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Abstract— Ground-based teleoperation of robot manipulators
for on-orbit servicing of spacecraft represents an example
of high-payoff, high-risk operations that are challenging to
perform due to high latency communications, with telemetry
time delays of several seconds. In these scenarios, confidence
of operating without failure is paramount. We report the
development of an Interactive Planning and Supervised Ex-
ecution (IPSE) system that takes advantage of accurate 3D
reconstruction of the remote environment to enable operators
to plan motions in the virtual world, evaluate and adjust the
plan, and then supervise execution with the ability to pause and
return to the planning environment at any time. We report the
results of an experimental evaluation of a representative on-
orbit telerobotic servicing task from NASA’s upcoming OSAM-
1 mission to refuel a satellite in low earth orbit; specifically,
to change the robot tool to acquire the fuel supply line and
then to insert it into the satellite fill/drain valve. Results of
a pilot study show that the operators preferred, and were
more successful with, the IPSE system when compared to a
conventional teleoperation implementation.

I. INTRODUCTION

Ground-based teleoperation of robot manipulators for on-
orbit servicing of spacecraft represents an example of high-
payoff, high-risk operations that are challenging to perform
due to high latency communications, with telemetry time
delays of several seconds. In these operations, it is often
difficult to recover from failure. For example, on Earth a
dropped or broken tool may be retrieved or replaced, but
in space a “dropped” tool may float away and a broken
tool cannot easily be repaired or replaced. Small failures
can cause the entire mission to fail, wasting many years
and many millions of dollars. The situation is compounded
by the inherent challenges of remote teleoperation, which
include large communication delays and limited visualization
of the remote environment. In particular, we focus on ground-
based control of a robot in low earth orbit (LEO), which
is subject to time delays of several seconds. This work is
motivated by NASA’s On-Orbit Servicing Assembly and
Maintenance 1 (OSAM-1) mission (formerly called Restore-
L) to demonstrate telerobotic refueling of a satellite in LEO
[1], which is further described in Section II.

Based on observations of NASA flight operations, discus-
sions with NASA robot operators, and prior experiments with
these operators [2], we concluded that keyboard-based robot
control was generally preferred over joystick control for high-
risk operations over time-delayed telemetry, especially those
in proximity of the satellite. This is partly due to the multi-
second time delay, which leads operators to adopt a “move and
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Fig. 1. Overview of Interactive Planning and Supervised Execution (IPSE)
system, showing 3D interface (top) and 2D interface (bottom). The da Vinci
Master Console includes two Master Tool Manipulators (MTMs) that enable
3D interaction (for example, to move the interactive cursors) and provides
a stereo display for visualization. Both 3D and 2D interfaces are available
simultaneously and visualize/update the same scene.

wait” strategy that is well suited to a keyboard interface. The
keyboard interface also enables operators to more precisely
command motions. On the other hand, the keyboard interface
is cumbersome for large motions, such as when moving
back and forth to the tool stowage area. Although a joystick
would make the task easier to perform, it is generally avoided
due to the higher potential for commanding erroneous or
imprecise motion. This scenario motivates the design of an
Interactive Planning and Supervised Execution (IPSE) system
(Fig. 1) that can facilitate both coarse and fine motions without
increasing the risk of failure.

This paper is organized as follows: Section II presents
background information about the motivating application in
satellite servicing, followed by a review of related work in
visual robot programming and interactive planning. Section
III describes the system implementation and Sections IV
and V present the experiments and results, respectively, of
a ground-based evaluation of the IPSE system compared to
the conventional keyboard/GUI interface and joystick.

