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Abstract— Dynamic 3D reconstruction of surgical cavities
is essential in a wide range of computer-assisted surgical
intervention applications, including but not limited to surgical
guidance, pre-operative image registration and vision-based
force estimation. According to a survey on vision based 3D
reconstruction for abdominal minimally invasive surgery (MIS)
[1], real-time 3D reconstruction and tissue deformation recovery
remain open challenges to researchers. The main challenges
include specular reflections from the wet tissue surface and
the highly dynamic nature of abdominal surgical scenes. This
work aims to overcome these obstacles by using multiple
viewpoint and independently moving RGB cameras to generate
an accurate measurement of tissue deformation at the volume
of interest (VOI), and proposes a novel efficient camera pairing
algorithm. Experimental results validate the proposed camera
grouping and pair sequencing, and were evaluated with the
Raven-II [2] surgical robot system for tool navigation, the
Medtronic Stealth Station s7 surgical navigation system for real-
time camera pose monitoring, and the Space Spider white light
scanner to derive the ground truth 3D model.

I. INTRODUCTION

Minimally invasive surgery (MIS) allows for smaller in-
cisions, quicker patient recovery, lower risk of infection
and less pain [3]. In recent years, medical robots have
been incorporated into a variety of surgical procedures to
assist surgeons. The surgeons can leverage the high levels
of accuracy and dexterity of these robots via teleoperation;
instead of manually manipulating surgical tools, surgeons
remotely control robot mounted tools through a software
layer. While machine robustness is gained, a certain level
of human perception and awareness is lost, namely contact
and interaction force sensations. This can cause unintentional
tissue damage. Because of strict sanitation requirements,
electronic tool-mounted sensors are prohibited. An alterna-
tive promising approach is vision-based force estimation,
whereby interaction force is inferred from visual tissue de-
formation analysis and an appropriate tissue dynamic model.

For dense 3D reconstruction from RGB cameras, multiple
viewpoints are often needed. This can be accomplished
via camera motion of a single camera, yet in MIS this
is disorienting and distracting. Alternatively, dense surgical
scene reconstruction can be pursued from multiple cameras
from different viewpoints. Previous work has demonstrated
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that multiple viewpoint autostereoscopic display (AD) tech-
nology maintains stable surgeon perception of the scene
while allowing for camera repositioning [4]. This approach
allows all cameras to remain relatively motionless while
collectively streaming multiple view points. Multiple cam-
eras are particularly amenable to dynamic scenes, not unlike
the human body, e.g. caused by respiration and heart beat.
This method does not necessitate additional incision ports as
cameras can be attached to the interior of the abdomen and
provide multiple views once insufflated.

A. Contribution

The authors’ previous publications [5] [6] focus on several
components towards vision based force estimation in MIS.
This paper extends that body of work to handling multiple
camera image viewpoints, as shown in Fig. 1, and proposes
novel pairwise sequencing for real-time 3D reconstruction of
the dynamic surgical cavity.

Fig. 1: Illustration of multiple independently moving cameras from different
view points looking at the surgical cavity.

Particularly, this paper proposes a graph-based framework for
3D information processing from multiple views in a dynamic
environment such that:

• 3D reconstruction is performed efficiently by systemat-
ically choosing ideal image pairs.

• Higher robustness is achieved with regard to triangula-
tion error for dynamic surfaces from images captured
asynchronously.

B. Related Work

Single moving camera surgical cavity reconstruction ap-
proaches have utilized either monocular [7] [8] [9] or stereo
[10] [11] [12] vision sensors. With monocular cameras, the
extracted 3D shape is represented by a linear combination of
predefined basis shapes [13]. Spatial and temporal smooth-
ness constraints were imposed in [14]. [15] [16], followed by
relaxing of orthographic assumptions of the camera model.
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With stereo vision, [17] extended the factorization approach
from [13], and [18] distinguished rigid and moving points
based on a global Euclidean transformation check.

