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Abstract—Current, near-term quantum devices have shown
great progress in the last several years culminating recently with
a demonstration of quantum supremacy. In the medium-term,
however, quantum machines will need to transition to greater
reliability through error correction, likely through promising
techniques like surface codes which are well suited for near-term
devices with limited qubit connectivity. We discover quantum
memory, particularly resonant cavities with transmon qubits
arranged in a 2.5D architecture, can efficiently implement surface
codes with substantial hardware savings and performance/fidelity
gains. Specifically, we virtualize logical qubits by storing them in
layers of qubit memories connected to each transmon.

Surprisingly, distributing each logical qubit across many
memories has a minimal impact on fault tolerance and results
in substantially more efficient operations. Our design permits
fast transversal application of CNOT operations between logical
qubits sharing the same physical address (same set of cavities)
which are 6x faster than standard lattice surgery CNOTs. We
develop a novel embedding which saves approximately 10x in
transmons with another 2x savings from an additional optimiza-
tion for compactness.

Although qubit virtualization pays a 10x penalty in serializa-
tion, advantages in the transversal CNOT and in area efficiency
result in fault-tolerance and performance comparable to conven-
tional 2D transmon-only architectures. Our simulations show our
system can achieve fault tolerance comparable to conventional
two-dimensional grids while saving substantial hardware. Fur-
thermore, our architecture can produce magic states at 1.22x
the baseline rate given a fixed number of transmon qubits.
This is a critical benchmark for future fault-tolerant quantum
computers as magic states are essential and machines will spend
the majority of their resources continuously producing them. This
architecture substantially reduces the hardware requirements for
fault-tolerant quantum computing and puts within reach a proof-
of-concept experimental demonstration of around 10 logical
qubits, requiring only 11 transmons and 9 attached cavities in
total.

Index Terms—quantum computing, quantum error correction,
quantum memory

I. INTRODUCTION

Quantum devices have improved significantly in the last

several years both in terms of physical error rates and number

of usable qubits. For example, IBM and others have made

accessible via the cloud several devices with 5 to 53 qubits

with moderate error rates [1]. Concurrently, great progress

has been made at the software level such as improved com-

pilation procedures reducing required overhead for program
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execution. These efforts are directed at enabling NISQ (Noisy

Intermediate-Scale Quantum) [2] algorithms to demonstrate

the power of quantum computing. Machines in this era are

expected to run some important programs and have recently

been used to by Google to demonstrate “quantum supremacy”

[3].

Despite this, these machines will be too small for error

correction and unable to run large-scale programs due to

unreliable qubits. The ultimate goal is to construct fault-

tolerant machines capable of executing thousands of gates

and in the long-term to execute large-scale algorithms such

as Shor’s [4] and Grover’s [5] with speedups over classical

algorithms. There are a number of promising error correction

schemes which have been proposed such as the color code [6]

or the surface code [7]–[9]. The surface code is a particularly

appealing candidate because of its low overhead, high error

threshold, and its reliance on few nearest-neighbor interactions

in a 2D array of qubits, a common feature of superconducting

transmon qubit hardware. In fact, Google’s next milestone is

to demonstrate error corrected qubits [3], [10].

Current architectures for both NISQ and fault-tolerant quan-

tum computers make no distinction between the memory and

processing of quantum information (represented in qubits).

While currently viable, as larger devices are built, the engi-

neering challenges of scaling up to hundreds of qubits becomes

readily apparent. For transmon technology used by Google,

IBM, and Rigetti, some of these issues include fabrication

consistency and crosstalk during parallel operations. Every

qubit needs dedicated control wires and signal generators

which fill the refrigerator the device runs in. To scale to the

millions of qubits needed for useful fault-tolerant machines

[9], we need to a memory-based architecture to decouple

qubit-count from transmon-count.

In this work, we use a recently realized qubit memory

technology which stores qubits in a superconducting cavity

[11]. This technology, while new, is expected to become

competitive with existing transmon devices. Stored in cavity,

qubits have a significantly longer lifetime (coherence time) but

must be loaded into a transmon for computation. Although

the basic concept of a compute qubit and associated memory

has been demonstrated experimentally, the contribution of our

work is to design and evaluate a system-level organization

of these components within the context of a novel surface

code embedding and fault-tolerant quantum operations. We

provide a proof of concept in the form of a practical use
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Fig. 1. Our fault-tolerant architecture with random-access memory local to
each transmon. On top is the typical 2D grid of transmon qubits. Attached
below each data transmon is a resonant cavity storing error-prone data qubits
(shown as black circles). This pattern is tiled in 2D to obtain a 2.5D array
of logical qubits. Our key innovation here is storing the qubits that make up
each logical qubit (shown as checkerboards) across many cavities to enable
efficient computation.

case motivating more complex experimental demonstrations

of larger systems using this technology.

Our proposed 2.5D memory-based design is a typical 2D

grid of transmons with memory added as shown in Figure 1.

This can be compared with the traditional 2D error correction

implementation in Figure 2, where the checkerboards represent

error-corrected logical qubits. The logical qubits in this system

are stored at unique virtual addresses in memory cavities when

not in use. They are loaded to a physical address in the

transmons and made accessible for computation on request

and are periodically loaded to correct errors, similar to DRAM

refresh. This design allows for more efficient operations such

as the transversal CNOT between logical qubits sharing the

same physical address i.e. co-located in the same cavities.

This is not possible on the surface code in 2D which requires

methods such as braiding or lattice surgery for a CNOT

operation.

We introduce two embeddings of the 2D surface code to

this new architecture that spread logical qubits across many

cavities. Despite serialization due to memory access, we are

able to store and error-correct stacks of these logical qubits.

Furthermore, we show surface code operations via lattice

surgery can be used unchanged in this new architecture while

also enabling a more efficient CNOT operation. Similarly,

we are able to use standard and architecture-specific magic-

state distillation protocols [12] in order to ensure universal

computation. Magic-state distillation is a critical component

of error-corrected algorithms so any improvement will directly

speed up algorithms including Shor’s and Grover’s.

