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We compute the Picard group of the category of K(2)-local module spectra over the
ring spectrum E’*C4 where E is a height 2 Morava E—theory and Cj is a subgroup
of the associated Morava stabilizer group. This group can be identified with the Picard
group of K(2)—local E-modules in genuine C4—spectra. We show that in addition
to a cyclic subgroup of order 32 generated by E A S!, the Picard group contains a
subgroup of order 2 generated by E A S719, where o is the sign representation of
the group Cjy. In the process, we completely compute the RO(Cy4)—graded Mackey
functor homotopy fixed point spectral sequence for the C4—spectrum E.

55P42, 55Q91; 20J06, 55MO05, 55P60, 55Q51

1. Introduction 3423
2. Preliminaries 3428
3. The homomorphism J§ 3431
4. The C4—spectrum E and the noncyclicity of its Picard group 3436
5. The C4 homotopy fixed point spectral sequence for E—theory 3443
6. The algebraic Picard group 3484

The Picard spectral sequence 3492
References 3502

1 Introduction
Starting with the computations by Hopkins and Mahowald of the homotopy groups of the

spectrum of topological modular forms, there has been a proliferation of computations
related to various invariants associated to the homotopy fixed points for the action
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of finite subgroups of the Morava stabilizer group G = G, on Morava E —theory

E"G tself as this is a model for the

E = E,. In theory, one would like to understand
K (n)-local sphere. At heights n > 2, there has been little progress in this direction,

and the case n = p = 2 remains the focus of current research.

If one restricts to a finite subgroup G of G, questions about E hG and its module
category become more tractable using techniques introduced by Hopkins and Miller.
Among other things, the methods of Hopkins—Miller allow one to understand E as a
G —module. These ideas first appeared in print in Nave [17]. They were generalized by
Hill, Hopkins and Ravenel in unpublished work and also in [12]. The whole program
has recently been enhanced by Hahn and Shi [8].

Roughly, one fixes a real orientation
MUr — E

where MUR is the real bordism spectrum. This map is required to be C,—equivariant,
where C, has the usual action on MUR coming from complex conjugation, while
on FE it acts through the central {£1} € G. Then, for any subgroup G of G containing
C, = {£1}, one can use the norm to construct a map

G
Ne,MUgr — E,
which provides information on the structure of £ as a G —spectrum.

An important application of these ideas is the computation of the homotopy groups
74« E"C which, in turn, provides the information needed to study the Picard group
of the category of K(n)-local E"Y—module spectra, Pic(EC). Recall that, for a
symmetric monoidal category, the Picard group consists of isomorphism classes of
invertible objects with respect to the symmetric monoidal product, whenever this forms
a set. The problem of computing Pic(E hG) appears in various forms throughout the
literature. Classical examples are the folklore results of Hopkins which state that
Pic(KU) = 7Z/2 and Pic(KO) = 7Z/8 (see also Gepner and Lawson [5]), and the fact
that Pic(E,) = Z/2 for all n, a result of Baker and Richter [1]. The problem has been
extensively revisited by Heard, Mathew and Stojanoska [16; 10]. For example, they
compute Pic(E ,}I’G) for the finite subgroups G € G at chromatic heights n = p — 1
for p odd. Most recently, Heard, Li and Shi [9] have also computed Pic(E ﬁ Cz) at all
heights n when p = 2.

The Picard group of a ring spectrum always contains a cyclic subgroup generated by
the suspension X E hG 1n all of the examples of Pic(E hGY studied so far, it was found
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that Pic(E"Y) is exactly this cyclic group. For instance, if n = p—1 and G is a
maximal finite subgroup of G containing the p—torsion, Pic(£ ,}:G) is cyclic of order
2n? p?, which is the periodicity of E,’:G [10]. When p = 2, then Pic(E,},'Cz) is cyclic
of order 2”2 [9], which is again the periodicity of E ,},' =3

In this paper, we compute an example of Pic(£ hG) which is not a cyclic group. The
example is the following. We work at the prime p = 2 and chromatic height n = 2.
Any formal group law I of height 2 has an automorphism y of order 4 over the
algebraic closure of IF, and the subgroup Cy this automorphism generates is unique
up to conjugation in the associated Morava stabilizer group. The spectrum E hCs hag
already received much attention in the literature. It is closely related to the spectrum
TMF(5) of topological modular forms with Ty(5) level structure. The latter was
studied extensively by Behrens and Ormsby [2]. Further, £ as a C4—module spectrum
is closely related to the spectrum K] studied in Hill, Hopkins and Ravenel [13]. It also
play a key role in Bobkova and Goerss [4] and in Henn [11]. In fact, the computation
of the homotopy fixed point spectral sequence for the spectrum E hCs can be mined
from these references and its homotopy groups are now well understood. The spectrum
EhCa jg 32—periodic, so Pic(E hC“) necessarily contains a cyclic group of that order.
However, in this case, it turns out that the Picard group also contains elements which
are not suspensions of E"C4.

After replacing £ by an equivalent cofree G —spectrum, the fact that £ hG _ E
is a faithful K(n)-local Galois extension of G —spectra implies that the homotopy
category of K(n)—local E*C_module spectra is equivalent to the homotopy category
of K(n)-local E—modules in genuine G —spectra. The latter is the category of genuine
G —spectra with a compatible E-module structure, whose Picard group we denote by
Picg(E). This allows us to identify the Picard groups

Pic(E"%) = Picg(E).

This translates our problem into that of computing the Picard group of the Cy4—
equivariant ring spectrum E.

In general, if R is a G —equivariant commutative ring spectrum, then the groups
PiCH (R) = PiCH (l;} R),

as H runs through the subgroups of G, assemble into a Mackey functor, which we will
denote by Pic(R). The restriction maps come from the ordinary restriction functors in
genuine G —spectra. Since these are strong symmetric monoidal functors, they induce
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homomorphisms on Pic. The transfer maps are given by the norm maps in the category
of R—modules. These are also strong symmetric monoidal functors, so they induce
homomorphisms on Pic. The Mackey compatibility is inherited from the corresponding
statements in the homotopy category of R—modules.

Our main result is then the following theorem:

Theorem 1.1 Let I be a formal group law of height 2 over I, and let k be the
algebraic closure of F,. Let E = E(k, ') be the associated Morava E —theory and
G =G(k, I') the associated Morava stabilizer group. Let C4 C G be a cyclic subgroup
of order 4, which necessarily contains C, = {#£1}. Then there are isomorphisms

Picc,(E) = Z/32{EAS Y@ Z/2{EAS'T} and Picc,(E)=Z/16{E AS'}.
As a Mackey functor, this assembles into
Pic(E)(Ca/Ca) = Z/32 B L/2

o af x)

Pic(E)(Cq/Cy) = Z/16

[ o

Pic(E)(Cy/{e}) = Z/2

The result (and its proof) for E hCz iga special case of [9]. We include the computations
here since they are necessary for our analysis of the Mackey functor Pic(E). Together
with [10, Proposition 3.10], Theorem 1.1 has the following immediate consequence:

Corollary 1.2 Let Cg € G be the subgroup generated by —1 and a third root of unity.
There is an isomorphism Pic(EhC6) ~ 7./48.

Our approach is to study the map Jg: RO(G) — Picg(R) for R an Eyo-ring G—
spectrum, given by
JS(V)y=RAS".

When R is a G—equivariant commutative ring spectrum, then these homomorphisms
assemble into a map of Mackey functors

J r: RO — Pic(R),
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where here RO is the representation ring Mackey functor. We determine the image
of J g, which gives us lower bounds for the Picard groups.

To prove that these are also upper bounds, we use the Picard homotopy fixed point
spectral sequence. In fact, we need the structure of this spectral sequence as a spectral
sequence of Mackey functors for a crucial step in the argument. On the way, as an
input to the E,—term of this spectral sequence, we also compute the algebraic Picard
groups Picc,(Eg) and Picc,(E(). These also naturally assemble into a coefficient
system, where the value at G/H is the Picard group of the category of i}; Eg—modules
in H-modules. This coefficient system can be computed via the isomorphism

Pic(Eo)(G/H) = H' (H;if EJ).

The restriction maps are determined by naturality for group cohomology, while the
transfer maps are given on representing modules by tensor induction in the category of
Ey-modules.

We find that Picg (E() are cyclic groups of order 4 when G = C4 and 2 when G = C,.
Note that in both cases, 2|Picg(Ey)| is the periodicity of the cohomology H*(G, E;)
in ¢, which in turn is the size of Picg(E«).

A key input to our computations is the knowledge of the homotopy fixed point spectral
sequence of Mackey functors computing . E. The ingredients for such a computation
appear in various places in the literature. In particular, many of the pieces necessary to
do this computation appear in [13]. In Section 5.2, we describe this computation. Many
results and much notation from Section 5.2 are used in proofs throughout the paper, but
we have attempted to keep the narrative as free of this dependence as possible. Note
in passing that these computations together with our result on the Picard group give a
complete description of the RO(C4)—graded Mackey functor 7. £ (Remark 4.9).

Organization

This is a brief outline of the paper. In Section 3, we discuss the map Jg. In Section 4
compute its image in the cases of interest. This gives a lower bound on the order of
Pic(E h€Cay and, in particular, proves that this group is not cyclic. In Section 5, we
review the computations of the homotopy fixed point spectral sequences needed for
the rest of the paper. In Section 6, we compute the Mackey functor H!(Cy, E o). In
Section 7, we discuss some equivariant properties of the Picard spectral sequence and
then use this spectral sequence to give the upper bounds on Pic(E hCay and Pic(E"C2).
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2 Preliminaries

2.1 Equivariant homotopy theory

We review some notation and results from equivariant homotopy theory that will be
used throughout the paper. For a finite group G, we will be working in the category of
genuine G —spectra as in [12].

As usual, RO(G) denotes the ring of real orthogonal virtual representations of the
group G. For a genuine G —spectrum X, its equivariant homotopy groups assemble
into an RO(G)—graded Mackey functor 7 , X given by

1y (X)(G/H) =nf (X)=[S". X]".

Here V € RO(G) and [SY, X]# denotes the genuine H —equivariant homotopy classes
of maps. We simply write
X =[SV, X]°

in the case of the trivial group H = e. The conjugation action of G on homotopy
classes of maps [S¥, X] induces an action of G on 7y X. For d € Z, we may also
use the notation iy X =[S a iy X] when we want to stress the fact that we are
considering the homotopy groups of the underlying spectrum i, X.

Spectra like the Morava E —theory spectra arise naturally not as genuine G —spectra but
rather as G —objects in the category of spectra. We have a homotopically meaningful
way to lift these G—objects in spectra to genuine G —spectra, however. The cofree
localization

R+— F(EG4+,R)
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takes equivariant maps which are underlying weak equivalences to genuine equivariant
equivalences. As such, we can view it as a functor

F(EG4,—): SpBY — sp@

from G —objects in spectra to genuine G —spectra [14, Section 2.2.1]. Moreover, this
functor is lax symmetric monoidal, and hence takes E,-ring spectra on which G
acts via Es—ring maps to Eo,-ring objects in genuine G —spectra. In fact, if R is
an Eoo—ring spectrum in SpZY, then the cofree spectrum F(EG4, R) inherits an
action of a G- E—operad, and hence we have all norms [14, Theorem 2.4]. Since
G — E 5 —ring spectra are equivalent to commutative ring objects in genuine G —spectra,
we can therefore view any of these as equivariant commutative ring spectra.

Remark 2.1 If T is a formal group law of height n over a perfect field k£ of charac-
teristic p such that G C Aut, (") and E(k,T") is the associated Morava E —theory
spectrum, then, by the Goerss—Hopkins—Miller theorem, E(k,T") is an Es-ring
and the action of G is by Eso—ring maps. So this allows us to view E(k,I') as a
commutative ring object in genuine G —equivariant spectra.

Notation 2.2 If X is a spectrum with G—action, then let X = F(EGy, X). For a

subgroup K of G, the homotopy fixed point spectrum X kK

of X",

is just the K—fixed points

2.2 The Mackey functor homotopy fixed point spectral sequences

Next, we recall the setup for working with a full Mackey functor of homotopy fixed
point spectral sequences (Mackey HFPSSs). We work in the same context as in [14].

For any G-module M, we let H*(G, M) be the Mackey functor determined by
H*(G,M)(G/K) = H*(K,ig M)
with the standard group cohomology restrictions and transfers.

As in the construction of the classical homotopy fixed point spectral sequence, the
filtration on F(E G4, X) induced from the skeletal filtration of £G >~ lim EG () gives
rise to an RO(G)—graded spectral sequence of Mackey functors [14, Proposition 2.8]
with

E3Y = B (G, 7y X) = my_ X",
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Here, s € Z>¢ and V € RO(G). The differentials
dr =ds,V. Es,V — Es+r,V+r—1
r - Zr =r

commute with the restrictions and transfers. In particular, if we restrict V' to the trivial
representations, evaluating the Mackey HFPSS at G/ H recovers the standard homotopy
fixed point spectral sequence computing 74 (X hHY If X is a ring spectrum, then the
spectral sequence is multiplicative.

Remark 2.3 The homotopy fixed point spectral sequence can also be constructed using
the filtration of F(EG4, X) induced by the slice filtration X' =~ lim P*X. Ullman
shows that there is a natural map

P°'X - F(EG4, P*X),
and this induces a map of spectral sequences from the slice spectral sequence of X
ES =ay PiX=>my X
(where d = dim(V)) to the homotopy fixed point spectral sequence of X. If X is a

ring spectrum, this is a map of multiplicative spectral sequences [18, Theorem 1.9.1].

2.3 Real representations of C, and Cy

We recall the structure of the representation rings RO(G), when G is C4 or C;,
establishing some notation for the rest of the paper. Let y = y4 be a generator of Cy
and y, a generator of C,. These are the real representations of interest:

e The trivial representation 1.
e The sign representation o of C4 (on which y acts as —1).
e The sign representation o, of C, (on which y, acts as —1).

o The two-dimensional irreducible C4—representation A; this is R? on which y
acts by rotation by 7.

e The regular representation of Cy, pp =14 03.

e The regular representation of C4, p=p4 =140 +A.

Then we have
RO(C;) = Z[0y]/(07 —1) and RO(Cy) = Z[o,A)/(0* =1, 0h— A, A* —2—20).

