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Abstract—The real-time and robust surgical instrument
segmentation is an important issue for endoscopic vision. We
propose an instrument segmentation method fusing the convo-
lutional neural networks (CNN) prediction and the kinematic
pose information. First, the CNN model ToolNet-C is designed,
which cascades a convolutional feature extractor trained over
numerous unlabeled images and a pixel-wise segmentor trained
on few labeled images. Second, the silhouette projection of the
instrument body onto the endoscopic image is implemented
based on the measured kinematic pose. Third, the particle filter
with the shape matching likelihood and the weight suppression
is proposed for data fusion, whose estimate refines the kinematic
pose. The refined pose determines an accurate silhouette mask,
which is the final segmentation output. The experiments are
conducted with a surgical navigation system, several ani-
mal-tissue backgrounds, and a debrider instrument.

I. INTRODUCTION

Endoscopic vision plays an important role in surgical ro-
bots and computer-assisted surgical systems. Visual percep-
tion tasks, such as attribute labeling, pose estimation, im-
age-based navigation, and three-dimensional (3D) recon-
struction [1-4], are useful for the robotic surgery guidance
and the real-time assistance to surgeons. Instrument seg-
mentation is to separate the instrument foreground apart from
the organ background, offering the location, orientation and
presence status of instrument. The segmentation mask can
also act as preliminary information in other perception tasks.

The image based instrument segmentation directly cate-
gorizes each pixel into background or foreground based on
image features like color, shape and texture. The segmenta-
tion is challenging in the endoscopic images having weak
contour, changing illumination, instrument-organ contact,
mirror reflection and few textures. Another strategy of in-
strument segmentation is exploiting the kinematic infor-
mation. Given the instrument pose and the camera model, the
instrument’s 3D shape can be projected onto the image as a
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2D foreground mask. The kinematic pose of the instrument is
available when measured by surgical robots or navigation
systems. For surgical robots, such as the Raven II and da
Vinci robots [5,6], the end effector pose is calculated by the
robot kinematic model. For the navigation system, which is
widely applied in the stereotactic surgery, the poses of the
instrument and the endoscope are tracked in Cartesian space
[7,8]. Thus, with the real time kinematic pose, the foreground
mask can be simultaneously updated in the endoscopic image.

A. Related Works

1) Image Segmentation: The traditional image segmenta-
tion is based on a hand-crafted feature extraction module,
which outputs the features like HSV color, gradient orienta-
tion, Gabor filter response, efc. [9-10]. The feature vector of
each pixel is input into a trainable classifier, often based on
the machine learning algorithms, such as random forest [9]
and gradient boosting decision tree (GBDT) [10]. However,
the hand-crafted features have limited richness and hierarchy.

Convolutional neural networks (CNNs) have achieved the
advantage of automatic feature learning, the convenience of
end-to-end training manner, and the high computation capa-
bility of graphics processing unit (GPU). Laina et al. pro-
posed the CNN based concurrent segmentation and localiza-
tion method [11]. Fully convolutional networks (FCN) were
combined with the fast optical flow tracking to realize real
time surgical instrument segmentation [12]. In [13], the
convolutional auto-encoder was embedded with the recurrent
neural networks layers to model the dependencies between
pixels. The two lightweight models, ToolNet-MS and
ToolNet-H, were the first two CNN architectures that could
be used for real time instrument segmentation [14]. The
ToolNet-H presented better accuracy, enabled by its holisti-
cally-nested structure and multi-scale loss. Although CNNs
have large model capabilities, their supervised training relies
on a large dataset that is laborious to label. If the number of
training samples is too small relative to the model complex-
ity, the model will be overfitted and have poor generalization
performance. Moreover, CNN cannot guarantee the correct
predictions for input patterns unseen during training.

2) CNN Based Feature Learning: An alternative approach
to utilize the advantage of CNN but avoid the dependency on
a large labeled dataset is the CNN based feature learning. In
[15], the CNN was pre-trained offline on a large dataset to
recognize object. The learned rich feature hierarchies were
transferred to an online tracking task in which there was only
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one labeled example in the first frame. The EndoNet used
CNN as the feature extractor, whose output was passed to the
machine learning models to estimate the surgical phase [16].
The unsupervised feature learning can leverage the unlabeled
but numerous images to obtain the generalized feature rep-
resentation. Radford et al. proposed the deep convolutional
generative adversarial networks, whose discriminator could
be reused as feature extractors for supervised tasks [17]. A
fully convolutional auto-encoder was proposed for unsuper-
vised feature learning, which was successfully trained in the
end-to-end manner [18].