We discuss several important features of any proposed error

correction code, such as the threshold error rate (below which

the code is able to correct more errors than its execution

causes), the code distance, and the number of physical qubits

to encode a logical qubit. In many codes, the number of

physical qubits can be quite large. We develop an embedding

from the standard representation to this new architecture which

reduces the required number of physical transmon qubits by

a factor of approximately k, the number of resonant modes

per cavity. We also develop a Compact variant saving an

additional 2x. This is significant because we can obtain a

code distance
√
2k times greater or use hardware with only

1

2k the required physical transmons for a given algorithm.

In the near-to-intermediate term, when qubits are a highly

constrained resource this will accelerate a path towards fault-

tolerant computation. In fact, the smallest instance of Compact

requires only 11 transmons and 9 cavities for k logical qubits.

We evaluate variants of our architecture by comparing

against the surface code on a larger 2D device. Specifically, we

determine the error correction threshold rates via simulation

for each and find they are all close to the baseline threshold.

This shows the additional error sources do not significantly

impact the performance. We explore the sensitivity of the

threshold to many different sources of error, some of which

are unique to the memory used in this architecture. We end

by evaluating magic-state distillation protocols which have a

large impact on overall algorithm performance and find a 1.22x

speedup normalized by the number of transmon qubits.

In summary, we make the following contributions:

• We introduce a 2.5D architecture where qubit-local mem-

ory is used for random access to error-corrected, logical

qubits stored across different memories. This allows a

simple virtual and physical address scheme. Error cor-

rection is performed continuously by loading each from

memory.

• We give two efficient adaptations of the surface code

in this architecture, Natural and Compact. Unlike a

naive embedding, both support fast transversal CNOTs

in addition to lattice surgery operations with improved

connectivity between logical qubits.

• We develop an error correction implementation optimized

for Compact and designed to maximise parallelism and

minimize the spread of errors.

• Via simulation, we determine the surface code adapted to

our 2.5D architecture is still an effective error correction

code while greatly reducing hardware requirements.

II. BACKGROUND

In this section we briefly introduce the basics of quan-

tum computation. We review current superconducting qubit

architectures and memory technology our proposed design

takes advantage of. We then discuss the noise present in these

physical systems. Next, we introduce the basics of quantum

error correction and give a detailed introduction to the surface

code and lattice surgery. We conclude with a review of the

basic procedure for decoding physical errors.

A. Basics of Quantum Computing

The fundamental unit of quantum computing is the qubit.

Like the classical bit, it can exist in the |0〉 or |1〉 state, but
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it may also exist in a coherent superposition of the two states

and n qubits may exist in a superposition of all 2n bit strings.

For example, a single qubit state is |ψ〉 = α |0〉+ β |1〉 where

|α|2 + |β|2 = 1 and α, β ∈ C. To manipulate these bits we

apply quantum operations, often called gates. Single qubit

gates like X (bit flip), Z (phase flip), H (Hadamard basis

change), and T (π
4

phase) and two-qubit gates like CNOT

(reversible XOR with output b′ = a ⊕ b) are unitary and

reversible (invertible). We may measure a qubit to obtain

either a 0 or a 1 outcome with probabilities |α|2 and |β|2,

respectively. Multi-qubit operations like CNOT can create

entanglement between qubits. Using only CNOT and single

qubit gates, universal computation is possible, meaning any

reversible multi-qubit operation is possible. The three-qubit

Toffoli (reversible AND gate with output c′ = (a ∧ b) ⊕ c),
a common primitive in error-corrected algorithms, can be

implemented by performing a few CNOT, H, and T gates.

See [13] for a more comprehensive background.

B. Superconducting Qubit Architectures

In contrast to other leading qubit technologies such as

trapped ion devices with one or more fully-connected qubit

chains, superconducting qubits are typically connected in

nearest-neighbor topologies, often a 2D mesh on a regular

square grid. For near-term computation, this limitation makes

engineering these devices easier but results in high communi-

cation costs, increasing the chance of errors on NISQ devices

and communication congestion for error corrected operations.

This is a leading technology in industry, used by Rigetti, IBM,

and Google.

C. Qubit Memory Technology

Recently, studies have demonstrated random access memory

for quantum information [11], [14]. Qubit states can be stored

in the resonant modes of physical superconducting cavities

attached to a transmon qubit as depicted in Figure 3. In

these devices, transmon-transmon interactions are essentially

the same as other superconducting transmon technology and

transmon-cavity interactions are expected to perform similarly.

Currently demonstrated error rates are promising, and there

is nothing fundamental preventing this technology from be-

coming competitive with other transmon devices. We expect

operation error rates to improve, cavity sizes and coherence

times to increase and in general expect performance to improve

as it has with other quantum technologies.

Local memory is not free. Stored qubits cannot be operated

on directly. Instead, operations on this information are medi-

ated through the transmon. Furthermore, to operate on qubits

stored in memory, we first load the qubit from memory. Then

we perform the desired operation on the transmons, and store

the qubit back in its original location. A two-qubit operation

such as a CNOT can also be performed directly between the

transmon and a qubit in its connected cavity by manipulating

higher states of the transmon. We use this transmon-mode

CNOT later.

data

ancilla

logical qubit logical qubit

logical qubit logical qubit

connectivity

Fig. 2. A typical 2D superconducting qubit architecture. The dots are
transmon qubits where black are used as data and gray are used as ancilla
for error correction. The lines indicate physical connections between qubits
that allow operations between them. Four logical qubits, each consisting of
9 error-prone data qubits, are shown here in the rotated surface code with
distance 3. Z parity checks are shaded yellow (light) and X parity checks are
shaded blue (dark) where checks on only 2 data are drawn as half circles.

mode 0

...

mode k

cavity

transmon

Fig. 3. A close-up representation of the qubit memory technology we use. On
top is a superconducting transmon qubit physically connected to a resonant
superconducting cavity. This cavity has many resonant modes each used to
store a qubit. These qubits can be loaded and stored (with random access) via
the transmon.

In this architecture, qubits stored in the same cavity cannot

be operated on in parallel. For example, consider two qubits

stored in different modes of the same cavity (two virtual

addresses corresponding to the same physical address). If we

want to perform an H gate on each of them in parallel, this

would not be possible. Instead, we serialize these operations.