We also use the following standard notation throughout. See for example Definition 3.4
of [13].
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Notation 2.4 For V € RO(G), the inclusion S® = {0, 0o} — S is an equivariant
map denoted by ay € anS O If R is aring, the image of @y under the unit in n_GVR
is also denoted by ayp .

3 The homomorphism J g

Let O be an Eo,—operad, and suppose that R is an O-algebra in genuine equivariant
spectra. There is a good symmetric monoidal category of R—modules in genuine
G —spectra [3], and base change along the unit map

S° > R
gives us a group homomorphism
J$: RO(G) — Picg(R),

where Picg (R) is the Picard group of the category of R—modules in genuine G —spectra.
Explicitly, this homomorphism is given by

JS(V)y=RASY,

and since the target depends only on the equivariant equivalence class of the V —sphere,
this factors through the JO—-equivalence classes of representations (ie equivalences of
associated spherical bundles). This gives us the name.

To apply this for spectra like Morava E —theory, we must promote this naive equivari-
ant commutative ring spectrum to a genuine equivariant ring spectrum. The formal
procedure to do this was described in Section 2.1 and has nice properties for Pic.

For R a ring spectrum, let Mod(R) be the homotopy category of R-modules in
spectra and let Modg (R) be the homotopy category of R—modules in the category of
G —spectra. The proof of the following result is the discussion immediately following
the statement of Theorem 6.4 in [14].

Proposition 3.1 Let R"C — R be a faithful G —Galois extension, where R is a
cofree G —ring spectrum. Then Mod(R"%) and Modg (R) are equivalent categories.
In particular, Pic(R"%) =~ Picg (R).

Corollary 3.2 If M and N are R—modules for R as in Proposition 3.1, then
MHhG ~ NhG jf and only if M ~ N as R-modules in G —spectra. In particular,
MHhG and NHG represent the same elements in Pic(RhG) if and only if there is a
G —equivariant equivalence of R—-modules M ~ N.

Algebraic & Geometric Topology, Volume 20 (2020)



3432 Agnes Beaudry, Irina Bobkova, Michael Hill and Vesna Stojanoska

We will use the following notation. If X is a spectrum and u: X — M is a map where
M is an R—module spectrum, we let & be the composite

RAX BN A M BM, 0

where pupr: RAM — M is the module structure map. In particular, we can apply
this construction for any map X — R using the R—module structure on R given by
multiplication u: RA R — R.

The group Picg(R) contains a cyclic subgroup generated by X R, or equivalently the
image Jg (Z{1}) of Z{1} < RO(G), where 1 denotes the trivial one-dimensional
representation. We let d € Picg (R) denote the element 9 R.

Definition 3.3 Let V' be a G representation of dimension d. An R-orientation uy
for V is a G —equivariant map

uy: S d L, RASY
such that uﬁ: RAST > RASY isa G —equivalence.

A representation V' is R—orientable if there exists an R—orientation for V.

Remark 3.4 Given a G—equivalence u{ﬁ: RAS? > RASY which is also a map of
R-modules, we can precompose u{f with 1 A S9: SOAS? > RA S9 where 1 is

the unit of R, to obtain an orientation uy .

By construction, weak equivalences between cofree spectra are detected on the under-
lying, nonequivariant homotopy. This gives us a way to detect R—orientability.

Proposition 3.5 If R is cofree and there is an element uy € ng(R A SY) such that
u§ induces an underlying equivalence, then V is R—orientable.

Proposition 3.6 Let V be a G representation of dimension d , and assume that R is
cofree. Then the representation V' is R—orientable if and only if Jg(V) =d in Pic(R).

Therefore, to compute the image of the map J ¢, it is useful to have a criterion for
recognizing R—orientable representations.

Now, let V' be a d—dimensional real representation of G. Recall that V' is orientable
in the classical sense if G — O(d) = Aut(V') factors through SO(d). Since SO(d)
is path-connected, for any orientable representation V' of dimension d, the action
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of g € G is homotopic to the identity on S”. It follows that there is an equivariant
isomorphism of 747 R—modules

(3-1) k(X RASY = i (RASY).

Since the source is a free myi : R-module on a fixed class in dimension d (correspond-
ing to the element 1 in 7i) R), the isomorphism is equivalent to an element

uy € (mqil (RASY))C.
However, this is not the same as having an equivariant map
s> RASY,
since the homotopy groups we are computing are just the underlying homotopy classes

of maps. Even if R is cofree, this does not imply that V' is R—orientable.

Definition 3.7 Let V' be a (classically) orientable representation of dimension d. A
pseudo-R—orientation is a map of underlying spectra

uy € (mgif (RASV))C
such that ulgR: i*RAS? - i*(RASY) induces an isomorphism
Tx (X RASY) - miX(RASY)

of G-myi; R—modules.

Remark 3.8 In fact, if R is cofree, a pseudo-R—orientation
uy: S d_, RASY

is an R—orientation if and only if - underlies a G —equivariant map of G —spectra.
Remark 3.9 By construction the pseudo-R —orientations are units in the ring (7 ;‘R)G.

Proposition 3.10 Let V be a classically orientable G representation of dimension d ,
and let R be cofree. Then V' is R—orientable if and only if there exists a pseudo-R —
orientation

uy € (mgif (RASY)% = HY (G, ng(RASY))

which is a permanent cycle in the homotopy fixed point spectral sequence

H*(G,7(RASY)) = mi_g(RA SV,

Algebraic & Geometric Topology, Volume 20 (2020)



3434 Agnes Beaudry, Irina Bobkova, Michael Hill and Vesna Stojanoska

Proof If V is R-orientable, then the map uﬁ: RAS? - RASY induces an iso-
morphism of spectral sequences which maps 1 € H%(G, ngR) =~ H°(G, m4(R A S?))
to uy € H(G,mz(RASY)). Since 1 is a permanent cycle, so is uy .

Conversely, assume that there is a class uy € (7giJ (RA S V)€ as in Definition 3.7
which is a permanent cycle. This means that it represents a class

iy emg(RASYYO ~[S9 RA SV,

since R is cofree and SV is a finite G—-CW complex. In other words, [y is an
equivariant map
SY > RASY,

and, by base change, we get an equivariant map
iR RASY > RASY.

. . . i ¥R . .
By assumption, this map induces the same map as ullﬁ on wi)(—), and so is
an underlying equivalence. Since R is cofree, the map ZZ{E is then an equivariant
equivalence, and thus %y is an orientation. |

We close this section by connecting the orientability for representations of subgroups
to the orientability of the induced representations. This uses in an essential way the
full equivariant commutative ring structure on spectra like E, rather than the results so
far which have just used an E,-ring structure.

Proposition 3.11 [3, Theorem 10] If R is an equivariant commutative ring spectrum,
then the symmetric monoidal category of R—modules sits in a symmetric monoidal
coefficient system: for any map of orbits G/H — G/ K , we have a natural map

resX: Modg (i} R) — Modg (i}, R).
There are homotopically meaningful norm maps
RN E: Modg (i}, R) — Modg (R)

given by
BNG(M)=R ANSit R NS (M),

where N g (M) is the ordinary norm from H —spectra to G —spectra, and where R is
an N gil’;R—mOdule via the counit of the norm—tforget adjunction, and these satisfy
the double coset formula, up to isomorphism.
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Here, “homotopically meaningful” means that there is a model structure for which
these maps are left Quillen functors. This is essentially the hard part of [3].

Corollary 3.12 The coefficient system
G/H +— Picg (if; R)

extends to a Mackey functor, where the transfer maps in Pic are given by the norm
maps.

Proof The functor Pic is natural for symmetric monoidal functors, and therefore the
symmetric monoidal functors iy, and Ry g induce maps on Pic. We need only check
that the Mackey double-coset formula is satisfied on Pic. However, this is exactly the
condition that the symmetric monoidal coefficient system

G/H — Modp (i R)
with its norm maps forms a symmetric monoidal Mackey functor [3, Theorem 5.10]. O
Proposition 3.13 The homomorphisms J Ilg as H varies over the subgroups of G
give a map of Mackey functors
RO — Pic(R).
Proof The maps J };I visibly commute with the restriction maps. We need only check
that they also commute with the transfer maps. The transfers in RO are given by

induction, while in Pic(R), we have the norms. The result then follows from the
computation

RNg(i;}R/\SW) — R/\NI_GIi}k_IR (Ng(l;}R/\SW)) o~ R/\Slndg W’

where the last isomorphism is the usual cancellation formula and the computation of
the norm of a representation sphere. a

Corollary 3.14 Let R be an equivariant commutative ring G —spectrum. Suppose
that H is a subgroup of G and W is a virtual H —representation of dimension 0. Let
V= Indg(W). If W is i}; R—orientable, then V' is R—orientable.
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4 The C4—spectrum E and the noncyclicity of its Picard
group

The goal of this section is to compute the image of the map Jg for the groups G = C,
and Cy acting on the Morava E —theory spectrum.

4.1 A convenient choice of E —theory

We begin by fixing a choice of E—theory that will be convenient for computations.
The methods of this section are due to Hill, Hopkins and Ravenel [12; 13] and were
the motivation for the work of Hahn and Shi [8]. In fact, an analogous construction of
genuine equivariant Morava E —theory at p = 2 can be done at all heights and will
soon appear in work of Shi. It is also used at higher heights in computations of Hill,
Shi, Wang and Xu [15].

We write MUpR to denote the 2—localization of the real bordism spectrum. From [12,
Section 5.4.2] there are classes Ficz € nicpi MUR whose underlying homotopy classes,

which we denote by rl.c2 € myiiy MUR, give a set of polynomial generators
n*i:MUR o Z(z)[rl NN

Let N24 = NCCZ4 be the norm functor from the category of C,—spectra to the category
of C4—spectra. The spectrum MU (Ca)) s defined to be the C4 —spectrum

MUCD .= NI MUg = MUg A MUg

with action of y given by a cyclic permutation of the factors twisted by the conjugation
action on M Up analogous to the action of the form y (x, y) = (¥, x) in algebra. Again,
in [12, Corollary 5.49], it is shown that there are classes

— —C — —C.
4-1) ro=1;" Ti=yr;*
in nl%ia MU (€4) with the property that for r; ¢ € ;i MUC4) corresponding

to r; ¢ we have

. Co) ~

JT*Z:MU(( 4)) = Z(z)[rl,o, Vl,l» 7'2’0, 1”2,1 yee ]

Using the commutativity of Cy,

Ca % (Ca)) _ [gir2 ;% (CC2

Tipic, MU = [$"2,ic, MUT*7]

inherits an action of C4 from the action on iéz MUC): in terms of morphisms,
this is the action by postcomposition rather than the conjugation action used to define
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equivariance. This action has the following effect on the classes 7; o:
y(Fio) =Tip. v (Fin) = (=1)Ti.
Similarly, the action of y on i MU {C4) is given by
y(ri,0) = ri1, y(rip) = (=D'rip.

The spectrum MU (C4)) has two real orientations, coming from the right and left unit
of MUr A MUR, both of which are equivariant maps. We fix the orientation coming

from the left unit. We also denote by 7. r > the image of 7 r em; pi MUR under the left

unit.

In [13], the authors define a C4—spectrum K[], obtained from MU (Ca) by equivari-
antly killing the generators r; ¢ for i > 2 and € =0, 1. That is,

kpay = MU 7 SO,
where A is the associative ring spectrum
A=S8Cy-75,C4-73,Cs-T4,...];
see also [12, Section 2.4].

In particular,
Txdg K(2) = Zaylri,o. rial-

See for example [13, Theorem 12.2]. It inherits a real orientation from MU () and,
in [13, Section 7], the authors compute the image of Ficz fori =1,2,3 in JTE 2§ ézk[z]:

-C — — =C T -2 =C — =2 - = -2
(4—2) 7'12=7'10+7'11, r 2=3r10r11+r11, r32=r11(5r10+5r1 0V11+F1 1).

The spectrum K] is obtained from k[z] by inverting an element D € 7& 4p k[z] whose
restriction in nSCp lC kpp) is 71,071 1r3 yr3 G2 See£13 (7.4)]. Since inverting D inverts
its restrictions, it also inverts the classes 7; ¢ in 7, i Cs k{21. So, the homotopy classes

— — =02 5o — - =0

4 _ro—Tri,1 =2 _ro+Tn o
(4-3) Ko = = = = s 1= ———==y(ko) = =——
r1,0 r1,0 r1,1 1,1

are defined in 710 K [2]- We let

(4-4) =1tk (no) = (1) € 154 Ky,

noting that res; 4(u) = o + p1. We also denote by jo and pq their restrictions to
moiy K[p) and, similarly, by  its restrictions to JTOC 21'2.2 K[} and moi) K[5). Note that
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in m4i; K[5) we have

ri,0 =r1,0(1— o)
and that there is an isomorphism
(rele K2, )

A

= (Zlri0. riallles DY) G0
= (Zylrig s ol = o) ™", (11 =Tpo + 1g) ™", (1 =520+ 518) ") (3009
= Z[uollris ).

where the second isomorphism is obtained by substituting the above expression for rq ;

in res‘lt D.

The spectrum K,y also inherits a real orientation and it follows from (4-2) that the
formal group law F[y) of K[y} reduces to a formal group law I7) of height 2 defined
over

mail K/ (2,r(%) 2 Falrfg ],

whose [2]—series satisfies
[2]r~[2] (x) = r13’0x4 +eee
In fact, the [2]-series of F[y] satisfies
(4-5) 2y (x) = {2 x% = pory ox” mod (2,x%),
(4-6) [2] iy (x) = ;,3sz4 = rf,0x4 mod (2, g, x°).

