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Abstract— Robot-assisted minimally invasive surgery com-
bines the skills and techniques of highly-trained surgeons
with the robustness and precision of machines. Several advan-
tages include precision beyond human dexterity alone, greater
kinematic degrees of freedom at the surgical tool tip, and
possibilities in remote surgical practices through teleoperation.
Nevertheless, obtaining accurate force feedback during surgical
operations remains a challenging hurdle. Though direct force
sensing using tool tip mounted sensors is theoretically possi-
ble, it is not amenable to required sterilization procedures.
Vision-based force estimation according to real-time analysis
of tissue deformation serves as a promising alternative. In this
application, along with numerous related research in robot-
assisted minimally invasive surgery, segmentation of surgical
instruments in endoscopic images is a prerequisite. Thus, a
surgical tool segmentation algorithm robust to partial occlusion
is proposed using DFT shape matching of robot kinematics
shape prior (u) fused with log likelihood mask (Q) in the
Opponent color space to generate final mask (U). Implemented
on the Raven II surgical robot system, a real-time performance
robust to tool tip orientation and up to 6 fps without GPU
acceleration is achieved.

I. INTRODUCTION

Vision-based force estimation for robot manipulated sur-

gical procedures relies on tissue indentation measurements

associated with surgical contacts. Endoscopic images can

provide information from which indentation can be inferred,

and applied force can subsequently be calculated and applied

for realistic force feedback. A natural initial step towards this

end involves tool segmentation. There are existing methods

regarding marker-less surgical tool-tip segmentation with

robot kinematics prior [1] [2] [3] . Yet, based on the authors’

knowledge, this paper is the first to simultaneously offer:

• low computational complexity at 6Hz without use of

GPU acceleration.

• segmentation performance for real-time implementation

with average Sørensen-Dice index greater than 0.73.

• surgical instrument tracking algorithm amenable to

Raven II tools.

• robustness to partial occlusion by fusing robot kinemat-

ics and color filtering.

A. Proposed System Workflow

The proposed entire visual force estimation method can be

divided into four stages, as shown in Fig.2. Stage 1 focuses
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on classifying image pixels as either tool or tissue pixels.

The tissue pixels neighboring the surgical tool tip define the

region of interest (ROI). Stage 2 deals with generating tissue

depth information of the ROI. Any resultant deformation can

then be inferred, and a deformation map centered around

the surgical tool can be generated. In stage 3, deformation

information can be used in tandem with tissue dynamics

models to estimate applied force [4]. Finally, stage 4 will

implement this real-time force estimation via haptic feedback

in a bilateral teleoperation scheme. The work presented here

focuses on stage 1, real-time surgical tool segmentation.

Subsequent stages rely on this efficient extraction of tissue

data immediately surrounding the tool tip. An overview of

this stage is shown below in Fig.1.
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Fig. 1: Surgical tool segmentation overview.

The technical implementation of stage 1 are described in

more detail in sections I-D and II.

B. Background

Surgical instrument tracking and isolation is needed for

robot-assisted minimally invasive surgery research that fo-

cuses on visual deformation analysis at the tool-tissue inter-

face. A mere bounding box around the tissue of interest is

insufficient, since tool-pixels will interfere with deformation

calculations. To analyze only non-tool pixels, online classi-

fication and segmentation of tool pixels within this ROI in

real-time is critical.

Online surgical tool segmentation approaches may face

challenges including motion blur, partial occlusion, specular

reflections on wet tissue surfaces [5], as well as lighting

changes. Furthermore, metallic parts of surgical tools reflect

tissue colors, which increases the difficulty of color filtering.
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Fig. 2: Illustration of the four stages or subtasks involved in the proposed vision-based force estimation method. The work presented here completes stage
1 and parts of stage 2.

C. Related Work

Existing approaches to address the aforementioned chal-

lenges can be broadly classified into four methods. Accord-

ing to Bouget et al., the first distinction separates marker and

marker-less [6]. Methods that use markers can be further

distinguished by use of either a visual marker or a non-

visual marker. Similarly, marker-less techniques can opti-

mally employ tracking algorithms. Fig.3 illustrates the coarse

spectrum of these techniques.

Fig. 3: Different approaches for image-based surgical instrument detection.

