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ABSTRACT

Quantum computing is poised to revolutionize some critical in-
tractable computing problems; but to fully take advantage of this
computation, computer scientists will need to learn to program in
a new way, with new constraints. The challenge in developing a
quantum computing curriculum for younger learners is that two
dominant approaches, teaching via the underlying quantum physi-
cal phenomenon or the mathematical operations that emerge from
those phenomenon, require extensive technical knowledge. Our
goal is to extract some of the essential insights in the principles
of quantum computing and present them in contexts that a broad
audience can understand.

In this study, we explore how to teach the concept of quantum
reversibility. Our interdisciplinary science, science education, com-
puter science education, and computer science team is co-creating
quantum computing (QC) learning trajectories (LT), educational
materials, and activities for young learners. We present a draft
LT for reversibility, the materials that both influenced it and were
influenced by it, as well as an analysis of student work and a re-
vised LT. We find that for clear cases, many 8-9 year old students
understand reversibility in ways that align with quantum computa-
tion. However, when there are less clear-cut cases, students show
a level of sophistication in their argumentation that aligns with
the rules of reversibility for quantum computing even when their
decisions do not match. In particular, students did not utilize the
idea of a closed system, analyzing the effects to every item in the
system. This blurred the distinction between between reversing
(undoing) an action, recycling to reproduce identical items with
some of the same materials, or replacing used items with new ones.
In addition, some students allowed for not restoring all aspects of
the original items, just the ones critical to their core functionality.
We then present a revised learning trajectory that incorporates
these concepts.
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1 INTRODUCTION

Quantum computing has the potential to solve computational prob-
lems intractable using today’s digital technology. By harnessing
quantum properties, including superposition and entanglement,
quantum computing defines a new set of states and operations that
provide exponential computational power. Quantum computing
is by no means a replacement for classical computing. However,
the quantum algorithms that have been proposed are sufficiently
compelling as to have resulted in billions of dollars in investment
by governments across the globe, including the European Union,
China, and the United States of America.

Some of the most compelling algorithms proposed are Shor’s al-
gorithm to factor prime numbers [22] (breaking modern cryptogra-
phy), Grover’s algorithm for search and optimization [9], quantum
simulation [13], and quantum chemistry (e.g., to unlock the mys-
teries of nitrogen fixation to boost world food production) [15, 16].

For years quantum computers existed only in the realm of science
fiction. Today, advances in the field mean that quantum supremacy,
the time when a quantum computer can compute something that a
classical computer can not feasibly compute, is on the horizon [11].
Much like Moore’s Law predicted increases in the speed of classical
computers, “Neven’s Law” [12] predicts the potential computa-
tional power of quantum computers for years to come based on
recent advances in the field. However, questions have arisen as
to whether the rest of the system will be ready when hardware is
large enough to perform useful computation becomes available. We
see Neven’s prediction coming to pass as Google, IBM, Intel, and
Rigetti announced machines from 9 qubits to 72 qubits. While these
machines are noisy with limited connectivity and far from what
is needed for some of the most tantalizing applications, quantum
supremacy is already claimed for a contrived problem [1] and is
potentially on the near-term horizon for practical calculations (e.g.,
quantum chemistry).

Even with gains in hardware, there are major challenges be-
fore quantum computing becomes viable. First, there are very few
quantum algorithms [23]. Second, computer architects and systems
engineers need to fill the gap between the perfect hardware that



algorithms assume and the noisy, buggy hardware that is available
today [4]. Finally, the lack of trained professionals to solve these
problems becomes a major challenge in itself.

As useful quantum computation comes closer to reality, ques-
tions arise as to what elements to teach, how to teach it, and to
what depth to adequately prepare quantum computer scientists.
Quantum computer scientists will need to develop algorithms that
use operations that are very different from classical operations,
as well as compilers and architectures to bridge the gap between
theoretical assumptions and device-level realities. Quantum com-
puting courses are beginning to be offered at the undergraduate
level, prior to in-depth learning on physics and computer science.
As this subject gets taught to less and less technical audiences, it
is important to understand how to present concepts in more ac-
cessible ways. Computer science educators will be key to making
educative resources at all levels (K-12, undergraduate, graduate,
and industry professionals) that are designed following established,
research-based computer science education principles. In order to
do so, we need to answer two fundamental questions. First, how
much can we teach about each quantum computing principle before
we must introduce the mathematics or physics behind the phenom-
enon? In other words, how far do analogies or related context go in
teaching the core quantum concept? Second, what learning goals
are appropriate for different age groups?

This paper strives to answer the following research question:
In what ways do 8-9-year-old children’s conceptions of reversibility
align with and diverge from reversibility within quantum information
science contexts?

In order to explore that question, this paper makes the following
contributions:

e a draft quantum reversibility learning trajectory (LT), with
early learning goals accessible to the general population and
later learning goals requiring basic probability and linear
algebra skills. This can be used as a starting point for research
with various age groups.

e azine and an activity exploring quantum reversibility aimed
at broad non-technical audiences for use in museums, li-
braries, classrooms, and other learning environments.

e identification of the differences between everyday under-
standings of reversibility and quantum reversibility.

e implications of the study on the draft LT and instruction on
quantum reversibility.

