
Systematic Crosstalk Mitigation for Superconducting

Qubits via Frequency-Aware Compilation

Yongshan Ding, Pranav Gokhale, Sophia Fuhui Lin

Richard Rines, Thomas Propson, and Frederic T. Chong

Department of Computer Science, University of Chicago, Chicago, IL 60615, USA

Abstract—One of the key challenges in current Noisy
Intermediate-Scale Quantum (NISQ) computers is to control a
quantum system with high-fidelity quantum gates. There are
many reasons a quantum gate can go wrong – for supercon-
ducting transmon qubits in particular, one major source of
gate error is the unwanted crosstalk between neighboring qubits
due to a phenomenon called frequency crowding. We motivate
a systematic approach for understanding and mitigating the
crosstalk noise when executing near-term quantum programs on
superconducting NISQ computers. We present a general soft-
ware solution to alleviate frequency crowding by systematically
tuning qubit frequencies according to input programs, trading
parallelism for higher gate fidelity when necessary. The net result
is that our work dramatically improves the crosstalk resilience
of tunable-qubit, fixed-coupler hardware, matching or surpassing
other more complex architectural designs such as tunable-coupler
systems. On NISQ benchmarks, we improve worst-case program
success rate by 13.3x on average, compared to existing traditional
serialization strategies.

Index Terms—quantum computing, error mitigation, compiler
optimization, superconducting qubit

I. INTRODUCTION

Current Noisy Intermediate-Scale Quantum (NISQ) com-

puters [2], [26], [27], [43], [52] aim to isolate and control a

non-trivial quantity of quantum bits (qubits) with high preci-

sion. Scaling up a quantum computer requires improvements

in both the quality of qubits (with longer lifetime) and the

quality of gates (with higher fidelity).

In case of superconducting transmon qubits [4], [25], [32],

which is the subject of this work, gate speeds have been

achieved three to four orders of magnitude faster than qubit

lifetime [3], [6], [12], [45]. Although fast gates are desirable;

they are prone to errors caused by imprecise control. Among

all sources of gate errors, crosstalk is the most dominant

[37], [38]. Errors caused by crosstalk, such as exchange of

excitation and leakage to non-computational states, are found

to have detrimental effect to quantum states, and such errors

can accumulate as we execute a program [3].

What is crosstalk? There is hardly a single precise noise

model that captures all aspects of crosstalk, but rather, it is a

combination of unwanted interactions between coupled qubits

on a quantum chip. This type of crosstalk noise prevails in

many leading architectures, including trapped ion and super-

conducting systems [13], [33], [41], [42]. For superconducting

Corresponding author: yongshan@uchicago.edu

Coupler Tunability

(harder to build)

Qubit Tunability

(harder to build)

Tunable Qubit

Fixed Coupler

Tunable Qubit

Tunable Coupler

Fixed Qubit

Fixed Coupler

IBM Q

GOOGLE SYCAMORETHIS WORK

Fixed Qubit

Tunable Coupler

Fig. 1. Technological design choices for mitigating crosstalk. Higher tun-
ability offers better control over the device, but induces higher fabrication
overhead and sensitivity to control noise. Our work targets a balanced design,
i.e. tunable qubits and fixed coupler, to achieve high program success rate via
software optimization of error mitigation.

transmon systems, two qubits interact with each other via

resonance of qubit frequency. Two main technology options

for avoiding accidental resonance of qubits are: i) to tune

qubit frequencies apart using tunable qubits; ii) to temporarily

disable connections between qubits using tunable couplers.

Fig. 1 illustrate the different design choices of leading QC

architectures. Current IBM Q systems [26] are built with fixed

qubit frequency and fixed coupling, relying on a scheduler to

avoid crosstalking gates [40]; Google’s architectures generally

use tunable qubits with either fixed coupler [3] or tunable

coupler [2].

Crosstalk noise is found to be highly dependent on the

interaction strength between the qubits. For instance, Fig. 2

shows the interaction between two connected (directly via a

capacitor) frequency-tunable transmon qubits [33]. Unless the

two qubit frequencies (ωA and ωB) are tuned sufficiently apart,

there remains some residual coupling between them, leading

to unwanted crosstalk.

When executing a quantum program, qubits are tuned dy-

namically to their assigned idle and interaction frequencies

to perform single-qubit gates and two-qubit gates, respec-

tively. As systems scale up and the frequency range becomes

crowded, choosing frequencies for all qubits becomes in-

creasingly challenging, necessitating compiler techniques for

tuning frequencies systematically and scheduling instructions

intelligently [17].

Fig. 3 is an overview of our approach. This work aims

201

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICRO50266.2020.00028

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on November 30,2020 at 08:14:37 UTC from IEEE Xplore. Restrictions apply.

when a pair of two-qubit gates (on connected qubits simul-

taneously) happened to use very close interaction frequencies,

as highlighted in Fig. 6. Section IV illustrates in details how

to understand and mitigate these types of crosstalk error.

III. RELATED WORK

A number of hardware features have been proposed to

help mitigate crosstalk: i) connectivity reduction, ii) qubit

frequency tuning, and iii) coupler tuning. In addition to

these hardware features, some software constraints are usually

imposed to effectively reduce crosstalk; for example, certain

operations may be prohibited to occur simultaneously.

Connectivity reduction works by building devices with

sparse connections between qubits, hence reducing the number

of possible crosstalk channels. This greatly increases the

circuit mapping and re-mapping overhead for executing a

logical circuit, since many SWAP gates are needed. Moreover,

this model necessitates an intelligent scheduler to serialize

operations to avoid crosstalk [40]. This strategy is commonly

deployed for fixed-frequency transmon architectures, e.g. from

IBM [26]. Because of their non-tunable nature, these architec-

tures have stringent constraints on the initial qubit frequency;

a number of optimizers are proposed for this issue [9], [35].