Multiple cameras allow for tracking of dynamic tissue
shape changes with minimal camera repositioning. Such an
approach for MIS was developed for which the cameras
were mounted to a single insertable unit through a trocar to
avoid multiple additional incision entries [19]. For this, the
relative positions of the cameras were fixed. However, recent
technical advances in magnetic cameras [20] [21], which
can be inserted into the abdominal cavity and controlled
by external magnets, can help overcome this limitation. In
fact, high precision wireless control of magnetic cameras
was achieved for single-incision laparoscopic surgery (SILS)
[22] [23]. This technology can allow multiple independently
moving cameras that simultaneously record the surgical
cavity from multiple viewpoints.

COSLAM achieves visual reconstruction using multiple
independent cameras in dynamic environments [24]. How-
ever, COSLAM applications are different from MIS settings
in several key aspects:

• Camera pose is unknown in COSLAM. However, cam-
era pose can potentially serve as a prior and lead to
better reconstruction accuracy.

• COSLAM has been implemented on room-scale envi-
ronments. Surgical cavities are much smaller.

• Camera motion in COSLAM algorithms do not deviate
much from straight-line trajectories. Cameras presented
here roughly orbit around the VOI within the surgical
cavity.

II. METHODS AND EXPERIMENTS

As with in [24], feature matching is conducted across both
time and space. While there are many image pairs that can
be selected, not all camera pair selections will produce good
matching results. This work proposes a carefully designed
strategy for image pair selection to increase time efficiency
and reduce outliers. Camera matching across time, or in-
tracamera matching, matches feature points among images
from the same camera at different time instances. Camera
matching across space, intercamera matching, matches fea-
ture points from concurrent images from different cameras.

Fig. 2: Camera grouping and (intra/inter)camera matching.

In this method, cameras are grouped together if fields of view
(FOVs) overlap by a predefined threshold. Cameras can exist
in multiple groups, and features are matched only between
cameras within the same camera group. This is conveyed in
Fig. 2. This example features five cameras classified into

two camera groups. Each cameras undergoes intracamera
matching, but only cameras within the same group undergo
itercamera matching.

A. Overall Workflow
Since acquired camera images are assumed 2D, 3D recon-

struction requires at least two images for comparison and
triangulation. These two images can be selected either from
the same camera at subsequent time instances or concurrently
from two different cameras. In this work, a basic assumption
that some 3D points may be generated from an exhaustive
search of all possible image pairs.

The static environment case is straightforward. With ideal
camera calibrations, computational cost is not a constraint,
and with ideal camera triangulation error in reconstruction
arises only from feature matching. Finally, assuming a Gaus-
sian model for outlier noises, an average 3D pointcloud of
the scene can be generated. However, practical challenges
for MIS exist. Time efficiency is a requirement for online
applications, so determining the minimum number of image
pairs to derive a 3D model is critical. Moreover, in dynamic
environments, image pairs from different time instances may
be erroneous. The reliability of the generated 3D information
needs to be prioritized in this online, dynamic scenario. Fig.
3 illustrates the four sub-tasks within the overall proposed
approach, detailed in the following subsections.

VOI coverage check camera grouping

VOIscore

big enough yes

feature matching pair generation

compute VOIscore

cami

camj

scheme1:  CGscore1

pose difference check

scheme2:  CGscore2

view overlap check

CGscore

small

yes no

same
camera
group

different
camera
group

enough

MST generation

Prim's algorithm

Kruskal’s algorithm

pair sequencing

point cloud merging
sequence across 
time and space.

Fig. 3: The workflow for camera grouping and pair sequencing in multiple
camera 3D reconstruction of dynamic surgical cavities.

B. VOI Coverage Check
Only cameras with views of the VOI should be considered

for grouping and subsequent reconstruction. Some basic as-
sumptions about the cameras allow for a geometric approach
to the problem.

Suppose each camera has a rectilinear lens with per-
spective center at the center of its entrance pupil [25]. A
pinhole model then applies, as illustrated in Fig. 4. The
camera angle of view (AOV), used interchangeably with FOV
[26], describes the angular extent of a given scene that is
imaged. The directional components of horizontal, vertical,
and diagonal AOV satisfy the following relation:

tan
(αi
2

)
=

i

2 · S2
(1)
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where i can take on the designations of h, v, d, the horizontal,
vertical or diagonal specification of the image. S2 is the
distance from camera center to image plane.