There are two primary benefits of this technology. First, we

are able to quickly perform two-qubit interactions between

any pair of qubits stored in the same cavity because we have

star-graph connectivity between the transmon and its cavity

modes. Second, qubits stored in the cavity are expected to

have longer coherence times by about one order of magnitude

i.e. there will be 10x fewer idle errors when qubits are stored

in the cavity.
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D. Quantum Errors

Quantum systems are inherently noisy, subject to a variety

of coherent and non-coherent error. For example, when at-

tempting to apply some gate U to a qubit we may actually

apply some other gate U ′ which is close to the desired

operation but may include an additional undesired operation.

Fortunately, this type of coherent error is fairly easy to model.

Since every single-qubit unitary can be expressed as a linear

combination of the Pauli matrices1I,X, Y, Z we can express

this coherent error as a combination of bit flip (X) and phase

flip (Z) errors where I is no error and Y is simultaneous bit

and phase errors (Y = iXZ). For a quantum error correcting

code this will play a part in digitizing errors, meaning we will

be able to simply detect and correct X and Z errors.

Errors such as decoherence errors can be attributed to

interaction with the environment. These errors are inevitable

because manipulating qubits requires they not be perfectly

isolated. When modeling and simulating this type of error we

require the use of full density matrix simulation. In this paper,

we opt not to model coherence errors in this way because

simulation of this class of errors is hard (density matrices

have size exponential in the number of qubits), we instead

also model storage errors as Pauli errors. This is a common

simplification and a conservative overestimate for the error

causing our error threshold estimation to be slightly more

conservative. For example, when decoherence resets a qubit

to |0〉, this causes an error to a qubit in the |1〉 state but not to

a qubit already in the |0〉 state whereas a Pauli X error causes

a bit flip which is an error on either state.

The above errors apply to all superconducting systems and

we often assume consistent error rates across the device. We

treat all two-qubit interactions equally so gates like a CNOT

incur some fixed error cost, a fixed chance of some error

U1 ⊗ U2 is applied to |ψ〉 where U1, U2 ∈ {I,X, Y, Z}. In

traditional superconducting architectures (our baseline), we

consider a few error sources–storage error, one and two-

qubit gate error, and measurement error. In superconducting

architectures with resonant cavities such as our design, there

is more nuance. We consider cavity storage and transmon

storage error rates separately since each has its own coherence

time and we separate transmon-transmon two-qubit gates and

transmons-cavity two-qubit gates. We detail this and our other

assumptions for simulation in experimental setup.

E. Surface Codes, Error Decoding, and

Lattice Surgery

The surface code [7] is one of the most promising quantum

error correction protocols because it requires only nearest

neighbor connectivity between physical qubits. The surface

code is implemented on a two-dimensional array of physical

qubits. These qubits are either data, where the state of the

logical qubit is stored, or ancilla used for syndrome extraction

1The Pauli matrices X =

[

0 1

1 0

]

, Y =

[

0 −i
i 0

]

, Z =

[

1 0

0 −1

]

along with I form a complete basis over complex matrices so any single-qubit
unitary U = aI + bX + cY + dZ.

(parity checks). These ancilla qubits are measured to stabilize

the entangled state of the data. These ancilla fall into two

categories, measure-Z and measure-X for Z syndromes and X

syndromes designed to detect bit and phase errors respectively.

Data qubits not on the boundary are adjacent to two measure-Z

and two measure-X qubits.

In Figure 2 we show four logical qubits with code distance

3 mapped to a 2D lattice of superconducting qubits. Dark

physical qubits are used as data and light qubits are used as

measure qubits. In this paper, we opt to explicitly indicate

qubits in order to make clear how logical qubits, formed of

many square and half-circle plaquettes, are mapped directly

to hardware. In our diagrams however, we use customary

notation by shading X-plaquettes blue (dark) and Z-plaquettes

yellow (light). Half-plaquettes contain only 2 data qubits and

are shown as half circles.

Each X (Z) plaquette corresponds to a single measure-X (Z)

qubit and the four data which it interacts with. The corners

of each plaquette are the data qubits. For the baseline, we use

standard Z and X syndrome extraction (parity measurement)

circuits where the qubits of this circuit are physical qubits. The

Z-syndrome measures the bit-parity of its corner qubits and

the X-syndrome measures their phase-parity. By repeatedly

performing syndrome extraction and detecting parity changes

we are able to locate errors. This repeated syndrome extraction

collapses any error to a correctable Pauli error and forces

the data to remain in what is called the code, or quiescent,

state. Once the qubits are in this state, subsequent syndrome

extraction should result in the same outcomes. If errors occur,

we detect them as changes in measurement outcomes.

Errors are decoded by running a classical algorithm on the

measured syndromes [15]. In the surface code, when an error

occurs on a data qubit, for example a single X bit-flip error, we

see this as a change in the measurement outcome of both of the

Z-syndrome ancilla adjacent to it. If an error occurs on every

data qubit in a chain of neighbors, only the two syndromes at

the ends will detect a change. The standard way of performing

error decoding is to collect all of these changed syndromes

into a complete graph with edge weights given by the log-

probability of that chain of errors occurring. We perform a

maximum likelihood perfect matching of this graph to find

the most probable set of error locations which we correct or

track in the classical control. If errors are sufficiently low these

error chains will be well isolated and this decoding algorithm

will be able to determine the correct set of corrections to be

made. If errors are less sparse, this matching algorithm may

misidentify which error chains have actually occurred and this

can result in a logical error, that is a logical bit flip or phase

flip is applied. These logical errors cannot be detected because

they result from misidentifying the physical errors.