A second class of techniques rely on actively tuning qubit

frequencies to avoid crosstalk, featured in some prototypes

[25] and by Google [3]. Software can decide when to schedule

an instruction and which frequency to operate the instruction

at. In this class, [50] found a frequency assignment for the

surface code circuit; [24] suggests a sudoku-style pattern of

frequency assignment for cavity grid.

A third class builds not only frequency-tunable qubits but

also tunable couplers between qubits, termed “gmon” architec-

tures [11]. Without resorting to permanently reducing device

connectivity in hardware, a different subset of connections

are activated (via flux drives to the couplers) at different

time steps. As such, a schedule for when to activate couplers

is needed. After this work is submitted, [31] outlines the

frequency optimizer used in [2]. Our results show comparable

performance to [31] but with simpler hardware (no tunable

couplers). The control parameters used in [31] are hard to

predict, but in our evaluation, we include most of the leading

noises, e.g., decoherence, sidebands resonance, leakages, flux

noises, time overheads of flux tuning, etc.

Most previous studies on quantum program compilation

[20], [48] have largely targeted short program execution time

(i.e. low circuit depth), and neglected the impact of gate

errors such as crosstalk. Optimizations are performed at the

gate level, typically involving strategic qubit mapping and

instruction scheduling. Recent efforts [35], [40] are among

the first to explore architects’ role in mitigating crosstalk.

Our work here shows that frequency-tunable architecture

without connectivity reduction and without tunable couplers

(but with our software crosstalk mitigation) is competitive

against other architectures. The frequency-tunable but untun-

able coupler architecture is an optimization sweet spot. On

one end of the spectrum, fixed-frequency architectures have a

relatively constrained space for software optimization. On the

other end of the spectrum, requiring both qubit frequencies

and couplers to be tunable introduces higher overhead in

fabrication and higher control noises.

IV. SYSTEMATIC CROSSTALK MITIGATION

This work aims to demonstrate that systematic software

optimizations can dramatically mitigate crosstalk, utilizing a

variety of microarchitecture tunability features. These features

(such as different degree of tunability in qubits themselves

and their couplers) allow the hardware to be dynamically

configured to avoid crosstalk as program executes. We propose

frequency-aware software that reduces the chances of both

decoherence and crosstalk, via strategic frequency tuning and

instruction scheduling.

A. Understanding Crosstalk Constraints

Crosstalk mitigation is one of the major challenges in

scaling up superconducting quantum architectures. Each qubit

has a frequency ω01

q , as well as its associated higher-level

excitation frequency ω12

q , which is slightly smaller than ω01

q .

For qubit A and qubit B connected by a capacitor:

(i) when qubits are non-interacting (i.e. during Identity

or single-qubit gates), their idle frequencies should have

sufficient separation (e.g. ω01

A 6= ω01

B , ω01

A 6= ω12

B , and

ω12

A 6= ω01

B);

(ii) when implementing two-qubit gates, they should be

placed on resonance at interaction frequency (e.g. ω01

A =
ω01

B for iSWAP gate, and ω01

A = ω12

B or ω12

A = ω01

B for

CZ gate).

To avoid crosstalk, every pair of connected qubits must

be fabricated or tuned to idle frequencies that satisfy the

above constraints. However, each qubit can choose from a

limited range 1 of frequency spectrum. Furthermore, every

two-qubit gate needs an interaction frequency far enough from

those of its neighboring gates. This issue is termed frequency

crowding, because the frequencies grow increasingly crowded

and the above constraints become harder to satisfy, as systems

scale up and as programs use more parallelism. It is critical

to determine the assignment of frequencies that minimizes

unwanted crosstalk.

B. Frequency Tuning and Instruction Scheduling

To remedy this frequency crowding issue, we present a

systematic scheme that dynamically tunes the device and

schedules instructions according to input programs. Consider

the toy program in Fig. 6 as an example – we found that

a general recipe for avoiding crosstalk between two parallel

gates is to create sufficient separation: i) either in frequency,

ii) or in time.

In order to understand and mitigate the impact of crosstalk,

we begin with two simple observations: i) Every qubit (when

not interacting with others) needs to pick a 0-1 excitation

frequency sufficiently far apart from the 0-1 or 1-2 excitation

1For example, in a typical frequency-tunable transmon architecture, each
qubit can be tuned to frequency around 5 GHz to 7 GHz [2].

204

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on November 30,2020 at 08:14:37 UTC from IEEE Xplore. Restrictions apply.

+

Optimized circuit

Freq. Assignments

!"

!#

!$

!%

!"

!#

!$

!%

Device Mapped Quantum Circuit

High crosstalk High crosstalk

!"
!#

!$

!%

H H

&

Rz

Rx Rz

Rx

&

Rz

H H

H H

& & &

Low crosstalk: separate in frequency Low crosstalk: separate in time

Quantum Program

for i in range(1,5):
H(q[i])

CNOT(q[1], q[3])
CNOT(q[2], q[4])…

!"
!#
!$
!%

Time ('()

F
re

q
 (
G
H
z

)

(a) (b)

(c)

Fig. 6. (a) An example quantum program on four qubits. (b) The quantum program is mapped to a QC system of 2 × 2 qubits with nearest-neighbor
connectivity. In a quantum circuit, qubits are lines; gates are applied to the qubits from left to right. Highlighted in red are the parallel quantum gates with
high likelihood of crosstalk. (c) The optimized circuit and frequency assignment resulting from our compilation algorithm. Crosstalk is mitigated by avoiding
spectral and temporal collisions in the those gates.

frequencies of its neighbors. ii) The extend of tunability is

limited and there are few preferred operational frequencies

for each qubit. These two constraints are naturally in tension

with each other. The key is to balance the two.

