation. If the
number of expected input values is fixed, the runtime can
determine completion, but with variable length (stream-
ing) data either the user-provided reduction operation or
a predecessor task must finalize the argument.

• Edge: Programs are composed by connecting output
terminals with input terminals, currently identified by
position but by name is planned. Multiple edges can
connect to an input terminal, enabling data to come from
multiple sources, and an output terminal might connect
to multiple successors implying a broadcast operation.

• TemplateTask: This wraps a user-defined func-
tion with informal signature void f(TaskId, Arg0,

Arg1, ..., OutputTerminals). Again, each in-
put argument is exposed as a Terminal, and
OutputTerminals is a tuple of the output terminals
(an alternative interface also provides the input argu-
ments as a tuple of references). The task associated
with a specific TaskId is instantiated when any input
Terminal receives a value, and a task is marked ready
for execution when all arguments are finalized. If there
are no arguments, the task must be created either man-
ually via a special method (invoke(TaskId)) of the
TemplateTask, or via a pull operation as described
below. Most users will instantiate a TemplateTask by
invoking the make_tt factory function that deduces type
information from the signature of the user’s function, as
illustrated below. However, a user-defined class can derive
from the TemplateTaskBase class template using the
curiously recurring template pattern that enables the base
class to access methods of the derived class. As originally
conceived and important for distributed-memory comput-
ers, tasks were assumed to only receive data through
their input terminals and to have sending data to output
terminals as their only side effect. However, there is no
constraint on this behavior and work flow over mutable
data is also readily composed.

• CompositeTemplateTask: This exposes the same API
as TemplateTask but wraps an entire subgraph exposing
input and output terminals as selected by the programmer.

• Push versus pull: As described so far, data must be
pushed from a task’s output terminal into a successor’s
input terminal. However, many algorithms, such as those
operating on pre-existing data structures, can be more

easily composed and more efficiently executed by pulling
data as needed. This is accommodated by connecting
terminals via a pull-Edge. When a task is instantiated,
the runtime checks each input terminal to see if its value
should be pulled, in which case the necessary predecessor
task (the TaskId of which is computed from the current
task’s TaskId via a user-defined function) is instantiated.
This can be done recursively and lightweight operations,
such as reading a value from local memory, can be
directly invoked to avoid the overhead of task creation.

Given a user function (f) with the required signature (see
TemplateTask above), a call to the make_tt factory would
be used as
auto tt = make_tt(f, input_edges, output_edges, task_name,

input_terminal_names, output_terminal_names);

in which input_edges and output_edges are pos-
sibly empty tuples of edges to connect to each ter-
minal, and task_name, input_terminal_names, and
output_terminal_names are optional names for the task
and terminals.

IV. APPLICATIONS

In this section, we examine the TTG implementation of
several scientific algorithms: computation on unbalanced spa-
tial trees in MADNESS to illustrate the overall API; a
sparse SUMMA matrix multiplication algorithm [12] to illus-
trate block-sparse matrix/tensor computation from TILEDAR-
RAY; and wavefront computation to contrast TTG with Cpp-
Taskflow [14]. In code excerpts (full code is online), the color
red denotes types, functions or methods defined in TTG.

A. MADNESS mini-app
start

control

control

project a

refine result

control

project b

refine result

left right

a+b

refineL refineR result

input

printer

Fig. 1: TTG of the MADNESS mini-app fragment.

