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Abstract—Quantum computers are traditionally operated by
programmers at the granularity of a gate-based instruction set.
However, the actual device-level control of a quantum com-
puter is performed via analog pulses. We introduce a compiler
that exploits direct control at this microarchitectural level to
achieve significant improvements for quantum programs. Unlike
quantum optimal control, our approach is bootstrapped from
existing gate calibrations and the resulting pulses are simple.
Our techniques are applicable to any quantum computer and
realizable on current devices. We validate our techniques with
millions of experimental shots on IBM quantum computers,
controlled via the OpenPulse control interface. For representative
benchmarks, our pulse control techniques achieve both 1.6x lower
error rates and 2x faster execution time, relative to standard
gate-based compilation. These improvements are critical in the
near-term era of quantum computing, which is bottlenecked by
error rates and qubit lifetimes.

Index Terms—quantum computing, pulse control, OpenPulse

I. INTRODUCTION

The present era of quantum computing is characterized by
the emergence of quantum computers with dozens of qubits,
as well as new algorithms that have innate noise resilience
and modest qubit requirements. There are promising indica-
tions that near-term devices could be used to accelerate or
outright-enable solutions to problems in domains ranging from
molecular chemistry [1] to combinatorial optimization [2] to
adversarial machine learning [3]. To realize these practical
applications on noisy hardware, it is critical to optimize across
the full stack, from algorithm to device.

Standard quantum compilers operate at the level of gates.
However, the lowest-level of quantum control is through ana-
log pulses. Pulse optimization has shown promise in previous
quantum optimal control (QOC) work [4], [5], but we found
that noisy experimental systems are not ready for compila-
tion via QOC approaches. This is because QOC requires an
extremely accurate model of the both the analog pulses that
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calibration [5]. By contrast, we propose a technique that is
bootstrapped purely from the daily calibrations that are already
performed for the standard set of basis gates. The resulting
pulses form our augmented basis gate set. These pulses
are extremely simple, which reduces control error and also
preserves intuition about underlying operations, unlike QOC.
This technique leads to optimized programs, with mean 1.6x
error reduction and 2x speedup for near-term algorithms.

We emphasize the generality of our approach and our
compiler, which can target any underlying quantum hardware.
We demonstrate our results via OpenPulse [6], [7], an interface
for pulse-level control. In particular, our work is the first
experimental demonstration of OpenPulse for optimized com-
pilation of quantum programs (one prior paper used OpenPulse
for noise extrapolation [9]). We executed pulse schedules
on IBM’s 20-qubit Almaden quantum computer, accessible
through the cloud via the IBM Q Experience [10]. Our
experience-building spanned over 11.4 million experimental
shots, 4 million of which are explicitly presented here as
concrete research outcomes. Our results indicate that pulse-
level control significantly extends the computational capacity
of quantum computers. Our techniques are realizable immedi-
ately on existing OpenPulse-compatible devices. To this end,
all of our code and notebooks are available on Github [11].

We begin with background on quantum computing in Sec-
tion II. Next, Section IIl presents an overview of standard
quantum compilers and our compiler design (depicted in
Figure 1). Sections IV— VII describe four key optimizations in
our compiler, all of which are enabled by pulse-level control:

1) Direct Rotations (Section IV). Access to pulse-level
control allows us to implement any single-qubit opera-
tion directly with high fidelity, circumventing inefficien-
cies from standard compilation.

reach the qubits and the machine itself, i.e. its Hamiltonian. 2) Cross-Gate Puls'e C.ancellation (S'ection V). Although
The analog pulses are subject to several errors, most notably gates have the illusion Of. atomicity, the true atomic
sampling errors from the waveform generator [6] and phase units are Pulses. Our Compﬂef creates new cancellation
offset errors from the temperature difference between classical optimizations that are otherwise mv.ls.1b1e. .

electronics and the cold qubits [7], [8]. Moreover, Hamilto- 3) TWO'Q“blt. Operatlon Decomposmons. (Sectl.on. YI)~
nians are difficult to measure experimentally and moreover, We recompile important near-term algorithm primitives
they drift significantly between daily recalibrations. The few for two-qubit operations directly down to the two-qubit
experimental QOC papers address these issues with significant Interactions thf‘t hardwa{e actually implements.

pre-execution calibration overhead such as staggered field 4) Qudit Operations (Section VII). Quantum systems have
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infinite energy levels. Pulse control enables d-level qudit
operations, beyond the 2-level qubit subspace.
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def (N, beta):
for i in (N):

circ.rx(beta, i)

sdg ql2]1;

PN cox qlel, qlil, ql2];

™

u2(e, pi/2) qlel;
u3(e.2, 1.0, 0.3) ql2];
cx qlel, ql1];

Standard Compilation Flow

\

direct_rx(1.3) q[1];
cross-res(1.) glel, ql1l;
LUCIMERIEEN U1 (0.6) ql[2];
Basis Gates

Basis Gates

Pulse
Schedule

Optimized
Schedule

Our Work

Fig. 1: Like classical programs, quantum programs undergo
a compilation process from high-level programming language
to assembly. However, unlike the classical setting, quantum
hardware is controlled via analog pulses. In our work, we
optimize the underlying pulse schedule by augmenting the set
basis gates to match hardware. Our compiler automatically op-
timizes user code, which therefore remains hardware-agnostic.

Section VIII presents results from application of these
techniques to full algorithms. We conclude in Section IX.

II. BACKGROUND

We assume some familiarity with the fundamentals of
quantum computing. Here we provide a brief review and
expand on elements relevant to our work.

A. The Qubit

The core unit involved in quantum computation is the qubit
(quantum bit). Unlike a classical bit which is either 0 or 1,
a qubit can occupy any superposition between the two states,
which are now denoted |0) and |1). The Bloch sphere, depicted
in Figure 2, is a useful visual representation of the possible
states of a qubit. The North Pole is the |0) state, and the South
Pole is the |1) state. The state of a qubit can be parametrized
by two angles, latitude and longitude. Upon measurement, a
qubit collapses to either the |0) or |1) state, with probabilities
dependent only on the latitude.