3) Data Fusion with Kinematic Information: The kinematic
information is robust but suffers from errors in practical ap-
plication. In [19], the extended Kalman filter was used to fuse
the robot kinematics with the endoscopic stereo vision to
track the manipulator joints, which helps to reject outliers and
fill in gaps of detection failure. The brute-force joint search
matching was used to correct the raw kinematics to match the
virtual rendering template with the endoscopic image [20]. Su
et al. leveraged the kinematic information to provide a shape
prior mask, which was fused with the image color filter based
on the template matching in frequency domain, to compen-
sate for the shape prior’s offsets in scale, translation and
rotation [21]. As is reported in [19-21], the kinematic pose
errors were caused by the model error, elastic deformation
and time misalignment.

B. Motivation

This work aims to realize real time and robust surgical in-
strument segmentation in endoscopic image, for surgical
systems that have both endoscopic camera and kinematic
sensing. 1) It is meaningful to enable the CNN learning from
a few labeled images, which avoids laborious labeling work
and long training time. The lightweight CNN model
ToolNet-C is proposed, which cascades a convolutional fea-
ture extractor trained over a large unlabeled dataset, and a
pixel-wise segmentor trained over a tiny labeled dataset (e.g.
30 training samples). 2) Second, the instrument silhouette
projection is implemented, so that a kinematic pose deter-
mines a segmentation mask in the endoscopic image. 3) It is
advantageous to fuse the two kinds of information to obtain
the robust and accurate segmentation. A particle filter based
data fusion method is proposed, in which the shape matching
likelihood is designed to weight the particles, and the weight
suppression is used to enable the efficient particle resampling.

II. SYSTEM OVERVIEW

The surgical system contains an endoscopic imaging sys-
tem and a navigation system. The navigation system has an
optical localizer, which can track the 6-degree-of-freedom
poses of the optical trackers, by observing the reflective
sphere markers on the tracker. Assuming the tracker is fixed
on a rigid instrument and the relative pose is calibrated, the
kinematic pose of instrument can be obtained. The coordinate
frames are built as shown in Fig. 1. For the instrument seg-
mentation, the CNN model predicts a map S on which each
pixel has a confidence of belonging to the foreground. The
silhouette projection determines a segmentation mask M
based on the instrument position P and orientation v. The
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Fig. 1. System overview.

particle filter is utilized to fuse the two kinds of information
and estimate the latent position error as e*. Then the instru-
ment position is refined as P+e", determining an accurate
segmentation mask M. The orientation error has an ignora-
ble influence when the instrument tip length in view is small.

III. CNN BASED INSTRUMENT SEGMENTATION

A. ToolNet-C Segmentation Model

As is shown in Fig. 2(a), the ToolNet-C model is designed
by cascading a feature extractor I and a pixel-wise segmen-
tor S. The basic idea is that if IF learns a set of rich and re-
usable features from numerous unlabeled images, S can be a
lightweight pixel-wise classifier and requires just a few la-
beled training images.

The input image 7 with the pixel value range [0,255] is
linearly scaled and shifted into the value range [-1,1] and then
fed to IF to extract the rich hierarchical features. The kernels
of the four convolutional layers in I are all with the 5x 5 size
and 2x2 stride. Batch normalization (BN) is applied to im-
prove the stability of deep model training. The leaky rectified
linear unit (LReLU) is used as the activation function. The
feature maps H, (i=1,2,3,4) are output by the first four con-
volutional layers respectively.

After fed into the segmentor S, H; is converted to H; j ina
cross-channel manner, by the convolutional layer with the
1x1 kernel-size and 1x1 stride, and the feature channel
number is not changed. Secondly, H; | is converted to H; » by
the convolutional layer with the 3x3 kernel-size and 1x1
stride, and the feature channel number is reduced to 32. Rec-
tified linear unit (ReLU) is used as the activation function for
these two convolutional layers. Thirdly, the four adapted
feature maps H,; » (i=1,2,3,4) are resized to the same size and
then aggregated as H, by concatenating all the channels.
Finally, the aggregated feature map H, is processed by the
convolutional layer with the 3 x3 kernel-size and 1x1 stride,
and then by the softmax function, which outputs the seg-
mentation map S. The size of S is half of the size of Z, so that
the smaller map size is better for the real-time performance of
the following data fusion procedure.