There are two primary ways to manipulate the logical qubits

of the surface code to perform desired logical operations–

braiding and lattice surgery. In this paper we will primarily

consider lattice surgery which has been shown to have some

advantages over braiding like using fewer physical qubits. For

a more thorough introduction to lattice surgery we refer the
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|A〉 = |0〉 |C〉

|T 〉
(a) Create ancilla

|A〉 |C〉

|T 〉
(b) Merge A and T to

measure A⊕T (X-basis)

|A〉 |C〉

|T 〉
(c) Split

|A〉 |C〉

|T 〉
(d) Merge A and C to

measure A⊕C (Z-basis)

|A〉 |C〉

|T 〉
(e) Split then measure

X-basis of A

Fig. 4. The lattice surgery operations to perform a logical CNOT on the standard surface code (and directly supported in our architecture). Given control and
target qubits |C〉 and |T 〉, a CNOT is performed by enabling and disabling the parity checks as shown across 6 timesteps ((e) is two steps). We show this
complex process to contrast with the fast transversal CNOT enabled by our architecture (described later in Section III-B).

reader to [8], [12], [16]. In our proposed scheme, all primitive

lattice surgery operations can be used such as split and merge

which together perform a logical CNOT as shown in Figure 4.

For universal quantum computation in surface codes we allow

for the creation and use of magic states such as |T 〉 or |CCZ〉.
These states are necessary because the T and CCZ operations

cannot be done transversely (using physical gates on the data

in parallel to reliably perform the logical gate) in this type of

code. However, high fidelity versions of these states can be

generated via distillation [12], [17] where many error-prone

copies of the state are combined to generate the state with

low error probability. Our scheme permits the use of these

methods in the same way as other surface code schemes and

also allows more efficient implementations.

III. VIRTUALIZED LOGICAL QUBITS

In this section we describe in detail our proposed archi-

tecture, an embedding of the surface code which virtual-

izes logical qubits, saving over 10x in required number of

transmons. This takes advantage of quantum resonant cavity

memory technology described above to store logical qubits,

in the form of surface code patches, in memory local to the

computational transmons. In this section we describe how we

can embed surface code tiles in two variations, Natural and

Compact. We show the hardware operations needed to perform

efficient syndrome extraction for both in our new fault-tolerant

architecture. We then describe how typical lattice surgery

operations are translated into operations in this new scheme,

and finally how our system supports fault-tolerant transversal

interactions between logical qubits sharing the same virtual

address. We verify these operations via process tomography.

We briefly describe how magic state distillation, an important

primitive for algorithms, is translated to our system.

A. Natural Surface Code Embedding

Our goal here is to take logical qubits stored in a plane

and find an embedding of that plane in 3D where the third

dimension (our transmon-local memory) is a limited size,

k. The intuitive answer is to simply fold the surface k
times. While this works, it does not have the benefits of a

Lz • Sz

Lz • Sz

|0〉
Lz • Sz

Lz • Sz

|0〉 H • • • • H

Lz Sz

Lz Sz

Fig. 5. Circuit showing how to execute our Natural embedding on hardware.
Left: The layout of eight data (black) and two ancilla (gray) in hardware.
CNOT operations between qubits are drawn between. Right: A circuit diagram
of the operations applied over time where each horizontal line corresponds
to a qubit and each box or symbol is an operation. The steps are Lz : load
from memory mode z, |0〉: reset ancilla, CNOTs: compute the Z or X parity,
Meter: measure the result, Sz : store back to memory.

more clever embedding. We propose slicing the plane into

many pieces, storing them flat in memory to enable them to

stitch together on-demand. This embedding enables the fast

transversal CNOT and high connectivity we will describe later.

Consider the high-level three dimensional view of the

quantum memory architecture presented in [11]. For every

transmon in this architecture (the compute qubits in the top

layer of Figure 1) there is a cavity attached with a fixed number

of resonant modes, k. Each cavity can store k qubits, one

per mode. Each transmon can load and store qubits from its

attached cavity by performing a transmon mediated iSWAP.

We assume all transmons can be operated on in parallel as

is the case in most superconducting hardware (i.e. from IBM

or Google). For example, we can load qubit qiz to transmon

ti and load qjz to transmon tj in parallel, simultaneously

execute single qubit operations on each qubit, then store in

parallel. Any other qubits stored in cavities i or j will be

unaffected by these operations. We expect this technology to

allow cavity size k on the order of 10 to 100 qubits and it will

likely not be practical to scale k along with the size of the 2D
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grid as hardware improves so we cannot implement a true 3D

code such as [18]. For our analysis, we conservatively assume

k = 10 and view this as a 2.5D architecture where we expect

the width and height of the grid to scale while the depth, k,

remains small.

We demonstrate how our system is sensitive to the length of

these cavities in section VI where the amount of time between

error correction cycles is directly a function of this cavity size

k. As the size of the cavity becomes very large, the physical

qubits stored are expected to be subject to more and more

decoherence errors which will reduce our ability to properly

decode the errors.

Consider the rotated surface code of Figure 2 and the

high level view of this architecture in Figure 1. We imagine

mapping each of the physical qubits of this logical qubit qL,1

to the same mode z of each cavity in this memory architecture.

Another logical qubit qL,2 can be mapped to mode z2 �= z of

the same set of cavities. We view this as stacking the surface

code patches, the logical qubits, together under the same set

of transmon qubits. The transmons themselves are only used

for logical operations and error correction cycles performed

on the patches.

For logical qubits with code distance d we define patches on

the architecture, contiguous grids of size d×d data qubits and

d×d ancilla qubits. Logical qubits are mapped to multiples of

d coordinates on the grid and a specific mode, z, for storage.

For example, logical qubit qL is mapped to a pair (Pxy, z)
where Pxy refers to the square patch of data transmons qd·x,d·y
to qd·x+d−1,d·y+d−1 and z indicates which cavity mode it is

stored in. A virtual memory address of a logical qubit refers to

exactly the pair (transmon patch, index). We sometimes refer

to all pairs with the same transmon patch collectively as a

stack where transmon patch is the physical memory address

where a patch is loaded.

In this memory architecture, recall we are unable to operate

on qubits stored in the same cavity in parallel, however

we are permitted to operated on qubits stored in different

cavities in parallel. This implies for two logical qubits qL,1

and qL,2 stored in the same stack we are only able to perform

syndrome extraction on at most one of these qubits at a

time. In order to detect measurement errors, we typically

require d rounds of syndrome extraction before we perform

our decoding algorithm and correct errors. If all indices are

occupied by logical qubits and we want to perform d rounds

of correction to each one we have two primary strategies. We

can load a logical qubit (meaning load all data in parallel to

each transmon), perform all d rounds of extraction, then store

the qubit.