B. Quantum Gates

The set of valid single-qubit gates correspond to rotations
around the Bloch sphere. Arbitrary such rotations are typically
decomposed into R, (#) and R, () rotations around the X and
Z axes respectively, which are universal for single-qubit rota-
tions [12]. A prominent single-qubit gate is the X = R, (180°)
gate, which in Figure 2 would rotate the green |0) state 180°
around the X-axis to the |1) and vice versa. Thus, the X
operation implements the NOT gate.
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Fig. 2: The points on the Bloch sphere correspond one-to-
one with possible qubit states. The green and brown states
correspond to |0) and |1) respectively. The blue state is in a
superposition described by latitude and longitude angles.

The set of possible multiple-qubit operations is much richer
than the set of single-qubit gates, and lacks a clear visualiza-
tion on the Bloch sphere. Remarkably however, any multiple-
qubit operation can be decomposed into single-qubit rotations
+ an entangling gate such as CNOT [12]. The CNOT gate
acts on a control and target qubit, and it applies X to the
target iff the control is |1). In part because the CNOT gate
is easy to understand, most quantum programs are expressed
in terms of it. By implementing a small set of gates: single
qubit rotations + CNOT, a quantum computer is universal.
Accordingly, quantum computers are generally designed with
this interface in mind. However, the lowest level of hardware
control is performed by microwave pulses. Foreshadowing the
main message of our paper: this pulse-backed layer actually
provides a richer and “overcomplete” set of gates that outper-
forms the standard interface for quantum programs.

C. Gate Calibration

To implement this standard interface of universal gates,
quantum computers are routinely calibrated to account for
continuous drift in the experimental setting [13], [14]. As a
concrete example, for superconducting devices, an R,(90°)
gate is calibrated by performing a Rabi experiment [15]-[17]
that determines the necessary underlying pulses. An additional
DRAG [18]-[20] calibration fine-tunes the R, (90°) gate by
cancelling out stray components. Calibrations in a similar spirit
are also performed for the two-qubit gate(s). An interesting
feature of the two-qubit gate calibrations is that they have
the side effect of also calibrating R, (180°) pulses on each
qubit. We exploit this free calibration in Section IV. Typically,
Rz(0) rotation gates do not require calibration because they
are implemented in software, as described in Section IV.

D. Experimental Setup

Our experiments were performed on IBM’s Almaden, a
20 qubit device [21]. Almaden is the first cloud-accessible
OpenPulse device. It comprises 20 transmon qubits, with mean
T, and T» coherence lifetimes of 94 and 88 us respectively.
The mean single-qubit and two-qubit (CNOT) error rates are
0.14% and 1.78%. The mean measurement (readout) error was
3.8%, though we used measurement error mitigation [22], [23]
to correct for biased measurement errors.
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Stage Notes Example

Programming High-level; hardware-unaware;  gft (qc)

Language sophisticated control flow

Assembly Usually 1- or 2- qubit arity h g[O0]
gates; minimal control flow

Basis Gates Like an HDL; hardware-aware  uj; (3) g[0]

gate set

Pulse Schedule Analog waves across channels;

ultimate “at the metal” control

TABLE I: Summary of the four stages of a quantum compiler.

As of December 2019, IBM’s publicly cloud-accessible
OpenPulse device is the new Armonk device [24], which
we used for the most recent results in Figure 13. For both
Armonk and Almaden (and for IBM’s devices in general), the
calibrations described above are performed every 24 hours.
Our experiments ran around-the-clock via a cloud job queuing
system, with varying elapsed time to the prior calibration.

III. COMPILER FLOW

As depicted in Figure 1, quantum compilation proceeds
through four stages, from high-level to low-level: program-
ming language, assembly, basis gates, and pulse schedule. Also
shown is our alternative flow, which creates an augmented set
of basis gates and a more optimized pulse schedule. Table I
presents a summary of these four stages. We now discuss
existing implementations of these stages, why we should
augment the standard set of basis gates, our new compiler
framework, and the tradeoffs we considered when we designed
the framework.

A. Standard Flow

1) Programming Language: Quantum PLs are designed to
be user-friendly, with sophisticated control flow, debugging
tools, and strong abstraction barriers between target operations
and underlying quantum hardware. The most successful lan-
guages have been implemented as Python packages, such as
IBM’s Qiskit [25], Google’s Cirq [26], and Rigetti’s PyQuil
[27]. Others are written as entirely new languages, such as
Scaffold [28], [29] which is based on LLVM infrastructure;
Quipper [30] which is a functional language embedded in
Haskell; and Q# [31] which is Microsoft’s quantum domain
specific language.

2) Assembly: Quantum assembly languages are closer to
hardware, but still aim to be device-agnostic. Generally, the
assembly instructions only allow 1- or 2- qubit arity, since
hardware primitives act on only 1 or 2 qubits at a time!.
Quantum assembly is essentially equivalent to the quantum cir-
cuit representation of quantum programs. Prominent examples
include OpenQASM [6], Rigetti’s pyQuil [27], and TUDelft’s
cQASM [34].

The notable exception is trapped ion quantum computers, which support
global entangling operations that simultaneously act on N qubits [32], [33].
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3) Basis Gates: Basis gates are similar to assembly, but re-
expressed in terms of the gate set that hardware implements.
For example, while the well-known Controlled-Z instruction
is valid in assembly code, it would be re-written in basis
gates as a sequence of H and C NOT gates—which hardware
natively implements. The distinction between assembly and
basis gates is primarily a conceptual one; in Qiskit, Cirq, and
PyQuil, the basis gate and assembly layers are expressed in the
same software framework. In some other domains, for example
the Blackbird language [35] for continuous-variable quantum
computing, the assembly already resembles a hardware-aware
basis gate layer. Regardless of the relationship between be-
tween assembly and basis gates, our core observation in this
paper is that existing implementations of basis gate sets are
too far from pulse-level hardware primitives. We will expand
on this observation for the rest of the paper.

4) Pulse Schedule: The ultimate lowest-level control of a
quantum computer is a schedule of complex-valued analog
pulses, across multiple input channels. The image in Table I
shows a sample pulse schedule on a single channel. The input
channels are controlled by an Arbitrary Waveform Generator
(AWG) which outputs a continuous value on each channel
at every dt. Modern AWGs, such as the one in our experi-
mental realization using IBM’s Almaden system, achieve 4.5
Gigasamples per second, i.e. a new complex number every
0.22 ns.

