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Abstract— Robot-assisted minimally invasive surgery com-
bines the skills and techniques of highly-trained surgeons
with the robustness and precision of machines. Several advan-
tages include precision beyond human dexterity alone, greater
kinematic degrees of freedom at the surgical tool tip, and
possibilities in remote surgical practices through teleoperation.
Nevertheless, obtaining accurate force feedback during surgical
operations remains a challenging hurdle. Though direct force
sensing using tool tip mounted sensors is theoretically possi-
ble, it is not amenable to required sterilization procedures.
Vision-based force estimation according to real-time analysis
of tissue deformation serves as a promising alternative. In this
application, along with numerous related research in robot-
assisted minimally invasive surgery, segmentation of surgical
instruments in endoscopic images is a prerequisite. Thus, a
surgical tool segmentation algorithm robust to partial occlusion
is proposed using DFT shape matching of robot kinematics
shape prior (u) fused with log likelihood mask (Q) in the
Opponent color space to generate final mask (U). Implemented
on the Raven II surgical robot system, a real-time performance
robust to tool tip orientation and up to 6 fps without GPU
acceleration is achieved.

I. INTRODUCTION

Vision-based force estimation for robot manipulated sur-
gical procedures relies on tissue indentation measurements
associated with surgical contacts. Endoscopic images can
provide information from which indentation can be inferred,
and applied force can subsequently be calculated and applied
for realistic force feedback. A natural initial step towards this
end involves tool segmentation. There are existing methods
regarding marker-less surgical tool-tip segmentation with
robot kinematics prior [1] [2] [3] . Yet, based on the authors’
knowledge, this paper is the first to simultaneously offer:
o low computational complexity at 6Hz without use of
GPU acceleration.

« segmentation performance for real-time implementation
with average Sgrensen-Dice index greater than 0.73.

o surgical instrument tracking algorithm amenable to
Raven II tools.

« robustness to partial occlusion by fusing robot kinemat-

ics and color filtering.

A. Proposed System Workflow

The proposed entire visual force estimation method can be
divided into four stages, as shown in Fig.2. Stage 1 focuses
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on classifying image pixels as either tool or tissue pixels.
The tissue pixels neighboring the surgical tool tip define the
region of interest (ROI). Stage 2 deals with generating tissue
depth information of the ROI. Any resultant deformation can
then be inferred, and a deformation map centered around
the surgical tool can be generated. In stage 3, deformation
information can be used in tandem with tissue dynamics
models to estimate applied force [4]. Finally, stage 4 will
implement this real-time force estimation via haptic feedback
in a bilateral teleoperation scheme. The work presented here
focuses on stage 1, real-time surgical tool segmentation.
Subsequent stages rely on this efficient extraction of tissue
data immediately surrounding the tool tip. An overview of
this stage is shown below in Fig.1.
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Fig. 1: Surgical tool segmentation overview.

The technical implementation of stage 1 are described in
more detail in sections I-D and II.

B. Background

Surgical instrument tracking and isolation is needed for
robot-assisted minimally invasive surgery research that fo-
cuses on visual deformation analysis at the tool-tissue inter-
face. A mere bounding box around the tissue of interest is
insufficient, since tool-pixels will interfere with deformation
calculations. To analyze only non-tool pixels, online classi-
fication and segmentation of tool pixels within this ROI in
real-time is critical.

Online surgical tool segmentation approaches may face
challenges including motion blur, partial occlusion, specular
reflections on wet tissue surfaces [5], as well as lighting
changes. Furthermore, metallic parts of surgical tools reflect
tissue colors, which increases the difficulty of color filtering.
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Fig. 2: Illustration of the four stages or subtasks involved in the proposed vision-based force estimation method. The work presented here completes stage

1 and parts of stage 2.

C. Related Work

Existing approaches to address the aforementioned chal-
lenges can be broadly classified into four methods. Accord-
ing to Bouget et al., the first distinction separates marker and
marker-less [6]. Methods that use markers can be further
distinguished by use of either a visual marker or a non-
visual marker. Similarly, marker-less techniques can opti-
mally employ tracking algorithms. Fig.3 illustrates the coarse
spectrum of these techniques.

with tracking algorithms: including
Bayesian filters (Kalman filter), Partical
filtering etc.

markerless

image-based surgical
tool detection

without tracking algorithms: no cue
from subsequent image frames, the
algorithm works independently on
surigcal tool detection invariant of time

(Visual markers: including barcode, AR )
tag, topology tag, color and shape
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non-visual markers: including RFID
sensors, optical, acoustic and
electromagnetic trackers

Fig. 3: Different approaches for image-based surgical instrument detection.