Let Fpy(x,y) = Vl,oF[z](rl_,éx, r;(l)y) over Zs[to] and Iyy = Vl,or[z](rl_,éx, rl_,éy)
over [F,. Let k be the algebraic closure of I, and

(4-7) W= W(k)

be the ring of Witt vectors over k, so that k = W /2. We consider f[z] as a formal
group law defined over k and F [2] as a formal group law defined over W{o]. Then
(W[wol, F [2]) is a universal deformation of (k, f[z]). This follows from (4-5). Indeed,
any formal group law F over a power series ring W{¢] such that F reduces to I,
modulo (2, ¢) and such that

[p]F(x) = 1x* mod (2, x°)

is a universal deformation of I',.
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We let E[y) be the associated E —theory spectrum with distinguished unit r1 o € 72 E[y)
and let ¢*: MU — E[,] be a complex orientation chosen so that «¢* classifies F[y).
By Hahn and Shi [8], E[y] is Real oriented, and ¢* has a unique equivariant refinement
@: MUR — E[). Thatis, ¢ is a Cy—equivariant map and 74i; ¢ = m«@".

Let C4 C Auty, (f[z]) be the subgroup induced by the action of y on the formal group
law of MUYC4) _ This is a cyclic group of order four since y? is the nontrivial auto-
morphism [_l]f[z] (x). By [8, Theorem 1.3], norming up gives a C4—equivariant map

MUED) 5 Ery.

We will call this the Hahn—Shi orientation.

By construction, we have a diagram of Cs—modules

ﬂ*i:MU((C4)) E— ﬂ*i:ED]

|

7xig K2

and hence a map from the E,-term of the homotopy fixed point spectral sequence
(HFPSS) of K|) to that of Epp). This gives a direct way to discuss classes in
HFPSS(E,)) in terms of classes in HFPSS(K[)).

From the maps MU ) 5 E (2] and MU (Ca) K2), we get a zigzag of spectral
sequences, where the dotted arrow is only known to be a map of E,—pages, not of
spectral sequences:
SliceSS(MU (€4)) —; SliceSS(E[y)) — HFPSS(Ey))
-~

(4-8)  SliceSS(kfa)) — SliceSS(K[a))

HFPSS(k[;1) —— HFPSS(K[3]

mdp of E>—pages

The key differentials in SliceSS(K[,]) (and SliceSS(k[2))) we use below in our proofs
all lift to differentials in SliceSS(MU (€4)), which we can then push to differentials
in SliceSS(E[)) and HFPSS(E[;)). This kind of lifting of differentials is also the
strategy employed in [15]. Further, it follows from [18, Theorem 9.4] that the slice
spectral sequence and homotopy fixed point spectral sequence for Epyj are isomorphic
in, for example, the range s + 5 < ¢ — s, and similarly for the slice and homotopy fixed
point spectral sequences of Ki,j.
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With these observations in hand, we can use the computations of [13] for the slice
spectral sequences of k[;) and K[y to compute the homotopy fixed point spectral
sequence of Epy).

Remark 4.1 In Section 5, we will show that the C4—equivariant spectrum E[y) is
32—periodic, with periodicity generator an element of Jt3cz4 E[5) detected by a permanent
cycle we will denote by A‘l‘. The restriction of the periodicity generator in 73,1, E[3]
is detected by (”12,0"12,1)4' See Table 1 on page 3446. One can obtain a better range
from Ullman’s results, but in practice, the periodicity of the homotopy fixed point
spectral sequence for Ep,) implies that one only needs to look in a range where ¢ — s
is large enough with respect to s to make the comparison.

Notation 4.2 We use the convention

E = E[z] = E(k, f[z])
and write

We implicitly replace E with E# = F(E C4 4, E) so that, everywhere, we are working
with a cofree spectrum.

4.2 The homomorphisms Jg" and ng

The structure of RO(C5) and RO(Cy) is reviewed in Section 2.3. The ring RO(Cy) is
of rank 3 as a Z—module, generated by the trivial representation 1, the sign represen-
tation o and the 2—dimensional irreducible representation A. The representation A is
(classically) orientable as it is modeled by a rotation by 7 on R2. The representation o
is not an orientable representation of Cy4, but 20 is orientable. Similarly, RO(C5) is
of rank 2 over Z, generated by 1 and 0,. Again, the sign representation o, is not
orientable, but 20, is.

At this point, we relate our definition of pseudo-E —orientation to the elements uyp
that appear in the slice spectral sequence computations of [13]. These classes are, for
example, defined in [12, Definition 3.12]. If V' € RO(G) of dimension d is classically
orientable when restricted to a subgroup G’ C G, then one can fix a choice of generator

uyen§ ,HZ = HS' (SV,2) => Hy(S¥,7) = Z.

These classes satisfy the relation upuy = uy+w.
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When G = Cy, this gives classes
uy €y ) HZ(Cy/Cq), uze € T2—26HZ(C4/Cq), us € w16 HZL(C4/C3)
together with their restrictions and products. Similarly, when G = C,, we get classes
Udgy, €225, HL(C2/Ca),  Ug, € W1—o, HL(C2 /).

Let V be classically orientable for the subgroup G’ € Cy. Since the slice Pg MU (€Ca)
is HZ, the map (as in Remark 2.3) from the slice spectral sequence of MU (Ca) 1o
the homotopy fixed point spectral sequence of E gives a commutative diagram

- % G’ < 0/
moi, HZ ny HZ ——— H(G',moE)

gJ/L* L*lg

ng—yigHL == n§ ,HZL —— H*(G',my_y E)

where the vertical isomorphisms are induced by precomposition with a chosen underly-
ing equivalence ¢: S d=V _, SO The top inclusion is the natural ring map. It follows
that the class uy € ngLVH Z maps to a pseudo-orientation in H°(G’, my_p E), which
we denote by the same name.

Remark 4.3 By the discussion above, there are pseudo-orientations
w0y, € EY*HCa/Ca), uze € EY*T27(Ca/C), ug € EY'TO(Ca/Cy).
As was noted in Remark 3.9, the classes uy are all invertible in E%* = HY(G, 7. E).

Letripem ,?22 i éz E be the image of the same-named class of JT,S’;Z i éz MUC) induced
by the Hahn—Shi Real orientation MUr — E. By our construction of E, this class is
a unit and hence induces an equivalence

iézE/\sz -~ iézE.
In particular, this means that ng (p2) = 0. By Corollary 3.14, we have Jg“ (pg) =0.

Proposition 4.4 In Picc,(E), Jg“ (ps) = 0, where ps = 1 4+ 0 + A is the regular
representation of Cy.

Before turning to the more technical computations of the next sections, we state two
results which are proved in Section 5. We use them here to compute the image of Jg“
and ng. The first result we state follows from the computations of [13] and is proved
in Proposition 5.25 below.
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Proposition 4.5 The classes ui, u% , and uzt,ui are permanent cycles in the homo-
topy fixed point spectral sequence for E ;’ Ca, Therefore, the representations 8\, 40
and 20 + 4A are E —orientable for Cy4. In particular, the images under Jg“ of

e 16—8A,

e 4—40, and

e 10—20—4A
are zero in Picc, (E).

The class ug, is a permanent cycle in the homotopy fixed point spectral sequence
for E gcz. So, the image under ng of

b 8—802

is zero in Picc, (E).
The second result we state is proved in Corollary 5.31 and Table 4 on page 3470:

Proposition 4.6 There is no integer d such that E A S°™ ' ~ E A S as Cy4—
equivariant E—modules. In particular, Jg“ (0 — 1) is not in the cyclic subgroup
generated by X E hCa

Proposition 4.7 The image of the map Jg“: RO(C4) — Picc, (E) is isomorphic to
Z]32{1} D Z/2{7T+c}.
The image of the map ngz RO(C3) — Picc, (E) is isomorphic to
7/16{1}.

Proof As an abelian group, RO(Cy) is isomorphic to Z{1,0,A}. The map Jg“
factors through the quotient

4-9) Z{1,0,1}/(16 —8A,4—40,10—20 —4A, 1 +0 + A).
Simplifying the relations, we have that (4-9) is isomorphic to
Z{1,0}/(24 + 80,4 —40, 14+ 20) =7 /32{1} & Z./2{7 + 5}.

Since the periodicity of E hCa is 32, the image of Jg“ contains the cyclic subgroup
7,/32{1}. Further, since Jg“ (c—1)= Jg“ (—8+4(740)) is not in this cyclic subgroup,
then neither is 7 4 o. Therefore, J g“ does not factor through a smaller quotient.

For C,, a similar computation shows that Jg“ factors through Z/16. Since the
periodicity of E hC2 i5 16, there can be no further relations. a
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Remark 4.8 Proposition 4.7 provides a lower bound for the order of Picc, (E). That
is, this group has order at least 64.

Remark 4.9 Propositions 4.5 and 4.7 together immediately imply that for any virtual
representation V' € RO(Cy), the homotopy fixed point spectral sequence computing
vy E = 148V A E is a shift of either that computing 7+ E or that computing
T 4+1—¢ £. We explain this in two examples. Since

20-2=16 in Z/32{1}®Z/2{7+ 0},

there is an isomorphism of Mackey functor homotopy fixed point spectral sequences

EI,*+2—20 ~ EI’*-HG-

Similarly, since
1540=1—-0 in Z/32{1}® Z/2{7+c},
there is an isomorphism of spectral sequences
E*,*+15+0 ~ E*,*+1—a
=%k = L x .

5 The C4 homotopy fixed point spectral sequence for
E —theory

The goal of this section is to compute the homotopy fixed point spectral sequence

(5-1) ES* = HY(Cyymrusi E) = 7y py_ E"

with differentials d,: E”;’*th — Ei+r’*+t+r_l. As is noted in Remark 4.9, the

computation for any » € RO(Cy) is determined by the computation for x = 0 or

for x = 1 — 0. So, throughout this section, we detail the computation of E;* and
of E*,1—0'+*
Lox .

We first describe the structure of H*(Cy, E) as a Mackey functor:

H*(C4’ E*)

4 4
FCSZ g /) tr2

(5-2) H*(Cy, E)

2 2
resl E /jtrl

H*({e}. Ex)
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This then determines the E,—term of (5-1) when x = 0. The computation of the
E,—term of (5-1) when * = 1 — ¢ will easily follow from this computation. This is
explained in Section 5.2.2.

Next, we discuss the differentials and extensions. They are imported from the slice
spectral sequence for K[ to the homotopy fixed point spectral sequence for £ hCa
using the diagram (4-8). Although all differentials are a direct consequence of those in
the slice spectral sequence, there is a significant difference between this computation
and that of [13] in the range near the zero line. The d;—differentials need particular
attention and we give more details in this part of the computation. From the E4—term
onwards, the computation in the range 0 < s < 2 is also different, but for s > 3, the
computation is almost identical to that of the slice spectral sequence.

Finally, we describe the E o —terms of E*Eh and E(l_a)_,_*Eh.

5.1 Some important Cs—modules

Before giving a more detailed description of the structure of E, as a C4—module,
we need to set up some notation for a selection of C4—modules that will be making
multiple appearances in the computations below.

Denoting by y the generator of Cy4, and by e the trivial group element, we have the

modules
Z =7[Cy4/Cq]l = Z[C4]/(y —e) corresponding to 1 in RO(Cy),
Z_=7Z[C4]/(y +e) corresponding to o in RO(Cy),
Z[C4) Cy] = Z[C4)/ (y* —e) corresponding to 1 4+ o in RO(Cy),
Z[Cs/ Crl- = Z[C4l/(y* + o) corresponding to A in RO(Cy),

where the correspondence with elements of RO(Cy4) occurs after base change to R.
Moreover, we will write

ZICs/ Coy| = Z[Cy/ )DL, Z[C4/Co_] = Z[C4/ C] D Z—.

Note that
7_Q7Z_=>~=7, 7_Q7 =17_,

L-Q@L[Cs/ Crl = Z[Cy/ C3], Z-Q®Z[Cy/Cr]- = Z[Cy/ Co]-.

Since the coefficients of E are modules over the Witt vectors W = W(k), we will
have to base change all of the above modules to W; that amounts to just writing W
instead of Z.
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For p as in (4-4), we will let
A=W[ullCs/Cr]l = W] @w W[Cys/ (]

and

A_ = W[ullCs/ Cr]- = Wn] @w W[Cs/Cr)-.
Let

A=e+yeW[Cy], A=e—yecW[(Cy]
We denote by the same name the images of A and A in W[C4/C,], in W[C4/C,]—
and in W[Cy4/C, 4] via the inclusion W[Cy/Cr] € W[Cy/Ca4].
Let i be as in (4-4). For
WullCs/ Cor]l = Wn] ®@w W[Cs/Cr4]
and * corresponding to a generator of the C4—submodule W C W[Cy/C5, ], we

define
A = T/ Co),
w-x=A

Similarly, for * a generator of W_ € W[C4/C,_], we define

_ WIKIC/ ]

A(— = .
&) nek=A4+2-%

There are exact sequences
(5-3) 0>A4A—->AH+)> W -0, 0>4— A(-)—> W_—0.
Further, note that

k[p][Ca/Cr 4]

A(4)/2 = A(-)/)2 = -

and that there is an exact sequence
0—>A4/2— A(+)/2—>k —0.
5.2 The Mackey functor cohomology of C4 with coefficients in E,

Recall that there is isomorphism Ey = Wl[uo]][rli(; of W[Cy4]-modules, with |r; o| =2
and the action of y given by

— Mo
Y(ri0) =ri,10 =ri0(l — o),  v(no) =p1 = 7 :
— o

In Table 1, we have named some of the elements in Ey, E *C 2 and E *C 4. We will use
the notation and the information contained in Table 1 throughout the rest of the paper.
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element degree action of y
r r
1,0 £ 1,1
ri,1 =r1,0(1 — o) —T1,0
po = (ri,0—ri,1)/r1,0 £C K1
w1 = (rio+r1,0/r,1 = (2= o) /(1= o) 0 o
2230 = r12,0 EC2 _22’1
Yo = —Vlz,l 4 —220
c
81 =r10r1,1 E;? —61
C
w=po+ s =Q2—pug)/(1—po) Ey* n
Ty=r{y+ri, E4C4 I,
C
Ay =83 Eg* Ay
C
Ty = A1(n—2) Eg* T,

Table 1: Some elements of E as a C4—module and their images under the
action of y. Names are chosen to reflect the notation of [13, Table 3].

Remark 5.1 There are isomorphisms
Wiri0,r,1} = W[Cq/Cao)-, W{no, u1} = W[Cys/ (],
Wi{Z2,0, 22,1} = W[Cy/ ], W{éy} = W_.