Note that the resizing method in S is the nearest neighbor
interpolation method, which reserves the originally extracted
feature values. In contrast, if the linear or cubic interpolation
is used, the interpolation between a positive and a negative
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Fig. 2. CNN model architectures. (a) TooNet-C segmentation model, (b) DCGAN and (c) FCAE models are used for unsupervised feature learning.

sample might give ambiguous samples in training. The
maximum receptive field size for H; 2 is 93x93, therefore
each pixel in H, contains the features mapped from a 93 x93
patch in the input image.

B. Unsupervised Feature Learning

Firstly, I is embedded into an unsupervised feature learn-
ing model, which is trained over unlabeled images. After the
model is trained, the parameters of I are obtained. The two
representative methods, deep convolutional generative ad-
versarial nets (DCGAN) [17] and fully convolutional au-
to-encoder (FCAE) [18], are utilized for feature learning.
Their structures are customized so that F can be embedded
into the discriminator of DCGAN and the encoder of FCAE
as the four convolutional layers, as is shown in Fig. 2(b,c).

DCGAN concurrently learns a generator G(-) that maps a
random noise vector z to a fake image and a discriminator D(+)
that distinguishes the generated fake image from the real
image 7. The discriminator output indicates the probability of
being a real image. D and G are both formed by convolutional
layers. The learning objective is given by

mojn max (EI [logD(Z)]+]Ez [log(l—D[G(z)])]) )

The global optimum of this min-max game is achieved when
the generated fake images have the same distribution with the
real images. As is shown in Fig. 2(b), the generated image
looks real, but the instrument in it has shape distortion.

FCAE concurrently learns a encoder E(-) and a decoder
E'(-). The encoder maps an image into the code vector z,
which is a latent image expression in the low dimensional
space. The decoder reconstructs an image z. The learning
objective is to minimize the squared L2 distance between the
input images and reconstructed images, namely,

where m, i, j, and k are the indices of sample, row, column and
channels, respectively. As is shown in Fig 2(c), the image
reconstructed from the 128-dimensional code vector is simi-
lar to the input but blurrier.

According to the learning objectives, the discriminator of
DCGAN learns the discriminative features which the real
images own. The encoder of FCAE learns the representative
features to model the image’s latent structure.

C. Supervised Segmentor Training

After the unsupervised feature learning, the parameters of
F are obtained and fixed. With the N; labeled images Z,
(n=1,2,...,N,), only the parameters of S is optimized by su-
pervised training. The N, ground-truth label maps G, are bi-
nary maps whose pixel value belongs to {0,1}. The learning
objective is to minimize the squared L2 distance between the
output maps S and ground-truth label maps G, as given by

min 3 [,

m,i,j.k

Gop]sstrlze @
where the indices m, i, j and k indicate the m™ sample, i row,
" column, and k" class. The 1* class is the background and
2" class is the foreground. Inspired by [22], the max-norm
constraint and dropout technique are applied to prevent the
overfitting problem, which is essential to the learning with
small dataset. wy is the last convolutional layer’s weight ma-
trix. The max-norm constraint is to limit the L2 norm of the
weight matrix within the upper-bound c. Because the training
samples are few, the training method is stochastic gradient
descent instead of mini-batch gradient descent.

IV. KINEMATIC POSE BASED SILHOUETTE PROJECTION

Suppose the 3D shape of the surgical instrument is known,
a grid of 3D points is sampled on the instrument’s outer sur-

min Z( —E'[ET)] ) (2) face. The 3D points are transformed into the endoscopic
" s camera frame and projected onto the image as a grid of 2D
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Fig. 3. Illustration of shape matching likelihood and weight suppression. (a) Foreground confidence map predicted by CNN, (b) match with high likelihood,
(c,d) mismatch with translation and scale offsets. (¢) Global distribution of particle weight, (f) local distribtion of particle weight after weight suppression. The

brighter dot indicates the particle with higher weight.

points. Then the outer envelope of the 2D point grid is found
to form the counters of the silhouette mask. Finally, the pixels
overlapping with the back border are eliminated from the
silhouette mask. The frame transformation and calibration
method are briefly introduced here.