Alternatively, we can Interleave the extraction cycles by

loading the logical qubit in index 0, performing one syndrome

extraction step, then storing. We execute this same procedure

for every logical qubit in the stack and repeat d times. We

expect this latter procedure to be less efficient, subjecting the

data qubits to d load and store errors per d cycles as opposed to

performing exactly one set of loads and stores when collecting

all d measurements at once. We study the effect of this choice

of syndrome extraction on the error threshold in Section V. We

detail these extraction protocols for each syndrome in Figure 5.

Here we use Lz (Sz) to indicate loading (storing) the data from

(to) index z of the attached cavity.

Intuitively, this scheme is stacking many different logical

tiles together in a single location. This includes mapping

measure-Z/X ancilla to cavity modes. However, this is un-

necessary, because measure ancilla do not actually store any

data and are reset before every extraction step. Therefore, we

can reduce the number of cavities required for this system by

simply omitting any cavity where ancilla are stored. Instead,

every patch in the same stack shares the same ancilla, the

transmons at the top layer with no attached cavity.

In our system, up to k logical qubits share the same set

of transmons, more efficiently storing these qubits than on

a single large surface. In order to interact logical qubits in

different stacks we load them in parallel to the transmons then

interact them via lattice surgery operations like the CNOT

shown in Figure 4. In these cases, all of the other stacks’

transmons between the interacting logical qubits act as a single

(possibly large) logical ancilla. In typical planar architectures,

we are unable to execute transversal two-qubit operations due

to limited connectivity. We can perform physical operations

between qubits in the same cavity, mediated by the transmon.

Therefore, in our system, we are able to perform transversal

two-qubit interactions if the logical qubits are co-located in

the same stack. We describe this next.

B. Transversal CNOT

A major advantage of this 2.5D architecture, enabled by our

embedding of patches across memories, is the ability to do

two-qubit operations transversely using the third dimension.

The logical operation is performed directly by doing the same

physical gate to every data qubit and correcting any resulting

errors. On typical 2D architecture error correcting codes like

the surface code, the only transversal operations are single-

CNOT gate

mode z

logical
control

logical
target

Fig. 6. The transversal CNOT enabled by our 2.5D architecture. The data
qubits for the control logical qubit are loaded into the transmons. Transmon-
mediated CNOTs to mode z for every data qubit perform the logical operation.
This takes one timestep to perform, 6x better than a lattice surgery CNOT.
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qubit like X, Z, or H. Two-qubits operations are not possible

because the corresponding data qubits of two logical patches

cannot be made adjacent. However, with memory, it is possible

to load one patch into the transmons and apply two-qubit gates

mediated by each transmon onto the data qubits for a second

qubit stored in one mode of the cavities. This works in both

Natural and Compact (described later).

Figure 6 demonstrates this for the transversal CNOT gate

which we verified via process tomography [13], [19] to apply

the expected CNOT unitary in simulation. This can be per-

formed in a single round of d error correction cycles while

the lattice surgery CNOT shown in Figures 4 (and later 9)

takes 6 rounds. This can translate to major savings in runtime

for algorithms.

The transversal CNOT is not limited to logical qubits

currently stored in the same 2D address. With an extra step it is

possible to transversely interact any two logical qubits. To do

this one of the qubits must be moved to the same 2D address as

the other using a move operation described in [12]. The move

operation involves growing the patch toward the move target

in one step by adding new plaquettes along the entire path and

performing d cycles, one timestep, of error correction. Once

grown, the patch can be shrunk from the other end back to

its original size. The data qubits freed during the shrink are

measured and used to determine any fixup operation. Once the

two qubits are in the same 2D address, the transversal CNOT

can be applied. It can then be moved back, left where it is,

or moved somewhere else as determined during compilation.

This process takes 2 timesteps or 3 if including the second

move.

C. Compact Surface Code Embedding

In the previous scheme, half of the transmons did not have

attached cavities (or they did not make use them). An ancilla

and data qubit could share a transmon because the data are

stored in the cavity the majority of the time and the ancilla

are reset every cycle. This leads to a more efficient, Compact

embedding which halves the required number of transmons.

We will see that this comes at the cost of additional loads and

mode 0

mode 1

mode 2

cavity
cavity cavity

dataancilla
shared data/ancilla

logical
qubit

Fig. 8. A 3D view of our Compact embedding. Shown at the top is the
2D grid of transmon qubits. Attached below every transmon is a resonant
cavity. Compact surface code patches are shown stored, one in each mode.
This deformed patch can be tiled in 2D.

stores from memory due to contention during error correction,

effectively trading some error and time for significant space

savings.

In the above memory architecture, because we do not store

any logical qubits in the transmon layer, these qubits can act as

the measurement ancilla, rather than have separate transmons

only there to act as the syndrome measurement ancilla. With

this observation, we can pack the data qubits of the surface

code patch of Figure 7a more efficiently with every transmon

having a cavity attached. Each plaquette of the rotated surface

code has a single ancilla at its center, interacting with each data

qubit. For Z plaquette (yellow or light) in this mapping scheme

we colocate the upper-right data and the ancilla; the upper-

right data is located in the cavity attached to the transmon

corresponding to the ancilla. Similarly, for each X plaquette

(blue or dark) we colocate the lower-left data and the ancilla;

the lower-left data is located in the cavity attached to the

(a) (b) (c)

Fig. 7. Transformation from Natural to Compact. (a) Natural embedding: Only data have attached cavities (not shown). (b) The transformation: Z ancilla
(over yellow/light areas) merge with the upper-right data transmon and X ancilla (over blue/dark areas) merge with the lower-left data transmon. The opposite
parings are key to keeping 4-way grid connectivity. (c) Compact embedding: All ancilla transmons without attached cavities have been removed. All remaining
transmons have cavities and are used as both data and ancilla.
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|A〉 = |0〉
|C〉

|T 〉
(a) Create ancilla

|A〉
|C〉

|T 〉
(b) Merge A and T to

measure A⊕T (X-basis)

|A〉
|C〉

|T 〉
(c) Split

|A〉
|C〉

|T 〉
(d) Merge A and C to

measure A⊕C (Z-basis)

|A〉
|C〉

|T 〉
(e) Split then measure

X-basis of A

Fig. 9. The Compact lattice surgery operations to perform a CNOT. The logical operations performed are identical to Figure 4 but the corresponding physical
operations are arranged as shown in Figure 7. This uses half as many transmons as Natural. As before, it takes 6 timesteps of d error correction cycles each.
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Fig. 10. The CNOT sequence for parity checks in Compact. Left: A quantum circuit showing the hardware operations over time. Right: The CNOT execution
order repeats A0D2, A1D3, A2C0, A3C1, B0C2, B1C3, B2D0, B3D1. The AB and CD sequences run in parallel but offset to ensure ancilla and data
use do not conflict. CNOTs for A0D2 are marked in red where an isolated circle indicates a transmon-mediated CNOT.

transmon corresponding to the ancilla.