Remark 5.2 The norm element

Ay =r10Y(r1,0)72(r1.0)7> (r1.,0)

is a periodicity generator of E, as a C4—module. However, we will see that A‘f
is a permanent cycle and is a periodicity generator of E has a C4—spectrum. See
Remark 4.1.

Remark 5.3 The relations

Wo =0 —p+2. rio=A1(1-po)

imply that W[uo] is isomorphic to W[u]{1, o} as a W[u]-module and, in fact,
that

Ew = WIRIIAT HrE o oty : 0 <k <3}

as W[uJ[A f —modules.
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Lemma 5.4 Asa W[u][C4]-module, E is 8—periodic, with periodicity generator
A € Eg. There are isomorphisms

Eq = Wnl{1. o, 1}/ (- 1 = po + p1),

Ey = Wpl{r1,0.r1,1}

Eqy = W[nl{d1, E2,0. o1}/ (161 = B0 + Z2,1 + 261),

E¢ = W[u]{61r1,0.6171,1}-

In particular,
Eg >~ A(+), Ey=FE¢gx~A_, FE4 = A(—)

Proof A straightforward computation gives the first set of isomorphisms. The second
set of isomorphisms is given by the C4—linear maps determined by

Eqg— A(+), 1 x, Wo > e, Ey,— A_, F1,0 = e,

Es— A_, 1%, XZpor>e, E¢— A(—), Siripo—>e. O

Remark 5.5 Lemma 5.4 implies that

EP = Wol[S5)).  EV* = Wul[T2. AT")/(T7 — A1(n—2)* +4)).

From the facts that Ay = (rl,orl,l)z and that the ideal (2, u) is equal to (2, ug), it
follows that
Ey = (W[ry . 71,1][A1_1])f\2,u)

as W[Cy4]-modules. An argument similar to that of Theorem 6 in [6] gives an isomor-
phism

H*(Cy, Ex) = (W & H*(Cy, Zlry0,71.1D[AT']) -

Hence, in order to compute the cohomology of C4 with coefficients in E, we first
compute H*(Cy, Z[ry,0.71,1]), noting that Z[r; o.r;,1] is the symmetric algebra of
the induced sign representation

Zlry,0,r1,1] = Sym(Z[C4/ C3]-).

Then we base change to W, invert A; and complete the answer at the ideal (2, ).
The computation of the cohomology H*(Cy, Z[ry o, r1,1]) is essentially the same as
that performed in [13] to compute the E;—term of the slice spectral sequence of k[].
This approach to the computation also appears in work in progress of Henn. Finally,
the answer is described in [4, Section 2.2] and can be deduced from [13]. Following
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these references, we describe the answer in Proposition 5.10. We do not repeat the
computation of the group cohomology, but rather focus our attention on describing
the £ ;’V+*—terms as Mackey functors for V' =0 and V' =1—o0. Since we will be
deducing most of our results from [13], we have opted to choose notation that does
not clash with theirs. We need the description of the E,—page of the RO(C,)—graded
homotopy fixed point spectral sequence for Morava E —theory used in [8], which we
restate using the notation of this paper:
Proposition 5.6 There is an isomorphism

H*(Cy, Ey) = WpollFig. o 3,1/ 240
where the (x, x)—degree of the elements is given by [uo| = (0,0), |71,0| = (0, p2),
lao| = (1,—0) and |uzs| = (0,2—20).

Notation 5.7 For 7 o and 71,; as in (4-1), it follows from (4-3) that

71,1 =T1,0(1 — o).

For a, as in Notation 2.4, let n; = a,7y,;, and note that n; € H'(Cy, Z{ry ;}) is a
generator for i = 0, 1. Further,

1,01 = T1,170-
We also single out a particular RO(C,)—graded homotopy class.
Definition 5.8 Let
51 = N24(71,0) S JT’S::‘E.
This is an actual homotopy class (and hence a permanent cycle in the homotopy fixed

point spectral sequence).

The class 0, is a unit. In the homotopy fixed point spectral sequence, the classes uy
for orientable V' (introduced in Remark 4.3) are also units. These give us several ways
to rewrite classes. For example,

=2 2
Ay =0jureuy.

The unit ?; also greatly simplifies the homotopy fixed point E,—term analysis. The
following result is immediate since 0; and u;, are units:
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Proposition 5.9 If p; = (0,u;)~", then multiplication by p; induces an isomorphism
E;,* N E;k,*—3—0’

and similarly for Mackey functors.

This means we need only determine the integrally graded stems to have completely
determined the RO(C,)—graded stems.
Proposition 5.10 There are classes

ne H'(C4, E;), veH'(C4, Eq), ge€H'(C4Eg) and w € H*(Cy, Eg)

such that
H*(Cy, Eu) = W[nl[T2, AF 0, v, ¢, wllpT!, ui']/~,

where ~ is the ideal of relations given by

M=2w=2c=4w =0, T7=A((r—-2)>%+4),

An* =Tho =¢?, ThG = pAgn,
Ton = pg, Gn = puw,
v? = 2w, uv =nv="Tv=cv=0.

Remark 5.11 Note that n? is p—divisible since 13 = 77§2A1_1 = ug wAl_l.

Remark 5.12 The classes ay and up were introduced in Notation 2.4 and Remark 4.3.
There is also a class 1’ € nZCfUE detected in H!(Cy4, m3_s E). See [13, Table 3]. It
satisfies res3 (1) = uo (o +11).

A dictionary with [13, Table 3], and some useful relations, are then given by
¢ =1u0, w= akukuzgﬁf, A= uzguiﬁ%, V=dgu)0q.
Note further that wAl_l = a)\u;l .

Under some choice of isomorphism, we can identify our classes with those in [2,
Perspective 2]. Again, the elements n and v have the same name there as here. Further,

A1=5, T2=b2, §=)7, T4=b4, w:é, wAl_l 2,3.

In [4, Proposition 2.10], ¢ corresponds to y and our p is congruent to their z modulo 2.
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Ve)=V(y) =V =V’ =1,

A(l)=A, Afe)=e+y2,_A(y)=y+y3
W W 0 W/4
1 %&‘? 2 WA[((J:}/Zz] g&z liﬂjz
()2 | o] | L) ()
W W[Cj/Cz] W_ 0
OoL 0| e | L
O o0
X N & 0

a)v

k W k[C4/Co]

01 /jV lﬁ /52 1 /j 0(/ /)1
W[Cs/C5]— W WICs/Cal- | W[C4/Cy]-

N N = ®

0 W W k

() | al)e | () | )

W_ W[Cq/C] W k[Cy4/C]
(Jo | 2T | el ()

W WI[Cyq/C5] W 0

Table 2: Mackey functors similar to those of [13, Table 2].

Remark 5.13 Multiplication by the element A; induces an isomorphism X238 E, —
E;4g and multiplication by w induces an isomorphism

H*(Cy, E;) — H*(Cy, Er43)

for all s > 1, giving H*(Cy, E+) two periodicities.
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Propositions 5.6 and 5.10 identify the layers of (5-2). It still remains to identify the

transfers and restrictions and this is the goal of the remainder of this section. To do

this, we use Lemma 5.4. The first step is the computation of the Mackey functors

H*(C4, W), H*(C4, W[C4s/C5)),

H*(C"-’ W_)7

H*(Cy, W[Cs/C5]-),

which is straightforward from the definitions. The Mackey functors we need are listed

in Table 2.

Whenever possible, we use notation reminiscent of that used in [13].

Lemma 5.14 For the Mackey functors listed in Table 2, there are isomorphisms

O

H*(C4, W)= 10

0

0]

H*(Cy, W[C4/C)) = | @
0

]

H*(Cy, W_)= 1 @

(

g

H*(Cy, W[C4/C3]-) = 10
o

where n > 0 in the above formulas.

if x =0,
if * =2n,
if *x=2n-1,
if x =0,
if * = 2n,
if x=2n-—1,
if x =0,
if x =2n,
if x=2n-—1,
if * =0,
if x =2n,
if *x=2n-—1,

Notation 5.15 1In general, if 3¢ is a Mackey functor in Table 2, then Xt is the Mackey

functor defined as

2#(G/H) = W[u] @w x(G/H),

with restrictions and transfers extended to be W [[u]—-linear.

Proposition 5.16 For the Mackey tunctors listed in Tables 2 and 3 (page 3453), there

are isomorphisms

B if x=0,

H*(Cq, A(+)) = 3O if * =2n, H*(Cy4, A) =
0 if*x=2n-1,
B if «=0,

H*(C4, A(-)) = { @ if x=2n, H*(Cy4, A_) =
@ ifx=2n—1,
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Proof Since p is fixed by the action of Cy, there are isomorphisms

H*(Cy, A) = W[u] @w H*(Cs, W[C4s/C5)),
H*(C4, A-) = W[u] ®@w H*(Cy4, W[Cs/C5]-).

The exact sequences (5-3) give rise to exact sequences of Mackey functors in cohomol-

ogy,
O—>@—>@—>D—>O,

0—>§—>(Z)—>O—>O,

The definitions of the middle terms in these short exact sequences are given in Table 3
and use the ring structure of A(—) and A(+). Note that all the boundary maps in
the long exact sequences in cohomology are trivial due to the structure of the Mackey
functors involved. O

Remark 5.17 Since E is a ring spectrum, we have the Frobenius identity
trllg (resg (a)x) =a trg (x)
foraen«E(G/H), xen«+E(G/K) and K € H C G.
Together, Lemma 5.4 and Proposition 5.16 give the following transfers and restrictions.

Note that all other transfers follow from these using the Frobenius identity and the
multiplicative structure of the restriction.

Proposition 5.18 In the Mackey functor (5-2), there are the restrictions

res;‘(u)=uo+m, resg(ﬁ)ZUO‘i‘Tll,
resy(Ay) = 83, resy(w) = 3,007 = —2.113,

resy(T2) = S0— a1, res5() = (no +11)61.
and res‘z‘(v) = 0. In particular, res‘z‘(Al_lwz) = (non1)?.
There are transfers

3 (ko) = @, tr3(X20) =Ta, 501 22,0) =G,
tr3(no) =n, try(non) =0, t3(mgn1) = cwAT !,

together with trg(l) =2.

Algebraic & Geometric Topology, Volume 20 (2020)



Invertible K(2)-local E—-modules in Cy—spectra

3453
A = W[u][Cs/ ] A(+) = Wnl[Cs/ Coy ]/ (- % = A)
A— = W[ul[Cs/Co)-  |A(=) = Wn][Cs/Co_]/ (- = A +2-%)
Ve =2 V)=V =p A==
V) =0, Ve)=V@p)=1, AQ)=A
| | o] &
W] 0 Wil Wikl
a( v () al0e il )v
A 0 A(+) A(-)
()2 () INE IOE
A A- A(+) A(-)
A o S o
Wil k[l Wul/ (4, 2p) k[
i) Al v alJe i()e
A(-) A/2 A(+)/2 A(—)/2
2] () L) )
A(-) 0 0 0
A @ o Q)
W] W) W] (2, WW[u] 2, WW[ul/ 4,21
s ]v e | i) 3]s
A (2x,e,y)A(+) A(+) A(+)/2
()| i) 1 )2 (]
A A(+ A(+) 0
i = Bl
K[[1] (2, M)W[[M]] Wkl Wikl
il Je Al )e Al )e i)
A(+)/2 A(+) A(+) (2%,e,7)A(-)
(71 =) 2( ] ()2
0 A(+) A(+) A(-)

Table 3: The C4 Mackey functors in the category of W [u]-modules appearing
in £ ;* . In general, if % is a Mackey functor in Table 2 on page 3450, then 3¢
is defined by 3x(G/H) = W[u] ®w %(G/H), with restriction and transfers
extended to be W[u]-linear. See Section 5.1 for more details on the notation.
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Remark 5.19 As already noted, Proposition 5.18 allows one to compute various other
transfers. For example, tr‘2t (ng) is obtained from the above formulas by

tr3(ng) = tr3 (g + nom) = tr (res (M)no) = ntrs (o) = n°.

We represent the result of the computations of this section in the chart in Figure 2 on
page 3463. The relevant Mackey functors are depicted in Tables 2 (page 3450) and 3.

5.2.1 Generators for the E ;’*—term We now list generators of £ SZ” = H%(Cy, Ey)
as a W[u]-module. The class

wAT7! € H*(Cy, Eo)
and its restriction to

NoT3.0 € H*(Cy, Eo)
play a central role.

(1) In degrees ¢ = 8/ with k > 1 we have

. @ - EO’SI generated by

2
Al e ES™(Ca/Ca),
1
81 o8} € E3™(Ca/ C),
b l .
(om0 wo(riori ) e Eg S (Ca/led);
. @ CFE ;k .81 generated by

(@ATH AL e B35 (Cu/ o),
1325 )82 o =5 0)k63 e EX9¥(Cy/ o).

(2) Indegrees t =2+ 8/ with k > 0 we have

e OC Eg’2+8[ generated by

2 2 0,2+8/ .
r10(r10r1,1) 2 wor10(r10r1,1) € EY (Cs/de});

E;+2k,2+81

[ ]
1@
N

generated by

n(@ATHE AL e B3P (/).
_ — k, 1
no(m355.6)° 82, oo (33 H)F83 € E, 72938y Cy).
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(3) Indegrees t =4 + 8/ with k > 0 we have

e BIC E%‘HSI generated by
l
A} € Ey*T*(Ca/ Ca).
5%l+1’ 22’05%1 c Eg’4+81(C4/C2),

2 21 2 21 0,4+38/ .
ro(rior, )™ mori o(r1,0r1,1)™ € E;7 77 (Ca/de});

1+2k,4+81 generated by

- OCE,
v(@wATH AL e E;+2k’4+8[(c4/c4);
. 0C Ei(k+1)’4+81 generated by
P(@arhral e B34 0y,

_ — 2(k+1),4+381
=5 0562 pond (i35 ke e E26FDA ¢y ).

(4) In degrees t = 6 + 8/ with k > 0 we have
e OC Eg’6+81 generated by
V13,0(71,01’1,1)2],M0V13,0(V1,071,1)21 € E3’6+8’(C4/{e}),

e @C I_;“;+2k’6+81 generated by
c@aThkal e B}y cy),

_ — k /
n081 (55085’ tonod1 (g =3.0)* 87 € E, T2 (Cy/ ).

