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Abstract—The real-time and robust surgical instrument 

segmentation is an important issue for endoscopic vision. We 

propose an instrument segmentation method fusing the convo-

lutional neural networks (CNN) prediction and the kinematic 

pose information. First, the CNN model ToolNet-C is designed, 

which cascades a convolutional feature extractor trained over 

numerous unlabeled images and a pixel-wise segmentor trained 

on few labeled images. Second, the silhouette projection of the 

instrument body onto the endoscopic image is implemented 

based on the measured kinematic pose. Third, the particle filter 

with the shape matching likelihood and the weight suppression 

is proposed for data fusion, whose estimate refines the kinematic 

pose. The refined pose determines an accurate silhouette mask, 

which is the final segmentation output. The experiments are 

conducted with a surgical navigation system, several ani-

mal-tissue backgrounds, and a debrider instrument. 

I. INTRODUCTION 

 Endoscopic vision plays an important role in surgical ro-

bots and computer-assisted surgical systems. Visual percep-

tion tasks, such as attribute labeling, pose estimation, im-

age-based navigation, and three-dimensional (3D) recon-

struction [1-4], are useful for the robotic surgery guidance 

and the real-time assistance to surgeons. Instrument seg-

mentation is to separate the instrument foreground apart from 

the organ background, offering the location, orientation and 

presence status of instrument. The segmentation mask can 

also act as preliminary information in other perception tasks. 

The image based instrument segmentation directly cate-

gorizes each pixel into background or foreground based on 

image features like color, shape and texture. The segmenta-

tion is challenging in the endoscopic images having weak 

contour, changing illumination, instrument-organ contact, 

mirror reflection and few textures. Another strategy of in-

strument segmentation is exploiting the kinematic infor-

mation. Given the instrument pose and the camera model, the 

instrument’s 3D shape can be projected onto the image as a 
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2D foreground mask. The kinematic pose of the instrument is 

available when measured by surgical robots or navigation 

systems. For surgical robots, such as the Raven II and da 

Vinci robots [5,6], the end effector pose is calculated by the 

robot kinematic model. For the navigation system, which is 

widely applied in the stereotactic surgery, the poses of the 

instrument and the endoscope are tracked in Cartesian space 

[7,8]. Thus, with the real time kinematic pose, the foreground 

mask can be simultaneously updated in the endoscopic image. 

A. Related Works 

1) Image Segmentation: The traditional image segmenta-

tion is based on a hand-crafted feature extraction module, 

which outputs the features like HSV color, gradient orienta-

tion, Gabor filter response, etc. [9-10]. The feature vector of 

each pixel is input into a trainable classifier, often based on 

the machine learning algorithms, such as random forest [9] 

and gradient boosting decision tree (GBDT) [10]. However, 

the hand-crafted features have limited richness and hierarchy. 

Convolutional neural networks (CNNs) have achieved the 

advantage of automatic feature learning, the convenience of 

end-to-end training manner, and the high computation capa-

bility of graphics processing unit (GPU). Laina et al. pro-

posed the CNN based concurrent segmentation and localiza-

tion method [11]. Fully convolutional networks (FCN) were 

combined with the fast optical flow tracking to realize real 

time surgical instrument segmentation [12]. In [13], the 

convolutional auto-encoder was embedded with the recurrent 

neural networks layers to model the dependencies between 

pixels. The two lightweight models, ToolNet-MS and 

ToolNet-H, were the first two CNN architectures that could 

be used for real time instrument segmentation [14]. The 

ToolNet-H presented better accuracy, enabled by its holisti-

cally-nested structure and multi-scale loss. Although CNNs 

have large model capabilities, their supervised training relies 

on a large dataset that is laborious to label. If the number of 

training samples is too small relative to the model complex-

ity, the model will be overfitted and have poor generalization 

performance. Moreover, CNN cannot guarantee the correct 

predictions for input patterns unseen during training. 