This mapping results in plaquettes which resemble triangles

rather than squares, where the center of the hypotenuse of each

triangle corresponds to both the ancilla qubit and the data

qubit, stored “beneath” in its cavity. Every data qubit is still

mapped to the same index. Notice in this scheme every data

(sans the boundary) is still adjacent to two measure-Z and two

measure-X ancilla where adjacent means either in the cavity of

the ancilla or in a cavity adjacent to the ancilla. We illustrate

this transformation from our undistorted Natural surface code

patch to Compact in Figure 7 and a diagram of this architecture

with a cavity for every transmon in Figure 8. If a different

ancilla location were chosen, for example all sharing with the

upper-right data, some of the syndrome extraction gates in the

resulting arrangement would require six-way connectivity, two

diagonal to the grid, which would be much more difficult to

engineer with low noise. This scheme where X and Z ancilla

share with data in opposite directions is the best scheme we

found to satisfy the hardware connectivity.

In Natural, we assign square patches to predetermined

square patches on the hardware. In Compact, we assign square

patches to predetermined rhombus or diamond patches on the

hardware. Previously, operations on the virtualized patches

closely resembled the original operations because the shape

was unchanged, except with the addition of loads and stores

to retrieve the logical qubit from memory. The same operations

apply here. We can examine the original, unmapped surface

code patch and perform the same sequence of operations

modulo loads and stores, on the transformed coordinates of

the mapped version.

This new mapping also requires a new syndrome extraction

procedure because data cannot be loaded while a transmon is

in use as an ancilla. A single round of syndrome extraction

can be executed by dividing the plaquettes into four groups,

with each group containing non-interfering plaquettes. Two

plaquettes are non-interfering if they do not share their ancilla

with any data qubits of the other plaquette. This process is

detailed explicitly in Figure 10. It is imperative this process

use both the minimum number of loads and stores and keep

data qubits loaded for as short a time as possible as the error

incurred during this circuit directly impacts the error threshold

for the code. This has a similar cost as Natural, Interleaved

where a higher numbers of load and store gates were also

required.

Error correction can be performed Interleaved or All-at-once

just as with Natural. This should be chosen dependent on

how likely storage errors and gate errors are. For example,

if storage errors are expected to be significant, we may opt to

use Interleaved syndrome extraction. This will cost more loads

and stores so if gate errors are more significant than storage

errors we may opt for All-at-once.

D. Architectural Considerations

When compiling and executing programs in our system

there are several important architectural features to keep in

mind. First, it is always possible to execute a transversal two-

qubit interaction, rather than requiring use of split and merge.

180

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 06,2021 at 22:41:46 UTC from IEEE Xplore.  Restrictions apply. 



In surface code architectures, the logical qubits are not bound

to a specific hardware location and are free to move around on

the grid. This qubit movement is fairly cheap requiring only a

single round of d error correction cycles (usually referred to as

a single timestep) to move any distance. However, we require

a clear area of unused patches to move through; typically,

this requires about 1/3 to 1/2 of the total area to be kept

as open channels to allow for distant qubit interactions. In

our architecture this translates to keeping one of the resonant

modes in every stack unused (1/k of total qubits for cavity

depth k ≈ 10) and loading this mode along a path when a

logical qubit needs to move, i.e there is an index in the stack

which has no logical qubit mapped to it. This enables our

system to transport logical qubits between stacks to execute

more time and space efficient transversal CNOTs. The empty

mode is necessary for Compact because data is always stored

back to the cavity during syndrome extraction but not required

for Natural, All-at-once where the transmons themselves can

act as the unused qubits to move the logical qubit through.

Unfortunately, this qubit movement is not entirely free.

During the compilation process if we request many logical

qubits to move in parallel this can be expensive due to serial-

ization of intersecting move paths. Just as in current quantum

systems without error correction where it is imperative to

map and schedule multi-qubit interactions in a way which

minimizes total execution time, it is also important in our

system that logical qubits which interact heavily be located

close by for similar reasons. The mapping problem on the

system presented here is interesting because there is now a

tradeoff between locality and serialization between operations

with qubits sharing the same 2D address.

Second, we stress even though the logical qubits are stored

in memory, they are still subject to errors and it is critical that

every logical qubit be error corrected regularly. In the case of

Interleaved syndrome extraction, every logical qubit of a stack

will be roughly guaranteed to get a round of correction every

k time steps, where k is the cavity depth. This rate is during

steady state, when qubits are idle. When logical operations

are being executed, this rate may be reduced slightly. When

compiling and executing on this system, we may need to delay

some operations in order to ensure stored logical qubits get

the required amount of error correction and are not left so

long that errors accumulate and error correction becomes less

likely to succeed.

Finally, many lattice surgery operations require the use

of ancilla logical qubits, for example to measure specific

stabilizers which are done to execute a particular set of

operations in [12]. This restriction requires our architecture

and any compiler to guarantee one free mode of every stack

be allocated to temporarily obtain large logical qubits. This

free mode may be shared with qubit movement or separate if

many ancilla logical qubits are used.