To the best of our knowledge, this work is the first to

study strategies for systematically tuning qubit frequencies in

a program-aware fashion.

Throughout the remainder of this paper, we explore

crosstalk on a flux-tunable transmon architecture with 2-D

mesh-like connectivity. Nonetheless, the input to our algorithm

can be any arbitrary device topology; hence the crosstalk

mitigation techniques we introduce here are applicable to

all types of device connectivity, as showed quantitatively in

Section VII-F.

C. Resolving Frequency Crowding via Graph Coloring

This section will focus on two types of graphs: i) the

device connectivity graph, and ii) the crosstalk graph. For

each of these two graphs, we will define formally and illustrate

how coloring them can effectively reduce crowding of qubit

frequencies.

1) Idle Frequencies and Connectivity Graph: Qubit con-

nectivity is an important characteristic of a quantum device,

as it describes the pairs of qubits between which a two-qubit

gate can be directly performed. For completeness, we revisit

the definition of a connectivity graph: In a connectivity graph

Gc, each vertex is a qubit, every edge is a coupling between the

two qubits, e.g. a capacitor in the frequency-tunable transmon

architecture.

When the qubits are idle (i.e. not interacting with any other

qubits), we want to avoid collision of frequencies for every

pair of connected qubits. Therefore, we park the qubits at

“idle frequencies”. To avoid collisions in idle frequencies, it

is equivalent to coloring the connectivity graph where no two

end-points of an edge share the same color. If a connectivity

graph is colorable by c colors, then we need only c frequency

values {ω0, ω1, . . . , ωc−1} to keep idle qubits from interacting

If the separation between the c frequencies are large enough

(i.e. any |ωi − ωj | sufficiently larger than the anharmonicity),

then the higher-energy excitation frequencies are also well

separated from the other frequencies, reducing interactions

through the leakage channel as well. This strategy works well

for simple connectivity graphs like the 2-D mesh, because the

2-D mesh is bipartite and thus 2-colorable. We also test the

general applicability of our algorithm on different choices of

device connectivity.

2) Interaction Frequencies and Crosstalk Graph: Two-

qubit gates are implemented by bringing the two qubits on

resonance at some “interaction frequency”. Any other qubits

nearby should be tuned off-resonance from that frequency to

avoid unwanted interactions. We define the crosstalk graph

to exactly match this constraint. The crosstalk graph Gx of

a connectivity graph Gc represent the potential crosstalk that

could happen between qubits, which must be addressed by

frequency tuning. Here we describe how to construct the

crosstalk graph Gx:

(i) Derive the line graph2 GL of the connectivity graph Gc.

(ii) Connect two vertices in GL if the corresponding two

2A line graph of a graph G maps each edge in G to a vertex, and two
vertices are connected if the two edges in G share a same vertex. [23]

205

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on November 30,2020 at 08:14:37 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Frequency-Aware Compilation

1: d← crosstalk distance parameter
2: Gc ← connectivity graph of the device D
3: G← gen crosstalk graph(D, d)
4: Cc ← coloring(Gc)
5: Ωc ← colors in Cc are mapped to parking frequencies
6: P ← decompose input program P into primitive gates
7: S ← first layer (time step) of program P
8: Q← ∅

9: while S non empty do
10: I ← ∅

11: S ← sort S by criticality
12: for gate in S do
13: if not noise conflict(gate, I) then
14: I ← I ∪ {gate}
15: end if
16: end for
17: E ← collect relevant two-qubit gates in I
18: H ← subgraph(G,E)
19: C ← coloring(H)
20: Ω← smt find(C)
21: S ← (S \ I) ∪ {next layer of P}
22: F ← qubit frequencies for this cycle based on Ωc and Ω
23: Q← Q ∪ {(I, F)}
24: end while
25: return Q

Algorithm 2 gen crosstalk graph

1: Gc ← connectivity graph of the device D
2: G← networkx.line graph(Gc)
3: S ← ∅

4: for pair of nodes (e1, e2) in Gℓ do
5: (u1, v1)← pair of qubits for e1
6: (u2, v2)← pair of qubits for e2
7: cond← dist(u1, u2) ≤ d or dist(u1, v2) ≤ d
8: cond← cond or dist(v1, u2) ≤ d or dist(v1, v2) ≤ d
9: if cond then

10: S ← S ∪ {(e1, e2)}
11: end if
12: end for
13: G.add edges from(S)
14: return G

analyze and systematically mitigate crosstalk errors due to

frequency crowding.

2) Circuit Slicing and Subgraph Coloring: One of the

major advantages of our approach is in producing a dynamic

frequency assignment tailored for each input program. This

wins over a static (program independent) frequency assign-

ment because frequencies are substantially less crowded when

only considering a subset of couplings between qubits that are

“active” for a given time step. Here active couplings refers to

only those pairs of qubits currently involved in two-qubit gates.

We identify the active subgraph H of the crosstalk graph G,

by profiling the two-qubit gates in one time step. The (vertex)

coloring of H , denoted as C, is an assignment of labels

(called colors) for the vertices of H such that no two adjacent

vertices share the same color, while minimizing the number

of colors in total. Graph coloring is known to be an NP-

complete problem; section VII-C shows how we maintained

efficiency. In our optimization, we apply a polynomial-time

greedy approximation, the Welsh-Powell algorithm [51], to

color the active subgraph.

As a result, a feasible coloring of H yields a set of

non-colliding interaction frequencies for the two-qubit gates.

Qubits that undergo Identity or single-qubit gates are

parked at idle frequencies, determined by coloring the device

connectivity graph. In the next section, we describe how to

map from a coloring to a frequency assignment via a SMT

solver.