2) CNN Based Feature Learning: An alternative approach 

to utilize the advantage of CNN but avoid the dependency on 

a large labeled dataset is the CNN based feature learning. In 

[15], the CNN was pre-trained offline on a large dataset to 

recognize object. The learned rich feature hierarchies were 

transferred to an online tracking task in which there was only 
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one labeled example in the first frame. The EndoNet used 

CNN as the feature extractor, whose output was passed to the 

machine learning models to estimate the surgical phase [16]. 

The unsupervised feature learning can leverage the unlabeled 

but numerous images to obtain the generalized feature rep-

resentation. Radford et al. proposed the deep convolutional 

generative adversarial networks, whose discriminator could 

be reused as feature extractors for supervised tasks [17]. A 

fully convolutional auto-encoder was proposed for unsuper-

vised feature learning, which was successfully trained in the 

end-to-end manner [18]. 

3) Data Fusion with Kinematic Information: The kinematic 

information is robust but suffers from errors in practical ap-

plication. In [19], the extended Kalman filter was used to fuse 

the robot kinematics with the endoscopic stereo vision to 

track the manipulator joints, which helps to reject outliers and 

fill in gaps of detection failure. The brute-force joint search 

matching was used to correct the raw kinematics to match the 

virtual rendering template with the endoscopic image [20]. Su 

et al. leveraged the kinematic information to provide a shape 

prior mask, which was fused with the image color filter based 

on the template matching in frequency domain, to compen-

sate for the shape prior’s offsets in scale, translation and 

rotation [21]. As is reported in [19-21], the kinematic pose 

errors were caused by the model error, elastic deformation 

and time misalignment. 

B. Motivation 

This work aims to realize real time and robust surgical in-

strument segmentation in endoscopic image, for surgical 

systems that have both endoscopic camera and kinematic 

sensing. 1) It is meaningful to enable the CNN learning from 

a few labeled images, which avoids laborious labeling work 

and long training time. The lightweight CNN model 

ToolNet-C is proposed, which cascades a convolutional fea-

ture extractor trained over a large unlabeled dataset, and a 

pixel-wise segmentor trained over a tiny labeled dataset (e.g. 

30 training samples). 2) Second, the instrument silhouette 

projection is implemented, so that a kinematic pose deter-

mines a segmentation mask in the endoscopic image. 3) It is 

advantageous to fuse the two kinds of information to obtain 

the robust and accurate segmentation. A particle filter based 

data fusion method is proposed, in which the shape matching 

likelihood is designed to weight the particles, and the weight 

suppression is used to enable the efficient particle resampling. 

II. SYSTEM OVERVIEW  

The surgical system contains an endoscopic imaging sys-

tem and a navigation system. The navigation system has an 

optical localizer, which can track the 6-degree-of-freedom 

poses of the optical trackers, by observing the reflective 

sphere markers on the tracker. Assuming the tracker is fixed 

on a rigid instrument and the relative pose is calibrated, the 

kinematic pose of instrument can be obtained. The coordinate 

frames are built as shown in Fig. 1. For the instrument seg-

mentation, the CNN model predicts a map  on which each 

pixel has a confidence of belonging to the foreground. The 

silhouette projection determines a segmentation mask  

based on the instrument position P and orientation v. The 

particle filter is utilized to fuse the two kinds of information 

and estimate the latent position error as e*. Then the instru-

ment position is refined as P+e*, determining an accurate 

segmentation mask *. The orientation error has an ignora-

ble influence when the instrument tip length in view is small.  

III. CNN BASED INSTRUMENT SEGMENTATION 

A. ToolNet-C Segmentation Model 

As is shown in Fig. 2(a), the ToolNet-C model is designed 

by cascading a feature extractor and a pixel-wise segmen-

tor . The basic idea is that if  learns a set of rich and re-

usable features from numerous unlabeled images,  can be a 

lightweight pixel-wise classifier and requires just a few la-

beled training images.  

The input image  with the pixel value range [0,255] is 

linearly scaled and shifted into the value range [-1,1] and then 

fed to  to extract the rich hierarchical features. The kernels 

of the four convolutional layers in  are all with the 55 size 

and 22 stride. Batch normalization (BN) is applied to im-

prove the stability of deep model training. The leaky rectified 

linear unit (LReLU) is used as the activation function. The 

feature maps i (i=1,2,3,4) are output by the first four con-

volutional layers respectively. 