IV. EVALUATION

In this section, we outline our error model and experimental

setup used to determine error thresholds for our mapping

and syndrome extraction schemes. We compare to the surface

code on a typical 2D architecture. Our goal is to demonstrate

the error thresholds for various error correction schemes, i.e.

to determine the necessary physical error rate required to

begin obtaining exponentially better logical error rate as the

code distance increases. Currently, neither transmon devices

nor transmon-memory devices used for our schemes have

consistently achieved physical error rates below this threshold

and instead the threshold serves as a goal or checkpoint.

A. Error Model and Noise Assumptions

For our experiments we make the following further assump-

tions about how noise and errors behave in both a typical

2D architecture and our 2.5D cavity memory architecture

since both have the same fundamental underlying transmon

technology:

• The error rates in the device do not fluctuate appreciably

over time.

• Transmon qubits can be actively reset and reinitialized to

|0〉 efficiently and without significant error.

• All errors are independent. No leakage errors and no

correlated noise.

• All classical processing of the syndromes is instantaneous

and error-free.

• Every n-qubit gate with the same n is equally error-

prone. For example, every one qubit operation has the

exact same chance of failure regardless of which actual

physical qubit it is applied to.

• All errors are Pauli, i.e. drawn from the set

{I,X, Y, Z}⊗n. For example, if a one-qubit error

occurs with probability p then we apply an X , Y , or Z
with probability p/3 and I (no error) with probability

1− p.

• We detect and correct X and Z errors independently. A

Y error is both an X and Z error.

For each of our experiments we rely on realistic device

data for current superconducting devices, provided by IBM

[1]. For the memory hardware, we use experimental data from

[11]. These parameters are listed in Table I, where T1,c is

the coherence time of the cavity, T1,t is the coherence time

of the transmon, ∆t is the single qubit gate time, ∆t−t is

the two-qubit transmon-transmon gate time, ∆t−m is the two-

qubit gate time of transmon-mode interactions, and ∆l/s is the

load and store times. In every experiment, the gate durations

for one- and two-qubit interactions is fixed. In a first set

of experiments, we vary all gate errors and coherence times

together, all derived from a single probability of error p given

as the probability of an SC-SC (Transmon-Transmon gates)

two-qubit gate error. We consider T1 times of both cavities

and transmons to determine the probability of storage error

given as λ = 1 − exp{−∆t/T1}, where ∆t is the duration

stored. We consider the same potential gate error rates for

each of these devices since the underlying technology behaves

very similarly. While typical coherence errors are not generally

Pauli, we model them as Pauli errors here as a worst-case
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TABLE I
STARTING POINT COHERENCE TIMES AND CONSTANT GATE TIMES FOR

THE HARDWARE MODELS.

Hardware
Parameter

Baseline
Transmons

Transmons
with Memory

T1,t 100 µs 100 µs

T1,c - 1 ms

∆t−t 200 ns 200 ns

∆t 50 ns 50 ns

∆t−m - 200 ns

∆l/s - 150 ns

approximation since correcting Pauli errors is harder than

correcting coherence errors in general.

B. Experimental Setup

In every experiment, we run 2,000,000 simulated trials

per data point with each trial consisting of a round of error

correction. We compute the logical error rate as the number

of logical errors (misidentified error chains) over the total

number of trials. The large number of trials is required to

estimate logical error rates down to 10−5. To determine the

error threshold values for different surface code schemes, we

vary the physical error rate over several different code sizes.

The goal is to find an intersection point for each of these

lines which gives a physical error rate below which we expect

our logical error rate to get better as the physical error rate

improves. Below the threshold we also expect the logical error

rate to get better exponentially in the code distance d.

We study 5 setups to determine initial error thresholds.

• The surface code on a 2D superconducting architecture

as our baseline.

• Our Natural embedding with either the All-at-once or

Interleaved syndrome extraction.

• Our Compact embedding with either the All-at-once or

Interleaved syndrome extraction.

In our designs, the possible sources of error are more

nuanced and we study the thresholds’ sensitivity to variation

in the parameters. In all threshold experiments, we assume

cavity depth of 10 but later study sensitivity to cavity size.

The simulation code used to generate our results is available

on GitHub [20].

V. ERROR THRESHOLD RESULTS

We detail our threshold results in Figure 11. We study 5

different code distances in order to obtain the physical error

threshold value. The threshold value indicates at which point

increasing the code distance, d, improves the logical error rate

instead of hurting it. This threshold is a function of both the

physical system model, the chosen syndrome extraction circuit,

and the specific decoding procedure. For example, decoding

procedures which do not accurately represent the probability of

certain error chains occurring will do a poor job of correcting

those errors. The decoding process should be directly informed

by the error model. In systems with more complicated error

models, the decoder should be aware of these further details to

inform its decision about which types of errors occurred and

the proper way to correct for them. We use the usual maximum

likelihood decoder because we use standard assumptions in our

error model.

The major difference in each procedure is the additional

error sources and different syndrome extraction procedures.

For example, the baseline is not subject to any of the ef-

fects related to cavity storage or transmon-mode operations.

These syndrome extraction procedures differ by the amount

of storage time of data qubits in different locations (cavity

vs. transmon) as well as the number of different physical

gate operations applied to them. These differences however,

do not cause significant variation in the error threshold for

the different setups which is extremely promising. Second,

the slopes for each code distance compared across the various

schemes is stable, indicating each scheme improves at a similar

rate, post error threshold and showing that the logical error

rate decays exponentially with d as desired. This is significant

because it means we will be able to save on total number of

transmons without major shifts in the error threshold. Since

transmon memory technology is expected to perform as well

as other competing transmon technology, we will be able to

obtain higher distance codes, and hence better logical error

rate, with fewer total transmons.

VI. ERROR SENSITIVITY RESULTS

In this section, we study the effects of different sources of

error on the thresholds obtained in section V. Specifically, we

show how different system-level details affect the threshold

of the code. Here we focus on Compact, Interleaved as the

most efficient physical qubit mapping and subject to a wide

variety of errors. In these studies, the physical error rates of

all but a single error source are fixed at a typical operating

point below the threshold obtained previously, 2 × 10−3 and

the cavity depth is fixed at 10. Gate times are fixed while we

vary the physical error rate of SC-SC gates, SC-Cavity gates,

Load-Store gates or the coherence times of the cavity and the

transmon. We additionally study the duration of load/store, the

gates unique to memory technology. We note the effect of the

SC-Cavity gate duration will be a similar, smaller, effect since

it occurs only once per qubit per error correction cycle. Finally,

we study the effect of cavity size by varying the number of

modes per cavity, causing a proportional delay between error

correction cycles.