II. BACKGROUND AND MOTIVATION

The Exploration and In-Space Services (ExIS) Division at
the NASA Goddard Space Flight Center (GSFC) is devel-
oping, evaluating, and demonstrating new technologies for
telerobotic servicing of satellites on-orbit. ExIS is developing
the OSAM-1 mission [1] to launch a servicing spacecraft
equipped with two robotic arms and a satellite capture



mechanism for docking with the target satellite, Landsat 7, in
low earth orbit (LEO). The rendezvous and capture procedures
will be performed autonomously due to the high relative
velocities, which precludes operator control, but NASA plans
to use ground-based telerobotic control for the subsequent
proximity operations, including refueling Landsat 7. These
operations include cutting the multilayer insulation (MLI)
that encases the satellite, cutting retaining wires, removing
the cap on the fill/drain valve, attaching the refueling hose,
transferring fuel, and then reinstalling the cap and applying
an MLI patch. ExIS has designed several specialized robot
tools for these operations, which necessitates navigation of
the robot arm between the worksite on the target satellite
and the tool stowage area on the servicing spacecraft, while
avoiding collisions between the robot arm and structures on
either spacecraft. Thus, the overall procedure requires both
coarse motion to transit to/from the tool stowage area and
fine motion to perform proximity operations.

The design of the IPSE system was primarily motivated
by our previous study [2], in which we recruited five trained
NASA robot operators to evaluate several teleoperation
interfaces for the task of cutting the MLI “hat” that covers
the satellite fill/drain valve. Specifically, we compared our
recently-developed augmented virtuality (AV) visualization
[3] to the conventional camera visualization and the da Vinci
master console to the conventional keyboard/GUI control
interface. The results showed that the NASA operators
unanimously preferred the AV visualization, but only when
paired with the conventional keyboard/GUI control interface.
The da Vinci control interface was the least preferred; in fact,
operators were willing to sacrifice the AV visualization in
order to retain the keyboard/GUI interface, even though they
consistently performed the task faster with the da Vinci.

Post-experiment interviews with the NASA operators
revealed two primary reasons for their preferences. First,
the task did not require the dexterity offered by the da Vinci
master console, since the MLI cutting operation primarily
involved moving in a straight line. They suggested that other
operations, such as large motions between the worksite and the
tool stowage area, would be likely to benefit from the ability to
command more complex motions. Second, operators indicated
that performing the task without error is more important than
performing it quickly. Although task failures could be easily
remedied in our ground-based setup, the NASA operators
followed their training to avoid failure. The keyboard/GUI
interface provided a simple method to preview a motion
before executing it; specifically, a yellow ring was overlayed
on the camera images to show the position the cutter would
reach if the operator pressed the “Move” button. In contrast,
the da Vinci interface only allowed the operator to move the
robot or to adjust the virtual camera (for the AV visualization)
– there was no ability to preview motions. This revelation led
to the development of the IPSE capability, where the operator
first plans in a virtual environment, previews the plan, makes
adjustments if necessary, and then supervises execution of
the motion with the ability to pause and replan/resume at any
time. We implemented both 2D (keyboard/GUI) and 3D (da

Vinci) interfaces.
The IPSE system is demonstrated in a refueling task that is

representative of on-orbit telerobotic servicing of spacecraft.
We assume that the robot has just removed the cap on the
fill/drain valve and must first move to the tool stowage area
to acquire the fill tool, then move to grasp the hose and mate
it with the fill/drain valve.

The IPSE approach resembles offline robot programming,
which has been used for decades [4]. However, offline
programming is unable to respond to geometry which
is unknown a priori, or to geometry which may change
unpredictably during the operation. Another strategy that
has been used to mitigate the effects of time delay is to have
operators command the robot using high-level task goals,
which generalize to variations in the environment, and the
remote robot determines the exact details of the operation
autonomously [5]. This relies on the autonomous system’s
ability to execute a high-level goal without error, which
creates unnecessary risks with high penalties in a satellite
servicing environment. Likewise, systems which predict the
response of the remote robot and environment to simulate
real-time feedback, such as in [6], [7], are reliant on accurate
simulation of the robot and environment. Other approaches
that rely on simulation include teleprogramming [8] and tele-
sensor-programming [9], where the operator interacts with a
simulated remote environment and teleprograms the remote
robot through a sequence of elementary motion commands.
Similarly, in [10] the simulated environment is used only for
visualization, and inaccuracies are mitigated by adjusting the
commanded path based on sensor feedback on the remote
system. These strategies can improve execution safety but
preclude human oversight on the final executed path.