Methods using visual markers are very effective. However,
the cylindrical shape of surgical tool shafts make distortion
inevitable for most 2D markers that conform to the tool
surface. Topology markers, however, stand out in instru-
ment detection due to their robustness to tag distortion
[7]. Nonetheless, visual markers are subject to occlusion,
which are commonplace during surgical operations when
the tool is stained with blood. Non-visual markers do not
have this problem, and include RFID sensors [8], acoustic
[9] or electromagnetic trackers [10]. Concerns with non-
visual markers include price, size, and minimizing external
electronics placed within patients’ bodies. Because of these
issues, these sensors or trackers can be undesirable.

Despite the effectiveness of markers, they are not
amenable to direct transition to current hospital procedures
and clinical setup. Instead, a marker-less surgical instrument
segmentation technique based on robotic kinematics and
color filtering is proposed in this work.

D. Kinematics Prior Segmentation

In this work, the entire tool configuration estimate (both
3D position of the tool tip and all joint angles) was available
from joint encoders and kinematic calculations on the Raven
IT Surgical Robot System [11]. Given the camera extrinsic
parameters with respect to the Raven II base frame, the
robot kinematics provided a shape prior (u). This shape prior
provided an estimate of the expected surgical instrument
location and shape within the camera image frame. This was
achieved by projecting the 3D surgical tool links onto the
2D image plane. The predicted shape prior was subsequently
modified to match a color filtering mask () in the frequency
domain in two steps - modifying translation and modifying
rotation and scale. The latter requires transformation to log-
polar coordinates. Finally, with this modified shape prior
mask, U, a color mask was applied for pixel-wise classi-
fication within the surgical tool region. The work done here
accomplishes all portions of tasks depicted in Fig.1. Results
are promising towards accurate real-time tool segmentation.

II. METHODS

A. Camera Pose Estimation

In order to use robot kinematics to ascertain the surgical
instrument’s location within the camera image plane, defin-
ing the camera frame with respect to the robot base frame
is required. In what is often referred to as the perspective-n-
point (PNP) problem, the aim is to estimate the pose of an
object given n 3D points on the object and their correspond-
ing 2D projections onto the image plane. This process also
requires the camera intrinsic parameters. Instead, we require
the converse, that is to determine camera pose with respect
to the object.

To accomplish this task, the 2D (x,y) projections
were  generated from  the  OpenCV  function
cvFindChessboardCorners [12] to detect
checkerboard corners in the image frame, as illustrated
in Fig.4. The 3D corner locations of the 48 checkerboard
corners were obtained by manually measuring the corner
positions with respect to the Raven II base frame. Combined
with the camera intrinsic parameters, determining the
transformation matrix between robot and camera frame is
trivial. Fig.4 illustrates the two coordinate frames.
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Fig. 4: The 2D and 3D coordinate input of checkerboard corners to the
PNP algorithm. From this, the transformation from Raven II base frame to
camera frame is obtained.

B. Kinematics Shape Prior Mask

Given robot joint states, forward kinematics, and camera
pose, a raw projection of joint locations onto the camera
image plane is straightforward. Then, from the physical
thickness of each robot link, the perceived thickness on either
end of a robot link in the image is inferred respectively.
Suppose an object point with known width W is distance D
from camera with focal length F'. Then the apparent width
in camera pixels, P, is defined as

P=FW/p (1)

The overall shape of the projected robot tool can be
obtained with simple trigonometry. The union of these pixels
forms the initial shape prior mask, w. This is more computa-
tionally efficient than projecting all points on the tool surface.