After fed into the segmentor , i is converted to i_1 in a 

cross-channel manner, by the convolutional layer with the 

11 kernel-size and 11 stride, and the feature channel 

number is not changed. Secondly, i_1 is converted to i_2 by 

the convolutional layer with the 33 kernel-size and 11 

stride, and the feature channel number is reduced to 32. Rec-

tified linear unit (ReLU) is used as the activation function for 

these two convolutional layers. Thirdly, the four adapted 

feature maps i_2 (i=1,2,3,4) are resized to the same size and 

then aggregated as a 
by concatenating all the channels. 

Finally, the aggregated feature map a is processed by the 

convolutional layer with the 33 kernel-size and 11 stride, 

and then by the softmax function, which outputs the seg-

mentation map . The size of  is half of the size of , so that 

the smaller map size is better for the real-time performance of 

the following data fusion procedure. 

 Note that the resizing method in  is the nearest neighbor 

interpolation method, which reserves the originally extracted 

feature values. In contrast, if the linear or cubic interpolation 

is used, the interpolation between a positive and a negative 

 
Fig. 1.  System overview. 
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sample might give ambiguous samples in training. The 

maximum receptive field size for i_2 is 9393, therefore 

each pixel in a
 
contains the features mapped from a 9393 

patch in the input image. 

B. Unsupervised Feature Learning 

Firstly,  is embedded into an unsupervised feature learn-

ing model, which is trained over unlabeled images. After the 

model is trained, the parameters of  are obtained. The two 

representative methods, deep convolutional generative ad-

versarial nets (DCGAN) [17] and fully convolutional au-

to-encoder (FCAE) [18], are utilized for feature learning. 

Their structures are customized so that  can be embedded 

into the discriminator of DCGAN and the encoder of FCAE 

as the four convolutional layers, as is shown in Fig. 2(b,c).  

DCGAN concurrently learns a generator G() that maps a 

random noise vector z to a fake image and a discriminator D() 
that distinguishes the generated fake image from the real 

image . The discriminator output indicates the probability of 

being a real image. D and G are both formed by convolutional 

layers. The learning objective is given by 

     min max log ( ) log 1
G D

D D G      z
z   (1) 

The global optimum of this min-max game is achieved when 

the generated fake images have the same distribution with the 

real images. As is shown in Fig. 2(b), the generated image 

looks real, but the instrument in it has shape distortion.  

FCAE concurrently learns a encoder E() and a decoder 

E(). The encoder maps an image into the code vector z, 

which is a latent image expression in the low dimensional 

space. The decoder reconstructs an image z.  The learning 

objective is to minimize the squared L2 distance between the 

input images and reconstructed images, namely, 

  
2

, , , , , ,,
, , ,

min ( )
m i j k m i j kE E

m i j k

E E


                (2) 

where m, i, j, and k are the indices of sample, row, column and 

channels, respectively. As is shown in Fig 2(c), the image 

reconstructed from the 128-dimensional code vector is simi-

lar to the input but blurrier. 

According to the learning objectives, the discriminator of 

DCGAN learns the discriminative features which the real 

images own. The encoder of FCAE learns the representative 

features to model the image’s latent structure.  

C. Supervised Segmentor Training 

After the unsupervised feature learning, the parameters of 

 are obtained and fixed. With the Nt labeled images n 

(n=1,2,...,Nt), only the parameters of  is optimized by su-

pervised training. The Nt ground-truth label maps n are bi-

nary maps whose pixel value belongs to {0,1}. The learning 

objective is to minimize the squared L2 distance between the 

output maps  and ground-truth label maps , as given by 

2

, , , , , , 2
, , ,

min ,  . .
m i j k m i j k

m i j k

s t c    θ
θ

w              (3) 

where the indices m, i, j and k indicate the mth sample, ith row, 

jth column, and kth class. The 1st class is the background and 

2nd class is the foreground. Inspired by [22], the max-norm 

constraint and dropout technique are applied to prevent the 

overfitting problem, which is essential to the learning with 

small dataset. w is the last convolutional layer’s weight ma-

trix. The max-norm constraint is to limit the L2 norm of the 

weight matrix within the upper-bound c. Because the training 

samples are few, the training method is stochastic gradient 

descent instead of mini-batch gradient descent.  