The results of these sensitivity studies are found in Fig-

ure 12. The logical error rate is sensitive to a particular error

source’s probability if the slope of the line is pronounced at the

marked reference value. The logical error rate for Compact,

Interleaved is sensitive to all changes in system-level details to

some degree. The gate error rates show the highest sensitivity,

indicating improvement in these will give the greatest benefit.

Coherence times are not quite as sensitive but the slightly over

10x offset between the cavity and transmon plots shows that

there is no benefit in transmon T1 being longer than 1/10
cavity T1 when the cavity size is 10. The lines taper off,

indicating other errors sources eventually dominate. Initially,
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Fig. 11. Error thresholds for the baseline 2D architecture and Natural and Compact variants of our 2.5D architecture. The thresholds are comparable to the
baseline indicating the space savings obtained in our system does not substantially reduce the error thresholds. The slopes of the lines in this figure indicate,
post-threshold, how much improvement in physical error rates improve logical error rate. Except for the baseline, all use a cavity size of 10.
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Fig. 12. Sensitivity of logical error rate to various error sources in Compact, Interleaved. The logical error rates are most sensitive to physical error of
Loads/Stores and SC-SC gates. The logical error rate is less sensitive to the coherence times and mostly insensitive to effects of load-store duration and cavity
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Fig. 13. (a) The T-state generation rates of three different circuits. Higher
generation rate is better. (b) The space, in terms of number of patches, required
to produce a single |T 〉 per time step. Lower is better. Fast [21] and Small [12]
work in the surface code and do not use memory. VQubits is implemented
with transversal CNOTs in our 2.5D architecture. All are based on [17].

we expected the cavity size to have a large impact on the

logical error rate. However, when coherence times are high and

gate error rates are fairly low below the threshold, the logical

error rate does increase proportional to the length of the cavity

but the effect is very minor. This indicates, given cavities with

good coherence times, our proposed system will be able to

scale smoothly into the future as cavity sizes increase.

While larger cavity sizes will make this architecture even

more advantageous, there will be a point at which it has a

vanishing benefit because the delay between error correction

becomes too long and decoherence error dominates. For the

error rates used in the evaluation, we find that cavity deco-

herence error starts dominating after cavity size k ≈ 150.

After this point, it would be more beneficial to improve cavity

coherence time.

VII. MAGIC STATE DISTILLATION

RESOURCE ESTIMATES

Now that we have shown error correction is effective in our

virtualized qubit architecture, we analyze how the transversal

CNOT and memory connectivity can benefit the performance

of an algorithm overall. In error-corrected quantum algorithms,

the dominating cost (commonly > 90%) in both space and

time resources is magic state distillation [9], [22], [23]. For

this analysis we consider how T-state distillation, a commonly

used magic state, is improved. Any improvements here will

translate directly to improvements in important algorithms like

Shor’s and Grover’s.

We take the 15-to-1 distillation circuit of [17] to generate a

T magic state using a single patch of transmons with 6 logical

qubits stored in the attached cavities. This circuit consists of

16 qubit initializations, 15 measurements, 35 CNOT gates and

a few other operations. It takes a total of 110 surface code

timesteps to generate a T-state using only a single patch of

transmons. If pairs of these circuits are executed in lock-step,

they only take 99 timesteps.

In Figure 13 we compare the T-state generation rate with

memory against two representative extremes designed for

TABLE II
TRANSMON, DEPTH-10 CAVITY, AND TOTAL QUBIT COSTS OF EACH

T-STATE GENERATION PROTOCOL FOR d = 5.

Protocol # transmons # cavities total qubits

Fast Lattice [21] 1499 - 1499
Small Lattice [12] 549 - 549
VQubits (natural) 49 25 299
VQubits (compact) 29 25 279

speed or size, Fast Lattice [21] and Small Lattice [12]

(also based on [17]). Fast Lattice generates a T-state every 6

timesteps but uses 30 patches of space whereas Small Lattice,

generates a T-state every 11 timesteps using only 11 patches

of space. We compare these results by computing the T-state

generation rate per timestep if we filled 100 patches with

copies of the circuit running in parallel. Table II show the qubit

cost of each and chip area will be proportional to the number

of transmons. Using our VQubits protocol generates 1.82x as

many T-states as Fast Lattice and 1.22x as many as Small

Lattice. This improvement allows an algorithm like Shor’s to

run roughly 1.22x faster or work on smaller hardware.

VIII. CONCLUSION

Realizable quantum error correction protocols are a critical

step in the path towards fault-tolerant quantum computing.

There has been great progress in NISQ-era devices, but it

is equally critical to look towards designing architectures for

QEC. In this paper, we introduce a system which virtualizes

logical, error corrected qubits and is both space and time

efficient without sacrificing in terms of fault tolerance.

By taking advantage of recent advances in quantum memory

technology, we present a new architecture to substantially

reduce hardware requirements by storing logical qubits dis-

tributed in memory. This technology allows memory to be

separated but local to computation in a quantum system. We

provide two direct mappings of the surface code to this new

system with virtual addressing and illustrate how syndrome

extraction and error correction procedures can be executed

efficiently on the embedded surface code. Our embedding,

combined with the random-access nature of the memory is

important for several reasons. It enables fast transversal gates

like the CNOT which can reduce program execution time by

allowing faster operations and indirectly through improved

magic-state distillation protocols. It significantly reduces the

total number of transmon qubits required (10x for our anal-

ysis) which allows larger code distance patches while using

10x fewer transmon qubits and classical control wires. This

allows error correction to be realized much sooner on small

architectures. Our results show superconducting cavity-based

architectures offer a promising path towards quickly scaling

fault-tolerant quantum computation and can be evaluated with

10 logical qubits using as few as 11 transmons and 9 cavities.

We hope this work motivates further experimental efforts and

prompts industry to adopt and scale-up this architecture.
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