C. Log-likelihood Color Mask

Once the robot kinematics shape prior u is generated,
color filtering across the entire image further refines the
prior estimate. The color filtering scheme adapted for this
work was based upon work by Van De Sande et al., which
claimed that hue and saturation in the HSV colorspace
and Opponent; and Opponenty (denoted O; and O) are
colorspace components providing the most discriminative
power to separate surgical tool pixels from background pixels
[13], where:

0O, = G—-R
O, = B-Y=B-(G+R)

The log-likelihood mask (@) is then defined as
Q = U)lH + U)QS + U}301 + w402

where H and S are the hue and saturation components
respectively and the weights w, ws, ws, wys were heuristi-
cally tuned. Because HSV is a non-Euclidean colorspace, the
coneHSV colorspace [14] was adopted for use during color
comparisons, where (H,S,V') values are transformed into
(V,Scos(H),Ssin (H)). The used colorspace components
are shown in Fig.5. An ideal post filtering image will
appear bright for the tissue pixels and significantly darker
for surgical tool pixels.
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Fig. 5: Colorspace components used to determine color mask. The likelihood
map @ is defined by a weighted sum of these components: hue, saturation,
O1 and Os.

D. Frequency Domain Shape Matching

The two masks, u and @, provide two estimates of
the surgical tool shape within the image frame. The robot
kinematics shape prior mask, u, was derived by projecting
surgical tool configurations and thickness onto the image
plane. Meanwhile, the log-likelihood mask, (), was generated
via a linear combination of four colorspace components.

In mask u, pixels corresponding to surgical tools are white
(255 in 8-bit gray), while the remaining pixels are black (0 in
8-bit gray). The converse is true for ), that is the determined
tool pixels approach O (black), and the rest of the image
approaches 255 (white). Therefore, ideally the black pixels
in u should correspond to white pixels in ) and vice versa.
Multiplying ideal masks pixel-wise should result in all zeros.

However, © may not align well with ¢, as shown by com-
paring Fig.6-b and Fig.6-c This can be due to inaccuracies
in camera extrinsic parameters, robot kinematics and joint
sensors, or timing mismatches between robot pose and image
frame. An objective function defined as the sum of pixel-wise
multiplication between u and () can be interpreted as the
energy, F/, to be minimized for optimal alignment. Suppose
there are Ng rows and N columns in both images A, B.
Then F is defined as

Ngr Nc
E(A,B):ZZA(I,y)B(Z‘,y) (2)
y=1z=1
The mask matching procedure aims to modify shape prior
mask wu to best match () and thus minimize F, and is
achieved in two optimization steps:

¢ Translation — finding translated version of u to match

Q, generating translated shape prior mask U.

« Rotation and scale — finding the optimal rotation and

scaling of U to match (), generating mask U.

a) Translation: Suppose a translational error exists
between shape prior v and actual surgical tool image lo-
cation. To counteract this error, a translational offset which
minimizes E is sought. Let { = (t,t,), and then define
uy as the resultant mask of wu translated by t. The optimal
translated mask is denoted U

U = argmin F(ug, Q) 3)

The solution to this optimization is achieved efficiently
in the frequency domain using duality between spatial and
frequency domains [15], namely

u®Q=F"(FoF;) )
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where ® denotes spatial convolution and F the Discrete
Fourier Transform (DFT). Consider pixel (¢;,t,) of the
spatial convolution (origin is center of image):

Ngr Nc

y=1z=1
which is precisely E(up, Q). Thus the optimal offset is
determined by the minimum pixel of u® Q = F~}(FgF}).
The time complexity reduces from O (N 4) to O (N Zlog N )
using the DFT. Figure 6 outlines the procedure.

=B

(b)

min value

(d)

Fig. 6: Translation matching. (a) raw image frame (b) initial shape prior
mask, u (c) color filtering mask, @ (d) two masks convolved, minimum
value gives optimal translational offset to generate mask U.

Consider Fig.7f, where @, u, U are respectively marked with
red, blue, and green. The green is a translated version of blue
that better matches red.

b) Rotation and Scale: The two masks U and ) may
also misalign in rotation and scale. To account for this, the
masks U and ) were first transformed to log-polar coor-
dinates and zero-padded, forming U’ and @’. A Cartesian
coordinate (x,y) is represented in log-polar coordinates as

(a,b) where
a = logy/x2+ 42

atan2(y, x)

S8
|

a and b correspond to scale and rotation respectively. Finding
the minimum pixel of U’ ® @’ thus determined the optimal
scale and rotation of U to best match (. The scaled and
rotated version of U is denoted U.