IV. KINEMATIC POSE BASED SILHOUETTE PROJECTION 

Suppose the 3D shape of the surgical instrument is known, 

a grid of 3D points is sampled on the instrument’s outer sur-

face. The 3D points are transformed into the endoscopic 

camera frame and projected onto the image as a grid of 2D 
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Fig. 2.  CNN model architectures. (a) TooNet-C segmentation model, (b) DCGAN and (c) FCAE models are used for unsupervised feature learning. 
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points. Then the outer envelope of the 2D point grid is found 

to form the counters of the silhouette mask. Finally, the pixels 

overlapping with the back border are eliminated from the 

silhouette mask. The frame transformation and calibration 

method are briefly introduced here.  

A point IP on the instrument surface is transferred into the 

camera frame {C} by the transformation chain

 
1

C C L L R I

E E R I



P T T T T P . The transformations RTI, LTR and 
LTE are directly provided by the commercial surgical naviga-

tion system. The intrinsic camera parameters are calibrated 

with the classical chessboard based method. Using the sphere 

marker on the optical tracker as the object, the sphere center’s 

3D position is given by the localizer and the sphere center’s 

2D position is extracted from the image, which form a 3D-2D 

point correspondence. After n≥4 point correspondences are 

collected, the Perspective-n-Point (PnP) method [23] is uti-

lized to solve the extrinsic parameters, which determines the 

transformation CTE. Note that the silhouette projection can 

also be used with the surgical robot by simply modifying the 

frame transformation based on the robot kinematic model.  

V. PARTICLE FILTER BASED DATA FUSION 

The CNN prediction is directly based on the endoscopic 

image, but outliers and incompleteness might occur. The 

silhouette projection generates segmentation indirectly and 

gives the regular segmentation shape, but suffers from the 

kinematic pose error that is not ignorable compared to the 

instrument tip size. Thus, it is appealing to fuse the two kinds 

of information. Assuming the kinematic position error e is the 

latent state. The observations include the endoscopic image  

and the raw kinematic pose {P,v}. The particle filter is uti-

lized to estimate the posterior distribution of the latent state 

with a set of random particles {ei} and the associated weights 

{wi} (i=1,2,…,Np) [24], as given in Algorithm 1.  

 Based on the generic PF, firstly, the shape matching like-

lihood is designed to weight the particles. Assuming the 

kinematic pose is compensated for by the position error e, the 

silhouette mask is projected as (P+e,v){0,1}, which is 

abbreviated as P,e,v. At the same time, the endoscopic im-

age  is fed to CNN and mapped as a segmentation map 

S()[0,1], whose second channel S()2 is the foreground 

confidence map. The function measuring the shape matching 

likelihood of the observations conditioned on the latent state e 

is given by,  

 

 

 

 

2 , , ,
,

, , ,
,

2 , , , ,
,

,
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,
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i j
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i j

c P e v P e v
i j

i j

S

p

S 



 

   

   









P v e

  (4) 

where ∘ is the entry-wise product.  is the morphological 

dilation operator with the 2525 structuring element . c is 

the circular mask used to eliminate the dilated pixels on the 

black border. As illustrated in Fig. 3 (a-d), the likelihood is 

the average confidence on S()2 within the silhouette region 

(green) minus the average confidence within the silhouette 

region’s outer neighborhood (red). If P+e deviates from the 

actual position, the silhouette mask will have offsets in posi-

tion and scale so that the likelihood is lower.  