3) SMT Solver Optimization: The mapping from colors C
to frequencies Ω is reduced to a constrained optimization

problem. The objective is to assign |C| frequencies within

some range [ωlo, ωhi], satisfying the crosstalk constraints in

Section IV-A. We use a SMT solver to find a feasible solution

with the following constraints.

∀c ∈ C,ωlo ≤ xc ≤ ωhi, (1)

∀xci ,xcj , |xci − xcj | ≥ δ, (2)

|xci + α− xcj | ≥ δ, (3)

where α is the anharmonicity, and δ is a threshold. Then,

smt_find uses a simple binary search to find the maximum

threshold δ, for which a feasible solution exists. We ensure

the efficiency of the procedure by keeping |C| small.

Once the optimal solution is found, a one-to-one mapping

from C to Ω is enforced by a total ordering, motivated by

the fact that higher interaction frequency value would yield

faster gate time, i.e., tgate ∼ 1/ω [33]. In particular, let us

denote n(c) as the number of times c appear in C and ω(c)
as the frequency value to which c maps. We dictate that,

for any ci, cj ∈ C, if n(ci) ≥ n(cj) then ω(ci) ≥ ω(cj).
The following section details how the frequency ranges are

determined.

4) Frequency Partitioning: We partition the range of tun-

able frequency spectrum into three regions: interaction region,

exclusion region, and parking region. Similar partitioning

strategies has been studied for surface code error correction

circuits [50]. This allows us to decouple the idle frequency

assignment from that of the interaction frequency. For a real-

istic frequency-tunable transmon, the tunable range is typically

just a few GHz. So a reasonable design would use a partition

with 1 GHz interaction region, 0.5 GHz exclusion region,

and 1 GHz parking region. By this design, no frequency is

assigned in the exclusion region (which are most sensitive

to flux noise), preventing idle qubits from interacting with

iswap/cphase qubits.

The interaction frequencies are determined using the color-

ing C for H . This is a two-step process. First, each coupling

in H (that is a pair of qubits performing a two-qubit gate)

gets assigned a color c ∈ C corresponds to an interaction

frequency. Second, qubits that appear in its complement G\H
remain in their parking frequencies.

5) Hybrid Circuit Decomposition: To implement a two-

qubit gate that is not directly supported by the frequency-

tunable transmon architecture, we need to decompose it into

a series of native gates. Two commonly used two-qubit gates

207

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on November 30,2020 at 08:14:37 UTC from IEEE Xplore. Restrictions apply.

=

=

=

=

"#

"$ "#

"$

"#

"#

"#

"$
%

"$
%

"&

"&

"&
%

"&
%

' '

'

'

' '

'

'

((

(((

(a)

(b)

(c)

(d)

Fig. 8. (a): The CNOT gate, decomposed with iSWAP. (b): The SWAP gate,

decomposed with
√
iSWAP. (c): The CNOT gate, decomposed with CZ. (d):

The SWAP gate, decomposed with CZ.

in quantum programs are the CNOT gate and the SWAP gate,

because they implement relatively simple Boolean logic. Fig. 8

shows that they can be decomposed into iSWAP (or
√
iSWAP)

and CZ gates.

The strategy for circuit decomposition can affect perfor-

mance. Compared to decomposing all the two-qubit gates

in a circuit with one type of native gates, hybrid strategies

can help achieve better fidelity. A simple hybrid strategy is

to decompose CNOT gates with CZ, and SWAP gates with√
iSWAP. As depicted in Fig. 8, this strategy is advantageous

because CNOT (SWAP) is cheaper to implement with CZ

(
√
iSWAP) gates than with

√
iSWAP (CZ) gates.

6) Noise-Aware Queueing Scheduler: Finally, parallelism

is another crucial concern in our algorithm – on one hand,

parallelism helps shorten the circuit execution time, reducing

chances of decoherence; on the other hand, it crowds the

interaction frequency range, increasing chances of crosstalk.

Our noise-aware queueing scheduler finds a sweet spot by

strategically serializing gates that are likely to cause crosstalk.

In algorithm 1 (line 9-16), gates are delayed based on their

criticality and potential noise conflicts. Criticality of a gate

is its position along the program critical path, calculated

by profiling the input program during circuit slicing on line

7. Function noise_conflict predicts potential crosstalk:

when scheduling g (e.g. CNOT(q1,q2)), if too many of its

neighbors in the crosstalk graph are already in I , then their

interaction frequencies are likely very close, so we postpone

g for the next time step. Serialization is done conservatively

while maintaining minimal impact on the critical path length of

the program (that is the circuit depth). This greedy scheduling

approach is shown to be effective in balancing crosstalk and

decoherence.

VI. EVALUATION

A. Tuning and Scheduling Baselines

We test the performance of our frequency-aware compi-

lation algorithm (i.e. ColorDynamic) in comparison to four

TABLE I
LIST OF ALGORITHMS USED IN OUR EVALUATION

Algorithms Microarch. Features

Baseline N
Tunable transmon, fixed coupler, Qiskit [1]
scheduler

Baseline G
Tunable transmon, tunable coupler, tiling
scheduler

Baseline U
Tunable transmon (with single interaction
frequency), fixed coupler, serial scheduler

Baseline S
Tunable transmon, fixed coupler,
crosstalk-aware scheduler

ColorDynamic
Tunable transmon, fixed coupler,
crosstalk-aware scheduler

baselines, Baseline N (naive), Baseline G (gmon), Baseline

U (uniform), and Baseline S (static), shown in Table I;

they represent strategies of frequency tuning and instruction

scheduling from leading industry architectures.

Baseline N: Naive Compilation. A conventional crosstalk-

unaware compilation algorithm. Qubits are assigned with

separated idle and interaction frequencies.