Fig. 4: The horizontal, vertical and diagonal AOVs shown in red, green and
blue respectively. S1 is the object distance from camera, S2 the distance
from camera lens to image plane and F is the camera focus. S2 = F is
required for sharp projection of Pi.

The following are necessary and sufficient conditions for
a 3D point, p, to appear within the AOV. The 3D point:

• remains within the horizontal AOV (ωh < αh).
• remains within the vertical AOV (ωv < αv).
• is the closest point to the camera along the ray cast from

camera center to the point.
With these assumptions, a VOI coverage check for each

camera ensures that all grouped cameras sufficiently view
the VOI. Cameras that fail the check will not be taken into
consideration until relocated. First the predefined VOI is
discretized into a set of 3D points. The 3D points can be
distributed uniformly in space, or in a weighted distribution
to emphasize particular regions of the VOI.

Each camera is then scored for VOI coverage, denoted
VOIscore. First, let~i,~j,~k represent unit vectors in the camera
cartesian frame. Let P be the set of all sampled points of
the VOI. Iterating through each point Pq ∈ P , compute the
normalized projections onto i, j

sin(ωv) =
| ~Pq ·~j|
| ~Pq|

=
|Pqy|
| ~Pq|

(2)

sin(ωh) =
| ~Pq ·~i|
| ~Pq|

=
|Pqx|
| ~Pq|

(3)

If the point is within the AOV, coverage is increased. In other
words, if

(
sin(ωh) < sin

(
αh

2

))
and

(
sin(ωv) < sin

(
αv

2

))
,

then increment

VOIscore = VOIscore +
1

q + 1
(1− VOIscore)

where Pq = (Pqx, Pqy, Pqz) is the qth interated point in
P , represented in camera frame C with positive depth Pqz .
Further, ωh and ωv are the horizontal and vertical angles
between ~k and the ray cast from camera center to Pq .
Each camera’s VOIscore represents the VOI coverage and is
valued between 0 and 1, 1 representing full coverage. Fig. 5
depicts several VOIscore values for different configurations,
i.e. various geometries and sample point distributions for
the VOI. A simple predetermined VOIscore threshold informs

a binary classification distinguishing eligible cameras with
enough visibility of VOI from cameras that do not view
critical features of interest.

Fig. 5: The VOIscore values for three different VOI sample point distri-
butions. Sample points from left to right: (1) uniformly distributed in a
cube (2) uniformly distributed in the spherical coordinate system (azimuth,
elevation, radii), points appear denser near the center in Cartesian space;
(3) distributed along a cone shape similar to the tool range of motion under
the Remote Center of Motion (RCM) constraint.

As an example, consider a set of ten cameras within a
surgical cavity. These cameras provide various viewpoints
within the cavity, and their camera poses are known apriori.
This scenario is depicted below in Fig. 6.

Fig. 6: This is a set of 10 images from different camera viewpoints and the
visualization of the camera poses.

The VOIscore can then be calculated for each camera given a
known workspace geometry and VOI sampling distribution.
For this, a cubic workspace and uniform sampling is chosen,
and VOIscore values are determined as shown in Fig. 7.

C. Camera Grouping

Of the cameras with sufficient VOIscore, camera group-
ings for optimal feature matching must be formed. This
is achieved through a graph-based approach and another
metric, CGscore. A fully connected graph is constructed with
each vertex a camera and each edge weighted by a CGscore.
Edges with weights greater than a CGscore threshold are
broken. Subsequently, initial non-overlapping camera groups
are formed as the remaining isolated sub-graphs. These are
divided into mutually overlapping camera groups by dividing
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Fig. 7: VOIscore values for all 10 cameras from Fig. 6. VOI defined as a
cubic workspace spanning X,Y = [−150, 150] and Z = [0, 150] and with
uniform sampling.

into the largest complete sub-graphs. A critical component
of this procedure is the calculation of CGscore. Two proposed
methods for described, based on (1) pose difference and (2)
view overlap.