 Second, the weight suppression is used before the standard 

weight normalization step. In real time application, a small 

number of particles are employed and are distributed around 

the optimal latent state. However, as illustrated in Fig. 3(e), 

the particle weight distribution around the maximum point is 

flat, which is not good for particle resampling. Because if the 

weights vary in a small range comparing to their mean, the 

resampling cannot efficiently polish the particles. Therefore, 

the weights are suppressed by the mean weight, namely,  

* 1
max(0, )i i i

t t t

ip

w w w
N

                         (5) 

After the weight suppression, only the particles close to the 

optimal state still have positive weights, as shown in Fig. 3(f). 

Third, if the maximum weight is below the threshold , the 

observation is considered unreliable. In this case, the position 

error state is updated by reducing its previous value with the 

discount factor , and the particles will be initialized again at 

Algorithm 1: Particle Filter based Data Fusion 

Parameters: Particle number Np, covariance matrix C, 

likelihood threshold , discount factor . 

t=0, flag_init=0; 

while task is not terminated: 

    Read the raw image t and the kinematic pose {Pt,vt}; 

    if t=0 or flag_init=0: # Initialize particles 

        Draw particles i

te ~(0;C) (i=1,2,…, Np); 

 flag_init1; 

    else: # Update particles 

        Draw particles i

te ~( 1

i

te ;C); 

    Weight the particles by i

tw  ( | , , )t t t tp e P v  with (4); 

    if max( i

tw )<: # Fail to get confident observation 

         flag_init0 and output *

te  1

i

te ;  

    else: # Estimate the posterior expectation 

         Weight suppression by i

tw  *i

tw  with (5); 

         Weight normalization by i

tw  i

tw
 
/i

i

tw
t
; 

         Output the expectation by *

te  i
i i

t tw e ; 

         Resampling [24]; tt+1. 

 

 

 

 

 

   
     (a)                                      (b)                                (c)                                        (d)                                     (e)                                  (f) 

Fig. 3.  Illustration of shape matching likelihood and weight suppression. (a) Foreground confidence map predicted by CNN, (b) match with high likelihood, 

(c,d) mismatch with translation and scale offsets. (e) Global distribution of particle weight, (f) local distribtion of particle weight after weight suppression. The 

brighter dot indicates the particle with higher weight. 
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the next time step. In the data fusion process, the size of the 

confidence map and the silhouette mask is the half of the 

input image size, which reduces the computation burden. 

After the position error estimate is updated, the final silhou-

ette mask * has the same size with the input image.  

VI. EXPERIMENTS AND RESULTS 

A. Hardware Configuration 

The Medtronic Stealth Station S7 surgical navigation sys-

tem was used to provide the kinematic pose of the surgical 

instrument, as shown in Fig. 4. The endoscopic imaging is 

based on the Stryker 1088 HD camera system and the Karl 

Storz Hopkins 4mm 0 endoscope, which provided the 

320240 resolution images at 30fps. The surgical instrument 

was a 4mm Medtronic debrider, which is widely utilized in 

nasal surgeries. In this research, the data was collected on 

these two commercial systems and then processed offline. 

The computer for the offline experiment had an Intel 

i7-6700K 4.0GHz CPU and a Nvidia GTX1070 GPU. The 

computation of CNN was on the GPU, and the other com-

putation was on CPU.  

B. Data Collection and Evaluation Metrics 

With the same surgical debrider and different tissue sam-

ples, the two endoscopic videos were recorded. To make the 

dataset challenging, in the videos exist the contact between 

instrument and tissue, the slow and fast motions of instru-

ment, the significant brightness change, the mirror reflection 

and highlights, and the significant scale change of instrument 

in image. In addition, the instrument orientation is with lim-

ited change. The video 1 offered 18780 endoscopic image 

frames, which formed the unlabeled dataset U and were used 

for the unsupervised feature learning. 50 images in video 1 

and their labels formed the segmentor training dataset S, 

among which 30 images were used for training and the rest 

for validation. The video 2 was nine minutes long and had the 

synchronized kinematic pose trajectories of the instrument. 