Methods using visual markers are very effective. However,

the cylindrical shape of surgical tool shafts make distortion

inevitable for most 2D markers that conform to the tool

surface. Topology markers, however, stand out in instru-

ment detection due to their robustness to tag distortion

[7]. Nonetheless, visual markers are subject to occlusion,

which are commonplace during surgical operations when

the tool is stained with blood. Non-visual markers do not

have this problem, and include RFID sensors [8], acoustic

[9] or electromagnetic trackers [10]. Concerns with non-

visual markers include price, size, and minimizing external

electronics placed within patients’ bodies. Because of these

issues, these sensors or trackers can be undesirable.

Despite the effectiveness of markers, they are not

amenable to direct transition to current hospital procedures

and clinical setup. Instead, a marker-less surgical instrument

segmentation technique based on robotic kinematics and

color filtering is proposed in this work.

D. Kinematics Prior Segmentation

In this work, the entire tool configuration estimate (both

3D position of the tool tip and all joint angles) was available

from joint encoders and kinematic calculations on the Raven

II Surgical Robot System [11]. Given the camera extrinsic

parameters with respect to the Raven II base frame, the

robot kinematics provided a shape prior (u). This shape prior

provided an estimate of the expected surgical instrument

location and shape within the camera image frame. This was

achieved by projecting the 3D surgical tool links onto the

2D image plane. The predicted shape prior was subsequently

modified to match a color filtering mask (Q) in the frequency

domain in two steps - modifying translation and modifying

rotation and scale. The latter requires transformation to log-

polar coordinates. Finally, with this modified shape prior

mask, U, a color mask was applied for pixel-wise classi-

fication within the surgical tool region. The work done here

accomplishes all portions of tasks depicted in Fig.1. Results

are promising towards accurate real-time tool segmentation.

II. METHODS

A. Camera Pose Estimation

In order to use robot kinematics to ascertain the surgical

instrument’s location within the camera image plane, defin-

ing the camera frame with respect to the robot base frame

is required. In what is often referred to as the perspective-n-

point (PNP) problem, the aim is to estimate the pose of an

object given n 3D points on the object and their correspond-

ing 2D projections onto the image plane. This process also

requires the camera intrinsic parameters. Instead, we require

the converse, that is to determine camera pose with respect

to the object.

To accomplish this task, the 2D (x, y) projections

were generated from the OpenCV function

cvFindChessboardCorners [12] to detect

checkerboard corners in the image frame, as illustrated

in Fig.4. The 3D corner locations of the 48 checkerboard

corners were obtained by manually measuring the corner

positions with respect to the Raven II base frame. Combined

with the camera intrinsic parameters, determining the

transformation matrix between robot and camera frame is

trivial. Fig.4 illustrates the two coordinate frames.
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Fig. 4: The 2D and 3D coordinate input of checkerboard corners to the
PNP algorithm. From this, the transformation from Raven II base frame to
camera frame is obtained.

B. Kinematics Shape Prior Mask

Given robot joint states, forward kinematics, and camera

pose, a raw projection of joint locations onto the camera

image plane is straightforward. Then, from the physical

thickness of each robot link, the perceived thickness on either

end of a robot link in the image is inferred respectively.

Suppose an object point with known width W is distance D
from camera with focal length F . Then the apparent width

in camera pixels, P , is defined as

P = FW/D (1)

The overall shape of the projected robot tool can be

obtained with simple trigonometry. The union of these pixels

forms the initial shape prior mask, u. This is more computa-

tionally efficient than projecting all points on the tool surface.

C. Log-likelihood Color Mask

Once the robot kinematics shape prior u is generated,

color filtering across the entire image further refines the

prior estimate. The color filtering scheme adapted for this

work was based upon work by Van De Sande et al., which

claimed that hue and saturation in the HSV colorspace

and Opponent1 and Opponent2 (denoted O1 and O2) are

colorspace components providing the most discriminative

power to separate surgical tool pixels from background pixels

[13], where:

O1 = G−R

O2 = B − Y = B − (G+R)

The log-likelihood mask (Q) is then defined as

Q = w1H + w2S + w3O1 + w4O2

where H and S are the hue and saturation components

respectively and the weights w1, w2, w3, w4 were heuristi-

cally tuned. Because HSV is a non-Euclidean colorspace, the

coneHSV colorspace [14] was adopted for use during color

comparisons, where (H,S, V ) values are transformed into

(V, S cos (H), S sin (H)). The used colorspace components

are shown in Fig.5. An ideal post filtering image will

appear bright for the tissue pixels and significantly darker

for surgical tool pixels.