1) CGscore1 – Pose Difference: This score simply com-
pares the relative configuration between two cameras. Let ~tij
denote the translation between camera i coordinate frame and
camera j. Also, suppose Rij is the relative rotation between
cameras i and j. Then define

CGscore1(i, j) =
∣∣∣∣~tij∣∣∣∣2 + ∣∣∣∣cos−1

(
tr(Rij)− 1

2

)∣∣∣∣
which ranges from 0 to ∞; smaller values of CGscore1
indicate more similar camera viewpoints. Camera groups
using CGscore1 for the scenario depicted in Fig. 6 are shown
in Fig. 8

Fig. 8: (a) CGscore1 of each camera pair (b) and (c) are the non-overlapping
and overlapping camera grouping result.

2) CGscore2 – View Overlap: This grouping scheme in-
herits the previously computed VOIscore value utilizes the
Sørensen-Dice index [27]. Again, let P denote the set of
sampled VOI points. For arbitrary camera i, let Cami be the
the subset of P viewable by camera i, as determined by (2)
and (3). The quantifiable metric CGscore2 is then defined as:

CGscore2(i, j) = −
2 |Cami ∩ Camj |
|Cami|+ |Camj |

+ 1

where |.| denotes cardinality. CGscore2 ranges from 0 to 1;
smaller values of CGscore2 indicate more similar camera
viewpoints. Camera groups using CGscore2 for the scenario
depicted in Fig. 6 are derived and subsequently depicted in
Fig. 9

Fig. 9: (a) CGscore2 of each camera pair (b) and (c) are the non-overlapping
and overlapping camera grouping result.

3) Threshold Derivation: The camera grouping threshold
is determined by Algorithm 1 for graph G [28]:

Algorithm 1 ThreshCG(G)

1: set s as threhold increment step size
2: set rbest = ∞
3: set emin = least edge weight in G
4: set thc = greatest edge weight in G
5: set thbest = thc
6: while thc > emin do
7: remove edges with weight ≥ thc
8: calculate weight ratio for remaining graph, r
9: if (r < rbest) then

10: rbest = r
11: thbest = thc
12: end if
13: thc = thbest − s
14: end while
15: return thbest

where r calculated in step 8 is the ratio between the mean
intra-cluster edge weight and mean inter-cluster edge weight.

In Fig. 8-(b), four camera groups are generated with a
threshold of 280, separating camera pairs with large CGscore1.
In this case, each camera belongs to exactly one camera
group. Fig. 8-(c) illustrates overlapping camera groups where
a camera can exist in multiple camera groups simultaneously,
which is achieved by mandating a complete graph. A thresh-
old of 0.3 for CGscore2 results in the camera groups depicted
in Fig. 9. The viewpoint overlaps for the scenario depicted
in Fig. 6 using the two proposed CGscore algorithms can be
visualized graphically, as shown in Fig. 10.

Fig. 10: View overlap using procedures detailed in II-C.1 and II-C.2. On
the left is −CGscore1(i, j) and on the right is the −CGscore2(i, j) scores.
The x and y axes are camera indices. Warmer colors indicate more view
overlap.
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D. Feature Matching Pair Generation

After camera groups are formed, optimal camera pairs for
triangulation with groups must be determined; using all pairs
can be redundant. To facilitate this, a minimum spanning
tree (MST) approach is utilized. Two popular methods exist
to find the MST: Kruskal’s algorithm and Prim’s algorithm
[29]. The MST results are distinguished by thicker edges in
Fig. II-C.1 and Fig. II-C.2. Table I shows the average run
time for both algorithms using the various graphs and CGscore
values.

Each MST algorithm will be briefly explained given N ∈
N cameras, and two undirected graphs G1(V,E1), G2(V,E2)
where vertices V is the set of N cameras and the edges
E1, E2 are defined by the two camera group scores, CGscore1
and CGscore2. Specifically, E1 = {CGscore1(i, j)} and E2 =
{CGscore2(i, j)} for i, j ∈ {1, 2, ..., N}. Section II-C detailed
decomposing G1 and G2 into sub-graphs via heuristically
tuned CGscore thresholds. The following subsections describe
MST derivation for sub-graph g(v, e) using Kruskal’s and
Prim’s algorithms.