The pulse schedule on drive channel j is referred to as d;(¢)
and is complex-norm constrained by |d;(t)| < 1. However,
qubits are not directly acted on by d;(t) or Re[d,(t)]. Instead,
the d;(t) signal is mixed with a local oscillator of frequency
f;, leading to a final signal

D;(t) = Re[d;(t)e""] (1

This equation will be relevant when we demonstrate qudit
operations in Section VII.

The translations from basis gates to pulse schedules are
known analytically. For example, in superconducting quan-
tum hardware, R, basis gates are implemented in software
with zero-duration and perfect-accuracy via the virtual-Z-Gate
translation [36], [37]. The X basis gates is transformed into
almost-Gaussian “DRAG” pulses [18]-[20]. In the OpenPulse
interface, these translations are stored in the cmd_def object,
and reported by the hardware.

B. Motivation for Different Basis Gates

At a high level, our core observation is that existing basis
gates sets are too far from actual hardware primitives at the
pulse-level. This leads to missed opportunities for optimiza-
tion. Sections IV-VII will present optimizations resulting from
specific gaps between basis gates and pulse-level hardware
primitives. Table II introduces one such gap that we expand
upon in Section VI. Each row in the table is a two-qubit
operation. The columns express the cost> of performing the

2Cost here means the number of two-qubit gates needed, since they
dominate both error and duration.
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TABLE II: Costs of various two qubit operations, by Native gate. Cost reductions at the right indicate optimization opportunities.
One viSWAP is treated as 0.5 cost, while iSWAP has 1.0 cost.

Decomposition Cost by Native Gate

“Textbook™ Discrete Gates Half Parametrized
Operation Standard Circuit CNOT CR(90°) iSWAP bSWAP MAP iSWAP | CR(0)
Rep.
CNOT % 1 1 2 2 1 1 1
SWAP m 3 3 3 3 3 1.5 3
77 Interaction 2 2 2 2 2 1 1
ZZ swap ran 3 3 3 3 3 1.5 3
&—e—{R.|-d—

Fermionic -R -R 3 3 3 3 3 1.5 3
Simulation =1l iSwAP z
Fermionic 2 2 2 2 2 1 2

St IST
Fourier - iSWAP -
Transformation I [
Bogoliubov 2 2 2 2 2 1 2
Transformation

target operation using the given native gate. We computed
these costs using Qiskit’s TwoQubitBasisDecomposer
tool, which uses the KAK decomposition [38] described
further in [39].

The CNOT column indicates the number of CNOT gates
needed to implement the target operation. CNOT is the default
“textbook” two-qubit gate, so algorithms are usually written
in terms of CNOT. The next group of four columns, Discrete
Gates, captures basis gates from

« Fixed-frequency superconducting qubits: 90° Cross-
Resonance [40]-[42], bSWAP [43], and MAP [44].

« Frequency-tunable superconducting qubits: iSWAP [45]
and also CZ [46], [47] which is omitted because it is
equivalent to CNOT.

o Quantum dot spin qubits: iISWAP [48§]

o Nuclear spin qubits: iISWAP [49]

All four of these columns have identical costs to the CNOT
column. As a result of this parity, the prevailing sentiment
in current quantum compilation software is that these basis
gates are equivalent. Moreover, since quantum algorithms are
usually written in terms of CNOTSs, there is not an obvious
reason to deviate from these basis gates.

The two rightmost columns, challenge this sentiment. The

iISWAP reflects the fact that quantum hardware allows one
to perform “half” of an iSWAP by damping the pulse shape of
a standard iSWAP gate. This Half-gate leads to significant im-
provements over full iISWAPs—each row’s cost is halved. The
CNOT decomposition and SWAP decomposition are known
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[50], [51], but to the best of our knowledge, the ZZ Interaction
(ubiquitous operation for quantum chemistry and optimization
algorithms) and Fermionic Simulation (ubiquitous for quantum
chemistry) decompositions are not previously known. They
will have immediate applications on hardware that supports
ViSWAP such as frequency-tunable superconducting qubits,
quantum dot spin qubits, and nuclear spin qubits.

The rightmost column, bolded because it was our experi-
mental target, reflects the fact that fixed-frequency supercon-
ducting qubits support parametrized Cross-Resonance(f) via
pulse stretching. Since the native gate is parametrized, we used
a different approach to compute the decomposition costs in
its column. Specifically, we used the COBYLA constrained
optimizer [52] in Scipy [53], with the constraint of finding a
99.9+% fidelity decomposition. Subject to this constraint, our
decomposer minimizes the cost of the CR(#) gates needed to
perform the target operation. Observe that ZZ Interaction is 2x
cheaper with a Parametrized CR(#) gate than with the standard
CR(90°) gate. The ZZ Interaction is in fact the most common
two qubit operation in near-term algorithms. This optimization
is expanded upon in Section VI.

Our method is extensible to other systems including trapped
ions. Some of the trapped ion decompositions have already
been studied in recent publications [54]-[56]. In Sections IV—
VII, we present experimental realizations on IBM hardware,
which corresponds to the CR(6) column of Table II. However,
our compiler framework is general and extends similarly to
other native gate decompositions.
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Fig. 3: Depiction of our compiler passes for commutativity
detection (CD) and augmented basis gate detection (ABGD).

C. Design of Our Compiler

Our compiler is implemented as a fork of Qiskit. While
Qiskit has traditionally been used in conjunction with IBM
superconducting quantum computers, it is a generic framework
that supports any underlying quantum hardware. For example,
trapped ion quantum computer vendors have recently inte-
grated with Qiskit [57], and OpenPulse support was recently
added [58] to the XACC infrastructure for quantum-classical
computing [59]. Thus our framework is general, though we
performed our experimental realizations on IBM hardware,
which is the first to implement OpenPulse.