A point ‘P on the instrument surface is transferred into the
camera frame {C} by the transformation chain
P="T,(" TF) ‘T, *T.'P . The transformations 7}, LTy and
LTy are dlrectly pr0V1ded by the commercial surgical naviga-
tion system. The intrinsic camera parameters are calibrated
with the classical chessboard based method. Using the sphere
marker on the optical tracker as the object, the sphere center’s
3D position is given by the localizer and the sphere center’s
2D position is extracted from the image, which form a 3D-2D
point correspondence. After n>4 point correspondences are
collected, the Perspective-n-Point (PnP) method [23] is uti-
lized to solve the extrinsic parameters, which determines the
transformation “Tg. Note that the silhouette projection can
also be used with the surgical robot by simply modifying the
frame transformation based on the robot kinematic model.

V. PARTICLE FILTER BASED DATA FUSION

The CNN prediction is directly based on the endoscopic
image, but outliers and incompleteness might occur. The
silhouette projection generates segmentation indirectly and
gives the regular segmentation shape, but suffers from the
kinematic pose error that is not ignorable compared to the
instrument tip size. Thus, it is appealing to fuse the two kinds
of information. Assuming the kinematic position error e is the

Algorithm 1: Particle Filter based Data Fusion

Parameters: Particle number N,, covariance matrix C,
likelihood threshold 7, discount factor o.

t=0, flag_init=0;
while task is not terminated:
Read the raw image 7, and the kinematic pose {P,v};
if =0 or flag_init=0: # Initialize particles
Draw particles e ~M0;C) (i=1,2,..., N,);
flag init—1,
else: # Update particles
Draw particles e/ ~\( e, 150);
Weight the partlcles by w, «— p(e,|Z,,P,v,) with (4);
if max(w )<7: # Fail to get conf dent observation
ﬂag_zmteO and output ¢, <oe’ ;
else: # Estimate the posterior expectatlon
Weight suppression by w! < w, " with (5)
Weight normalization by w; <« w/ /Zl ;
Output the expectation by e, «— Z, we'; .
Resampling [24]; t«—t+1.

latent state. The observations include the endoscopic image 7
and the raw kinematic pose {P,v}. The particle filter is uti-
lized to estimate the posterior distribution of the latent state
with a set of random particles {¢'} and the associated weights
W'} (i=1,2,...,N,) [24], as given in Algorithm 1.

Based on the generic PF, firstly, the shape matching like-
lihood is designed to weight the particles. Assuming the
kinematic pose is compensated for by the position error e, the
silhouette mask is projected as M(P+e,v)e{0,1}, which is
abbreviated as Mp,,. At the same time, the endoscopic im-
age 7 is fed to CNN and mapped as a segmentation map
S(Z)€[0,1], whose second channel S(Z), is the foreground
confidence map. The function measuring the shape matching
likelihood of the observations conditioned on the latent state e
is given by,

M),

Z(M...),

ij

S[S@eMo(M,,, Dx-M, )] @
S[Me(M,,, Ox-M,, )]

i

>(S(@).e
p(T.P.v]e)="

where o is the entry-wise product. & is the morphological
dilation operator with the 25 x 25 structuring element x. M. is
the circular mask used to eliminate the dilated pixels on the
black border. As illustrated in Fig. 3 (a-d), the likelihood is
the average confidence on S(Z), within the silhouette region
(green) minus the average confidence within the silhouette
region’s outer neighborhood (red). If P+e deviates from the
actual position, the silhouette mask will have offsets in posi-
tion and scale so that the likelihood is lower.

Second, the weight suppression is used before the standard
weight normalization step. In real time application, a small
number of particles are employed and are distributed around
the optimal latent state. However, as illustrated in Fig. 3(e),
the particle weight distribution around the maximum point is
flat, which is not good for particle resampling. Because if the
weights vary in a small range comparing to their mean, the
resampling cannot efficiently polish the particles. Therefore,
the weights are suppressed by the mean weight, namely,

*i i 1 i
w" =max(0, w N—pr,) (5)
After the weight suppression, only the particles close to the
optimal state still have positive weights, as shown in Fig. 3(f).

Third, if the maximum weight is below the threshold 7, the
observation is considered unreliable. In this case, the position
error state is updated by reducing its previous value with the
discount factor o, and the particles will be initialized again at
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Fig 4. Experimental platform and devices.

the next time step. In the data fusion process, the size of the
confidence map and the silhouette mask is the half of the
input image size, which reduces the computation burden.
After the position error estimate is updated, the final silhou-
ette mask M has the same size with the input image.