1) MST via Kruskal’s: In Kruskal’s algorithm, the MST
structure begins by selecting the edge with minimum weight,
as determined by CGscore. The remaining edges are added
one-by-one to the MST structure based on edge weight, so
long as their addition does not create a closed loop in the
MST. Once all nodes are included, the MST is complete.

2) MST via Prim’s: In Prim’s algorithm, the MST struc-
ture begins by arbitrarily selecting a vertex of the sub-graph,
and is removed from the set of remaining vertices. From the
remaining vertices, the vertex connected to any element in
the MST with least edge weight, as determined by CGscore is
added to the MST and removed from the pool of remaining
vertices. This process is continued until all vertices are added
to the MST, at which point the MST is complete.

Graph Runtime [ms]

Figure Overlap CGscore Kruskal’s Prim’s

Fig. 8-(a) - CGscore1 4.7123 4.0939
Fig. 8-(b) no CGscore1 5.0104 5.4402
Fig. 8-(c) yes CGscore1 5.3571 5.9124
Fig. 9-(a) - CGscore2 3.9528 3.2198
Fig. 9-(b) no CGscore2 3.8232 3.4516
Fig. 9-(c) yes CGscore2 4.0016 4.6392

TABLE I: Mean run time for camera feature matching pair generation using
different MST algorithms and weighting functions over ten trials. Blue
denotes the better performing MST algorithm for the given test condition.
Note: ZNCC and ORB are adopted respectively for feature matching and
feature points extraction.

E. Pair Sequencing in Time and Space

The 3D model of the surgical cavity is obtained by
merging point clouds derived from triangulating matched
feature points from every generated image pairs, including
both intra- and intercamera pairs. The intercamera pairs
are pairs of connected vertices in the MST. However, the
accuracy of the final 3D model is affected by the merging
sequence. Severla considerations are made in determining

both intra- and intercamera pair sequencing. The methods
used in this work are described in the following subsections.

1) Intercamera Pair Matching:
a) Sub-Graph Point Cloud Generation: At this point

each camera group is represented by the MST of some sub-
graph g. Select arbitrarily s, a leaf vertex in g. An initial point
cloud is generated from s and an adjacent vertex. Subsequent
point clouds are merged by traversing the remainder of
the MST via a depth first search approach. Each merge
step contributes to a cumulative point cloud, PCgi where i
denotes the merge iteration. A final point cloud is generated
for sub-graph g, denoted PCg . To ensure tolerance of map
point position uncertainties, a Gaussian feature detection
error N(0, σ2I) is imposed for every merged point.

b) Reprojection Error Check: Prior to each merge step
i in sub-graph point cloud generation, PCgi−1 is reprojected
to each image frame in g. Only the points whose maximum
reprojection error REPerr, which is simply the Mahalanobis
distance between reprojected point and nearest feature point
within each camera frame [30].

2) Intracamera Pair Matching: Intracamera matching
classifies dynamic vs static areas of PCg . For each camera
vertex within sub-graph g, REPerr of points in PCg is calcu-
lated and compared between the current and previous camera
frame (in this work, a framerate of 60 Hz is utilized). If the
difference in reprojection error is greater than a predefined
threshold, the point is labeled as non-static.

3) Fused Camera Group Result: The generated point
clouds from each camera group are combined to form an
aggregate surgical cavity 3D model. Because camera groups
were formed based on workspace visibility, limited overlap
will occur between camera group point clouds. Where over-
lap does occur, uncertainty correction as described for sub-
graph point cloud generation is employed.

F. Experimental Setup

Data were collected from ten tracked, arbitrarily moving
cameras viewing a phantom surgical scene for three minutes.
The frame rate for all cameras was 60 Hz. A total of six
test cases of interest were generated to evaluate different
grouping parameters. First, selection of camera grouping
method could be classified into four grouping methods:
exhaustive pair grouping, nearest pair grouping, CGscore1,
or CGscore2. The latter two methods are divided further into
group overlap or no group overlap, as determined via CGscore
threshold described in Section II-C – if cameras are allowed
to exist in multiple camera groups, overlap is present.