Fig. 5: Colorspace components used to determine color mask. The likelihood
map Q is defined by a weighted sum of these components: hue, saturation,
O1 and O2.

D. Frequency Domain Shape Matching

The two masks, u and Q, provide two estimates of

the surgical tool shape within the image frame. The robot

kinematics shape prior mask, u, was derived by projecting

surgical tool configurations and thickness onto the image

plane. Meanwhile, the log-likelihood mask, Q, was generated

via a linear combination of four colorspace components.

In mask u, pixels corresponding to surgical tools are white

(255 in 8-bit gray), while the remaining pixels are black (0 in

8-bit gray). The converse is true for Q, that is the determined

tool pixels approach 0 (black), and the rest of the image

approaches 255 (white). Therefore, ideally the black pixels

in u should correspond to white pixels in Q and vice versa.

Multiplying ideal masks pixel-wise should result in all zeros.

However, u may not align well with Q, as shown by com-

paring Fig.6-b and Fig.6-c This can be due to inaccuracies

in camera extrinsic parameters, robot kinematics and joint

sensors, or timing mismatches between robot pose and image

frame. An objective function defined as the sum of pixel-wise

multiplication between u and Q can be interpreted as the

energy, E, to be minimized for optimal alignment. Suppose

there are NR rows and NC columns in both images A,B.

Then E is defined as

E(A,B) =

NR∑

y=1

NC∑

x=1

A (x, y)B (x, y) (2)

The mask matching procedure aims to modify shape prior

mask u to best match Q and thus minimize E, and is

achieved in two optimization steps:

• Translation — finding translated version of u to match

Q, generating translated shape prior mask U .

• Rotation and scale — finding the optimal rotation and

scaling of U to match Q, generating mask U.

a) Translation: Suppose a translational error exists

between shape prior u and actual surgical tool image lo-

cation. To counteract this error, a translational offset which

minimizes E is sought. Let �t = (tx, ty), and then define

u�t as the resultant mask of u translated by �t. The optimal

translated mask is denoted U

U = argmin
u�t

E(u�t, Q) (3)

The solution to this optimization is achieved efficiently

in the frequency domain using duality between spatial and

frequency domains [15], namely

u�Q = F
−1(FQF

∗
u) (4)
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where � denotes spatial convolution and F the Discrete

Fourier Transform (DFT). Consider pixel (tx, ty) of the

spatial convolution (origin is center of image):

u�Q(tx, ty) =

NR∑

y=1

NC∑

x=1

u (x− tx, y − ty)Q (x, y)

which is precisely E(u�t, Q). Thus the optimal offset is

determined by the minimum pixel of u�Q = F
−1(FQF

∗
u).

The time complexity reduces from O
(
N4

)
to O

(
N2 logN

)

using the DFT. Figure 6 outlines the procedure.

(a) (b)

(c) (d)

Fig. 6: Translation matching. (a) raw image frame (b) initial shape prior
mask, u (c) color filtering mask, Q (d) two masks convolved, minimum
value gives optimal translational offset to generate mask U .

Consider Fig.7f, where Q, u, U are respectively marked with

red, blue, and green. The green is a translated version of blue

that better matches red.
b) Rotation and Scale: The two masks U and Q may

also misalign in rotation and scale. To account for this, the

masks U and Q were first transformed to log-polar coor-

dinates and zero-padded, forming U ′ and Q′. A Cartesian

coordinate (x, y) is represented in log-polar coordinates as

(a, b) where

a = log
√
x2 + y2

b = atan2(y, x)

(a) (b) (g) (h)

(c) (d) (i) (j)

(e) (f) (k) (l)

Fig. 7: DFT shape matching, (a)-(f) illustrate translation matching to find
U , (g)-(l) rotation and scale matching to find U. (a) color filter mask Q
(b) Fourier transform FQ (c) shape prior mask u (d) Fourier transform Fu

(e) convolution u �Q (f) red - Q, blue - u, green - U (g) log-polar color
mask Q′ (h) Fourier transform FQ′ (i) log-polar shape mask U ′ (j) Fourier
transform FU′ (k) convolution U ′ �Q′ (l) red - Q, blue - U , green - U.

a and b correspond to scale and rotation respectively. Finding

the minimum pixel of U ′ �Q′ thus determined the optimal

scale and rotation of U to best match Q. The scaled and

rotated version of U is denoted U.