Baseline G: Gmon with Tunable Coupler. This base-

line has advanced hardware requirements to activate cou-

plers – the “gmon” architecture, implemented in Google’s

recent Sycamore quantum architectures [2], takes advantage

of both tunable qubit and tunable coupling features to mitigate

crosstalk. On the flip side, the flux-tunable coupler would incur

fabrication overheads, and introduce extra sensitivity to flux

noise. We reconstruct and evaluate a gmon-like architecture

where the couplers are activated following the same pattern

used for Sycamore, and idle and interaction frequencies match

exactly the reported values in [2].

Baseline U: Uniform Frequency with Serialization. This

baseline relies on serialization to avoid crosstalk, similar to

[26], [40]. All two-qubit gates share one common interaction

frequency ωint, demonstrating the impact of serialization.

Baseline S: Static Frequency-Aware Compilation. Baseline

S optimizes the idle and interaction frequencies independent

of input programs, producing a static set of optimized values.

Most crosstalk-aware optimizers perform this type of static

optimization [2], [50].

ColorDynamic: Program-specific Frequency-Aware Com-

pilation. This is the pinnacle of our work. Instead of finding

a static interaction frequency solution for all programs, Color-

Dynamic returns optimized frequencies for each time step of a

program. It combines all optimizations in Algorithm 1, includ-

ing circuit slicing, strategical decomposition and serialization,

graph coloring, and SMT solvers.

B. Benchmarks

We study the performance of our algorithm through a variety

of NISQ benchmarks, shown in Table II. These benchmarks

are among the best known applications for near-term quantum

machines. We also include circuits for benchmarking simul-

208

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on November 30,2020 at 08:14:37 UTC from IEEE Xplore. Restrictions apply.

taneous quantum gates to demonstrate the impact of crosstalk

on the fidelity of those gates [2].

In our evaluation, we vary number of qubits n = 4, 9, 16, 25.

These circuits are of most interest, because the range of

crosstalk is typically localized, as shown in Fig. 7.

TABLE II
LIST OF BENCHMARKS USED IN OUR EVALUATION

Benchmarks Descriptions

BV(n) Bernstein-Varzirani (BV) algorithm on n qubits [7]

QAOA(n)

Quantum Approximate Optimization Algorithm
(QAOA) [19] for MAX-CUT on an Erdos-Renyi
random graph with n vertices

ISING(n)
Linear Ising model simulation of spin chain of
length n [6]

QGAN(n)
Quantum Generative Adversarial Network (QGAN)
with training data of dimentsion 2

n [36]

XEB(n, p)
Cross entropy benchmarking circuit for calibrating
two-qubit gates on n qubits with p cycles [2]

C. Experimental Setup

Software implementation: Our compilation algorithms are

implemented in Python 3.7, interfacing the IBM Qiskit

software library [1]. The graph coloring optimization uses

greedy_coloring in NetworkX library [22], and the

SMT optimization uses Z3 solver [15] through the Z3py

APIs. All compilation experiments use Intel E5-2680v4

(2.4GHz, 64GB RAM).

Architectural features: We consider a 2D grid of N × N
asymmetric frequency-tunable transmons, each having maxi-

mum frequencies ωq (in GHz) sampled from Gaussian dis-

tribution: Ω ∼ N (ω, 0.1), with nearly constant aharmonicity

α/2π = (ω12 − ω01)/2π ≈ 200 MHz, to account for

realistic variation in fabrication and initial detuning. Any

pair of nearest-neighbor qubits are directly connected with a

capacitor; the coupling strength g depends on the frequencies

of the qubits, which is typically around g/2π ≈ 30 MHz. For

gmon-like experiments, qubits are connected by flux-tunable

couplers, each with its own independent external magnetic flux

control. These parameters are set to realistic values in line with

experimental data from the literature [29].

Metrics: For our compilation experiments, we need to

efficiently compute the program success rate – we define a

heuristic for efficiently estimating the worst case success rate

of a program under crosstalk and decoherence noises.

Psuccess = Πg∈G(1− ǫg) ·Πq∈Q(1− ǫq) (4)

where ǫg is the crosstalk gate error, and ǫq is qubit decoherence

error. Details on ǫg can be found in Appendix B, equation 6;

ǫq is captured by modeling T1 and T2 during idle or gate time,

as studied in [29]. A similar metric to Psuccess is used in [2],

[53].

Besides being efficiently computable, this heuristic has

useful operational significance – we can understand and

mitigate the worst-case impact of crosstalk and decoherence

on the systems during compile-time or run-time of quantum

programs. Of course, to gain full knowledge of the crosstalk

and decoherence errors, we need full noisy circuit simulation,

which quickly becomes intractable as circuit size grows be-

yond tens of qubits. Hence, we validate the heuristic estimator

on small-scale circuits, for which noisy circuit simulation is

possible.

VII. RESULTS

A. Program Success Rate

Fig. 9 shows worst-case overall success rate, estimated using

our heuristic equation 4. Note that statistics, such as those from

qaoa(16) and ising(16) circuits, are excluded from the

analysis due to their estimated success rates being lower than

10−4. Baseline N is crosstalk-unaware; as a result, crosstalk

has detrimental impact on program success rates for any circuit

with parallel two-qubit gates on adjacent qubits, as shown in

Fig. 9. ColorDynamic achieves comparable performance to

Baseline G but with simpler hardware (no tunable couplers).

Results for Baseline G in Fig. 9 is a conservative estimate,

assuming couplers can be deactivated perfectly. We study the

effect of residual coupling in Fig. 12. Compared to Baseline U

(with serialization), ColorDynamic consistently outperforms,

achieving 13.3x better success rate on average. Compared to

Baseline S, across all benchmarks, ColorDynamic outperforms

static strategies because it is able to exploit program structures

and assign frequencies tailored for every layer of the program.