Our compiler maintains the overall structure of Qiskit,
which is already designed with extensibility in mind. As
discussed previously, we augment the set of basis gates to
better match pulse-level primitives. To support this augmented
basis gate set, we re-write the decomposition rules from
assembly instructions to basis gates and add new translations
(to cmd_def) that convert augmented basis gates to pulse
schedules. We expand on the augmented basis gates in Sec-
tions IV-VIL

To take advantage of the augmented basis gates, we added
Qiskit transpiler passes, which convert input quantum as-
sembly into optimized quantum assembly in the spirit of
LLVM Transform passes. Our transpiler passes automatically
optimize user code by using the augmented basis gates. One
transpiler pass traverses a DAG-representation of the quantum
assembly and pattern matches for templates that represent
sequences of gates (such as the ZZ Interaction) that reduce
to an augmented basis gate. We also include a commutativity
detection transpiler pass that performs this pattern matching
even when obfuscated by false dependencies in intermediate
gates; this pass is inspired by techniques described in [60].
Figure 3 shows an example of these two passes. Through these
two passes, we maintain the “write-once target-all” behavior
of user-written code, which can remain hardware agnostic.

D. Compiler Design Tradeoffs

Another compiler design we considered is Quantum Op-
timal Control [61], [62], which translates directly from the
programming language (specifically from the quantum cir-
cuit’s overall unitary matrix) down to highly optimized pulses.
QOC has been explored extensively in physics communities
and more recently from an architectural perspective [60], [63],
[64].

QOC is indeed a promising path for future machines, and in
fact our original aim was to perform pulse-shaping via optimal
control. However, our experience revealed experimental road-
blocks. First, QOC requires faithful analog pulse generation.
However, the actual pulses that reach qubits are limited by the
AWG’s finite sampling rate and by the temperature difference
between classical electronics and the cold qubits. The former
problem can be mitigated by smoothness constraints in the
QOC engine, but doing so diminishes both the potential
advantage of QOC and the reliable convergence of QOC
algorithms [64], [65]. The latter problem is currently a major
experimental barrier that requires a phase offset calibration
for every candidate pulse [7, Appendix B]. Second, QOC
requires a faithful characterization of the device Hamiltonian,
since pulses designed from an inaccurate Hamiltonian accu-
mulate substantial error. However, Hamiltonians are difficult to
measure experimentally and moreover, they drift significantly
between daily recalibrations. In addition, QOC requires eval-
uation of partial derivatives of a fidelity metric—a task that is
easy analytically or in simulation, but extremely difficult with
noisy experimental measurements.

Our experience is mirrored by other work on QOC—the
vast majority of prior work has been performed via simulation.
The few experimental realizations of QOC generally focus on
state preparation (easier than unitary synthesis), e.g. [4], [5].
Moreover, these experiments impose significant Hamiltonian
tomography or calibration overhead, for example staggered
field calibration [S5]. Experimental realizations on supercon-
ducting qubits, whose Hamiltonians drift over time [13], [14],
are even more rare. In fact, the state-of-art for pulse shaping
on superconducting qubits has eschewed QOC entirely [66],
focusing instead on a closed-loop feedback for tuning pulses.
We refer to [66] for further details on the experimental barriers
to QOC, particularly in superconducting qubits.

Our approach to pulse-shaping arose from these limitations.
In particular, our techniques are bootstrapped from the stan-
dard basis gate calibrations, which are already performed daily.
By decomposing and then re-scaling the pre-calibrated pulses,
we generate an augmented basis gate set, without ever requir-
ing the device Hamiltonian. We emphasize that our technique
can be applied on current cloud-accessible quantum devices,
as documented in our Github repository [11]. Moreover, while
QOC generally leads to convoluted pulses, our pulses are very
simple. This simplicity minimizes the possibility of control
errors and also leads to greater interpretability.
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IV. OPTIMIZATION 1: DIRECT ROTATIONS

We now present the first of our four optimizations enabled
by pulse control. The gist of this optimization is that pulse-
level control enables us to perform single-qubit gates (qubit
state rotations on the Bloch sphere) via a direct trajectory,
saving time and potentially reducing errors.

It can be shown that any arbitrary single-qubit gate, termed
Us in Qiskit, can be implemented by tuning up a single pulse
that rotates the qubit state by 90 degrees around the X axis
(the R, (90°) pulse). This is doable due to the following
identity, and due to the fact that rotations about the Z axis
can be implemented in software at no cost (implemented by a
compiler transformation on all future gates involving the target
qubit) [36].

Us(0,¢,A\) = R, (¢+90°) R, (90°) R, (0+180°) R, (90°) R, ()
(@)
The above is extremely attractive from a hardware calibra-
tion perspective, since it suggests that fine tuning one pulse
is enough to achieve high-fidelity single-qubit gates. In fact,
this is how these gates are implemented on IBM quantum
computers. We now present experimental evidence that access
to one more calibrated gate, as well as pulse control, gives the
compiler the ability to optimize single-qubit gates further.

A. Direct X gates

We first consider the simple X operation, which acts as
a NOT by flipping |0) and |1) quantum states. X gates are
ubiquitous in algorithms. Our approach relies on access to the
X = R;(180°) rotation, which is already pre-calibrated, as
discussed in Section II-C. In our experiments we had access
to such a pulse, but one could also be calibrated by the user
through OpenPulse. We emphasize that this extra pulse is
not strictly necessary for universal computation. However, we
use it to demonstrate the power of an overcomplete basis for
optimizations.

Qiskit’s standard compilation flow decomposes an X oper-
ation into a Us instruction per equation 2. At the pulse level,
the Us instruction is implemented by two consecutive R, (90°)
pulses. Together these complete an X gate (i.e. 180° rotation).

However, the indirection of implementing X with two
R, (90°) pulses becomes unnecessary in the presence of a pre-
calibrated R, (180°) gate. The procedure for calibrating such
a gate is very similar to the R, (90°), and its direct calibration
has benefits beyond our discussion here [15]-[17], [67]. On
IBM hardware enabled with OpenPulse, this pulse is readily
available in the backend pulse library.

In our compiler, we exploit this simple observation by
augmenting the basis gates with a DirectX gate, which is
linked to the R,(180°) pulse that is already calibrated on
the quantum computer. This gate is twice as fast as Qiskit’s
standard X gate, and has 2x lower error, as measured through
quantum state tomography experiments.

Figure 4 depicts a comparison of pulse schedules used to
achieve the X gate in 71.1 ns in the standard framework vs.

Re[d10(t)] Im{d10(t)]
d10 amp;
+ units of dt = 0.22 ns =
0 50 100 150 200 250 300
Time (in dt units)
d10 amp;
p + units of dt = 0.22 ns =

0 50 100 250 300

150 200
Time (in dt units)

Fig. 4: Pulse schedules for the X gate via standard compilation
(top) versus via direct compilation via our approach (bottom).
Time is in units of dt = 0.22 ns. Thus, the DirectX gate
takes 35.6 ns, twice as fast as the 71.1 ns standard X gate.