More recent related work involves the use of
mixed/augmented reality for visual programming of
robot motions. In [11], a user can plan paths as a series
of waypoints in an augmented reality (AR) environment,
preview and edit the paths, and then execute them either
autonomously or by allowing the user to control progress
through the path. In [12], the user similarly builds a path out
of primitives, visualizes the final path, and then executes it.
The authors also evaluated the mixed reality interface against
a 2D baseline interface among a non-expert population,
finding that the mixed reality interface was preferred. Other
studies have investigated interfaces that assist the user
in selecting pose goals, which can be used to specify
waypoints in such plans [13], [14]. Both studies found
that, in general, users were more comfortable and more
successful with interfaces that exposed fewer degrees of
freedom and provided more automated assistance, with [13]
additionally finding that the best-performing strategy varied
by environment. Similarly, another study demonstrated that
reduced-DOF interfaces performed better than full-DOF
control during live teleoperation [15]. In our proposed
system, we provide control in a task-aligned coordinate
system, with the goal of allowing expert users to select an
intuitive reduced-DOF subset of inputs while allowing full
control when needed.



III. SYSTEM DESCRIPTION

An operation using our proposed system begins with
a registration and reconstruction procedure, to locate and
build the objects in the virtual (simulated) environment. The
operator then creates a motion plan using the interactive
planning capability and executes the plan with supervised
execution. The latter two steps are repeated until the task is
complete. The system is implemented with a set of programs
using the Robot Operating System (ROS) [16].

A. Registration and Reconstruction

The operator of our system views and manipulates the work-
site via a computer simulation of the scene that contains the
relevant objects, robots, and equipment. The simulation is
based on design drawings, robot kinematics, camera images,
and other sensor data. We did not include dynamics in our
simulation because we assume that the scene contains rigid
objects that do not collide with each other.

We used our Vision Assistant software [3] to perform object
registration and to reconstruct the geometry of unknown
but relevant features of the object. The registration and
reconstruction process requires the operator to perform a
visual survey of the object by taking several images from
multiple positions using the tool camera mounted on the
robot’s end effector. Visual landmarks that match reliably
known features in the object’s CAD model are used for
registration, while landmarks that are different from the CAD
model are reconstructed using 3D triangulation and added to
the model.

The result of the registration and reconstruction process
is a 3D simulation of the scene that accurately represents
the physical location of the relevant objects, robots, and
equipment in the remote work-site.

B. Interactive Planning and Supervised Execution (IPSE)

The IPSE component allows the operator to design a motion
plan using one of multiple co-existent user interfaces. At any
time, the operator can preview the resulting robot motion and
edit the plan until the motion is satisfactory.

A motion plan consists of a series of waypoints, as shown
on the left in Fig. 2. Each waypoint represents an intermediate
destination in the motion plan. A motion planning engine,
using the MoveIt planning framework [17], plans a trajectory
to connect each waypoint’s destination pose with the final
configuration of the previous waypoint’s trajectory, with the
first waypoint connected to the robot’s current configuration.
The resulting trajectories are collision-free when possible and
marked as invalid when a collision cannot be avoided. Invalid
trajectories cause execution to be disabled and the waypoint
marker (Fig. 3, see Sec. III-B.1) to be displayed in red.

The operator may configure each waypoint to use a straight-
line path, which causes the end effector to follow a straight
line in task space; to avoid obstacles, in which case the motion
planner may select any collision-free path; or to follow the
same task-space path that the operator followed to move the
waypoint marker. Each waypoint also has an independent set
of desired speeds, both linear and rotational. The trajectory

Fig. 2. The custom user interface for the 2D planning interface allows the
operator to view and edit the waypoints as delta (relative to the previous
waypoint) and final (relative to the fixed frame) values.