Each experimental condition was evaluated against three
metrics of interest, which reflect the density of reconstruc-
tion, reconstruction error, and algorithm efficiency respec-
tively:

1) total number of points generated in the 3D surface
reconstruction

2) RMSE from ground truth
3) number of camera pairs evaluated
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Fig. 11: 3D reconstruction results using different camera groupings schemes.

III. RESULTS

Fig. 11 depicts the final surgical cavity 3D reconstruction
results from each test condition, and the evaluated metrics
are shown in Table II.

Test Pairing Overlap N RMSE [mm] Pairs

A every pair - 8988 4.2773 45
B nearest pair - 1382 2.4424 9
C CGscore1

N 6457 1.7359 6
D Y 7349 1.6867 6
E CGscore2

N 7056 1.5529 8
F Y 8678 1.2887 11

TABLE II: Experimental results showing for each test condition: N -
number of points generated, RMSE - error from ground truth point cloud,
Pairs - number of camera pairs evaluated. The time efficiency is roughly
proportional to the number of triangulated camera pairs. Note: there are
N= 16870 points in the ground truth point cloud.

Consider the following observations:

• Test A: Exhaustive camera pairing results in a dense,
noisy point cloud. Since no grouping was performed,
reprojection error conditioning as described in Section
II-E.1.b is unfeasible, resulting in large N.

• Test B: Cameras are paired with nearest neighbor,
resulting in one single camera group. The resultant point
cloud is of higher precision but sparser.

• Test C-F: The proposed camera grouping methods
resulted in denser, less noisy and more efficient point
clouds than Test A. Tests D and F allow camera group
overlap which leads to higher point cloud density and
accuracy, yet may cost computational time.

• Test C,D: CGscore1 is faster to compute and is robust to
workspace size. In contrast, CGscore2 exhibits runtime
proportional to workspace size and sample density (as
shown in Fig, 5), and is less suitable in larger of time-
varying/dynamic workspaces. In this particular exper-
iment, the number of camera pairs does not change
between Test C and Test D. Difference in camera
groupings result in variation in N and RMSE.

• Test E,F: View overlap results in more matched feature
points, and thus CGscore2 fits the problem objective well.
In this condition, camera group overlap has a greater
effect on all three metrics as compared with CGscore1.

IV. CONCLUSION

Dynamic 3D reconstruction of surgical cavities is crucial
for MIS. Multicamera approaches are promising. Toward
that end, this work presented two novel graph-based cam-
era grouping schemes - overlapping and non-overlapping,
where edge weights (and thus groupings) are determined by
CGscore1 or CGscore2. Camera pairings are determined via an
MST approach, while fusion and classification of dynamic
areas was achieved via pair sequencing accross time and
space. The results from the experiment show improvements
in point cloud accuracy and computational efficiency.

Future work aims to extend and enhance principles de-
veloped here towards real surgical scenarios, as opposed to
experimental phantoms. For one extension, in the application
of a MIS, the VOI can be viewed as a cone extending from
the RCM of the surgical robot. By relaxing the camera FOV
to a cone geometry, the view overlap between two cameras in
the VOI reduces to a volume that is the intersection of three
overlapping cones. This geometric problem is addressed in
[31], and could imply that CGscore2 computation can be
invariant of VOI size. This is a potential future direction.

Furthermore, since surgical cavities are not always con-
cave, occlusions can prove to be an issue. In particular,
good feature points may not be guaranteed despite promising
CGscore2 values; it is not robust to severe occlusion. Thus,
the curvature of the environment should be mathematically
incorporated in the CGscore evaluation function once an initial
3D topology of the scene is generated from the early stages
of the image sequence.

Finally, vision-based force estimation in MIS requires an
analysis of tissue deformation. Thus, while the classification
of dynamic and static regions in the surgical cavity is a
step in the right direction, dynamic points should be further
identified as deforming or merely translating surfaces. One
preliminary approach could involve thresholding the motion
derivative of a dynamic point in its neighborhood. Stark
variation of motion derivatives across a continuous surface
region indicate deformation over translation.
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