35.6 ns in our optimization. It also illustrates why these two
pulse schedules are logically equivalent: they have the same
(absolute) area-under-curve. To a first approximation—which
we will refine below—this area determines how much rotation
is applied.

We next consider more sophisticated direct rotation gates.

B. Direct partial rotation about the X axis

Since OpenPulse gives us access to arbitrary pulse en-
velopes, it is natural to ask whether “partial” rotations about
the X axis (R;(f) gates) can be realized more efficiently
without invoking two discrete R,.(90°) pulses (as done by the
standard Qiskit decomposition in Equation 2). Our compiler
does this by downscaling the amplitude of the pre-calibrated
R, (180°) pulse by % to achieve the R, (6) rotation. We
represent this as the DirectRx (#) augmented basis gate in
our compiler. Since we rely on the pre-calibrated R, (180°)
this technique imposes no calibration overhead.

The results of our experiments with the new DirectRx ()
are summarized in Figure 5. Bypassing the gate abstraction,
our technique speeds up all R, rotations by 2x and has 16%
lower error on average. We discuss the source of the error
reduction in Section VIII-C.

In the next subsection, we will note how DirectRx (0)
generalizes to arbitrary-axis rotations for free.

C. Optimizing generic rotations

Equipped with an augmented gate set that implements
arbitrary X axis rotations at reduced cost, we now show that
all single-qubit gates can be achieved with one pulse. Recall
that in standard Qiskit compilation, general single qubit gates
are implemented via two R, (90°) pulses and three no-cost R,
frame changes. However, we can write the same gate as [12]:

Us(0,¢,A) = R(¢ + 180°) R.(0) R-(A — 180°)  (3)

Recall that R, rotations are implemented by frame changes
with perfect fidelity and O duration. Thus, this implies that
any single-qubit gate can be performed using direct R, (6)
rotations, sandwiched by free I, gates.

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on December 01,2020 at 18:01:17 UTC from IEEE Xplore. Restrictions apply.



o

—— % 1 B 0 B W0
dt

/ \ 10000
I 03975

== == 09950

09925
09900

09875

e
&

Fidelity of Rx(8)

09825 —— standard fidelity (avg=0.9957)
—— optimized fidelity (avg=09964)

09800

0 ) 7 100 15 150 175

[}

Fig. 5: Illustration of gate-level vs. pulse-level rotation about
the X axis. (top) Trajectory of an R, (67°) rotation, and the
pulses that implement them. Standard gate-based compilation
(red) includes two applications of the pre-calibrated R, (90°)
pulse (interleaved with R, (frame changes) which are zero-
cost and in software). Optimized pulse-based compilation
takes the shortest path from origin to destination, with only one
scaled pulse. (bottom) Fidelity of R, (6) rotations. Each data
point is obtained using quantum state tomography experiments
to rotate around the X axis by 6. Standard gate-compiled rota-
tions (red) show more jitter from ideal, and 16% higher error
on average, compared to optimized pulse-compiled rotations
(green).

D. Compiler implications

In the preceding subsection, we showed how an augmented
gate set can be beneficial. However, the compiler now has
more than the minimum set of pulses to work with to realize
a quantum gate. In order to decide which pulses to use when,
we need a deeper understanding and characterization of the
errors incurred by R, (f) gates for arbitrary 6. We can use
this system characterization to inform the compiler about the
best pulse substitution strategy.

We performed pulse simulations and real experiments to
gain insight into the errors. Our simulations were done using
Qiskit’s OpenPulse simulator. We enhanced the simulator
to find the Hamiltonian terms for IBM’s Almaden system,
through a reverse-engineering process and fitting the results
to the device-reported pulse library.

Taking Almaden’s pre-calibrated direct X pulse (DRAG
pulse), we scaled the area-under-curve down by a factor of
355 25, ..., 1. To first order, these should perform R, (6)
for 8 = 0°,4.5°,9°,...,180°. For each angle, we performed

10 X-Z Plane Projection

0.5

0.0

Z Component

=05

-1.0
=0.2 0.0 0.2

X Companent

(a) Sweeping 41 angles from 6 = 0°
in green to § = 180° in orange.

(b) XZ trajectory slightly
deviates from X = 0.

Fig. 6: Simulated results for Direct R, (6). The inset magnifies
the X component.
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Fig. 7: Experimental results for Direct R;(f) on IBM’s
Almaden system, based on 3 x 41 x 1000 = 123k shots. This
empirical characterization of dephasing from the Meridian can
be used to make the gate better at each 6.

three simulations and three experiments to measure the X, Y,
and Z components of the final quantum state, which allows
us to plot on the Bloch sphere.

Figure 6 depicts the results of simulation. Plotting only the
X-Z plane, we see that deviations from the Prime Meridian are
quite small, but do have a sinusoidal pattern (at exactly 0°, 90°,
and 180°, there is no dephasing). These simulation results are
in agreement with an independent simulation from [37].

The experimental results are presented in Figure 7. We note
two deviations from simulation: (1) the X components are still
sinusoidal but now translated to the right and (2) the magnitude
of the X-component deviations are larger. However, we can
treat these characterization results with an empirical attitude—
now that we know the dephasing at each 6 value point, we can
perform an R, (6) gate by applying a scaled-down X pulse,
and then correcting the phase error in accordance with the data
in Figure 7.
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V. OPTIMIZATION 2: CROSS-GATE PULSE CANCELLATION

The gist of this optimization is that standard basis gates
are not atomic®, despite conveying this perception. By aug-
menting basis gates with the true atomic primitives, new gate
cancellation opportunities emerge that lead to 24% speedups
for common operations.

A. Theory

Generally, two-qubit basis gates are not atomic. For exam-
ple, in Qiskit, the CNOT basis gate is implemented at the pulse
level as a combination of single qubit gates, plus invocations
of the hardware primitive Cross-Resonance pulse:

- — X
l

Notice in particular, that even the invocation of the hardware
primitive Cross-Resonance pulse is not a clean atomic unit,
but is decomposed into two pulses separated by an X gate.
This “echoed” Cross-Resonance pulse design is necessary to
perform a C'R(90°) gate (which is the generator of CNOT)
with high fidelity [68].