B. Impact on Serialization

Fig. 10 compares the resulting program depth and deco-

herence error across algorithms. Although serialization can

effectively prevent gates from crosstalk (commonly adopted

such as for IBM’s fixed-frequency qubits), it results in deeper

circuits (i.e. longer execution time), which consequently im-

plies higher qubit decoherence. Overall, baseline U requires

the most amount of serialization. ColorDynamic produces

1.02x average decoherence error, compared to baseline G,

and 0.90x average decoherence error, compared to baseline

U. Lower decoherence error is desirable when executing on

NISQ hardware.

C. Scalability and Complexity

Globally optimizing for the best frequency configuration

based on device and program characteristics is challenging;

our approach breaks the optimization problem into multiple

scalable sub-problems. ColorDynamic keeps the complexity

of each sub-problem small, trading off program parallelism

for optimization complexity when necessary. In particular,

the leading costs stem from coloring of crosstalk graphs and

application of SMT solvers.

The greedy coloring algorithm takes time polynomially in

the graph size, which is kept small thanks to circuit slicing

and strategic serialization. The number of variables/constraints

in the SMT solver is proportional to the number of colors

obtained from coloring; in the next section, we demonstrate

that the number of colors remains small. Empirically, we report

209

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on November 30,2020 at 08:14:37 UTC from IEEE Xplore. Restrictions apply.

S. Hu, W. Hu, H. Imai, T. Imamichi, K. Ishizaki, R. Iten, T. Itoko,
A. Javadi-Abhari, Jessica, K. Johns, T. Kachmann, N. Kanazawa, Kang-
Bae, A. Karazeev, P. Kassebaum, S. King, Knabberjoe, A. Kovyrshin,
V. Krishnan, K. Krsulich, G. Kus, R. LaRose, R. Lambert, J. Latone,
S. Lawrence, D. Liu, P. Liu, Y. Maeng, A. Malyshev, J. Marecek,
M. Marques, D. Mathews, A. Matsuo, D. T. McClure, C. McGarry,
D. McKay, D. McPherson, S. Meesala, M. Mevissen, A. Mezzacapo,
R. Midha, Z. Minev, A. Mitchell, N. Moll, M. D. Mooring, R. Morales,
N. Moran, P. Murali, J. Müggenburg, D. Nadlinger, G. Nannicini,
P. Nation, Y. Naveh, P. Neuweiler, P. Niroula, H. Norlen, L. J. O’Riordan,
O. Ogunbayo, P. Ollitrault, S. Oud, D. Padilha, H. Paik, S. Perriello,
A. Phan, M. Pistoia, A. Pozas-iKerstjens, V. Prutyanov, D. Puzzuoli,
J. Pérez, Quintiii, R. Raymond, R. M.-C. Redondo, M. Reuter, J. Rice,
D. M. Rodrı́guez, M. Rossmannek, M. Ryu, T. SAPV, SamFerracin,
M. Sandberg, N. Sathaye, B. Schmitt, C. Schnabel, Z. Schoenfeld, T. L.
Scholten, E. Schoute, J. Schwarm, I. F. Sertage, K. Setia, N. Shammah,
Y. Shi, A. Silva, A. Simonetto, N. Singstock, Y. Siraichi, I. Sitdikov,
S. Sivarajah, M. B. Sletfjerding, J. A. Smolin, M. Soeken, I. O. Sokolov,
SooluThomas, D. Steenken, M. Stypulkoski, J. Suen, H. Takahashi,
I. Tavernelli, C. Taylor, P. Taylour, S. Thomas, M. Tillet, M. Tod,
E. de la Torre, K. Trabing, M. Treinish, TrishaPe, W. Turner, Y. Vaknin,
C. R. Valcarce, F. Varchon, A. C. Vazquez, D. Vogt-Lee, C. Vuillot,
J. Weaver, R. Wieczorek, J. A. Wildstrom, R. Wille, E. Winston, J. J.
Woehr, S. Woerner, R. Woo, C. J. Wood, R. Wood, S. Wood, J. Wootton,
D. Yeralin, R. Young, J. Yu, C. Zachow, L. Zdanski, C. Zoufal, Zoufalc,
azulehner, bcamorrison, brandhsn, chlorophyll zz, dan1pal, dime10,
drholmie, elfrocampeador, faisaldebouni, fanizzamarco, gruu, kanejess,
klinvill, kurarrr, lerongil, ma5x, merav aharoni, ordmoj, sethmerkel,
strickroman, sumitpuri, tigerjack, toural, vvilpas, welien, willhbang,
yang.luh, yelojakit, and yotamvakninibm, “Qiskit: An open-source
framework for quantum computing,” 2019.

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell et al., “Quantum
supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505–510, 2019.

[3] R. Barends, C. Quintana, A. Petukhov, Y. Chen, D. Kafri, K. Kechedzhi,
R. Collins, O. Naaman, S. Boixo, F. Arute et al., “Diabatic gates for
frequency-tunable superconducting qubits,” Physical Review Letters, vol.
123, no. 21, p. 210501, 2019.

[4] R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin,
B. Chiaro, J. Mutus, C. Neill et al., “Coherent josephson qubit suitable
for scalable quantum integrated circuits,” Physical review letters, vol.
111, no. 8, p. 080502, 2013.

[5] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C.
White, J. Mutus, A. G. Fowler, B. Campbell et al., “Superconducting
quantum circuits at the surface code threshold for fault tolerance,”
Nature, vol. 508, no. 7497, pp. 500–503, 2014.