In this section, we explore code fragments from a mini-
app that represents multiresolution analysis computation in
MADNESS. The mini-app fragment adaptively projects two
function (a(x) and b(x)) into numerical tree representation,
these in turn being added (a(x)+ b(x)) and the result printed.
The corresponding TTG is in figure 1 We omit definitions of
the simple classes Key (the level and translation that labels
a node in the tree), Node (the value and has_children flag
associated with a node), and Control (empty) data structures,



as well as some hopefully obvious typedefs. The listing
immediately below adopts several common design motifs.

template <typename funcT>
auto make_project(const funcT& func, ctlEdge& ctl,

nodeEdge& result, const string& name="project")
{
auto f = [func](const Key& key, Control&& ctl,

std::tuple<ctlOut,nodeOut>& out) {
// compute function value and approximation error
if (error <= thresh) {

send<1>(key, Node(value, false), out); // produce leaf
} else {

send<0>(key.left_child(), Control(), out); // recur
send<0>(key.right_child(), Control(), out); // recur
send<1>(key, Node(0.0, true), out); // interior node

}
};
ctlEdge refine("refine");
return make_tt(f, edges(fuse(refine, ctl)),

edges(refine, result),
name, {"control"}, {"refine", "result"});

}

It defines a factory that given a numerical function (here, a(x)
or b(x)) returns a TemplateTask that will recursively perform
the projection. The control terminal that triggers computation
at a node (there being no other input data) will be connected
to the control edge that triggers the overall computation at
the top of the tree, and the output terminal to which nodes
are sent will be connected to the result edge. To co-locate
code definition with use and to facilitate capture of relevant
state, the projection operation is defined as a lambda and
then wrapped as a TemplateTask using the make_tt factory
described above. Multiple input or output edges that are to be
connected to one terminal are logically joined with the fuse

operation, or could be connected individually in a separate
step. The projection operation computes the function value and
associated error (code elided) at a node in the tree, and then
decides whether to produce a result (sent to output terminal
1), or continue refining by sending control flags to the left and
right children and producing an empty interior node.

Similarly, in the next listing we define a factory that given
a binary operation acting upon two tree nodes, applies this
operation by recurring down the union of the two input trees
until a common refinement level is reached.

template <typename funcT>
auto make_binary_op(const funcT& op, nodeEdge left,

nodeEdge right, nodeEdge Result,
const string& name = "binaryop")

{
auto f = [&op](const Key& key, Node&& left, Node&& right,

tuple<nodeOut,nodeOut,nodeOut>& out) {
if (!(left.has_children || right.has_children)) {

send<2>(key, Node(op(left.value, right.value), false),
out);// produce result

} else {
auto children = {key.left_child(), key.right_child()};
if (!left.has_children)

broadcast<0>(children, left, out); // recur
if (!right.has_children)

broadcast<1>(children, right, out); // recur
send<2>(key, Node(0.0, true), out); // interior

}
};
nodeEdge L("L"), R("R");
return make_tt(f, edges(fuse(left, L), fuse(right, R)),

edges(L, R, Result), name, {"left", "right"},
{"refineL", "refineR", "result"});

}

If both the left and right nodes have data the result (a leaf node
with no children) can immediately be computed and sent to the
next computational step. Otherwise, if either of the two nodes
have data it must be sent down the tree along with an empty
interior node. Note that input data can arrive in any order,
though execution is more resource efficient in a downward
traversal. We have omitted code to compute the value of a
node from an ancestor as well as definition of similar factories
to create the start and printer operations.

Finally, we examine the main driver.
ttg_initialize(argc, argv);
ctlEdge ctl("start ctl");
nodeEdge a("a"), b("b"), a_plus_b("a+b");
auto start = make_start(ctl);
auto pA = make_project(&A, ctl, a, "project A");
auto pB = make_project(&B, ctl, b, "project B");
auto addAB = make_binary_op(&plus<double>, a, b, a_plus_b,

"a+b");
auto printer = make_printer(a_plus_b);
if (!make_graph_executable(start.get()))

error("graph is not connected");
if (ttg_default_execution_context().rank() == 0)

start->invoke();
ttg_execute(ttg_default_execution_context());
ttg_fence(ttg_default_execution_context());
ttg_finalize();

Since TTG strives to be runtime agnostic, basic capabilities
(e.g., initialize or finalize the parallel runtime, or access the
process rank) are encapsulated, but, presently, anything beyond
a simple example would likely need to use runtime-specific
features. Each TemplateTask is created from the appropriate
factory and connected using the declared edges. The graph
is checked and made ready for execution. Starting execution
presently involves two steps — injecting a start task that will
initiate the recursion and then actually executing the TTG.
However, this start task with control-edge paradigm is so
common that it will likely become built in. During graph
execution the main thread of each application process can
conduct other work and eventually fence, waiting for the TTG
to complete. Once its execution is complete, a TTG may be
executed again on other data.

