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Correlating the local structure of relaxor materials with their electromechanical behavior remains a major
challenge. In the prototypical relaxor-piezoelectric system, Pb(Mgi3Nb2/3)O3-xPbTiO3(PMN-PT), X-ray
and neutron scattering experiments have been predominantly performed to resolve the structural
variation. The similar features in the scattering data can, however, be explained by two contrasting
theories. One predicts the presence of polar nanoregions in a non-polar matrix while other predicts a
slush-like response in a continuum of multi-domain states [1,2]. Furthermore, recently observed
differences in X-ray and neutron scattering have pointed to the importance of accounting for anions
displacements in conjunction with the cations. While significant progress has been made with diffraction
alone, high-resolution STEM imaging offers the ability to directly capture the local structure in PMN-PT,
including the cations and anions. In this presentation, we will show how combining X-ray & neutron
diffuse scattering results with STEM analysis can reveal the structural variation in PMN-PT. We will
demonstrate that annular dark field (ADF) and integrated differential phase contrast (iDPC) STEM
imaging can simultaneously provide the locations of all cations (Pb, Mg, Nb & Ti) and anions (O)
positions for different composition in PMN-PT system and also reveal chemical ordering, Figure
1. Krogstadet. al observes various contributions (C1-C4) in scattering data which predict local structure
in PMN-PT [3]. Here, we describe these scattering features in terms of STEM analysis results. Diffuse
scattering contribution C1, shows symmetric features in X-ray while in neutron scattering it become
asymmetric. This reveals importance of correlated oxygen atom displacement to determine local structure.
The C1 diffuse scatter contribution increases with PT content and the oxygen distance map for < 110 >
direction in iDPC STEM image show strip like features which correlate with monoclinic like distortions,
Figure 2 a&b. We will show how these distortions also increase with PT content. Similarly, we will discuss
how C2 & C3 features can be correlated with chemically ordered regions (Figure 1b), while C4 can be
explained by variation in Pb displacements due to presence of different cations, Figure 2 c. Finally, we
will highlight the new insights that can be drawn by complementing results from diffuse scattering with
atomic resolution STEM [4].
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Figure 1. (a) ADF & iDPC image of PMN along [110] (b) normalized intensity of Mg/Nb sites, revealing
chemical order regions in PMN
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Figure 2. (a) Oxygen-Oxygen distance map along [110] (b) correlated monoclinic like distortion in
octahedra & (c) Pb/O-Pb/O distance map along [001] in PMN & PMN-30PT.
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