Fig. 3. A waypoint marker displays as a colored end-effector with additional
controls to enable moving it in all six degrees of freedom. A dotted line
shows the path the end effector will take to reach this waypoint.

is initially timed to obey pre-configured joint-level limits and
then the duration of each trajectory segment is scaled up if
necessary to ensure that the segment obeys both the linear
and rotational end-effector speed limits.

The planner is independent from any user interface. It
communicates with any number of interfaces simultaneously
using a ROS topic API, and changes made in any interface
are immediately reflected in all connected interfaces. We
implemented two user interfaces, as shown in Fig. 1 and
described below:

1) Interactive Planning: 2D Interface: The 2D interface
uses a custom configuration of RViz, the standard robot
visualizer bundled with ROS, in combination with a custom Qt
interface called the Planner GUI (Fig. 2). This GUI displays
the list of waypoints in the current plan and allows the
operator to edit the selected waypoint. In addition to naming
each waypoint, the operator can input the goal pose as either
a “delta” from the start pose or as a “final” absolute pose, and
modifying either column will update the other. The operator
can choose the reference frame in which to display these



Fig. 4. The 3D Interface displays the virtual world in 3D, with a GUI
overlay to replicate the most common features of the Planner GUI.

poses from a list, which can include any frame whose pose is
known and static during an entire planning operation. If the
pose of an object of interest is known, the operator can choose
that frame and align each degree of freedom independently
by entering 0 in the appropriate input of the Final column.

As waypoints are added and edited, each one is represented
in RViz as a colored end effector, as shown in Fig. 3. The
end effector is green when the plan is valid, red when it is
invalid, and white when the plan has not been computed. The
latter case occurs briefly whenever an edit is made as well as
whenever a previous waypoint was invalid, as each waypoint’s
plan depends on the previous. Clicking each waypoint marker
selects the corresponding waypoint. The selected end effector
is surrounded by interactive markers which allow the waypoint
to be translated along each axis (arrows), rotated about each
axis (rings), or translated in the plane perpendicular to the
virtual camera (sphere). When a trajectory has been computed
between each pair of waypoints, it is shown as a dotted line
tracing the path of the end effector tip.

The Planner GUI also allows for choosing between path
types and setting the maximum speeds. Below the waypoint
edit areas, the Play button and scrubber allow the operator
to preview the current plan, either by playing it back in
real-time or scrubbing through as in a typical media player.
The “preview robot”, a partially-transparent version of the
actual robot, animates through the planned path (Fig. 1). The
preview and execute functions use the same stored trajectory,
so the operator can be assured that the execution will follow
the exact same configurations as the preview. The GUI also
includes the Supervised Execution controls (Sec. III-C).

2) Interactive Planning: 3D Interface: The planning
system can also be controlled with a 3D interface, shown
in Fig. 4, which uses the da Vinci master tool manipulators
(MTMs) to control the same path. Each of these two MTMs
is a 7 DOF compliant robot arm which is used to track the
operator’s hands in space and also includes a gripper which
may be pinched with the user’s thumb and forefinger to
command actuation of some tool. In our system, each of the
MTMs controls a 3D cursor, represented in the virtual world
as a sphere. Pinching the MTM’s gripper acts as a click.
The operator looks into the da Vinci stereo viewer at the
same virtual world as shown in RViz, here rendered in 3D.

The 3D cursor can be used as a mouse to select and move
waypoints in the same way as with the 2D interface, except
that with a 6-DOF input device the sphere can be used to
position and orient the waypoint anywhere in the workspace.
The addition of 3D vision and 6-DOF manipulation greatly
enhances the operator’s ability to position the waypoints,
which is especially important when recording paths.

The 3D interface includes an overlay GUI to give operators
access to the most-used features of the Planner GUI without
moving from the da Vinci console. When the 3D cursor
moves behind one of the buttons visible at the bottom of
Fig. 4, it transforms into a 2D cursor of the same color and
allows clicking the buttons, which provides the ability to add
a waypoint at the end of the plan, convert the current preview
location to a new waypoint, delete the current waypoint, and
preview and execute the plan. The 2D cursor also manipulates
the preview scrubber, as illustrated by the lower interactive
cursor in Fig. 1.