VI. EXPERIMENTS AND RESULTS

A. Hardware Configuration

The Medtronic Stealth Station S7 surgical navigation sys-
tem was used to provide the kinematic pose of the surgical
instrument, as shown in Fig. 4. The endoscopic imaging is
based on the Stryker 1088 HD camera system and the Karl
Storz Hopkins @4mm 0° endoscope, which provided the
320240 resolution images at 30fps. The surgical instrument
was a @4mm Medtronic debrider, which is widely utilized in
nasal surgeries. In this research, the data was collected on
these two commercial systems and then processed offline.
The computer for the offline experiment had an Intel
i7-6700K 4.0GHz CPU and a Nvidia GTX1070 GPU. The
computation of CNN was on the GPU, and the other com-
putation was on CPU.

B. Data Collection and Evaluation Metrics

With the same surgical debrider and different tissue sam-
ples, the two endoscopic videos were recorded. To make the
dataset challenging, in the videos exist the contact between
instrument and tissue, the slow and fast motions of instru-
ment, the significant brightness change, the mirror reflection
and highlights, and the significant scale change of instrument
in image. In addition, the instrument orientation is with lim-
ited change. The video 1 offered 18780 endoscopic image
frames, which formed the unlabeled dataset Iy and were used
for the unsupervised feature learning. 50 images in video 1
and their labels formed the segmentor training dataset Dy,
among which 30 images were used for training and the rest
for validation. The video 2 was nine minutes long and had the
synchronized kinematic pose trajectories of the instrument.
For the evaluation, 500 images in the video 2 and the corre-
sponding labels formed the test dataset 7.

Dice similarity coefficient (DSC) and intersection of union
(IOU) were used as the metrics to evaluate the segmentation
21X, NY| |X, NY,|
RAE AN "X, UY]

where X, and Yy represent the pixels belonging to the k™ class
on the output map X and the ground truth map Y, respectively.
K=2 is the class number. |-| is the number counting operation.

Considering that a false positive outlier occurs in the CNN
output, it will decrease the DSC and IOU values. However, if
the outlier is far from the actual instrument region, it will have

DSC(X.Y)= Z JIoU(X,Y)= Z

(d) (e) ®
Fig. 5. Segmentation results without data fusion. (a) Raw image, (b)
ToolNet-C with DCGAN, (c) ToolNet-C with FCAE, (d) ToolNet-H, (e)
GBDT, (f) silhouette projection. The ground-truth is marked by green line.

no influence on the final result after the data fusion, because
the shape matching likelihood just involves the pixels near the
actual foreground region. Therefore, the metrics with far
outliers removed are deigned as DSC*=DSC(X",Y) and
IOU=IOU(X",Y), where X'=XN(Y®x). x is the 25x25
structuring element for the morphological dilation operation
@®. DSC" and IOU" are appropriate for evaluating whether the
prediction map is good for data fusion.

C. Training Configuration

The DCGAN and FCAE models were trained on Dy with
data augmentation including the random flipping, scaling and
rotation. The learning rate, training epoch and batch-size for
mini-batch gradient descent were &=0.0005, 8 and 16, re-
spectively. Afterwards, the pixel-wise segmentor was learned
with s, without any data augmentation The learning rate and
training epoch were o=0.001 and 50, respectively, for sto-
chastic gradient descent. The Adam optimizer was applied
[25], whose exponential decay rates of the 1% and 2" order
moment estimates were £1=0.5 and $,=0.99, respectively. The
keep probability of dropout was 0.8. The upper bound c of the
weight norm was 4.

For the comparison, the ToolNet-H [14] and gradient
boosting decision tree (GBDT) [10] were also trained with
Dys, also without any data augmentation. As to ToolNet-H, the
learning rate and training epoch were @=0.001 and 50, re-
spectively, for stochastic gradient descent. The same Adam
optimizer was utilized. As to GBDT, the hand-crafted fea-
tures included the RGB color, HSV color and 32 Gabor filter
responses. The offline GBDT classifier had the exponential
loss, the weak-classifier number of 32, the maximum depth of
tree of 5, and the learning rate of 0.1.

D. Segmentation Results without Data Fusion

The above four image segmentation models along with the
silhouette projection were tested with the dataset Dr.
ToolNet-C’s output was resized to the input image size with
the nearest neighbor interpolation. As is shown by the ex-
amples in Fig. 5, ToolNet-C model with DCGAN presented
the sharp segmentation contour and some far outliers.
ToolNet-C with FCAE was not as accurate as that with
DCGAN and had more outliers. The ToolNet-H gave the
weaker outlier response but the less accurate contour. The
GBDT gave the worst results because its hand-crafted fea-
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(a)
Fig. 6. Segmentation results with data fusion. (a) Raw image, (b) silhouette projection (green), (c) ToolNet-C with DCGAN, (d) ToolNet-C and particle filter
(blue), (e) ToolNet-C and template matching (blue). The ground-truth is marked by red line.