In Figure 2 on page 3463, dashed lines indicate that n times the generator is divisible

by i in E5(C4/Cy). The dashed line from @ to @ indicates that
N Ay @ AT e B3P (Cy o)

equals
- 142k,6+8/
p(c Al (@ATHF) € E, T2y Co),
which follows from the relation 7517 = ug . The dashed line from é to C:) indicates

that
ncAl (@arhk) e B3PR8, /)

equals
pA @Ay € B3P C ).
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5.2.2 Description of the E ’ »1-c+e

debt and turn to the descrlptlon of

—term Finally, we pay an earlier computational

Ey' 70 = H*(Cy. 1o 4+ E).

Recall that Proposition 5.9 described how multiplication by the element p = (3,0;) "
is an isomorphism. In Mackey functor language, multiplication by it induces isomor-
phisms
E5'(Ca/Ca) L E5'777(Ca/ Ca),
EY(Ca/ o) ™2 BTG/ Co),
B (Caften =1 30 ctep,

*,1—0+*

So, using Lemma 5.4, it is straightforward to compute the E,’ —term. It is

depicted in Figure 2 on page 3463.

The class uy € E g’l_a (C4/C3) of Remark 4.3 is a permanent cycle by Theorem 11.3
of [13] and multiplication by u, induces an isomorphism of spectral sequences, and
similarly for multiplication by s := res% (uo):

ES'(Ca)Co) 42> ES' O (Ca/ ). ES'(Cafte}) 22> ES170T(Cy/te)).

Remark 5.20 In E;’1_0+*(C4/C4), the classes Top, n = ¢p and a, = vp are
permanent cycles. Here, ay is as in Notation 2.4 and 1’ is as in Remark 5.12.

5.3 The differentials and the extensions

In this section, we describe the differentials in the spectral sequence
H +t
EY T = H(Cay 7t E) = 7y E"

for * =0 and * = 1 —o. The differentials have the form d,: ES* 1! — gStr*+itr=1,

As was mentioned above, the results in this section follow from the computations of [13].
5.3.1 The d3—differentials and the E 4—page We first describe the d3—differentials.

Proposition 5.21 In the spectral sequence
HS(C4, E*) :> T[*—sEhC4,
the ds—differential are n—, v—, ji—, A{—and w?2-linear. In the spectral sequence

H(Cy, Et) = m—s E"C4,
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they are determined by
ds(Ty) =1, ds(w) =@’ A7, di(q) =ncwAT' = pw’AT".
In the spectral sequence
H(Ca. Er—gtt) = Ti—g41—s E'C4,
they are determined by
d3(A1p) = nawp,  dy(wep) =ngw?AT'p.

In the spectral sequence
H(Cy, E;) = m—s E"C2,

the d; —differentials are p1g—, no— and E% o —linear and are determined by
d3(22,0) = [oNg.

Proof We refer the reader to the differentials listed in [13, Table 3].

The differentials in the spectral sequence for C4 follow from Remark 5.12 and the
differential

d3(up) = nay.
The d3—differential for C, is the [13] differential

d3(22,0) = 13 (o +n1) = & (o + (1 + 1o)no) = fon;.- a

Both A; and w? are d3—cycles and (E3,d3) is a module over Wu][w?, Afl].
Using this module structure, it suffices to describe the following five differentials to
determine the E Z’* —page as a Mackey functor. The E 4—page is illustrated in Figure 3
on page 3472. The relevant exact sequences of Mackey functors are depicted in Figure 1.
See also [13, Sections 5 and 13].

(1) For ds: Eg’4 — E§’6, we have an exact sequence

0— §| — @ LEN § ->V¥—=0
determined by d3(7T>) =n* and d3 (22,0) = 1o '7(3)- This gives the remaining classes
o il cCE 2’4 generated by

2T, € EY*(Ca/Cy). 261.282,0€ EQH(Ca/Ca), rrori1.rig € Eg*(Ca/fed);
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0—>§—‘>@—>O—>O

0—>6d—>§—>5—>0

0—>§—>;di>.—>0

0—>|E|—>Ed—7>.—>0
0—>5d—7>A—>.—>0
0— @ —@-% V-0
O—>;—>§d—7>5—>0
0—>§—>§d—7>5—>0
O—>a—>(§)d—7>7—>0

0—>§|—>@d—3>§—>V—>O
0—>§—>@d—3>§—>5—>0

[o}
|
°
¥
°
¥

0—>e—
0—>(§)—>(:)d—5>.—>0
O—>V—>od—5>.—>0
eV, -0
0—>;—>§d—7>A—>0—>0
l>0% L aY v, 90
0—>@—>@d—7>vd—7>5—>0
0>V>0L v, g0
O—>;—>§d—7>Ad—7>V—>i—>O

0—>§—>§dﬁ>.—>0

Figure 1: The different patterns of d3—, ds—, d7—, di1— and d;3;—differentials.

e VCFE 2’6 generated by

S(@AT") € EY°(Ca/Ca). modi(13Z50) =y € E3°(Ca/Ca).

The following commutative diagram, with rows and columns exact, may help the reader
relate this family of d3—differentials to those of [13, Section 13]:

0 0 0
Lo
0—N—0-—"0—0
TR
0—N—H—0—V-—0
Lol
0—N—0 —0—Y¥Y—0
L
0 0 0 0

1,6 4
(2) Fords: E ;0 > E 3’8, we have an exact sequence

O—>§d—3>@—>o—>0
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determined by the differentials d3(c) = uszl_l and d3(noX2,0) = /L()T)g. This
gives the remaining classes

* OCE :’8 generated by
w2 AT € EJY(Ca/Ch). (nom)? =1 € E3(Ca/Co).

There is a commutative diagram

|1
0 §d3§ 0
1,1 |
0 ° o ¢} 0
[
0 o 0—0
il il
0 0

(3) For ds: E§’8 — E;’IO, we have an exact sequence
0—>@—0 LEN e—->0—0

determined by the differentials d3(w) = nszl_l and ds (77322,0) = MOU(S)- This
gives the remaining classes

e @CE 2’8 generated by
2w € E3°(Ca/Ca);

e @C I_Ei’lo generated by

no(mom)* =13 € E'°(Cy/ Ca).

There is a commutative diagram

Lo
00" e—0
|

0 ) o} ) ° 0
[
0 [ ] O [} [} 0
L A
0 0 0 0
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3,10 6,12
(4) For d3: E3" — E5°~, we have an exact sequence

0— @ LN e—>0—0
determined by the differentials d3(nw) = n*@w?A7! and d3(n3;,0) = n§. This
gives the remaining classes
e @0C Eg’lz generated by
(non)® =ng € Ey*(Ca/Ca).

There is a commutative diagram

0 0
Ll
0— @ — @ —0
Lt
0 e—@ ° 0
oL
0—@®—@—0
I
0 0

4,12 7,14
(5) Fords: E5" — E; ", we have an exact sequence

0—>§d—3>§—>7—>0

determined by d3(T,w?AT!) = w2 AT and d3(Z2,0(n0n1)?) = wong(mom)?.
This gives the remaining classes

e VCE 1’14 generated by

(@3 ATH € EF'M(Cy/C), myom)? =n) € EZ4(Cy/Cr).

There is a commutative diagram

0 0
.

0 ° ° 0
L,
0 e—e v 0
Lol
0 [ ] [ ) \ 0
LA |
0 0 0
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We give a similar description of the £;"'~7**. Again, using the W[u][@?, AF!]-
module structure, it suffices to describe the following five differentials to determine
all the d;—differentials. The E4—page is illustrated in Figure 9 on page 3478. See
[13, Section 5] and Figure 1 on page 3458 for various relevant exact sequences of
Mackey functors.

0,5— 3,7—
(1) For ds: EY 7> EY 9, we have an exact sequence

0— g —~ 0 LEN e—>0—-0
determined by d3(A1p) =nwp and d3(2; ote) = uongua. This gives the remaining
classes, where 1, = res%(ug),

. g C Eﬁ’s ~7 generated by
281ug, 235 oUg € EZ’S_G(C4/C2),

2A1p € EYT7(Ca/Cy), _
rLor 1o 1 glle € B 7 (Ca/{ed):

e ®C ]_53’7_” generated by

N081(My=5.0)us = Ngtts € £y 7 (C4/Ca).

The following commutative diagram has exact rows and columns:

o 0o 0
Lo,
0—N—0—8—0
Lo
0—H=—EH-—0—0—0
| L,
0—™m s 1]—e—e—10
L
o o 0 0

IS
©
Q

(2) Fordy: EY'™7 — E}®

3 , WE have an exact sequence

O—>§£>§—>i—>0

determined by the differentials d3(nA1p) = n?wp and d3(10X2 0ts) = ,uongua.
This gives the remaining classes

« ®C E;” 7 generated by

(Mom ) = Ngues € Ej’g_a(Q/Cz)'
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2,9— 5,11—
(3) For ds: Ey”"° — E3 ~°, we have an exact sequence

0—>@ LEN e—~>V—-0
determined by the differentials d3(n>A;p) = n3wp and ds (17322,0%) = uongug.
e VC Ei’“_” generated by

cw?ATp e E ' TO(Ca/C), mo(nom)?us = nius € EJ'' TO(Cy/ Cr).

(4) For ds: Eg’“_a — 52’13_0, we have an exact sequence
0>0% 8500

determined by the differentials d3(wcp) = ng szl_lp and d3 (ngEz,oug) = nguo.

This gives the remaining classes

e« OC 52’13_‘7 generated by

@3AT P e ESTO(C/Ch), (nom)Pue = nSus € ESTO(C/ Cr).

(5) For ds: Eg’n_” — E;’IS_J, we have an exact sequence
0> @—0 LEN e—-0—0
determined by d3(w?p) = nw>A™!p and d3(Z2,0(mon)*us) = mond(mon)?ue.

This gives the remaining classes

4,13—0

s OCE, generated by
20%p € E377(Cy/ Ca);
e ®C ]_;“1’15 9 generated by

na(om)*ue = njue € E70(Ca/ Cy).

There are several exotic restrictions and transfers that follow from the d3—differentials.
Following [13, Figure 10], we indicate exotic transfers by solid blue lines and exotic
restrictions by dashed green lines.
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- N - N ~ N
2+ e o) 0 Kol 0 )
7 . ./ A ./ "

o 0 0 o o 0 . 0
- N R N4 N
L] ° L] o} L]
. . A " ./
e ° e e o e e o
N " A . N "
84 6 o Kol 0 o) °
. O S . N
e o 0 e ° e e
. - N - N
o} ° el ° ©
. ./ . ./ .
0 0 o o 0 o o
. N L N . ./
14 @ o) 0 ) 0 )
7 . ./ L ./ "
° ® e o e ° e
- N N N N
e o ® o ®
. . ./ " N
e ° e e o e e o
A/ =~ ~ =~ A/ =~ ~ =~ A/ ES ~
07 a B ] o] a 0] a o a 0]
T T T i T T T
0 4 8 12 16 20
NN ~ IR N IR N
n- e 8 & B & .\ B
7 \ J : % J \
e o 0 o’ o ® o’ o
\ N4 L N4 \
L] el L] o} L]
\ _/ o ./ R ./
. ° & ® o & e o
./ Oy WS o ./ -
84 0 o \ O] ° Y ] °
S . S 3 L S
o o o e o o e
S \ N \ L N
o} L © ° ©
= A/ R A/ =
K O O .
TR A/ T 3 A/ I Wa
4- @ .8 e .\ 0 e 8
7 \ J 3 % ./ L
. o ® . o e . o
\\N A/ \\N/ A/ L
] L] ° L] o} L]
\ ./ " ./ L ./
] L] L L] L] L o L] L
A/ =~ ~ =~ A/ S 7 =~ A/ ES ~
01 a o ] o] a 0] a u a 0]
T . . T . T . . . T . . . T . . . T
-3-0 -0 5-0 9—-0 13-0¢ 17-0

Figure 2: The E3* (top) and E3' """ (bottom) page of the homotopy
fixed point spectral sequence given by H*(C4, E.). Lines of slope (1,1)
indicate n multiplication on the E ; "*(C4/ C4)—term. They are dashed if the
generator of the target is not a multiple of 1. The d3—differential patters
are also drawn. Again, a d3 is dashed if the target of the differential in
E"(C4/Cy) is not the generator.
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5.3.2 Higher differentials and the E.,—page The higher differentials for the ho-
motopy fixed point spectral sequences H*(Cy, Ex) and H*(C,, E) are listed below.
From the Ej-term onwards, the homotopy fixed point spectral sequence and the
slice spectral sequence are isomorphic in the range s > 2 and t —s > 5. Because
of the periodicity of the HFPSS, higher differentials are easily deduced from slice
differentials. We refer the reader to [13, Section 14] for more details. The computation
is also illustrated in Figures 3 (page 3472) and 9 (page 3478). The exact sequences of
Mackey functors involving the differentials are depicted in Figure 1 on page 3458.

Remark 5.22 The following classes are permanent cycles:
k= w2A1, €= w4A1_2, Kk =2wAj.
Therefore, all differentials are linear with respect to multiplication by these classes.

Remark 5.23 One key difference between our computation and that of [13] is the
behavior of 5. In the E,(C4/Cy4)—term of the slice spectral sequence for 7, kp,1,
there is a relation af,u 1 = 0. However, in the E,—term of the homotopy fixed point
spectral sequence for 7w, E é’, the image of uy for every representation V' becomes
a unit. Therefore, af, =0in H3 (C4, w4 E). In fact, aguiﬁ? = 13, which is zero on
the £,(C4/C4)—page. This implies that the target of the slice differential ds5(uo,) =
ala; 0y is trivial. So, in the spectral sequence

H*(C4. s E) = 7y E"C4,
we have
ds(uze) = 0.

We will show in Proposition 5.25 that u 20”1 is a permanent cycle. This, together with
d7 (u;t) from [13, Theorem 11.13], implies that u,, instead supports a d7—differential.

Proposition 5.24 The ds—differentials are w—, n—, v—, k- and A%—linear. The
differentials ds: Ess’t(C4/C4) — I_Es5+5’t+4(C4/C4) are determined by

ds(A)) =vAT w2, ds(ve) =247 @
The differentials ds: Ess’l_a+t(C4/C4) — I_Es5+5’1_a+t+4(C4/C4) are determined by
ds(Aqvp) =207 2%, ds(Aywp) =vAT '@ p.