This analysis reveals there are opportunities for gate can-
cellation on either side of the CNOT*. In fact, such sequences
are common. To enable these cancellations, we augment the
basis gate set with the hardware primitive CR(£45°) basis
gates, which are free from pre-calibrated CNOTs. We replace
the assembly instruction for CNOT into this decomposition
and invoke Qiskit’s optimizer to perform gate cancellations.

CR(45°)

B. Application

To demonstrate our technique, we benchmarked using
a common operation: the open-Controlled-NOT. The open-
CNOT has the “opposite” behavior as a CNOT: it flips the
target if the control is |0) and does nothing if the control is
|1). Its implementation via the CNOT basis gate is simple:
first an X on the control, then a standard CNOT, and then
another X to restore the control.

However, by decomposing the CNOT into our augmented
basis gates, the first X on the control cancels with the
“internal” X in the decomposition of CNOT. Figure 8 depicts
the pulse schedules for the open CNOT under standard com-
pilation (top) and via our compilation (bottom). Notice that
two X’s in the red box cancel out, leading to a 24% reduction
in runtime.

We tested the open-CNOT pulse schedules experimentally.
To isolate the effect of cross-gate pulse cancellation, we
performed the direct X gate from the previous section in

3We use atomic in the common-usage sense of something that cannot
be decomposed into something else more fundamental. This should not be
confused with technical meanings of atomicity in computing.

4The circuit decomposition clearly depicts gate cancellation opportunities
on the left side of the CNOT with the X and R, (90°) gates; alternatively,
the top X can be shifted rightward by commutation identities to create
cancellation opportunities on the right side
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Fig. 8: Pulse schedules for the open-CNOT by standard
compilation (top) and our optimized compilation (bottom). Our
compiler cancels out the X rotation gates in the red box and
combines the two R,(—90°) pulses in the green box into a
single R, (180°) = X pulse. This reduces the total duration
by 24% from 1984 dt to 1504 dt.

both variants. The resulting data indicates a modest increase
in success probability from 87.1(9)% to 87.3(9)%, measured
over 16k shots (hence the Bernoulli standard deviation of
0.09%). While this is a small improvement in isolation, it is
a lower bound that is magnified when we consider larger-
width circuits. For example, in Figure 2 of [69], each of the
2m — 2 open-CNOTs is performed while m — 1 other qubits
are idle. Thus, speeding up these open-CNOTs also reduces
the accumulated decoherence across the other qubits.

We emphasize that the open-CNOT is just one of many
typical quantum operations that have R, rotations next to two-
qubit basis gates. Our compiler takes advantage of all such
cancellation opportunities, which are otherwise invisible at the
granularity of standard, non-atomic basis gates.

VI. OPTIMIZATION 3: TWO QUBIT OPTIMIZATIONS

The gist of this optimization is that standard basis gates
lead to inefficient decompositions of important two-qubit op-
erations. Instead, we can use pulse-level hardware primitives
as new basis gates that lead to operations with 60% lower
error.

A. Theory

Recall from Table II that two-qubit operations can be
achieved by using a “half” or parametrized basis gate set.
For example, data movement (SWAP) is 2x more costly on
superconducting qubits with an iISWAP basis gate than on
qubits with a v/iSWAP basis gate.

Here, we study basis gate decompositions using the
parametrized Cross-Resonance pulse C'R(f), which is the
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Fig. 9: Tomography on the target qubit in Cross-Resonance()
pulse. Results from both experiment and simulation agree with
ideal results. 41 x 3 x 2 x 1000 = 246k shots.

pulse-level hardware primitive on IBM devices. However, we
again emphasize that our compiler techniques immediately
generalize to any other basis gate decompositions.

As discussed in Section V, neither C'R(f) nor even
CR(90°) are exposed as standard basis gates. Our com-
piler first extracts the pulse for the C'R(90°) gate from the
cmd_def pulse schedule for the CNOT basis gate. Then,
to implement C'R(6) for arbitrary 6, we horizontally stretch
the C'R(90°), guided by knowledge of IBM’s specific “active
cancellation echo” implementation of the Cross-Resonance
pulse [67], [70].

Figure 9 shows our experimental results, which closely track
with the ideal curve. Given the successful implementation of
CR(0) at the pulse level, we added it as a new basis gate.

B. Application

As indicated by the last row of Table II, the “ZZ In-
teraction” two-qubit operation can be implemented using a
single CR(6) gate. By contrast, the “textbook” implementation
using standard basis gates requires two CNOTs. The CR(H)
decomposition is depicted below. While this decomposition is
fairly simple in hindsight, we discovered it computationally
using the optimization procedure mentioned in Section III-B.

CRy

46 97

£ (0)

To experimentally verify our ZZ Interaction technique, we
implemented it using both the standard compiler (i.e. CNOT,
R.(6), CNOT) and our optimized compiler (H, CR(0), H) for
0 spanning from 0° to 90° in 4.5° increments. As shown in
Figure 10, our compiler achieves better results, with a 60%
average reduction in error (state infidelity).
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Fig. 10: Experimental results for state fidelity, measured for
the ZZ Interaction by standard compilation vs. our optimized
compilation. These results reflect 21 x 2 x 2000 = 84k shots.
Standard and optimized have fidelities of 98.4% and 99.0%
respectively. Thus, our compiler achieves an average 60%
reduction in error for the ZZ Interaction.

As we will see in Section VIII’s Benchmark Results, the
77 Interaction is the most frequent two-qubit operation in
near-term algorithms. Thus, this optimization is the dominant
source of improvements in full benchmarks. Before contin-
uing, we re-iterate that our compiler passes (as discussed
in Section III-C) automatically identify ZZ Interactions in
user-code, even when obfuscated by false data dependencies.
Therefore, programmers may continue to write code using
“textbook” CNOT decompositions and do not need to reason
about device physics.