Consider Fig.7l, where Q, U , U are respectively marked

with red, blue, and green. The green is a scaled and rotated

version of blue that better matches red. Theoretically, due

to nonlinear coupling of the two steps, the global optimum

is achieved by interchangeably applying translation and

rotation/scale adjustments until convergence, but only one

iteration is applied in this work, under the assumption that

the kinematics data is of high accuracy, to improve efficiency.

III. EXPERIMENTAL DESIGN

Fig.8 shows the experimental system setup using the

Raven II platform. A 40mm baseline stereo camera with

640×480 pixel resolution was fixed to the Raven II base

frame to acquire image data. Realistic tissue images were

placed in the background.

Fig. 8: Experimental setup, includes Raven II and stereo camera hardware.

A. Robot Kinematics Shape Prior

The joint locations of the Raven II platform were obtained

from encoder readings and forward kinematics. The positions

can be projected onto the camera image plane and shape

can be determined via Eq.1. With raw position data, a static

positioning error was observed. This was compensated with

a static offset added to the initial robot pose estimate. This

process is illustrated in Fig.9.

Fig. 9: The left shows raw projection of robot joints and initial shape prior
of two poses without static offset. The right shows with static offset.

B. Frequency Domain Shape Matching

The main source of misalignment between color mask

and shape prior mask arises from latency between image

stream and robot kinematic information. That is, the robot

pose is sampled slightly prior to the image frame with some

variance. The methods described in Section II-D were used

to determine optimal mask shift, scaling and rotation. In
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practice, to avoid mismatching different tools in view, a 2D

Gaussian distributed penalty map centered at the origin is

fused with u � Q to bias the optimal translational solution

towards smaller magnitude, under the assumption that initial

shape prior u is close to true tool projection,.

C. Color Mask Post Processing
A final color mask was used to account for the effects of

partial occlusion from real tissue and trivial ambiguity near

segmentation boundaries. As illustrated in Fig.10, there are

four steps to turn the nicely aligned shape prior U into the

actual binary segmentation result.

(a) (b) (c) (d)

Fig. 10: Final color mask procedure. (a) dilated and blurred edges (b) log-
likelihood color mask (c) binary threshold (d) morphological operations,
resulting in final mask.

First, mask borders were expanded outward to tolerate trivial

edge misalignment using OpenCV functions dilate and

blur [12] (Fig.10a). Then, the same log-likelihood color

filter for generating Q was applied. This helps to eliminate

tool pixels partially occluded by real tissue (Fig.10b). Ob-

serve that this step incorrectly removed some tool pixels,

due to the reflective nature of the tool. Next, a simple binary

threshold classifies pixels as either tool or non-tool (Fig.10c).

Finally, to account for the misclassified pixels due to the tool

reflection, the OpenCV function morphologyEX was used

to dilate boundaries and eliminate noise [12]. This results in

the final segmentation mask as shown in Fig.10d.

IV. RESULTS AND DISCUSSION

A. Raven II Tool Segmentation
Fig.11 illustrates the final results of the real-time image-

based surgical tool segmentation with robot kinematics

shape prior. This was performed with the Raven II surgical

robot platform, and the final mask was achieved using the

techniques and workflow described in sections II and III.

Overlaying the final mask with the raw image allows for seg-

mentation of foreground (surgical tool tip) and background.

The results shown here were achieved at a refresh rate of

approximately 6 Hz using a commodity workstation.
From the robot kinematics and information about static

pose estimation offset, an initial raw shape prior mask,

u, is first generated. A log-likelihood color mask, Q, is

created from raw image data. These two masks are then

convolved (using duality property and DFT) to estimate

optimal translation to match the shape prior to color mask,

generating translated shape prior, U . Masks U,Q were then

converted to log-polar coordinates, where they were again

convolved to estimate optimal scale and rotation of the shape

prior mask to match the color mask, generating mask U. A

post process color mask produces the final shape prior.