C. Supervised Execution

When the operator is satisfied with the planned trajectory,
they may execute it on the remote robot. The Execute button
in the Planner GUI (Fig. 2) transmits the current trajectory to
the remote robot immediately, but due to the communication
delay, the robot does not appear to move until one round-trip
time (RTT). Once feedback is available, the progress bar fills
to indicate progress through the planned trajectory and the
opaque robot shown in the virtual world follows the robot
telemetry feedback.

During execution, the operator may watch the robot’s
progress in an Augmented Virtuality (AV) visualization
environment (Fig. 5), described in [2]. This visualization
displays the robot and environment as in RViz, but also
augments the virtual models with a projection of the image
from the robot’s tool camera. The registration procedure
in Sec. III-A is sufficiently accurate that each area of the
camera image is projected onto the virtual model of the
corresponding object with minimal error. The projection
improves the operators’ situational awareness and ability
to judge the completion of the task by transforming the 2D
image into 3D textured objects; furthermore, it helps operators
recognize inaccuracies in the simulation which informs them
when more caution is required. In principle, this visualization
could be unified with the visualization used during planning,
but currently they are separate due to practical implementation
concerns.

If the operator judges that the trajectory is inaccurate, they
may pause the trajectory from the Planner GUI. However, due
to the time delay, the robot will continue moving 1 RTT past
its apparent position before the pause command is received.
For cases where this delay could damage the mission, the
operator can instead use the Step functionality to execute
only a small portion of the trajectory at a time, allowing the
operator to reassess the trajectory’s success between each
step. The step function truncates the trajectory to the specified
time and sends only the truncated portion to the robot. The
robot’s progress through the trajectory is retained through



Fig. 5. Augmented Virtuality (AV): the tool camera image is projected
onto the virtual environment (here, both the robot tool and satellite).
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Fig. 6. The space-side setup includes a mock satellite (right), mock servicing
robot (front left), and refueling tool station (back left).

multiple uses of the Step and Execute buttons so the operator
may Step or Execute until the trajectory is complete.

When the trajectory requires correction, the operator may
choose to start a new motion plan, at which point the trajectory
progress is reset. If the difference is small, the operator may
also choose to use a joystick to adjust the robot’s pose, which
is also subject to communications delay. The operator can
then re-compute the trajectory for the remaining portion of
the motion plan using the new start position and resume
normal execution.

IV. EXPERIMENTS

We performed a pilot study to investigate the effect of our
proposed system on a representative satellite servicing task.

A. Experimental Setup

The experimental setup consists of a mock satellite, mock
servicing robot, and operator station. The mock satellite,
shown at the right of Fig. 6, is constructed from 80/20
aluminum bars and panels wrapped in a layer of Mylar [18].
Not including its solar panel, the satellite is a box of size
24 × 24 × 36 inches. A set of three pipes of varying inner
diameters (from left to right, 0.504”, 0.555” and 0.584”) is
fixed within a cavity in one side of the satellite; the largest
pipe is selected to represent the satellite fill/drain valve. A
tool stowage area, visible behind the mock servicing robot in
Fig. 6, is attached to the same structure as the mock satellite.

Joystick

(Space Mouse)

Fig. 7. Teleoperation control interfaces: keyboard/GUI with 2D interface
(left) and da Vinci master console (right); left image also shows augmented
virtuality (AV) visualization on 3D monitor (lower left).

The mock servicing robot, shown at the left of Fig. 6, is a
Universal Robots UR-10. A custom tool including a camera,
light ring, and tool mounting assembly is mounted to the UR-
10. The tool mounting assembly includes a motor to which
active tools can be mounted (not used in this experiment)
and a set of magnets to which passive tools can be attached.
The refueling tool, a section of pipe affixed to magnets, is
shown attached to the tool mount. The outer diameter of the
refueling tool is 0.500”. At the base of the servicing robot,
not visible, are two deck cameras with views of the pipe
cavity on the mock satellite.