[6] R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo,
U. Las Heras, R. Babbush, A. G. Fowler, B. Campbell, Y. Chen et al.,
“Digitized adiabatic quantum computing with a superconducting circuit,”
Nature, vol. 534, no. 7606, pp. 222–226, 2016.

[7] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM

Journal on computing, vol. 26, no. 5, pp. 1411–1473, 1997.

[8] N. Bjørner, A.-D. Phan, and L. Fleckenstein, “νz-an optimizing smt
solver,” in International Conference on Tools and Algorithms for the

Construction and Analysis of Systems. Springer, 2015, pp. 194–199.

[9] M. Brink, J. M. Chow, J. Hertzberg, E. Magesan, and S. Rosenblatt,
“Device challenges for near term superconducting quantum processors:
frequency collisions,” in 2018 IEEE International Electron Devices

Meeting (IEDM). IEEE, 2018, pp. 6–1.

[10] S. Caldwell, N. Didier, C. Ryan, E. Sete, A. Hudson, P. Karalekas,
R. Manenti, M. da Silva, R. Sinclair, E. Acala et al., “Parametrically
activated entangling gates using transmon qubits,” Physical Review

Applied, vol. 10, no. 3, p. 034050, 2018.

[11] Y. Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends, J. Kelly,
B. Campbell, Z. Chen, B. Chiaro et al., “Qubit architecture with high
coherence and fast tunable coupling,” Physical review letters, vol. 113,
no. 22, p. 220502, 2014.

[12] A. D. Córcoles, E. Magesan, S. J. Srinivasan, A. W. Cross, M. Steffen,
J. M. Gambetta, and J. M. Chow, “Demonstration of a quantum error
detection code using a square lattice of four superconducting qubits,”
Nature communications, vol. 6, no. 1, pp. 1–10, 2015.

[13] D. A. Craik, N. Linke, M. Sepiol, T. Harty, J. Goodwin, C. Ballance,
D. Stacey, A. Steane, D. Lucas, and D. Allcock, “High-fidelity spatial

and polarization addressing of ca+ 43 qubits using near-field microwave
control,” Physical Review A, vol. 95, no. 2, p. 022337, 2017.

[14] W. J. Dally, “Express cubes: Improving the performance ofk-ary n-cube
interconnection networks,” IEEE Transactions on Computers, vol. 40,
no. 9, pp. 1016–1023, 1991.

[15] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-

national conference on Tools and Algorithms for the Construction and

Analysis of Systems. Springer, 2008, pp. 337–340.

[16] L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson,
D. Schuster, J. Majer, A. Blais, L. Frunzio, S. Girvin et al., “Demonstra-
tion of two-qubit algorithms with a superconducting quantum processor,”
Nature, vol. 460, no. 7252, pp. 240–244, 2009.

[17] Y. Ding and F. T. Chong, “Quantum computer systems: Research for
noisy intermediate-scale quantum computers,” Synthesis Lectures on

Computer Architecture, vol. 15, no. 2, pp. 1–227, 2020.

[18] Y. Ding, P. Gokhale, T. Propson, C. Winkler, and S. F. Lin,
“FastSC: Frequency-Aware Synthesis Toolbox for Superconducting
Quantum Computers,” https://github.com/yongshanding/FastSC, EPiQC,
Aug 2020.

[19] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[20] P. Gokhale, Y. Ding, T. Propson, C. Winkler, N. Leung, Y. Shi,
D. I. Schuster, H. Hoffmann, and F. T. Chong, “Partial compilation of
variational algorithms for noisy intermediate-scale quantum machines,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium

on Microarchitecture, 2019, pp. 266–278.

[21] P. Gokhale, A. Javadi-Abhari, N. Earnest, Y. Shi, and F. T. Chong, “Op-
timized quantum compilation for near-term algorithms with openpulse,”
arXiv preprint arXiv:2004.11205, 2020.

[22] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[23] F. Harary and R. Z. Norman, “Some properties of line digraphs,”
Rendiconti del Circolo Matematico di Palermo, vol. 9, no. 2, pp. 161–
168, 1960.

[24] F. Helmer, M. Mariantoni, A. G. Fowler, J. von Delft, E. Solano,
and F. Marquardt, “Cavity grid for scalable quantum computation with
superconducting circuits,” EPL (Europhysics Letters), vol. 85, no. 5, p.
50007, 2009.

[25] M. Hutchings, J. B. Hertzberg, Y. Liu, N. T. Bronn, G. A. Keefe,
M. Brink, J. M. Chow, and B. Plourde, “Tunable superconducting qubits
with flux-independent coherence,” Physical Review Applied, vol. 8,
no. 4, p. 044003, 2017.

[26] “Quantum Takes Flight: Moving from Laboratory Demonstrations
to Building Systems,” https://www.ibm.com/blogs/research/2020/01/
quantum-volume-32/, accessed: 2020-04-05.

[27] “Intel Introduces ‘Horse Ridge’ to Enable Commercially
Viable Quantum Computers,” https://newsroom.intel.com/news/
intel-introduces-horse-ridge-enable-commercially-viable-quantum-computers/
#gs.2es8bu, accessed: 2020-04-05.

[28] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White,
D. Sank, J. Y. Mutus, B. Campbell, Y. Chen et al., “State preservation by
repetitive error detection in a superconducting quantum circuit,” Nature,
vol. 519, no. 7541, pp. 66–69, 2015.

[29] M. Kjaergaard, M. Schwartz, A. Greene, G. Samach, A. Bengtsson,
M. O’Keeffe, C. McNally, J. Braumüller, D. Kim, P. Krantz et al.,
“A quantum instruction set implemented on a superconducting quantum
processor,” arXiv preprint arXiv:2001.08838, 2020.

[30] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang,
S. Gustavsson, and W. D. Oliver, “Superconducting qubits: Current state
of play,” Annual Review of Condensed Matter Physics, vol. 11, pp. 369–
395, 2020.