B. Block-Sparse Matrix Multiplication

Block-sparse tensor contraction in TILEDARRAY is im-
plemented as a (block-sparse) matrix multiplication. Here
we sketch out the TTG specification of the block-sparse
SUMMA algorithm implemented in TILEDARRAY in task-
based dataflow-like form explicitly using the MADNESS
runtime. [15]

The traditional 2D SUMMA algorithm [12] maps the two
inner loops of the familiar matrix multiplication loop nest
for(int k=0; k!=K; ++k)
for(int i=0; i!=I; ++i)
for(int j=0; j!=J; ++j)

C[i][j] += A[i][k] * B[k][j]

onto a rectangular (2-dimensional) grid of processors, with
the outer loop scheduled one-at-a-time, [12] several at a
time, [15] or mapped onto the third dimension of the 3-
dimensional processor in 2.5D SUMMA. [16] In a given
SUMMA “iteration” (i.e. for the given value of k) the involved
1 (block) column of A and 1 (block) row of B are broadcast



along the orthogonal directions of the 2-dimensional processor
grid computing this k, then multiplied with each matching
counterpart.

The TTG representing (block-sparse) matrix multiplication
is shown in Figure 2. The TTG actually encodes not just
SUMMA, but a family of SUMMA-like algorithms, all having
in common the fact that the sum over k is evaluated one value
of k at a time; other details, such as the order of summation
over k, how computation is mapped onto processors, etc., are
configurable attributes of the concrete instance of TTG. By
abstracting out the orthogonal concerns from the essential
details of the flow of data and computation TTG allows
more compact and expressive specification of task-parallel
algorithms.

{,}

read_spmatrix(A)

{{i,k}, A[i][k]}

{{i,k}, A[i][k]}

SpMM::bcast_a

{{i,j,k}, A[i][k]}

{{i,j,k}, A[i][k]} {{i,j,k}, B[k][j]} {{i,j,k},C[i][j]}

SpMM::Multiply

{{i,j}, C[i][j]} {{i,j,k+1}, C[i][j]}

{{i,j}, C[i][j]}

write_spmatrix

{,}

read_spmatrix(B)

{{j,k}, B[k][j]}

{{j,k}, B[k][j]}

SpMM::bcast_b

{{i,j,k}, B[k][j]}

Fig. 2: TTG of the SUMMA-like matrix multiplication.
Note that the TTG also does not exhibit any details related

to sparsity. Handling of sparsity (either element-wise and naive
block-size) in matrix multiplication is trivially incorporated
by skipping the loop iterations for which the requisite data
is not available. In TILEDARRAY the sparsity is computed
in the inspection stage using replicated meta-data. TTG’s
implementation of (block-)sparse matrix multiplication also
incorporates such inspection stage, producing the metadata
used by the reader, broadcast, multiply, and writer tasks to
instantiate all non-null tasks. Thus the sparsity in this case is
a yet-another concern orthogonal to the data/task flow details
specified by the TTG.

C. Wavefront Computation

The input is an N ×N matrix divided into blocks, and we
reuse a 2D example provided by Cpp-Taskflow [14] with a 5-
point stencil for which computation on block B[i][i] requires
data from all four neighbors B[i−1][j], B[i][j−1], B[i+1][j],
B[i][j +1] but only has task dependencies on B[i− 1][j] and
B[i][j − 1]. Figure 3a shows the task dependencies between
the blocks — blocks with same color can run concurrently.
Computation starts at the top-left and sweeps the grid diago-
nally.
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(b) TTG graph using dataflow.