While operating the robot, the operator sits at an operator
station that includes several monitors, a keyboard and (2D)
mouse, a (6D) joystick (Space Mouse), and a da Vinci
master console, shown in Fig. 7. A 3D monitor, used with
active shutter 3D glasses, displays the Augmented Virtuality
Visualizer (Sec. III-C). A standard 2D monitor displays the
Planner GUI and RViz, (Sec. III-B.1), and an additional 2D
monitor displays the unaltered tool camera images.

B. Experimental Task

An experiment begins with the mock satellite already
registered using the Vision Assistant software described in
Sec. III-A. The robot begins in a standard location not near
the mock satellite or tool stowage area and the refueling tool
begins in the tool stowage area. During the experiment, the
operator must first command the robot to the tool stowage area
and lower it onto the tool to engage the magnetic attachment.
Once at least one magnet attaches, an experimenter records
whether the tool was aligned correctly and manually aligns
the tool if necessary so that the experiment may continue.
The operator must then command the robot to move the tip
of the refueling tool inside the pipe on the mock satellite that
represents the fill/drain valve. For this pilot study all operators
were instructed to use the largest pipe. The experiment is
complete when the operator believes the tool tip is inserted
at least 3 cm inside the pipe, or failed if the operator believes
it is not possible to insert the tool tip into the pipe (e.g., if
the tool is knocked off the magnetic mount).

C. Conditions

Each operator performs the experimental task three times,
with one trial in each of the following configurations:



1) Conventional: The operator directly moves the robot
with a simple GUI or by using the joystick. The GUI allows
the operator to enter only a desired pose, expressed relative to
the base of the servicing robot, and end effector speed. The
only preview capability is provided by a small marker that
indicates the commanded pose in the Augmented Virtuality
visualization. An Execute button commands the robot to
move towards the commanded pose in a straight line, and if
needed the operator may Abort the motion. This interface was
designed to resemble an interface currently used for robot
control at NASA.

2) IPSE-2D: The operator uses the 2D interface, which in-
cludes the joystick, for interactive planning and for supervised
execution.

3) IPSE-3D: The operator uses the 3D interface (da Vinci
master console) for interactive planning and is only allowed
to use the 2D interface for features that are not currently
supported by the 3D interface, such as supervised execution.

In all three configurations, the operator looks at the
Augmented Virtuality environment on the 3D monitor and
the unaltered tool camera image for feedback.

Although the IPSE system was designed to enable the
operator to switch between the 2D and 3D interfaces at will,
we decided to evaluate them in separate trials for two reasons:
(1) to compare their effectiveness in performing the task, and
(2) to ensure that each interface was actually used (otherwise
an operator could choose to only use one of them).

V. RESULTS

Six operators participated in the user study (JHU HIRB
00000701). Operators were recruited from a population famil-
iar with using the da Vinci surgical system for teleoperation,
to reflect the fact that this task would be performed by
trained operators. Three of the operators rated themselves as
“Experienced” and two as “Familiar” with remote teleoperation
systems. All operators performed all three tasks in the same
order: Conventional teleoperation, IPSE-2D, then IPSE-3D.
Before each trial, the operators were introduced to the system
and then allowed to practice the task until they chose to begin
the trial.

In a high-risk task such as an on-orbit operation, task
success is the most relevant metric. We categorized the
results for the two tasks, tool pickup and refueling, into
three categories: Full success, partial success, and failure.
Partial success was defined as an attached but improperly
aligned tool in the tool pickup task, and as a tool inserted
less than the desired 3 cm in the refueling task. For both
tasks, failure was indicated when the operator believed it was
no longer possible to complete the task. We also measured
the pose difference between the final tool pose at the end of
each task and the nominal tool pose. It should be noted that
this nominal tool pose is subject to registration error, and so
some small amount of deviation from the nominal pose may
indicate a more accurate tool placement. Large deviations,
however, indicate misplacement. Position and orientation error
are reported as average values over all successful trials.