(a) (b)

(c) (d)

Fig. 11: Raven II tool segmentation. (a) raw image (b) final shape prior
mask (c) segmented foreground tool (d) segmented background tissue.

B. Sørensen-Dice Index Analysis
The Sørensen-Dice index was used to measure the accu-

racy of the automatic real-time surgical tool segmentation.

For evaluation, data was collected by actuating the Raven

II tool along a trajectory traversing a wide variety of joint

configurations while staying within the image frame. The

maximum displacement and rotational speed of motion are

10cm/s and 30◦/s respectively, which meets standard sur-

gical operation requirements [16]. Image frames (640×480

pixels) were captured and processed in real-time as described

in sections II and III. 75 of the 2000 frames were ran-

domly selected and manually labeled offline to classify tool

from background. These manually labeled masks formed the

ground truth X against which the real-time, automatically

generated masks Y were evaluated.
The Sørensen-Dice index is a measure of similarity be-

tween two datasets, and is defined as

QS =
2|X ∩ Y |
|X|+ |Y | (5)

When datasets X,Y are identical, QS = 1, while disjoint

X,Y result in QS = 0. For each of the 75 images, the

ground truth dataset included pixel locations of the man-

ually labeled surgical tool. The experimental set included

segmented tool pixel locations generated by the proposed

method. An average dice coefficient of 0.7372 is achieved,

which compares well to state-of-the-art graphics-accelerated

methods [17]. Sørensen-Dice indices for each individual

frame over time are depicted in Fig.12. A broad selection

�� �� �� �� �� �� ��
�

�	�

�

Fig. 12: Sørensen-Dice indices for 75 analyzed frames. Manually labeled
mask pixels were compared to real-time generated mask pixels.

of tool poses were captured for this analysis, and Fig.13

demonstrates the very slight dependence that tool configu-

ration bears on the Sørensen-Dice index. This suggests that

the method is robust to varying tool configurations.
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Fig. 13: The correlation between each tool joint and dice coefficient output.

C. Color Spectrum Stochastic Modeling

In this work, the log likelihood map Q was a weighted sum

of the Opponent, RGB and HSV color components, and was

essential for the shape matching of kinematics prior mask U.

While computationally efficient, a more discriminative color

filtering scheme is possible through statistical analysis. To

that end, a large number of surgical operation images were

manually labeled and analyzed for color space components.

From this, the probability distributions of tool pixels and

non-tool pixels along each color space component can be

generated. This statistical representation in color space, as

shown in Fig.14, can provide the means for an advanced

color filtering scheme.

(a) (b)

Fig. 14: Color statistics. (a) probability distribution of tool pixels (b)
probability distribution of non-tool pixels.

V. CONCLUSION

This work presented a method for real-time vision-based

surgical instrument segmentation with kinematic prior. The

method affords a notable combination of attributes, including

• results validating use with Raven II tools.

• low computational complexity.

• 6Hz execution rate without GPU acceleration.

• average Sørensen-Dice index > 0.73.

• robustness to partial occlusion by fusing robot kinemat-

ics with color filtering.

The technique was evaluated on the Raven II surgical

platform, and segmentation results were compared with man-

ually segmented images. The results were encouraging with

high Sørensen-Dice index that is robust to tool configuration.

Thus, the method is promising towards the use of kinematic

prior and color masking for real-time tool segmentation in a

robot-assisted minimally invasive surgical setting.

Future improvements to the proposed image segmentation

method include stochastic modeling of surgical tool and

tissue pixels, as described in section IV-C. This can greatly

improve the generation of log likelihood color mask Q.

Furthermore, static offset correction of estimated robot pose

can be automated through Kalman filtering. Validating the

method in various lighting conditions and with a reduced

baseline stereo camera (or endoscopic) setup will further pro-

mote this method towards clinical issue. A natural extension

of this work includes exploring the remaining subtasks of

the vision-based force estimation as illustrated in Fig.2 while

integrating the segmentation method described here.
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