For the evaluation, 500 images in the video 2 and the corre-

sponding labels formed the test dataset T.  
Dice similarity coefficient (DSC) and intersection of union 

(IOU) were used as the metrics to evaluate the segmentation, 

   
1 1

21 1
DSC , = , IOU , =

K K
k k k k

k kk k k k

X Y X Y
X Y X Y

K X Y K X Y 
   

where Xk and Yk represent the pixels belonging to the kth class 

on the output map X and the ground truth map Y, respectively. 

K=2 is the class number. || is the number counting operation.  

Considering that a false positive outlier occurs in the CNN 

output, it will decrease the DSC and IOU values. However, if 

the outlier is far from the actual instrument region, it will have 

no influence on the final result after the data fusion, because 

the shape matching likelihood just involves the pixels near the 

actual foreground region. Therefore, the metrics with far 

outliers removed are deigned as DSC*=DSC(X*,Y) and 

IOU*=IOU(X*,Y), where X*=X(Y).  is the 2525 

structuring element for the morphological dilation operation 

.  DSC* and IOU* are appropriate for evaluating whether the 

prediction map is good for data fusion.  

C. Training Configuration 

The DCGAN and FCAE models were trained on U with 

data augmentation including the random flipping, scaling and 

rotation. The learning rate, training epoch and batch-size for 

mini-batch gradient descent were =0.0005, 8 and 16, re-

spectively. Afterwards, the pixel-wise segmentor was learned 

with S, without any data augmentation The learning rate and 

training epoch were =0.001 and 50, respectively, for sto-

chastic gradient descent. The Adam optimizer was applied 

[25], whose exponential decay rates of the 1st and 2nd order 

moment estimates were β1=0.5 and β2=0.99, respectively. The 

keep probability of dropout was 0.8. The upper bound c of the 

weight norm was 4. 

For the comparison, the ToolNet-H [14] and gradient 

boosting decision tree (GBDT) [10] were also trained with 

S, also without any data augmentation. As to ToolNet-H, the 

learning rate and training epoch were =0.001 and 50, re-

spectively, for stochastic gradient descent. The same Adam 

optimizer was utilized. As to GBDT, the hand-crafted fea-

tures included the RGB color, HSV color and 32 Gabor filter 

responses. The offline GBDT classifier had the exponential 

loss, the weak-classifier number of 32, the maximum depth of 

tree of 5, and the learning rate of 0.1. 

D. Segmentation Results without Data Fusion  

The above four image segmentation models along with the 

silhouette projection were tested with the dataset T. 

ToolNet-C’s output was resized to the input image size with 

the nearest neighbor interpolation. As is shown by the ex-

amples in Fig. 5, ToolNet-C model with DCGAN presented 

the sharp segmentation contour and some far outliers. 

ToolNet-C with FCAE was not as accurate as that with 

DCGAN and had more outliers. The ToolNet-H gave the 

weaker outlier response but the less accurate contour. The 

GBDT gave the worst results because its hand-crafted fea-

 
Fig. 5. Segmentation results without data fusion. (a) Raw image, (b) 

ToolNet-C with DCGAN, (c) ToolNet-C with FCAE, (d) ToolNet-H, (e) 

GBDT, (f)  silhouette projection. The ground-truth is marked by green line. 

(a) (b) (c) 

(d) (e) (f) 

  
Fig. 4.  Experimental platform and devices. 
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tures were not rich and hierarchical. The silhouette projection 

offered regular shape mask but suffered from offsets. The 

outputs of these methods were evaluated with the metrics in 

Section VI.C. The prediction maps were firstly binarized with 

the threshold 0.7. The mean DSC (mDSC), mean IOU (mI-

OU), mean DSC* (mDSC*), and mean IOU (mIOU*) over the 

500 images in T are shown in Table I. With the mDSC and 

mIOU metrics, ToolNet-H provided the highest scores. With 

the DSC* and IOU* metrics, ToolNet-C with DCGAN pro-

vided the highest scores, which had the best potential for data 

fusion, because it showed the best accuracy after removing 

the far outliers.  

E. Segmentation Results with Data Fusion 

In this experiment, the above four image segmentation 

models were fused with the silhouette projection. The particle 

filter was configured with the particle number Np=50, the 

discount factor =0.7, and the likelihood threshold =0.3. 