TABLE I
PICKUP TASK SUCCESS AND POSE ERROR, MEAN (STDEV)

Conv. IPSE-2D IPSE-3D
Full Success 67% 100% 100%
Partial Success 33% 0% 0%
Failure 0% 0% 0%
Position Error, mm 23.2 (12.9) 5.7 (7.3) 9.5 (4.9)
Orientation Error, deg 4.3 (2.4) 1.8 (1.8) 4.2 (2.1)
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Fig. 8. In the tool pickup task, no operator failed in any condition and
both IPSE-2D and IPSE-3D cases saw complete success.

Success metrics for the pickup task are shown in Table I
and Figure 8. This task had no failures under any of the three
conditions, which we believe reflects the fact that the magnetic
mount is sufficiently strong to attach even across a fairly
large distance. However, attaching at a distance increases the
probability of a misaligned tool, which was evident in the
partial success rate. Using conventional teleoperation, two of
the operators misaligned the tool. The displacement metrics
indicate that operators were able to position the tool much
more accurately to the nominal pickup position using IPSE,
which may be due to the ability to preview the commanded
end effector pose using a model of the end effector itself,
rather than a small stand-in indicator. The orientation error
is similar between the conventional and IPSE-3D interfaces,
but lower with the IPSE-2D interface, which may indicate
the influence of being able to place a waypoint with respect
to the nominal tool pickup pose using the IPSE-2D interface
(i.e., by setting the Frame in Fig. 2 to the tool pickup pose).

For the refueling task, successful execution necessarily

TABLE II
REFUELING TASK SUCCESS AND ORIENTATION ERROR, MEAN (STDEV)

Conv. IPSE-2D IPSE-3D
Full Success 50% 83% 50%
Partial Success 17% 17% 0%
Failure 33% 0% 50%
Tool Misalignment 50% 17% 33%
Orientation Error, deg 2.6 (0.9) 1.9 (1.4) 1.7 (0.7)
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Fig. 9. In the refueling task, only the IPSE-2D interface saw zero failures.
In this task, it was possible for operators to misalign the tool and still
complete the task, shown here in darker color.

constrains the refueling tool to be within a pipe of only
slightly larger diameter (a tolerance of 2.13 mm), and so
position deviations are all within the margin of registration
error. However, this task affords the opportunity to dislodge
the magnetically attached tool without knocking it off entirely,
and the rate of such misalignment is also reported in Table II.
Tool misalignments are reported as the percentage of (fully or
partially) successful tasks for which the tool was misaligned.

Success rates for the refueling task (Table II and Figure
9) were much lower, demonstrating the significantly higher
requirement for precision in this task. Of the five failures
across all conditions, four were due to the operator knocking
the tool off the mount by contacting an obstacle in the
environment. Of these, three were caused by contacting the
refueling tool holder, which was visible when the operators
were introduced to the task but was not modeled in the
virtual environment. In addition, two of the four instances
of operators knocking the tool out of alignment occurred
on the same geometry. For this reason, the promise of the
virtual environment and/or collision detection may have been
detrimental to overall performance because operators expected
that every collision would be visible in the virtual environment
or detected by the IPSE system.

In another example of operators failing the task due to
placing trust in the virtual environment, the operator who
achieved a partial success in the refueling task using the IPSE-
2D interface had correctly entered the command to insert the
tool by exactly 3 cm. However, due to a 1.4 mm registration
error, the refueling tool only entered 2.86 cm into the fuel
pipe. This failure mode was not readily available in the IPSE-
3D interface because it did not provide the capability to enter
numerical motion commands.