Fig. 3: 2D Wavefront Computation

Fig. 3b shows the dataflow based TTG graph of wave-
front computation. The kernels WAVEFRONT0, WAVEFRONT1,
WAVEFRONT2 correspond to blocks of the matrix with zero,
one or two input dependencies, respectively, as color coded in
Fig. 3a. The input terminals for each kernel define both the
task and data dependencies, so a separate kernel is required
for every node with a different number of inputs. Note there
are tasks with different input dependencies starting from
block B[0][0] with bottom and right dependency, B[0][1] to
B[0][N − 2] with left, bottom and right dependencies, B[1][0]
to B[N − 2][0] with top, bottom and right dependencies,
B[0][N − 1] with left and bottom dependency, B[N − 1][0]
with top and right dependencies, B[N −1][j] and B[i][N −1]
up to B[N − 1][N − 1] have left and top dependencies. In
the current dataflow implementation, we have used an array
for holding the bottom/right blocks, which slightly reduces the
complexity of the implementation by reducing the number of
input/output terminals and connections between the kernels.

In Fig. 3b, the Initiator starts the computation by
distributing the data blocks to all instances of the kernels along
with the bottom and/or right blocks. It instantiates N2 tasks
upfront which can pose resource management challenges for
huge problems sizes. However, this is inevitable in the current
push-based data-flow approach of TTG. Cpp-Taskflow also
requires instantiation of N2 tasks. The coming ability of TTG
to pull data will eliminate this.

using BMEdge = Edge<Key, BlockMatrix>;
template <typename funcT>
auto make_wavefront1(const funcT& func, int MB, int NB,

BMEdge& input, BMEdge& toporleft,
Edge<Key,std::vector<BlockMatrix>>& bottom_right,
BMEdge& out1, BMEdge& out2, BMEdge& result)

{
auto f = [MB, NB, func](const Key& key,

BlockMatrix&& input, BlockMatrix&& previous,
std::vector<BlockMatrix>&& bottom_right,
std::tuple<Out<Key, BlockMatrix>,
Out<Key, BlockMatrix>, Out<Key, BlockMatrix>,
Out<Key, BlockMatrix>>& out)

{
auto [i, j] = key;
int next_i = i + 1, next_j = j + 1;
BlockMatrix res;
int size = bottom_right.size();
if (size == 1)
res = func(i, j, MB, NB, input, previous, previous,



bottom_right[0], bottom_right[0]);
else

res = func(i, j, MB, NB, input, previous, previous,
bottom_right[0], bottom_right[1]);

send<3>(Key(i,j), res, out);
if (next_i < MB) {

if (j == 0)
send<0>(Key(next_i, j), res, out); //send top

else
send<2>(Key(next_i, j), res, out); //send top

}
if (next_j < NB) {

if (i == 0)
send<0>(Key(i, next_j), res, out); //send left

else
send<1>(Key(i, next_j), res, out); //send left

}
};
return make_tt(f, edges(input, toporleft, bottom_right),

edges(toporleft, out1, out2, result), "wavefront1",
{"input", "toporleft", "bottom_right"},
{"recur", "output1", "output2", "result"});

}

The above code fragment of the dataflow wavefront com-
putation defines a TemplateTask for WAVEFRONT1 kernel
that recursively propagates along the wavefront. When the
computation on a block is complete, it is sent to the “result”
output terminal and, as necessary, via other terminals to suc-
cessor tasks. The other two kernels handle different numbers
of input dependencies. Computation starts in the main program
by injecting block (0,0) which triggers the recursion for
propagating the wavefront. A workflow version yields much
simpler code since every task depends on zero, one or two
tasks, but operates on shared data. The complexity of pushing
data is hidden in this approach with task dependency only on
B[i− 1][j] and B[i][j − 1] blocks.