VII. OPTIMIZATION 4: QUDIT OPERATIONS

The gist of this optimization is that access to quantum
hardware at the pulse level enables us to control energy states
outside the qubit subspace. In particular, we can instead control
our information carriers as d-level qudits. We experimentally
demonstrate this idea, by introducing three augmented basis
gates for |0) < |1), |1) <> [2), and |2) <« |0), as well as
a measurement discriminator for the three qutrit states. This
enables us to implement a base-3 counter using a single qutrit,
a task that would be impossible with a single qubit and enables
using these energy states for more efficient gate decompo-
sitions [71]. The counter achieves high fidelity, suggesting
practical near-term applications.

A. Theory

Many quantum systems used to realize a qubit have other
energy levels present, which can be used to construct quantum
gates [72]-[74] or, as we demonstrate in this paper, to realize
d-level qudits. Substantial prior work observed an “informa-
tion” compression advantage from using 3-level qutrits or
higher level qudits [75], which has been further applied to
specific algorithms such as Grover search [76]-[79] and Shor
factoring [80]. More recent work [71] has even demonstrated
exponential gains from using qutrits to implement common
operations like the Generalized Toffoli.

However, across nearly all quantum hardware and associated
software, standard basis gates are only written to address the
qubit subspace of hardware. This is the case in part because the
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local oscillator described in Section III-A4 is set to oscillate
at the energy gap between the |0) and |1) energy states, fo;.
Since higher level states are separated by different energy
gaps, under normal operation, gates can only address this qubit
subspace.

However, we can circumvent this limitation by carefully
designing our pulse schedule. For example, suppose we want
to address the |1) to |2) transition subspace, whose energy gap
we denote as fi2 = fo1+a. Per Equation 1, applying a d;(t) =
e~ pulse yields a total output of e*/12¢. Thus, by designing a
frequency-shifting pulse schedule, we can change the effective
frequency of the local oscillator and target subspaces beyond
the |0) to |1) regime.

B. Application

By transitioning to these higher energy levels one at a time
we can realize a base-d “counter”. Not only is this a good
benchmark for qudit control, it has potential application in
both the near-term era and beyond. In the near-term era, parity
checks are commonplace [81] and a counter (modulo d) serves
this exact purpose. Qutrit measurement also enables error
mitigation by detecting accidental leakages outside the qubit
subspace [82], a technique that has immediate application to
error mitigation for near-term algorithms. Beyond the near-
term era, function evaluation oracles are ubiquitous and can be
sped up via a counter. For example, recent work demonstrated
that just a single qudit, acting as parity check, can implement
an oracle-based quantum algorithm [83].

Here we demonstrate the ability to implement a counter
via microwave control of a superconducting qubit, using two
transitions previously inaccessible by standard basis gates.
Specifically, we target the fi5 and fo2/2 transitions (bottom
right panel of Figure 11) which act on the |1) to |2) subspace
and the |0) to |2) subspace respectively. The required drive
strength and duration for these different transitions are dictated
by the inherent coupling between each of the levels of interest,
which is determined by the physics of the device. In the
case of the two photon f(o/2 transition, the coupling between
the |0) and |2) states is suppressed and thereby requires
larger drive powers than those needed for an X gate between
|0) — |1) transitions, with single photon powers around
Pone ~ 0.109a.u. and two photon powers of py, ~ 0.44a.u.,
each 35ns in duration. The fio frequency can be measured
either by applying an X gate on the |0) — |1) transition and
subsequently performing qubit spectroscopy, or by driving a
two photon fpo/2 transition and using the prior knowledge
of fo1 to determine fi2. Once the transition frequencies are
identified, we calibrate the proper amplitude and duration of
the pulses to fully switch the qubit to the desired final state.

To gauge the fidelity of our counter, we start off by training a
linear discriminator to identify the qutrit state upon readout. In
the case of this work, we train a sklearn [84] Linear Discrim-
inant Analysis classifier with the calibrated qutrit |0) , |1), |2)
states and corresponding resonator 1Q values (left panel of
Figure 11). Once these calibrations are made, we measure the
percentage of shots that have the qutrit in the |0) state at the
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Fig. 11: (Left Panel) IQ Plot of readout resonator for different
quantum states, and the specific cycle we follow. (Top Right)
Percentage of shots found in the ground state as a function
of the number of cycles. (Bottom Right) Different transition
frequencies for the first three energy levels of a superconduct-
ing qubit with 27 fp; ~ 5GHz and o ~-300MHz and a two
photon transition. These results span 150k experimental shots
on IBM Almaden.

end of the cycle. Due to imperfections in microwave control,
our results deviate from the ideal of 1.0 as the number of cycles
increase, making this an ideal testbed for further research such
as improved microwave control [85], [86] and optimal readout
parameters [87]. Nonetheless, the results indicate remarkably
high fidelity—we can drive 60 cycles or 180 hops, before
“dropout” exceeds 40%.

VIII. RESULTS AND DISCUSSION
A. Benchmarks

We applied our compiler towards full quantum algorithms.
Before proceeding, we note two thematic differences between
our treatment of experimental benchmarks and that done in
recent architectural work.

First, we focus exclusively on near-term algorithms. Some
recent work [13], [14], [88]-[90] demonstrated impressive
compiler optimizations for algorithms like Bernstein-Vazirani
[91], Hidden-Shift [92], Adders, and Quantum Fourier Trans-
form [93]. However, we emphasize that these algorithms
are not representative of near-term algorithms, which are
generally based on a Hamiltonian simulation kernel that
quantum computers can naturally compute efficiently. Hamil-
tonian simulation, and thus near-term algorithms broadly, are
dominated by the ZZ Interaction optimized in Section VI. We
specifically evaluated three types of near-term algorithms: (1)
Variational Quantum Eigensolver (VQE) [94], which addresses
minimum-eigenvalue problems such as molecular ground state
estimation; (2) Quantum Approximate Optimization Algo-
rithm (QAOA) [2], which approximates solutions to NP-Hard
combinatorial optimization problems; and (3) Hamiltonian Dy-
namics, which models molecular dynamics and was recently
adapted for near-term applications [95], [96].

Second, we use Hellinger error/distance (or its comple-
ment, Hellinger fidelity) as our top-level metric. Intuitively,
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Fig. 12: Reduction in error (Hellinger distance) for bench-
marks, due to our optimizations. These results reflect 6 x 2 x
8000 = 96k shots on IBM Almaden.