Proof Again, these come from differentials listed in [13, Table 3]. They are deduced
using Remark 5.12 from

2 B 2y _ = 2%
ds(uzeuy) = uzevaydy, ds(uy)=va;0y.
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1,3—0—A
2
we also use that v2 = 2z, which is related to the “gold relation” 2u,,a; = acz,uk. a

Here, vV = asu) € E (C4/Cy) is a permanent cycle. In fact, v = vﬁl_l . Here,

We take a moment here to prove the following result, which settles Proposition 4.5:

Proposition 5.25 The classes ui, u% o uzau;t and Uy = resg (uy4y) are permanent
cycles. In particular, the class ug,, is a permanent cycle in the spectral sequence
for E"Cz2

Proof That ui, u% o and 4 are permanent cycles is part of [13, Theorem 11.13]. The
claim about ug,, follows from the fact that the restriction of A to the group C; is 20;.

We give a quick argument to justify that uzgui is a permanent cycle. Multiplication
by u20ui induces an isomorphism

(5-4) E¥*(Cy/Cq) > EPIOT20744%(y/ Cy)

that sends 1 to uzoui. Using this isomorphism, it is visible that if uz,,ui is a d7—cycle,
then it is a permanent cycle by sparseness. Both u,, and u;t are ds—cycles. The
only possible nontrivial d;—differential is d (uzgui) =7 uz(,uia;ﬁl . Note that ¥ is
detected by

K=w?A = aiu%aﬁ?(uzgui)

So, the differential would imply that
d7(w?Ay) = n’aiuiu%aﬁz = ngAl_z,
which is nontrivial on the E7—term, a contradiction. Therefore, uzUu;t isa d;—cycle. O
Corollary 5.26 The class wAfp is a permanent cycle detecting a nonzero class
WAL € 719_ E(Ca/Ca).
Proof This follows from Proposition 5.25 since
wA%p = akugaﬁf (uzau;t)
is a product of permanent cycles. |

Proposition 5.27 The d;—differentials are u—, n—, v—, k—, €—and A‘l‘—linear. The
d —ditferentials d7: Ei’t(C4/C4) — §§+7’t+6(C4/C4) are determined by

d7201) =cw’ AT, d7(A]) =cw’ AT d7(uAy) = 0.

Further, (t/A is a permanent cycle.
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The differentials d7: E%' ™77 (C4/Cy) — EH'7 A=0H+6 (¢, / Cy) are determined by
d;20 wp) =cwtp,  di(wp) =g pAT dy (nwpA}) = 0.
The differentials d7: E5'(Cs/C2) — E“;+7’t+6(C4/C2) are no—, JLo— and Z;,o_
linear. They are determined by
d7(§3§,0) = 77(7)-
The spectral sequence E ; *(C4/Cy) collapses at E7.
Proof We use the proof of [13, Theorem14.3]. From that discussion, one deduces that
d72A1) =ajuzen'd; and  d7(A]) = A1d7(2A4).
The first two differentials for E;*(Cs/Cys) then follow using Remark 5.12.
The d7 for E}*(C4/C») is obtained by multiplying the differential from [13],

d7([“)h]) = a7 _»:15 0

with the permanent cycle 77 . There is a vanishing line at s = 8 on the Eg—page, and

1,0°
so the spectral sequence collapses.

For d7(A11t) = 0, note that uA; = trg(/LOSf). Since
d7(14087) = d7 (1o(1 — 110)> =3 o) = po(1 + 11g)ng

and the latter is zero in E ;’14(C4 /C,), the claim follows.

Now, note that MOSIZ is a permanent cycle, hence so is pA; = tr‘z‘ (,uoé’f). Finally, the
differentials in E :’1_U+*(C4 /Cy4) then follow using Corollary 5.26 and the fact that
the d5—differentials are A‘I‘—linear. a

Proposition 5.28 The dq;—and d,;—differentials are jt—, n—, v—, k—, €—and A‘l‘—
linear. The dy—differentials d;: E11 (C4/Cy) — ESJrll t+10(C4/C4) are deter-
mined by

dii(cw) = 2A1_4w7 = v2w6A1_4.

The d; —differentials d11: E s 1 U+t(C4/C4) — EslTII’I_OHHO(C‘;/C‘;) are deter-
mined by
dii(cm*Afp) =viw ATy,

The d 3 —differentials dq3: E 13 (C4/C4) — Eer13 t+12(C4/C4) are determined by
diz3(Avw) = A7 MOAR di3(Aq WH=A 1 2w,
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The d,;—differentials dy3: E*’ 1_‘H't(C /Cy) — Es'H3 A=ott+12c, /Cy) are deter-
mined by
diz(Ava?p) = A%, diz(Aviop) = veodp.

Proof The d;; in E3*(C4/Cy4) follows from [13, Theorem 14.2(iv)]. The dy3’s
come from [13, Theorem 14.4]. Finally, the differentials in £ I’I_U+*(C4 /Cy4) then
follow from those in the integer-graded spectral sequence by multiplying by the perma-
nent cycle A%wp of Corollary 5.26. a

Remark 5.29 There is a typo in the statement of [2, Proposition 2.3.8]. It should read
dii(y§) = 28747,

The E o—term is illustrated in Figure 3 on page 3472. The exact sequences of Mackey
functors required to compute it are listed in Figure 1 on page 3458. Finally, Tables
2 (page 3450), 3 (page 3453) and 5 (page 3471) contain the definitions of the Mackey
functors required to read Figure 3.

5.3.3 Exotic restrictions and transfers Exotic restrictions and transfers can mostly
be deduced from [13]. In general, they are solved using [13, Lemma 4.2], which states
that, for a cyclic 2—group G with finite subgroup G’ of index 2, if o denotes the sign
representation for G, then

. im(trg/) = ker(ay), and

. ker(resg,) =im(ay).

*, k4 x

We have explicitly computed the £ '~ —pages for x =0, 1 —o . Further, as we noted

in Remark 4.9, there are isomorphisms

*,% ~ *,*+18—20 *,1—0+%  *x*x+15+0

’

So, it is straightforward to study the image and the kernel of multiplication by a,
and as, on E ¥ and E :51_U+* . This allows us to use the above observation to deduce
exotic transfers and restrictions that are not stated in [13].

We first list the extensions for i« £, and then turn to the shift by 1 —o. The homotopy
groups m, E and 7, ., E are listed in Table 4 on page 3470. See also Figures
8 (page 3477) and 14 (page 3483).

(1) In mr; for t = 2 mod (32), the exotic transfers resolve in two steps as

IEll>

0—>.—>(§)—>§—>O, 0— @ — 0.

I©>
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Note that, in [13, Figure 17], 75 K[ is a direct sum of ¥ and [, where
0t-e—->Y7—>0—0, O—>6—>ﬁ—>ﬁ—>0,

and the gray Mackey functors are defined as in Table 2 on page 3450, but with k
replaced by Z/2 and W replaced by Z. However, 15 E5] cannot be expressed as a
direct sum because of the W [[i]]-module structure. This obstruction can be understood
in terms of the diagram

V(Cy/C) & ﬁ(C4/C2) ——————— [l(C4/Ca)

= H

L/24x} @ 2/2Cy/ Col —— KIulCa/ Ca g ]/ (-5 = )
(2) In z, for t = 3,19 mod (32), the exotic restriction resolves as
0-Y—-0—@—0.
(3) In m, for t =4 mod (32), the exotic transfer resolves as
0>V — §| — il — 0.

(4) In zr, for t = 6 mod (32), the exotic restriction and transfer resolves in two steps
as R
0>0—>A—>0—>0, 0>A—>X—>0O—0.

(5) In z, for t =9 mod (32), the exotic transfer resolves as
0>@—>0— ; — 0.

(6) In z, for t = 10,26 mod (32), the exotic transfer resolves as
0— é — é — i — 0.

(7) In z, for t = 18 mod (32), the exotic transfer resolves as
0—@— é — i — 0.

(8) In m, for t = 20 mod (32), the exotic transfer resolves as
0—-0— él — §| — 0.

(9) In z, for t = 21 mod (32), the exotic transfer resolves as

l-e—>V—>@—0.
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(10) In m, for t = 22 mod (32), the exotic restriction and transfer resolve in three
steps as

l-e—>V—>0—->0, 0-Y>50—>0—0, 0—>O—>|§|—>E—>O.
(11) In &, for = 28 mod (32), the exotic transfer resolves as
0—>.—>S|—>§|—>O.

Next, we list the extensions for 1 41— £. Most of them can be read off the computation
of the homotopy groups and we add a word for those that are not so clear.

(1) In z, for t =1 —0 mod (32), the exotic transfer resolves as
0> @— L[l —6-0.

(2) In r; for t =3 — o0 mod (32), the exotic transfer resolves as
0— @ — |§| — ﬁ — 0.

(3) In z, for t = 5—0 mod (32), the exotic restriction resolves as
0—>@— §| — g — 0.

(4) In z, for t = 6 — 0,22 — 0 mod (32), the exotic restriction resolves as
0-VY¥—-0—-0—0.

(5) In z, for t =7—0 mod (32), the exotic transfer resolves as
0— A— i — @ — 0.

(6) In z, for t =9 —0,25—0 mod (32), the exotic transfer resolves as
0—e— Iﬁl — @ — 0.

There must be an exotic transfer in this degree since wg9—_», E(Cs/C4) =0, so the class
in (9 —0,4) must be in the image of the transfer. Similarly, w525 E(C4/Cs) =0
implies the exotic transfer in stem 25 —o.

(7) In r; fort =11 —0,27 —0 mod (32), the exotic transfer resolves as
0— § — é — i — 0.
(8) In m, for t = 19 — o mod (32), the exotic transfer resolves as
0— @ — E — i — 0.
(9) In z, for t =21 — o mod (32), the exotic restriction and transfer resolve in two

steps as
lt-e—VYV—>e@—0, O—>V—>g—>g—>0.
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(10) In z, for t = 23 — o0 mod (32), the exotic transfer resolves as
l—-e—-QA—0—0.
Remark 5.30 There is no exotic transfer to the class detected in degree (27 — o, 10)

since this class is not in the kernel of multiplication by a, . Similarly, there is no exotic
transfer in stem 20 —o.

Corollary 5.31 The homotopy groups of mw«y1—4 E are not an integer shift of w+«E.
As was stated in Proposition 4.6, this implies that there is no d € Z. such that EAS® ! ~
EASY as C4 —equivariant E —module spectra.

homotopy groups w, E
t mod 32 0 1 2 3 4 5 6 7
7, E £ e¢e I O KN ® X 0
t mod 32 8 9 10 11 12 13 14 15
E MmMoe 6 O 0 N 0 Ooe o0
t mod 32 16 17 18 19 20 21 22 23
7, E 5 e 0O o WY B o
t mod 32 24 25 26 27 28 29 30 31
7, E m A4 O e N 0 O 0
homotopy groups 7 {_, 4 E
t mod 32 1 2 3 4 5 6 7 8
n,E O e B e N o X e
t mod 32 9 10 11 12 13 14 15 16
n.E B & O o0 @m e O o0
t mod 32 17 18 19 20 21 22 23 24
n,E GO e [ ese M o @ O
t mod 32 25 26 27 28 29 30 31 32
T.E B A Doe 0 w 0 O e

Table 4: The homotopy groups m, E (top) and 7, ., E (bottom).
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V=0, V@ =Y0=1. Ve)=u A0D=A. A@)=0
o Vw=2 V=V =p V) =0 Al)=x
V(x) = 2, V(e) =i(y) =1, Vo) =2, A1) =A AQ) = 1o
) 6(*1= . ?(e) = ﬁ(y)v= I, A=A, A@W=0,
Ve =2, V)=V =un V)=t AD)=iw+x AQ)=
V2s) =1, V(e)=V()=1, A=A, A@W)=0
8 N 0 X
Q. WWul/4,21) | ki) & Wlu] k[p] k
al )9 ()¢ il e 1 o
A(+)/2 k{to} @ A(-) A(-)/2 k
of T o 21 J[1] of T o[ ]
A A(-) A A
g N 0 &
W /4 ki@ Wlu] | ki@ Wn] | W[ul/(4,2u)
INE ile | al)e | alls
k A(-) A(-) A(+)/2
of v 2( ) 1( )2 of T
A- A=) A=) A
o S & &
0 Wnl k{t} & W{u] k[p]
I Al 7% il )% al v
k kito} ® A(+) | (2x,e,y)A(-) A)2
ol 1 Jwal Rl | (92| el Ty
A- A(+) A(-) A
S =
W/4{} & W[n] k{c} & W[u]
()% Al )9
k{to} @ A(-) k{t} @ A(+)
2(//)1 ) 2](//)[(1’]
A(-) A(+)
Table 5: C4 Mackey functors in the category of W[u]-modules appearing

in E;’*. See Section 5.1 for notation.
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Figure 3: The EZ’* page onwards of the HFPSS with d, for r > 5.
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Figure 4: The E z* page of the HFPSS with ds—differentials.
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Figure 5: The E :* page of the HFPSS with d;—differentials.
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Figure 7: The E T; page of the HFPSS with d3;—differentials.
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Figure 9: The E:’(I_GH* page onwards of the HFPSS with d, for r > 5.
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Figure 10: The E :’(I_UH* page of the HFPSS with ds—differentials.
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6 The algebraic Picard group

In this section, we compute the algebraic part of Pic(E). First, we recall a few facts
from algebra.

Let R be a commutative ring with an action of a group G by ring automorphisms. We
consider the category of G—twisted R—modules where the objects are R—modules M
with an action of G compatible with the action of G on R. Namely, forr €¢ R,me M
and g € G,

g(rm) = g(r)g(m).

This is a symmetric monoidal category and we let its Picard group be denoted by
Picg(R). If G is a finite group and R is a local ring, then a G —twisted R—-module M
is invertible if and only if it is free of rank 1 as an R—module. From this, one deduces
that there is an isomorphism

(6-1) Picg(R) = H' (G, R™).

The isomorphism is defined by choosing an R—module generator m for M and defining
a function ¢ps: G — R by the formula

g(m) = ¢p(g)m.