V. RELATED WORK

Many efforts exist to provide abstractions via a fine-grain,
task-based dataflow programming. Some of the recent task-
based runtimes like Legion [17], StarPU [18], QUeuing And
Runtime for Kernels (QUARK) [19], HPX [20], Open Com-
munity Runtime (OCR) [21], OmpSs [22], SuperMatrix [23],
and PARSEC [24] abstract the available resources to isolate
developers from hardware complexity and simplify the writing
of parallel applications. We briefly examine six projects.

a) Charm++: Since its introduction in 1993, Charm++
has evolved to support numerous features, including dynamic
topology-aware load balancing [25]–[27] , migratable objects
[28] , heterogeneous platforms [29], [30], check-pointing [31],
[32] , hierarchical load balancing [33] , and integration with
bulk-synchronous runtimes . In contrast to Charm++, TTG
relies only upon standards-based compilers and libraries and
strives to remain fully interoperable with other programming
models within the same executable, including nesting and
composition of programming models.

b) Concurrent Collections (CnC): [34], [35] CnC de-
couples control, work, and data with instances of these en-
tities organized into collections. Work is embodied as tasks
that produce and consume data instances, with control over
task creation via tag collections and decoupling of program
semantics from application tuning. Extensions to the original,
shared memory CnC [36] support distributed platforms [37],

CUDA [38] and heterogeneous architectures [39]. For the
MADNESS mini-app, a major challenge was the inability of
native CnC to reuse the implementation of a computational
step, which is essential to build a library of reusable compo-
nents.

c) High Performance ParallelX: (HPX) [40] is a task
Global Address Space (GAS) runtime with a C++ API. The
GAS system backing HPX, called AGAS (Active GAS),
manages blocks referenced by fake pointers (hpx addr t).
Blocks can be accessed globally through RDMA put/get calls
or by using parcels (small functions to be executed on the
home node of an associated block). Control flow between tasks
is defined by local control objects, and support for accelerators
exists through specialized executors, but similarly to OpenMP
both the data transfers and the execution transfer is explicit,
at the charge of the developer, whereas TTG via PARSEC
manages and optimizes this automatically.

d) Legion: [17] A programming model and runtime
conceptually designed for execution on heterogeneous archi-
tectures, Legion uses logical regions as first-class citizens to
allow data organization. Legion also implements a software
out-of-order processor task scheduling, hierarchical region
partitioning [41] and slicing [42]. The framework is comple-
mented by Regent [43], a high-productivity imperative and
structured DSL that simplifies the implementation of Legion
programs, and by more specialized DSLs such as Singe [44]
and Scout [45]. However, mapping irregular computations and
unbalanced trees such as those of the MADNESS miniapp
on Legion’s regular index/data spaces remains a challenge
especially in high dimension spaces.

e) CPP-TASKFLOW: [14] Cpp-Taskflow is a C++ task-
ing library that handles both for-loops and irregular pat-
terns such as graph traversal. Cpp-Taskflow supports template
instantiation to compose dependency graphs which can be
dumped to the DOT format for inspection and debugging.
However, it is limited to shared-memory architectures and all
tasks must be instantiated beforehand to define dependencies.

f) PARSEC: provides a high-efficient distributed low-
level task-based runtime supporting a varied set of Do-
main Specific Languages (DSL) programming languages and
APIs [3], [46]. PARSEC can address any problem that can
be expressed as graphs of tasks with labeled edges, where the
edges represent data or control dependencies, with few restric-
tions. Existing usage scenarios for PARSEC have showed ben-
efit (in terms of performance and composability) for regular
and irregular affine algorithms (being used as the underlying
runtime for several linear algebra libraries [47], [48]), but
most of the existing PARSEC DSL are not tailored to support
irregular dynamic data-dependent applications.

VI. SUMMARY

We have described and illustrated the use of TTG, an
emerging C++ API that provides a powerful work/data-flow
programming model focused on irregular computation with
special focus on efficient execution at extreme scale on cur-
rent and near-future heterogeneous hardware. It is presently



undergoing rapid development but already runs at scale, in-
cluding use of multi-GPU nodes, on both the MADNESS
and PARSEC runtimes.
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