The combined success rate for the IPSE-3D interface (50%)
was the lowest of the three conditions, followed by the
conventional interface (67%). Only the IPSE-2D interface
had a 0% failure rate, and it also had the highest full success

rate of the three. While the IPSE-2D interface improved task
performance, the IPSE-3D interface led to worse results than
the conventional interface. Multiple operators reported that
they did not use the camera view, or used it much less, while
using IPSE-3D due to the effort of switching between the
3D planning and 2D execution interfaces. Other operators
reported that the preview feature was more difficult to activate
using the IPSE-3D interface, leading them to use it less. It
was also noted that the IPSE-3D interface did not offer the
advantage of specifying precise movements with respect to
a defined frame in the environment, such as the tool mount
frame or the refueling pipe frame, which are known as a
result of the 3D scene model constructed from the camera
survey. It is likely that a fully-featured IPSE-3D interface,
which does not require exiting to the 2D interface to access
some functionality, would produce different results.

Orientation error appears to once again be lower using
IPSE, although in this task the IPSE-3D interface had the
lowest average error. However, since these numbers are the
average of only trials that were completed successfully with no
misalignment, the conventional and IPSE-3D cases are each
derived from only two data points. The IPSE-2D case, which
is derived from five data points, shows a similar alignment
error to the pickup task.

The workload for each interface was measured using a
version of the NASA Task Load Index (TLX) which reports
values on a scale from 1 to 7, with 1 representing the
lowest possible workload. The results correlate with the
performance measures: The conventional interface was rated
an average of 3.7 (standard deviation 0.82), the IPSE-2D
interface imposed the lowest workload with 2.2 (0.71), and
the IPSE-3D interface was significantly more difficult, with an
average rating of 4.5 (1.41). We also asked the participants to
rate the difficulty on a scale of 1 to 5 (where higher numbers
indicate greater difficulty) with similar results: 3.5 (0.55), 1.7
(0.82), and 4.5 (0.55), respectively.

TABLE III
TASK DURATION, MINUTES:SECONDS, MEAN (STDEV)

Conv. IPSE-2D IPSE-3D
Tool Pickup 11:31 (4:17) 6:34 (4:01) 10:59 (4:38)
Refueling 17:35 (7:44) 12:18 (5:27) 30:22 (4:01)

Although execution time is significantly less important than
success rate, we also recorded the average time to successful
completion of each task, where applicable, which is shown
in Table III. The results for the conventional and IPSE-2D
cases show that the IPSE-2D interface allowed operators to
complete the task faster, which we attribute to the lower
difficulty and the operators’ increased confidence in their
ability to safely execute longer motions. The results for
the IPSE-3D interface, however, indicate that in the less-
constrained tool pickup it was comparable to the conventional
interface, but in the severely constrained refueling task it
required much longer execution times than the other interfaces.
At least some of this time difference was likely due to the
need to frequently switch between the 3D planning and 2D



execution, as well as the difficulty of using features such as
the path preview with the da Vinci manipulators.

VI. DISCUSSION AND CONCLUSIONS

We developed an Interactive Planning and Supervised
Execution (IPSE) teleoperation system to allow operators to
accurately command satellite servicing robots from the ground
in the presence of multi-second communication delays and
non-ideal camera views. The Interactive Planning component
allows operators to define a motion plan as a series of
waypoints and the Supervised Execution component enables
them to observe the plan’s execution and respond if failure
is imminent. We implemented two interfaces to IPSE, one
using RViz and a custom GUI in 2D, and one using the da
Vinci to allow planning in 3D.

The system was evaluated with six operators, most of
whom rated themselves as Experienced or Familiar with
teleoperation systems. We found that operators were more
successful with the IPSE-2D system than with a conventional
teleoperation interface, and rated the 2D interface as easier to
use. We also found that the IPSE-3D interface was, in most
measures, equal to or worse than the conventional interface in
both success metrics and difficulty. Some operators indicated
specific limitations of the IPSE-3D interface that influenced
their success, such as having to leave the da Vinci console to
view camera feedback or the inability to specify precise
motions with respect to certain defined task frames. We
hypothesize that the IPSE-3D interface may have been
effective for some parts of the task, but not for the entire
task. Future work will include improvements to the IPSE-3D
interface as well as experiments that allow the operator to
freely switch between the 2D and 3D interfaces.
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