Hellinger error captures the distance between two probability
distributions: two identical distributions have the minimum
distance of 0 and two completely antipodal distributions have
the maximum distance of 1. Often, it is appealing to use Prob-
ability of Success (i.e. of finding the MAXCUT) as the top-
level metric for algorithms like QAOA-MAXCUT [97], [98].
However, QAOA is not intended to find the MAXCUT with
100% successful probability (otherwise it would solve NP-hard
problems in polynomial time), so a QAOA experiment with
100% “Probability of Success” would actually reflect high
error. Instead, QAOA is intended to compute a distribution
of measurement outcomes, within which bitstrings with large
cuts will have boosted probabilities. This motivates our use of
Hellinger error, and we urge subsequent experimental work to
also evaluate near-term algorithms on the basis of probability-
distribution distances.

B. Results

Figure 12 shows the reduction in error due to our optimiza-
tions. The H, and LiH VQE benchmarks replicate recent ex-
perimental work, [99] and [54] respectively. Both experiments
are based on the Unitary Coupled Cluster ansatz [100]. The
QAOA benchmarks compute MAXCUT on an N-qubit line
graph. The Hamiltonian dynamics simulation benchmarks both
simulate 6 Trotter steps. The methane and water Hamiltonians
were generated with OpenFermion [101], taking advantage of
orbital reductions to reduce the problems to two qubits.

For all six benchmarks, our optimized programs run with
much lower error (Hellinger distance/infidelity) between the
actual and target outcome distributions. The average error
reduction factor is 1.55x and the largest benchmark, 5 Qubit
QAOA, has a 2.32x reduction in error from 33.7% to 14.5%.
The majority of our error reduction stems from our opti-
mization of the ZZ Interaction by augmenting the basis gates
with direct access to the Cross-Resonance pulse. We focus on
Hellinger error because it is accepted in the quantum commu-
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nity as an (in)fidelity metric and has a “linear” interpretation.
The average 1.55x error reduction factor is comparable to a
year worth of hardware progress; of course, our method is
achievable now and is performed in software. Similar work for
QAOA was also recently demonstrated on Rigetti’s hardware,
using a parametrized XY interaction [102].

In addition to the six qubit benchmarks, we also ran the
qutrit incrementer in Section VII and demonstrated 60 cycles,
i.e. 180 increment operations, before “dropout” exceeds 40%.
This benchmark is unique, because it has no standard qubit
comparison—a single qubit cannot model a base-3 counter.
This high-fidelity qutrit control confirms that pulse-backed
basis gates offer a promising path towards qudit-based op-
timizations.

C. Source of Fidelity Improvements

The fidelity improvements presented here have three
sources:

1) Shorter pulses. Our compiler’s optimized pulses are

shorter: 2x shorter for the single qubit rotations in
Optimization 1, 24% shorter for open-CNOTs due to
Optimization 2, and ~2x shorter for ZZ interactions due
to Optimization 3. These lower operation latencies are
advantageous because qubits have less time to decohere.
Less calibration error susceptibility. DirectRx (6)
only applies one pre-calibrated (and then amplitude-
downscaled) pulse. By contrast, the standard decom-
position applies two pre-calibrated pulses, squaring the
impact of calibration imperfections.
Smaller pulse amplitudes. Our pulse shaping tech-
niques either vertically downscale amplitudes (Opti-
mization 1) or horizontally stretch pulses (Optimization
3). As such, our pulse amplitudes are smaller than or
equal to those generated by standard compilation. This is
beneficial because smaller pulse amplitudes have smaller
spectral components, reducing leakage to undesired fre-
quency sidebands—see Figure 14 in [37] for details.

Our experience indicates that all three of these sources
have meaningful contribution to the fidelity improvements.
To further understand our fidelity improvements and reduce
the impact of State Preparation and Measurement errors, we
performed a Randomized Benchmarking [103] style experi-
ment. In the experiment, we select K — 1 random single-
qubit unitary operations. We execute these K — 1 operations,
terminated with 1 final single-qubit operation that inverts
all of the preceding operations. Therefore, under noise-free
execution, the qubit returns to the initial state of |0) with 100%
probability. However, due to noise, error accumulates as we
increase K from 2 to 25.

Figure 13 presents our results, which ran over several hours
on IBM’s Armonk device. The optimized plot results from
compiling with Optimization 1: Direct Rotations. However,
to isolate the effect of shorter pulses, we also compiled
optimized-slow, which inserts NO-OP idling into the optimized
pulse schedules, to match the duration of the standard pulse
schedules.

2)

3)
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Fig. 13: Randomized Benchmarking style experiment, fit to
exponential decay. For each K, we randomized 5 sequences
of unitary operations. 5 x 24 x 3 x 8k = 2.88M total shots.

Each trajectory was fit to the exponential decay, f% — b,
where b is a y-intercept term that represents SPAM errors
independent of K, and f is interpreted as gate fidelity.
The resulting gate fidelities for optimized, optimized-slow,
and standard are f = 99.87%, 99.83%, and 99.82%. This
implies that shorter pulses (#1) account for 70% of the
fidelity improvement, while less susceptibility to calibration
imperfection (#2) and smaller pulse amplitudes (#3) account
for the remaining 30% improvement. The improvement due to
shorter pulses matches theoretical predictions: according to the
gate error in coherence limit calculation, the 2x pulse speedup
yields a minimum 0.01% fidelity improvement.

IX. CONCLUSION

Our results demonstrate that augmenting basis gates with
pulse backed hardware primitives, bootstrapped from existing
calibrations, leads to 1.6x error reductions and 2x speedups
for near-term algorithms. Critically, our technique does not
rely on knowledge of the system Hamiltonian, thus bypassing
the experimental barriers to quantum optimal control. The
measured fidelity improvements are equivalent to a year’s
worth of hardware progress, but our techniques are available
immediately, through software.

We hope that our experiences with OpenPulse will encour-
age more quantum vendors to expose their hardware to pulse-
level control. To this end, all of our code is available on Github
[11] and can be used to run optimized quantum programs
today. More broadly, our research suggests that hardware
vendors should revise their basis gates to align more closely
to what hardware can natively perform. On IBM systems, we
saw significant gains from making the two-qubit basis gate the
parametrized CR(0) instead of the fixed CNOT. Similar gains
can be achieved by exposing native two-qubit interactions—
especially parametrized ones—as basis gates.
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