The covariance matrix C was a diagonal matrix with the 

diagonal elements of 0.1. For comparison, the template 

matching based data fusion was also investigated [21]. The 

template matching corrected the translation and scale offsets 

based on the cross correlation metric. Multi-thread pro-

gramming techniques were utilized in the particle filter and 

the template matching to reduce the execution time.  

The segmentation with data fusion was continuously run 

over the entire video 2 with the synchronized kinematic pose 

trajectory. During running, if the image frame was included in 

T, its segmentation result was compared to the ground truth 

in T with the metrics DSC and IOU. Finally, the mDSC and 

mIOU were calculated, as shown in Table II. By comparing 

Table I and II, it is found that the segmentation accuracy was 

improved after the data fusion. The particle filter behaved 

better than the template matching. The best accuracy was 

provided by the ToolNet-C with DCGAN and the particle 

filter. Compared to the best performances without data fu-

sion, the mDSC and mIOU with data fusion were 12.2% and 

14.7% higher, respectively. The average time cost was 33ms 

which satisfied the real-time application requirement. An 

example is shown in Fig. 6. Although the prediction of 

ToolNet-C had outliers and defections, the final segmentation 

mask was outlier-free and shape-complete. As to the template 

matching, the existence of the inconsistency between the 

prior shape and the actual instrument shape was a major 

disadvantage. More examples were shown in the online video 

at https://youtu.be/2iDUs7ppz9Y.  

VII. CONCLUSION 

This work addresses the surgical instrument segmentation 

issue for endoscopic vision, considering the data fusion of 

CNN prediction and kinematic pose. The proposed CNN 

model ToolNet-C learns features from numerous unlabeled 

images and learns segmentation from few labeled images, 

making its application more convenient. The particle filter 

based data fusion leverages the CNN prediction, instrument 

3D shape and kinematic pose, so that the segmentation result 

is more robust and has regular shape. The weight suppression 

and shape matching likelihood are proposed to effect the 

resampling and weighting of particles in the particle filter. 

The proposed segmentation pipeline is suitable for endo-

scopic vision of local surgeries with challenging imaging 

condition but limited scene variation.  

VIII. ACKNOWLEDGMENTS 

We are pleased to acknowledge support from National 

Science Foundation (grant number: IIS-1637444). 

 
Fig. 6. Segmentation results with data fusion. (a) Raw image, (b) silhouette projection (green), (c) ToolNet-C with DCGAN, (d) ToolNet-C and particle filter 

(blue), (e) ToolNet-C and template matching (blue). The ground-truth is marked by red line. 

(a) (b) (c) (d) (e)

TABLE I 
SEGMENTATION PERFORMANCES WITHOUT DATA FUSION 

Segmentation 
method 

mDSC 
(%) 

mIOU  
(%) 

mDSC* 
(%) 

mIOU* 
(%) 

Time cost 
(ms) 

ToolNet-C with 

DCGAN 
82.4 76.2 90.8 84.9 7 

ToolNet-C with 
FCAE 

81.2 74.4 89.2 82.7 7 

ToolNet-H [14] 84.3 77.6 87.5 80.8 6 

GBDT [10] 65.3 57.7 72.8 65.0 29 

Silhouette pro-

jection 
85.6 77.9 89.7 83.3 <0.5 

 

TABLE II 
SEGMENTATION PERFORMANCES WITH DATA FUSION 

Data Fusion 
Method 

Segmentation 
method 

mDSC 
(%) 

mIOU  
(%) 

Time cost 
(ms) 

Particle 

filter 

ToolNet-C with 

DCGAN 
94.6 90.9 31 

ToolNet-C with 
FCAE 

93.7 89.4 31 

ToolNet-H [14] 91.9 86.8 29 

GBDT [10] 87.4 80.6 53 

Template 

matching 
[21] 

ToolNet-C with 

DCGAN 
90.3 84.8 10 

ToolNet-C with 

FCAE 
89.4 84.0 10 

ToolNet-H [14] 90.0 84.6 9 

GBDT [10] 84.9 79.8 32 
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