Consider Fig.71, where @), U, U are respectively marked
with red, blue, and green. The green is a scaled and rotated
version of blue that better matches red. Theoretically, due
to nonlinear coupling of the two steps, the global optimum
is achieved by interchangeably applying translation and
rotation/scale adjustments until convergence, but only one
iteration is applied in this work, under the assumption that
the kinematics data is of high accuracy, to improve efficiency.

III. EXPERIMENTAL DESIGN

Fig.8 shows the experimental system setup using the
Raven II platform. A 40mm baseline stereo camera with
640x480 pixel resolution was fixed to the Raven II base
frame to acquire image data. Realistic tissue images were
placed in the background.

raven tool:
surgical instrument
used in this work.

background tissue:
a cardboard printed with
endoscopic images.

stereo camera

Fig. 8: Experimental setup, includes Raven II and stereo camera hardware.

A. Robot Kinematics Shape Prior

The joint locations of the Raven II platform were obtained
from encoder readings and forward kinematics. The positions
can be projected onto the camera image plane and shape
can be determined via Eq.1. With raw position data, a static
positioning error was observed. This was compensated with
a static offset added to the initial robot pose estimate. This
process is illustrated in Fig.9.

‘ﬂq |

I
(e) M
Fig. 7: DFT shape matching, (a)-(f) illustrate translation matching to find
U, (g)-(1) rotation and scale matching to find U. (a) color filter mask @
(b) Fourier transform F¢ (c) shape prior mask u (d) Fourier transform I,
(e) convolution u ® @ (f) red - @, blue - u, green - U (g) log-polar color
mask Q' (h) Fourier transform F (i) log-polar shape mask U’ (j) Fourier
transform Fy;/ (k) convolution U’ ® Q' (1) red - Q, blue - U, green - U.

Fig. 9: The left shows raw projection of robot joints and initial shape prior
of two poses without static offset. The right shows with static offset.

B. Frequency Domain Shape Matching

The main source of misalignment between color mask
and shape prior mask arises from latency between image
stream and robot kinematic information. That is, the robot
pose is sampled slightly prior to the image frame with some
variance. The methods described in Section II-D were used
to determine optimal mask shift, scaling and rotation. In
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practice, to avoid mismatching different tools in view, a 2D
Gaussian distributed penalty map centered at the origin is
fused with v ® @ to bias the optimal translational solution
towards smaller magnitude, under the assumption that initial
shape prior u is close to true tool projection,.

C. Color Mask Post Processing

A final color mask was used to account for the effects of
partial occlusion from real tissue and trivial ambiguity near
segmentation boundaries. As illustrated in Fig.10, there are
four steps to turn the nicely aligned shape prior U into the
actual binary segmentation result.

(a) (b) ()

Fig. 10: Final color mask procedure. (a) dilated and blurred edges (b) log-
likelihood color mask (c) binary threshold (d) morphological operations,
resulting in final mask.

First, mask borders were expanded outward to tolerate trivial
edge misalignment using OpenCV functions dilate and
blur [12] (Fig.10a). Then, the same log-likelihood color
filter for generating () was applied. This helps to eliminate
tool pixels partially occluded by real tissue (Fig.10b). Ob-
serve that this step incorrectly removed some tool pixels,
due to the reflective nature of the tool. Next, a simple binary
threshold classifies pixels as either tool or non-tool (Fig.10c).
Finally, to account for the misclassified pixels due to the tool
reflection, the OpenCV function morphologyEX was used
to dilate boundaries and eliminate noise [12]. This results in
the final segmentation mask as shown in Fig.10d.

IV. RESULTS AND DISCUSSION
A. Raven II Tool Segmentation

Fig.11 illustrates the final results of the real-time image-
based surgical tool segmentation with robot kinematics
shape prior. This was performed with the Raven II surgical
robot platform, and the final mask was achieved using the
techniques and workflow described in sections II and III.
Overlaying the final mask with the raw image allows for seg-
mentation of foreground (surgical tool tip) and background.
The results shown here were achieved at a refresh rate of
approximately 6 Hz using a commodity workstation.