[31] P. V. Klimov, J. Kelly, J. M. Martinis, and H. Neven, “The snake
optimizer for learning quantum processor control parameters,” arXiv

preprint arXiv:2006.04594, 2020.

[32] J. Koch, M. Y. Terri, J. Gambetta, A. A. Houck, D. Schuster, J. Majer,
A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Charge-
insensitive qubit design derived from the cooper pair box,” Physical

Review A, vol. 76, no. 4, p. 042319, 2007.

[33] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and
W. D. Oliver, “A quantum engineer’s guide to superconducting qubits,”
Applied Physics Reviews, vol. 6, no. 2, p. 021318, 2019.

[34] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem
for nisq-era quantum devices,” in Proceedings of the Twenty-Fourth

213

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on November 30,2020 at 08:14:37 UTC from IEEE Xplore. Restrictions apply.

International Conference on Architectural Support for Programming

Languages and Operating Systems, 2019, pp. 1001–1014.
[35] ——, “Towards efficient superconducting quantum processor architec-

ture design,” in Proceedings of the Twenty-Fifth International Con-

ference on Architectural Support for Programming Languages and

Operating Systems, 2020, pp. 1031–1045.
[36] S. Lloyd and C. Weedbrook, “Quantum generative adversarial learning,”

Physical review letters, vol. 121, no. 4, p. 040502, 2018.
[37] D. C. McKay, S. Sheldon, J. A. Smolin, J. M. Chow, and J. M. Gambetta,

“Three-qubit randomized benchmarking,” Physical review letters, vol.
122, no. 20, p. 200502, 2019.

[38] P. Mundada, G. Zhang, T. Hazard, and A. Houck, “Suppression of qubit
crosstalk in a tunable coupling superconducting circuit,” Physical Review

Applied, vol. 12, no. 5, p. 054023, 2019.
[39] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi,

“Noise-adaptive compiler mappings for noisy intermediate-scale quan-
tum computers,” in Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and

Operating Systems, 2019, pp. 1015–1029.
[40] P. Murali, D. C. McKay, M. Martonosi, and A. Javadi-Abhari, “Software

mitigation of crosstalk on noisy intermediate-scale quantum computers,”
arXiv preprint arXiv:2001.02826, 2020.

[41] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyan-
skiy, A. Megrant, B. Chiaro, A. Dunsworth, K. Arya et al., “A blueprint
for demonstrating quantum supremacy with superconducting qubits,”
Science, vol. 360, no. 6385, pp. 195–199, 2018.

[42] C. Ospelkaus, C. E. Langer, J. M. Amini, K. R. Brown, D. Leibfried, and
D. J. Wineland, “Trapped-ion quantum logic gates based on oscillating
magnetic fields,” Physical review letters, vol. 101, no. 9, p. 090502,
2008.

[43] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, p. 79, 2018.

[44] M. Reagor, C. B. Osborn, N. Tezak, A. Staley, G. Prawiroatmodjo,
M. Scheer, N. Alidoust, E. A. Sete, N. Didier, M. P. da Silva et al.,
“Demonstration of universal parametric entangling gates on a multi-
qubit lattice,” Science advances, vol. 4, no. 2, p. eaao3603, 2018.

[45] M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M.
Girvin, and R. J. Schoelkopf, “Realization of three-qubit quantum error
correction with superconducting circuits,” Nature, vol. 482, no. 7385,
pp. 382–385, 2012.

[46] M. Rol, F. Battistel, F. Malinowski, C. Bultink, B. Tarasinski, R. Vollmer,
N. Haider, N. Muthusubramanian, A. Bruno, B. Terhal et al., “Fast, high-
fidelity conditional-phase gate exploiting leakage interference in weakly
anharmonic superconducting qubits,” Physical review letters, vol. 123,
no. 12, p. 120502, 2019.

[47] S. Sheldon, E. Magesan, J. M. Chow, and J. M. Gambetta, “Procedure for
systematically tuning up cross-talk in the cross-resonance gate,” Physical

Review A, vol. 93, no. 6, p. 060302, 2016.
[48] Y. Shi, N. Leung, P. Gokhale, Z. Rossi, D. I. Schuster, H. Hoffmann,

and F. T. Chong, “Optimized compilation of aggregated instructions
for realistic quantum computers,” in Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Programming

Languages and Operating Systems, 2019, pp. 1031–1044.
[49] S. S. Tannu and M. K. Qureshi, “A case for variability-aware policies for

nisq-era quantum computers,” arXiv preprint arXiv:1805.10224, 2018.
[50] R. Versluis, S. Poletto, N. Khammassi, B. Tarasinski, N. Haider,

D. Michalak, A. Bruno, K. Bertels, and L. DiCarlo, “Scalable quantum
circuit and control for a superconducting surface code,” Physical Review

Applied, vol. 8, no. 3, p. 034021, 2017.
[51] D. J. Welsh and M. B. Powell, “An upper bound for the chromatic

number of a graph and its application to timetabling problems,” The

Computer Journal, vol. 10, no. 1, pp. 85–86, 1967.
[52] K. Wright, K. Beck, S. Debnath, J. Amini, Y. Nam, N. Grzesiak, J.-S.

Chen, N. Pisenti, M. Chmielewski, C. Collins et al., “Benchmarking an
11-qubit quantum computer,” Nature Communications, vol. 10, no. 1,
pp. 1–6, 2019.

[53] A. Zlokapa, S. Boixo, and D. Lidar, “Boundaries of quantum supremacy
via random circuit sampling,” arXiv preprint arXiv:2005.02464, 2020.

214

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on November 30,2020 at 08:14:37 UTC from IEEE Xplore. Restrictions apply.