Note further that if we let H vary over the subgroups of G, it is clear that the right-hand
side assembles as a Mackey functor. This corresponds on the left-hand side to the
Mackey functor

Pic(R)(G/H) = Picg(R)

with resfl (M) the module M with H —action restricted along the inclusion of H in G
and
g (M) = NG (M),

where N g (M) = ®§ /i M s the indexed tensor product of R-modules.

Now, let R be a ring spectrum with an action of G and Ry = moR. In the Picard
spectral sequence, which we introduce in more detail in the next section, we will have

171 ~ ~ Pq
E 5(G/H) = H'(H, R) = Picg (Ro).
Therefore, the computation of Pic(Ry) is an input for that of Pic(R).

In this section, we prove the following statement:
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Proposition 6.1 There are isomorphisms Picc,(E¢) = Z/4 and Picc,(Ey) = Z/2.

Let G = C; or C4. Since a G—Eg—module is in Picg (Ey) if and only if it is free of
rank 1 as an Ey-module, for each integer n, E,, is an element of Picg(E(). Further,
the multiplication

(6-2) Exn ®Ey E2m = Ex(nim)
induces an isomorphism. This gives a group homomorphism

(pG(—): 7 — Picg(Ey)

where ¢ (n) = E,,.
Lemma 6.2 Let k = 0,1,2. The kernel of ¢2* is the ideal (2¥)Z.

Proof First,let G = C4. If f: Ey — E,, is an isomorphism of Cy—twisted Eo—
modules, then f(1) is a unit of degree 2n which is invariant modulo the action of Cj.
Conversely, any such isomorphism is given by multiplication by such an invariant unit.
The element A; defined in Table 1 on page 3446 has this property, so multiplication
by A; induces an equivariant isomorphism

Ar: Ezy — Ejpgsg,

so that E, is at least 4—periodic and (4) C ker(¢“+). There is no such unit in E,,
E4 or Eg, so this identifies the kernel.

The argument for C, is similar, replacing A; by &, and that for the trivial group is
obvious. i

As an immediate consequence, we have:

Corollary 6.3 Let k = 0,1,2. There are inclusions 7. /2% C Picc,, (Ey), where
7/ 2k js generated by the isomorphism class of E .

To finish the proof of Proposition 6.1, we show that H'(Cy«, E o) has order at most 2k,
Once we have shown this, we can assemble the Mackey functor Pic(Eg) = H'(Cy, E o)
The effect of

res‘z‘: Picc,(Eo) — Picc, (Eo)
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is obvious since it sends the generator E to itself. Since trj ores; = |C4/C;| (for
example by (6-1)), the transfer must be multiplication by 2. Therefore, Pic(Ey) is the
Mackey functor

Picc,(Eo) = Z/4

: Q /)2
Picc,(Eo) = 7Z/2
0 Q /)0
Picey(Eo) =0
We denote this Mackey functor by O.

The remainder of the section is dedicated to proving that H!(C,i, E o) has order at
most 2K for k = 1,2. This is rather technical and the next section will only appeal to
the statement of Proposition 6.1, so the reader may safely skip the remainder of this
section. We treat C, and C4 separately since proving this for C, is much easier.

Lemma 6.4 There is an isomorphism
HY(Cy,E{)=17)2.
Proof The group C, is generated by y2, which acts trivially on EX; see Section 5.2.

Therefore, we have
)2
HY(Cy. EY) = ker(E} S5 EY),

but x2 =1 in Ey if and only if x = (£1). |
To deal with Picc, (Ey), we introduce some notation. Let Uy = Ef; and, forn > 1,
Uy ={x € EJ:x=1mod(2")}.

There are isomorphisms

EX/2 itn=0
Un/Upy1 =4 0 ’
n/ Unti {Eo/z ifn>1.
We will use the long exact sequence on cohomology associated to the short exact
sequence
(6-3) 0—>U - Ef—>E;/2—0.

Lemma 6.5 The maps EOC4 — (E¢/2)% and (E(>)<)C4 — (E();/Z)C4 are surjective.
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Proof Since an element of Ey is a unit if and only if it is a unit modulo 2, it suffices to
prove that the map EOC4 — (Eo/2)% is a surjection. Since H'(Cy4, Eo) = 0 (see, for
example, Figure 2 on page 3463) this follows from the long exact sequence associated
to the short exact sequence

0— Ey—=> Eg— E¢/2— 0. O

It follows from Lemma 6.5 that there is an exact sequence
0— H'(Cy,Uy) — H' (Cy4, EY) — H'(Cy, E/2).

We will show that both H'(C4,Uy) and H'(Cy, EJ/2) have order 2, which will
imply that the order of H'(Cy, E o) is at most 4. Together with Corollary 6.3, these
results prove Proposition 6.1.

Remark 6.6 One can also prove the claim by filtering EJ by powers of its maximal
ideal. That argument is slightly shorter but more technical. We have opted to take the
slightly longer, but less steep trail.

Proposition 6.7 There is an isomorphism H'(C4,U;) = Z,/2.

Proof To compute H'(Cy, Uy), we use the Bockstein spectral sequence

(6-4) EV" = H*(Cy,Up/ Upyr) = H*(C4,Uy)

with differentials d,: Ey" — Ei+1’n+r and n > 1. See Figure 15 on page 3491.

The differentials are described as follows. First, if 32 acts trivially on a C4—module M,
vy E) = E)E)?

on M. The standard resolution for the group C4 gives a cochain complex

(6-5) 0— PO(M) 1/(—)((1’—)‘1 (1/(—:’(—))2 y(—)‘(l’—)_l

PY(M) P3(M)

with PS(M) = M for all s > 0. The cohomology of this complex is H*(C4, M).

For an element
o e E;’n = HS(C4, Un/Un+1)

a differential d, (o) in the spectral sequence (6-4) is the Bockstein associated to the
exact sequence

0= Un+1/Untr+1 = Un/Untr+1 = Un/Upy1 — 0.
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This is computed by choosing a cocycle representative a € P*(U,/Uy,+1) for o and
lifting it to an element @ € P*(U,/Uy4r+1). Then d(a) will necessarily be a cocycle
in

Pt Upgr / Upgr41) € P T (Ung1/ Untr 1)

since @ was a d,_j—cycle. The cohomology class represented by
d(a) € HS+1(C47 Un+r/Un+r+1)
is dy (o).

Fix an isomorphism

Eo/2 = k[pol = Un/Unt1. [ (o) = 142" f(1o) mod 2" 1.

From Section 5.2, we have that
Un/Upy1 = Eo/2 = A(+)/2

as C4—modules. Recall that
p = o + ¥ (ko)

is invariant for the action of Cy (since ¥2 (o) = o). Using the standard resolution,
we get the W[[u]-modules

k] if s =21,
kdku] if s=2¢+1,

with cocycle representatives in P¥(U,/U,+1) given by
Sy < 1+27f(w)  if s =21,
o< 1+2" if s =214+1,
f(u) < 1+2"f(Wpe if s =21+1
for f(un) € k[u] and o € k.

(6-6) EV" = H*(Cy, Up/ Upyy) = {

For f(n) € k[u] = (Eq/2)%4, we let f(,u) e Wlu] = EOC4 be any invariant lift,
which exists by Lemma 6.5. Further, given o € k, we let @ € W be zeroif « =0 or a
Teichmiiller lift if o € k.

First, let s = 2¢. For f(u) ek[u]=E ft’", the cocycle representative 1 + 2" f(u) €
P2K(U, [ Upyy) lifts to

1+2"f (1) € P (Un/ Ungr+1)-

Algebraic & Geometric Topology, Volume 20 (2020)



Invertible K(2)-local E—-modules in Cy—spectra 3489

Since 1 + 2" f (w) is invariant for the action of C4, we that have

d= V(_)(_)_13 PZt(Un/Un—i-r—H) - P2t+1(Un/Un+r+1)

is given by d(1 +2”f~(/L)) =1, which reduces to zero in Uy 4,/ Uyp4,+1 forany r > 1.
So the differentials

. 2t,n 2t+1,n+r
dr: E;"" — E;

are all trivial.
Now let s = 2¢ 4 1 for odd ¢ > 0. A choice of representative for a class
. f(w) ek ®k[u] = E;"

is given by 1 +2"f () o in P21 (U, /Uys1), which lifts to

1+ 2’1/7(//«),“0 € P2t+1(Un/Un+r+1)-

We compute

d= (V(_)(_))Z: P2t+1(Un/Un+r+l) — P2t+2(Un/Un+r+l)-
Using that u = y(uo) + (o, we have

d(142"f(Weo) = y (1 + 2" F (1) o) (1 + 2" (1) o)
= (L +2"F(w)y (120)) (1 + 2" (1) 1r0))
=1+2"p f(u) + 22" f(1)* mod 272,

Therefore, on k[u] Ck @ ku] = E 12t+1’", we have differentials

given by
wf () +p2f(w)?* if n=1,
wf (1) if n>1,

which in both cases are isomorphisms onto pk[u].

dy(f (1)) = {

A choice of representative for a class

o 20+,
(o, 0) ek @ k[[u] = E] "

Algebraic & Geometric Topology, Volume 20 (2020)



3490 Agnes Beaudry, Irina Bobkova, Michael Hill and Vesna Stojanoska

is given by 1 + 2"« in P?'*1(U,/ U, ), which lifts to
1+2"a € P (Un/ Ungr41)-
Since this class is invariant for the action of C4, we have that
d(142"a) = (1 +2"@)* = 1 + 225 + 227152 mod 213,
Therefore, on k C k @ ku] = E ftﬂ’", we have differentials

d]: E12t+1,n s E12t+2,l’l ~ kILLL]]
given by

di(@) = ifn>1

{oz +a? ifn=1,
These are isomorphisms if # > 2, and, if n = 1, the kernel is IF, = kGal(k/F2)

In particular, it follows that

Fln _ F, ifn=1,
oo T .
0  otherwise,

which implies the claim. O
Proposition 6.8 There is an isomorphism H'(Cy, E 0/2)=17/2.
Proof To compute this, we will use another Bockstein spectral sequence associated to
the following filtration. Let
Va={x€E§/2:x=1mod ug}.
There is an exact sequence
1>V, - Ef/2—>k*—> 1.

Since k* has order prime to 2 and H%(Cy, (Eo/2)*) — H°(C4,k>) is surjective,
there is an isomorphism

H'(C4. E§/2) = H' (C4. V).
To compute H'(Cy, V1), we use the Bockstein spectral sequence

(6-7) EV" = H*(Cq, Vi) Vag1) = H*(C4, V1)
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Figure 15: The spectral sequence (6-4), left, and the spectral sequence (6-7),
right, drawn in the (n, s)—plane. A @ denotes a copy of k. A @ denotes a
copy of k[[u], where the inner dot stands for k{1} and the outer rim stands
for puk[u] (this allows us to draw the differentials more precisely). The
dashed line indicates that o > o + o? for o € k.

with differentials d,: E3" — Ef+1’”+r. See Figure 15. The maps

G k= Vi/Var1, (@) =1+ puge,

are isomorphisms for n > 1. We proceed as in the proof of Proposition 6.7, using the
resolution (6-5) to compute the differentials. We have isomorphisms

HS(C4, Vn/Vn—H) >~ k,

where a representative for « € k in P*(V,,/V,4+1) is given by the residue class of
1 + pger, which is also a choice of lift in P*(Vy,/ Vg r41)-

Let s =27 and n=2Km for m oddand k > 0. For d: P (V,)— P2'+1(V,), we have
d(1 + pge) = (1 +y (o)) (1 + pge) ™!

n 1
= (1 Ga) ()
(ko + 1)" 1+ pger

1 1
(o)
( 3t 1y \ L+ e
= (1 + o+ apl T2 (1 + aplh + a2 pd")

=1 —i—a,u%“k mod j1q

Therefore, for n = 25m, the first possible nonzero differential d,: E r2 b E ,2 I+1n+l

is d,« . Further, the differentials
di: E12t,n N E12t+1,n+1

are isomorphisms for » odd.
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Now let s = 2¢ 4+ 1 and n = 2%m, where m is odd and k > 0. For d: P2+ (V) —
P?'2(V,), we have

d(1+ ppor) = (14 y (o)) (1 + pe)?

1
= l—l-azuz”—)(l +a? )
( 0 Mgk—i—l + l)m 0

k+1 k41
=(1+a?ud"(L+ud N +e?ug") mod pi"+2 " +1
_ {1 +a@+a)ud it n =2k,
1 +a2M(2)n+2lc+1 if n= 2km’ m 75 1.

2t+1,n E2t+1,2n+2

In particular, if n is odd, we get differentials dy1>: E, 5" — E,

given by

a+a? ifn=1,

dp42(a) = {oe2

if n>1.
These are isomorphisms if n £ 1. If n =1, then F, = k% C E § "+1L.1is the kernel.

Combining these results, we conclude that

Fy, ifn=1,
0  otherwise,

El,l’l —

(e.¢]

which implies the claim. O

7 The Picard spectral sequence

In this section, we first establish notation and a few results about the Picard spectral
sequence for R an even periodic ring spectrum in the category of genuine G spectra.
Then we turn to the analysis we need to

7.1 Generalities on the Picard spectral sequence

Let R be an even periodic cofree commutative ring spectrum in the category of genuine
G —spectra. Suppose that R"G 5 R is a faithful G—Galois extension. We recall the
tools provided by [10; 16] to compute Pic(R"Y), the Picard group of R"G _module
spectra. Let pic(R) denote the Picard spectrum of the ring spectrum R. Note that
pic(R) is a spectrum with a G —action, and that pic(RhG) = pic(R)g(O;. In particular,

7o pic(R)"? = Pic(R"?).

Algebraic & Geometric Topology, Volume 20 (2020)



Invertible K(2)-local E—-modules in Cy—spectra 3493

It follows that the group Pic(R"H) for any subgroup H of G can be computed by
studying the spectral sequence

(7-1) E%!, = H*(G.m; pic(R)) = m,_(pic(R))"

with differentials dg’fr: E Z”tr —- F :rrr 171 1o obtain a Mackey-valued spectral

sequence, we have taken the genuine cofree G —spectrum corresponding to pic(R). We
will be comparing this to the analogous homotopy fixed point spectral sequences E x
(for the units of the ring R, see (7-3)) and E 4 (for the ring R itself, see (7-2)).