From the robot kinematics and information about static
pose estimation offset, an initial raw shape prior mask,
u, is first generated. A log-likelihood color mask, @, is
created from raw image data. These two masks are then
convolved (using duality property and DFT) to estimate
optimal translation to match the shape prior to color mask,
generating translated shape prior, U. Masks U, ) were then
converted to log-polar coordinates, where they were again
convolved to estimate optimal scale and rotation of the shape
prior mask to match the color mask, generating mask U. A
post process color mask produces the final shape prior.

(©)

Fig. 11: Raven II tool segmentation. (a) raw image (b) final shape prior
mask (c) segmented foreground tool (d) segmented background tissue.

B. Sg¢rensen-Dice Index Analysis

The Sgrensen-Dice index was used to measure the accu-
racy of the automatic real-time surgical tool segmentation.
For evaluation, data was collected by actuating the Raven
II tool along a trajectory traversing a wide variety of joint
configurations while staying within the image frame. The
maximum displacement and rotational speed of motion are
10cm/s and 30°/s respectively, which meets standard sur-
gical operation requirements [16]. Image frames (640x480
pixels) were captured and processed in real-time as described
in sections II and III. 75 of the 2000 frames were ran-
domly selected and manually labeled offline to classify tool
from background. These manually labeled masks formed the
ground truth X against which the real-time, automatically
generated masks Y were evaluated.

The Sgrensen-Dice index is a measure of similarity be-
tween two datasets, and is defined as

21X NY|

@ X ®
When datasets X,Y are identical, Q.S = 1, while disjoint
X,Y result in QS = 0. For each of the 75 images, the
ground truth dataset included pixel locations of the man-
ually labeled surgical tool. The experimental set included
segmented tool pixel locations generated by the proposed
method. An average dice coefficient of 0.7372 is achieved,
which compares well to state-of-the-art graphics-accelerated
methods [17]. Sgrensen-Dice indices for each individual
frame over time are depicted in Fig.12. A broad selection

Dice Coefficient Analysis

dice value
(=]
in
T
L

10 20 30 40 50 60 70
iterations

Fig. 12: Sgrensen-Dice indices for 75 analyzed frames. Manually labeled
mask pixels were compared to real-time generated mask pixels.

of tool poses were captured for this analysis, and Fig.13
demonstrates the very slight dependence that tool configu-
ration bears on the Sgrensen-Dice index. This suggests that
the method is robust to varying tool configurations.
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Fig. 13: The correlation between each tool joint and dice coefficient output.

C. Color Spectrum Stochastic Modeling

In this work, the log likelihood map @) was a weighted sum
of the Opponent, RGB and HSV color components, and was
essential for the shape matching of kinematics prior mask U.
While computationally efficient, a more discriminative color
filtering scheme is possible through statistical analysis. To
that end, a large number of surgical operation images were
manually labeled and analyzed for color space components.
From this, the probability distributions of tool pixels and
non-tool pixels along each color space component can be
generated. This statistical representation in color space, as
shown in Fig.14, can provide the means for an advanced
color filtering scheme.
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Fig. 14: Color statistics. (a) probability distribution of tool pixels (b)
probability distribution of non-tool pixels.

Saturation

V. CONCLUSION

This work presented a method for real-time vision-based
surgical instrument segmentation with kinematic prior. The
method affords a notable combination of attributes, including

« results validating use with Raven II tools.

o low computational complexity.

o 6Hz execution rate without GPU acceleration.

« average Sgrensen-Dice index > 0.73.

« robustness to partial occlusion by fusing robot kinemat-

ics with color filtering.

The technique was evaluated on the Raven II surgical
platform, and segmentation results were compared with man-
ually segmented images. The results were encouraging with
high Sgrensen-Dice index that is robust to tool configuration.
Thus, the method is promising towards the use of kinematic
prior and color masking for real-time tool segmentation in a
robot-assisted minimally invasive surgical setting.

Future improvements to the proposed image segmentation
method include stochastic modeling of surgical tool and
tissue pixels, as described in section IV-C. This can greatly
improve the generation of log likelihood color mask Q.
Furthermore, static offset correction of estimated robot pose
can be automated through Kalman filtering. Validating the
method in various lighting conditions and with a reduced
baseline stereo camera (or endoscopic) setup will further pro-
mote this method towards clinical issue. A natural extension
of this work includes exploring the remaining subtasks of
the vision-based force estimation as illustrated in Fig.2 while
integrating the segmentation method described here.
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