(b) (©)

d ©)

TABLE I TABLE II
SEGMENTATION PERFORMANCES WITHOUT DATA FUSION SEGMENTATION PERFORMANCES WITH DATA FUSION
Segmentation mDSC mlOU mDSC® mIOU"  Time cost Data Fusion Segmentation mDSC mIOU  Time cost
method (%) (%) (%) (%) (ms) Method method (%) (%) (ms)
ToolNet-C with ToolNet-C with
DCGAN 82.4 76.2 90.8 84.9 7 DCGAN 94.6 90.9 31
ToolNet-C with . ToolNet-C with
FCAE 81.2 74.4 89.2 82.7 7 P?_rlttmle FCAE 93.7 89.4 31
1ter
ToolNet-H [14] 84.3 77.6 87.5 80.8 6 ToolNet-H [14] 91.9 86.8 29
GBDT [10] 65.3 57.7 72.8 65.0 29 GBDT [10] 87.4 80.6 53
Silhouette pro- ToolNet-C with
jection 85.6 77.9 89.7 83.3 <0.5 DCGAN 90.3 84.8 10
. . . . o Template  ToolNet-C with g9, g4 10
tures were not rich and hierarchical. The silhouette projection matching FCAE : )
offered regular shape mask but suffered from offsets. The [21] ToolNet-H[14]  90.0 84.6 9
outputs of these methods were evaluated with the metrics in GBDT[10] 34.9 70.8 32

Section VI.C. The prediction maps were firstly binarized with
the threshold 0.7. The mean DSC (mDSC), mean IOU (ml-
OU), mean DSC" (mDSC"), and mean IOU (mIOU") over the
500 images in D7 are shown in Table I. With the mDSC and
mlIOU metrics, ToolNet-H provided the highest scores. With
the DSC" and TIOU" metrics, ToolNet-C with DCGAN pro-
vided the highest scores, which had the best potential for data
fusion, because it showed the best accuracy after removing
the far outliers.

E. Segmentation Results with Data Fusion

In this experiment, the above four image segmentation
models were fused with the silhouette projection. The particle
filter was configured with the particle number N,=50, the
discount factor 6=0.7, and the likelihood threshold 7=0.3.
The covariance matrix C was a diagonal matrix with the
diagonal elements of 0.1. For comparison, the template
matching based data fusion was also investigated [21]. The
template matching corrected the translation and scale offsets
based on the cross correlation metric. Multi-thread pro-
gramming techniques were utilized in the particle filter and
the template matching to reduce the execution time.

The segmentation with data fusion was continuously run
over the entire video 2 with the synchronized kinematic pose
trajectory. During running, if the image frame was included in
Dr, its segmentation result was compared to the ground truth
in D7 with the metrics DSC and IOU. Finally, the mDSC and
mlIOU were calculated, as shown in Table II. By comparing
Table I and II, it is found that the segmentation accuracy was
improved after the data fusion. The particle filter behaved
better than the template matching. The best accuracy was
provided by the ToolNet-C with DCGAN and the particle
filter. Compared to the best performances without data fu-
sion, the mDSC and mIOU with data fusion were 12.2% and

14.7% higher, respectively. The average time cost was 33ms
which satisfied the real-time application requirement. An
example is shown in Fig. 6. Although the prediction of
ToolNet-C had outliers and defections, the final segmentation
mask was outlier-free and shape-complete. As to the template
matching, the existence of the inconsistency between the
prior shape and the actual instrument shape was a major
disadvantage. More examples were shown in the online video
at https://youtu.be/2iDUs7ppz9Y.

VIL

This work addresses the surgical instrument segmentation
issue for endoscopic vision, considering the data fusion of
CNN prediction and kinematic pose. The proposed CNN
model ToolNet-C learns features from numerous unlabeled
images and learns segmentation from few labeled images,
making its application more convenient. The particle filter
based data fusion leverages the CNN prediction, instrument
3D shape and kinematic pose, so that the segmentation result
is more robust and has regular shape. The weight suppression
and shape matching likelihood are proposed to effect the
resampling and weighting of particles in the particle filter.
The proposed segmentation pipeline is suitable for endo-
scopic vision of local surgeries with challenging imaging
condition but limited scene variation.

CONCLUSION
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