Note that pic(R) is a connective spectrum with the property that (2 pic(R))>¢ =~
gl (R). Further, as spaces, 2°° gl; (R) >~ GL(R) and there is a map

GL;(R) — Q®R

which is an inclusion of those components lying over (9 R)™. These equivalences
respect the G —action, so both of these spaces inherit a G —action from R and

Z/2 ift=0,
m pic(R) = { R} ift=1,
R,_, ift>2,

as G -modules. It follows that
H(G,Z/2) ift=0,
Ei’fz ~{H*(G.Ry) ift=1,
EYS! if 1>2,
as Mackey functors. Here, E *+** denotes the Mackey functor homotopy fixed point
spectral sequence

(7-2) EY =EY,=HG.nR) =z, (R
with
oL N + 5t+ -1
di,r. Ei,+ — Ei,_: =
We also let
(7-3) E3', = HY (G, 12l (R) = m,_(gl; (R)"

with differentials df(’,t,: E itr — E f:r,r’ﬂrr_l and note that
R {ﬂS(G,RS) if 1t =0,

=T\ EY, if £>1.
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In [16, 5.2.4], Mathew and Stojanoska identify a range where the differentials d

and d4 are related. Given a class x € Es " 1(G/H) where t>2,welet x* and x®

be the corresponding elements in £ ffr 1(G/ H) and E°; or " (G/H), respectively.

Theorem 7.1 [16] Let x € E%';'(G/H) and let y € EXY["7"7>(G/H). Let
x®e Es ! (G/H) and y® € Es+”+r 1(G/H) be the correspondmg classes.

(1) If both x® and y® lie in the region of the (¢ — s, s)—plane where 2 < ¢ and
0<t—s,then dy ,(x) =y ifand only if dg ,(x%) = y®

(2) If2<tand 2<r <t—1,thendy ,(x) =y ifand only if dg ,(x?) = y®
(3) If s=t=r and dy ,(x) =y, then
o1 (x®) = (dy s (x) + x%)°.
As in [16], we will call the first two families of differentials stable and the third family

unstable.

For our arguments below, we also need to know how the transfers and restrictions of
these spectral sequences are related. We will need the following result but postpone its
proof to the end of the section:

Lemma 7.2 Suppose X is a spectrum with a G —action, and consider its Postnikov
decomposition
Xt > X > X

for some t. Let § be the connecting map X<; — X X>;.
If « is a permanent cycle in the homotopy fixed point spectral sequence for X<;, then
3(@) = B € m(X=)"C

if and only if there is a ditferential d,(«) = 8 of suitable length in the homotopy fixed
point spectral sequence for X.

In the following result and its proof, we adopt the convention that, for a < b,

ES51.2(G/H) = H* (G, 7y 8l Riap)) = Ti—s(gly Ria )"
and
E a2 (G/H) = H* (G, 7pic(R)a,6) = T i—s (pic(R)a,5)"-
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Proposition 7.3 Suppose 0 < a < b < ¢ are integers such that ¢ < 2b — 1, and
let H be a subgroup of G. Assume we are given classes x € E7 M+ (G/H) and
ye EHP m+s+p(G/G) such that the following conditions are sat1sﬁed.

(1) The integers m + s, m + s + p are in the interval [b, c], the classes x and y are
permanent cycles in the spectra] sequence for Ryp ], and, in the Mackey functor
Tm(Rp,¢]), we have trg (x) =

(2) The class x® corresponding to x is an r —cycle in E Zr[';isltl +1] ,(G/H), which

is hit by a differential, say d,(z®) = x®, withr’ >r and r' >m+s+1—b.

Then, in the spectral sequence E*’ (G/G), there is a differential of suitable

=0, [a+1 c+1],%
length

dyryp (G (z%)) = y°
Proof Note that

(7-4) Qpic(R)g+1,e+17) = &l (R)[a,e]-

so the claims are going to follow from their (suitably shifted) counterparts for gl (R)
and the spectral sequence Ex".

The assumption (2) implies:

(2') The class x* corresponding to x is an r—cycle in E i'f’jcs] .(G/H), which is

hit by a differential, say d,/(z*) = x*, with ¥’ >r and ¥’ >m+s+1—b.

From this, we will deduce that, in the spectral sequence E’ (G/G), there is a

x[ac]*

differential of suitable length
dprp(y (7)) = y*

The result for E then follows from (7-4).

=, [a+1 c+1]
The assumption ¢ < 2b —1 gives an equivalence gl; Rp o] = R[p ] Which respects
the G—action [16, Corollary 5.2.3]. This equivalence gives an isomorphism of the
respective spectral sequences and isomorphisms 7« gly R[p ] = 7« Rpp ] of Mackey
functors. In particular, (1) gives that the classes x* and y* corresponding to x and y
are permanent cycles in the spectral sequence for gl; R (], and we have

G
g Kghe) = Vbl
in wm,el, R[b,c] .
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Now consider the fiber sequence

gly Rip.c] = 8ly Ria,c] =~ 8l Ria,p-1]-
which is of the form needed in Lemma 7.2 with X = gl; R, ) and 1 = b.

/7 7
.. —r/, — 1 .. .
The class z* is in Ei [2 glj,s "*1 The condition on r’ ensures that there is a

/7 7
. — — 1
in Es r'm+s—r'+

corresponding class z[fl p—1] 10 ES 10110

, which must be a permanent cycle.

First we apply Lemma 7.2 to « = Zf; p—1] to conclude that S(ZE; b—1]) = xf;) (- But )
is a G—map of spectra, so it commutes with transfers, giving that

8(trIG{(Z[>;’b_1])) = trIG{x[),()’c] = y[}()’c].

Using Lemma 7.2 again in the other direction, we conclude there is a differential of suit-
able length in the HFPSS for gl; R|, (] taking the class corresponding to trg (z[’; ’ b—1])
to the class corresponding to y*. This differential must be the one we claim. a

Proof of Lemma 7.2 The key point is that the homotopy fixed point spectral sequence,
usually obtained by filtering £ G by skeleta, is isomorphic (at the E,—page and beyond)
to the spectral sequence obtained from the Postnikov tower of X. For a reference,
see [7, Theorem 10.6]. So, in the argument that follows, we are using the model of
the HFPSS obtained from the Postnikov tower of X, ie the Bousfield—Kan spectral
sequence for holimy Fg(EG4, X<4) ~ Xhe.

Suppose indeed that « is a permanent cycle in the HFPSS for X.;; by suitably
suspending if necessary, this means that « defines an equivariant map
a: EGL — X<

The diagram
EG4
o

X — X, Svx.,
makes it clear that §(o) is the obstruction to lifting « to X.

All that is needed is to be more specific about where the obstruction occurs when it
is nonzero. So, suppose « can be lifted to a map EG+ — X<;4,n (Which we also
denote by «), but not further, so that the differential d(«) =: B is the composite

EGi % Xeyom—> ST T Hr i X.
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To show that §() is detected by B, it suffices to check that the diagram

EG, LN sttt . X

X<t T) Y X[t t+m+1)

commutes, where the bottom horizontal map is the boundary associated to a Postnikov
stage of X<;4m+1, and the right-hand vertical map is the connective cover. Now we
will use the Postnikov towers for the sequence

X = X< 555X,
to obtain the desired conclusion.

Since B factors as @: EG4+ — X<+, composed with the top horizontal arrow below,
it suffices to show that the diagram

Xepom —— S U Hg 0 X

X<t Y XXt r4m+1)

commutes. Note that the vertical maps are connective covers, and the horizontal maps
are boundary maps in some Postnikov decompositions. So this diagram commutes
because if we back up these Postnikov decomposition sequences, the diagrams involved
will commute:

T>t+m T<t+m
S mX — 5 Xcpoma1 —— Xt —— St g, X

cl T<tl lc
T>¢ T<t

Xt pbme) —— X<ttm+1 X< 5 2 X[t t4m+1)

For the converse, the same ingredients go in the argument, just in the opposite order. O

7.2 The Picard spectral sequence for £ and C4
In this section, we study the Picard spectral sequence

ES', = H(Cy. 1y pic(E)) = 1, (pic(E))"
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with differentials do,,: E%', — E55""" 7. In this section, we let

EY, = H (Cy.m1Eo) = m,_E"

with dy ,: Eiz_ — Eﬁ_r’ﬂrr_l. From Section 7.1, we have that

H%(C4,Z/2) if 1 =0,
ES =~ H(C4, EY) ift=1,

_Qsz 1
EYS if 1>2.

We prove the following result, which is illustrated in Figure 16:

Proposition 7.4 The order of Pic(E"C4) is at most 64 and that of Pic(E"C2) is at
most 16.

Proof We prove this by giving an upper bound on classes which survive in stem
t —s = 0 in the spectral sequence E Z,tZ' The range of interest is —2 < ¢ —s5 < 1.
The Mackey functors we use here are defined in Tables 2 (page 3450), 3 (page 3453),
5 (page 3471) and 6.

From (1) and (2) of Theorem 7.1, it follows that many differentials are forced by those
in £ :j_ We do not discuss these and focus on those differentials that follow from (3)
and Proposition 7.3.

The first interesting differential is dg 3: E 233 — E 2’53, whose data is represented as

the short exact sequence

0—>A—>§d‘>—’3>§.

To justify this, note that the source of this differential is exactly that for which
Theorem 7.1(3) applies, so that

dy,3(x®) = (dg 3(x) +x7).

2(34 WEL]]X ij ij 272 :
[T oo ol T Te | (7] 1)
72 Wol* 7)2 7]2 0 | Z/2
7| dTer | L7 LT LT

Table 6: Mackey functors in the Picard spectral sequence.
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Figure 16: The homotopy fixed point spectral sequence computing
74 pic(E)". See Tables 3 (page 3453) and 6 for the definitions of the
various Mackey functors. The dotted red ds;—, ds— and d;—differentials
come from Theorem 7.1(3). The dotted red d;; is a consequence of the d7
and Proposition 7.3. Dashed green lines are exotic restrictions and solid
blue line exotic transfers.
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‘We have
E3%(C/Cy) = Klulinm ATy 525 ES4(Cy/Co) = KIulin? o AT,
E3%(Ca/C) = Klpol(m3 S5 4 T35 ES4(Co/Co) = Klnoling =53}
See Section 5.2.1. From Proposition 5.21, we have
dys(f(wnmATH = [P @’ AT dys(f (o)1 E3.0) = oS (11o)ng S5
So, for f(u) € k[u] and g(p0) € k[uol.,
dos (fWnmATH®) = (S (W) + f (WP AT?)°,
do3((8(10)n3 =5 5)%) = ((1tog (1t0) + g(R0) N5 S5 3)%.

The first differential is zero if and only if f(1) € F,. The second is zero if and only if
g(1o) € Fa{io}. In both cases, the kernel is isomorphic to Z /2. It assembles into the

Mackey functor A depicted in Table 6.
The ds—differential of interest is dy 5: E ;55 — E ;();9,
lt—-e0—e@ Hos, 0.

These Mackey functors are only nonzero when evaluated at C4/Cy4. From Proposition
5.21, we get
2, d -
ES(Ca/Co) = kivar AT} 5 B9 (Cy/ Co) = kv w ATY

given by
d+’5(avw2A1_2) = av2w4A1_4
for ¢ € k. So,
dos(@v?ATH®) = (@ + e ATH®.
This is zero if and only if o € 5, and so the kernel is isomorphic to Z/2.
Next, we turn to the d7— and closely related d;;—differentials. We have
ETS(Ca/C) = king =33} B0 EV412(Cy/ Co) = kind*S74),
ET (Cy/Cy) = k{cm® AT o1l EI8I0(C,/Cy) = kv 2w AT}
given by

dyq(an{E30) =ang*sys.  di(ecm’ATY) =av’*w® AT’
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for o e k. (The dy 1; follows from d ;1 (cw) = v2w6A1_4 by linearity with respect
to A1_4 and K = w?A;.) This gives

do,7((@ngT36)%) = (@ +®)e* 239,
whose kernel is isomorphic to Z /2.
Next, we apply Proposition 7.3 to the following setup. There are transfers
trg(angZ;})) = oegw3A1_3
and exotic transfers
tré(ané“ﬁg’%) = avzwsAl_7

for o € k which raise filtration by s = 4. These “combine” E_ 14, 12(C4 /C») and

ES 16((,’4/C4) (for example, in the homotopy groups of 7« Ejjo, 18]) as

l-e—>V—>@—0.

In Proposition 7.3, let s =14, m=-2, p=4,a=4,b=12,c =16, H =,
and G = C4. Let r = 6 and ' = 7. Let x = an042 4 e E14 12(C4/C2)
y=a?wbAT7 € EY0(Cy/Cy) and 2 = an]z3? € E76 (c4/c2) The con-
ditions of Proposnlon 7.3 are then satisfied and it follows that i in the spectral sequence

E Z:F5,17], +(C4/C4) we have a differential
do11((ag @’ AT?)®) = dg 11 () ((OKUZ)EZ,%)Q))
=t (do,7 (01923 3)?))
= trg(((a + (xz)n(l)“EZB)Q)
= ((a+ az)vwaAl_7)®.
From this, we deduce the same differentials in the spectral sequence E ;: Again,
such a differential is zero if and only if o € [F,. So the kernel is isomorphic to Z/2.

Combining the d, 7— and d 1;—differentials gives an exact sequence

dy7/ds 11
=

0->V—>YV V.

Fort>8, E it;j = 0 and all differentials necessary to make this true are in the range
where (1) and (2) of Theorem 7.1 apply. Therefore, E gfoo =0 if 1 = 8. So, the order of
Pic(E) at C4/Cy4 and C4/C, is bounded by the order of the direct sum of the Mackey
functors

_ 27 _
=e, E),=V.
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For C,, this bounds the order of Pic(E”€2) by 16 and for Cy, it bounds the order of
Pic(E"C4) by 64. o

Combining Propositions 7.4 and 4.7 gives Theorem 1.1. The transfers and restrictions

in Pic(E) are computed using the formula

C,
ENGS 5 EASY) = EnS™u W,

where H =e or H = C, and W € RO(H).
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