The rest of the paper is organized as follows. We next present the
theoretical framework followed by background and related work in
Section 4. Section 6 contains the methods, and Section 7 contains
the results. We conclude in Section 10.

2 THEORETICAL FRAMING

In this section, we discuss learning theories and how they apply to
creating learning trajectories. Learning Trajectories are hypothe-
sized paths of knowledge building that students can move through
on their learning journey[24]. They are often depicted as Directed
Acyclic Graphs with nodes representing learning goals and arrows
depicting potential orderings between learning goals. They begin
with lower anchor points, which describe ideas that students are
expected to have prior to instruction. Practically speaking, they are

useful tools for building curriculum and have been used extensively
in mathematics[5].

Learning trajectories are especially useful when taking a con-
structivist approach to curriculum development, which posits that
students learn new material by building upon prior knowledge and
with interpretations through the lens of existing knowledge[20].
Creating opportunities for students to construct their own knowl-
edge to integrate that knowledge with existing knowledge leads to
better understanding.

However, learning is often not linear, especially with student-
constructed knowledge. In particular, when students are construct-
ing knowledge through their own observations and discussions, it
becomes clear that there are several somewhat independent “pieces
of knowledge” necessary to understand a whole concept[10]. This
has implications on the shape of the learning trajectory. When
ordering the learning goals in our learning trajectories, we look for
where learning goals can be learned in any order, resulting in less
of a linear structure and more of a 2-d structure.

However, it is important to note that learning trajectories are
not to be interpreted as the only, or even best, way for students to
progress in their understandings. Initial learning trajectories, like
ours, depend heavily on theories on the ways students build knowl-
edge, as described above. These initial learning trajectories and the
theories that influenced them not only inform initial activities, but
revisions are influenced by them [3, 20].

Because a single learning trajectory does not encompass all pos-
sible paths, concepts may be ordered not because students cannot
learn a later concept without an earlier one, but because students
have been able to grasp the earlier concepts at younger ages than
other ones or it is easier to build on that prior knowledge.

Finally, in order to identify partial understandings to create a
learning trajectory, the debate about misconceptions and deficit
thinking is relevant. Building on diSessa’s framing of Knowledge
in Pieces [7], Danielak recently argued that [6], focusing on mis-
conceptions, or things students do not understand, makes it more
difficult to identify what students do understand. In this work, when
faced with apparent misconceptions, we took care to identify what
was correct about the understandings. These partial understand-
ings and pieces of knowledge became the learning goals, or nodes,
within our learning trajectories.

3 PRIOR WORK

There have been recent efforts in computer science to create learn-
ing trajectories for fundamental computing concepts in order to
inform assessments and curriculum development. These have come
in very different formats. Early work in computer science was per-
formed by Seiter and Foreman, who extracted learning trajectories
from Scratch projects available on the Scratch website[21]. The CS
K-12 Framework could be viewed as having many components of
learning trajectories. More recently, learning trajectories have been
published by Rich et. al. for sequence, iteration, conditionals[19],
decomposition[17], and debugging[18]. There has also been work in
extracting the depth of understanding of different concepts through
artifact analysis[2, 14].

This effort has not yet begun in quantum computing. Instruc-
tion typically occurs at the graduate level from a mathematical



/ computational perspective. Principles are illustrated by demon-
strating the mathematical results from specific quantum operations.
Because our goal was to convey quantum computing concepts to
an audience with less mathematical and computing background,
we needed to identify the principles behind the examples and relate
those to non-computing, non-mathematical contexts.

4 QUANTUM COMPUTING

We begin by introducing the basics of quantum computation, lim-
ited to the concepts necessary to give context and understand the
learning trajectory and research study presented in this paper. Quan-
tum computing harnesses quantum physical properties in order to
define a new state and computations on that state.

4.1 Defining Quantum Computing

There are three similar areas related to quantum computing: quan-
tum physics, quantum information science, and quantum comput-
ing. Quantum physics, also referred to as quantum mechanics, stud-
ies the quantum phenomena on which quantum computing is built.
Quantum information science (QIS) utilizes these quantum phenom-
ena to encode and operate on information stored in quantum states.
Quantum computing is one of many applications of quantum infor-
mation science - quantum sensors and quantum communications
are two alternate areas to which QIS can be applied. For the pur-
poses of this paper, the distinctions between quantum information
science and quantum computing are not important. Both are con-
cerned with how to harness quantum computation to implement
quantum algorithms or protocols. However, the reasons for the
physical phenomenon are not paramount; we want to understand
how to utilize the constraints presented to us while abstracting
away the quantum physics details.

4.2 Quantum State

Instead of definitively holding a 0 or 1 like classical bits, qubits
can hold a superposition, or linear combination, of both 0 and 1.
However, at any time, there is a probability of measuring a 0 or
a 1. Quantum operations manipulate that probability. The expo-
nential advantage in quantum computing compared to classical
computing is the storage and manipulation of the superposition of
many bits working together through entanglement. However, an
understanding of superposition and entanglement are not required
to understand quantum reversibility.

4.3 Reversibility

A physical limitation that greatly hinders quantum computation
is the requirement that all computations must be reversible. In
daily life, there are many actions that we consider reversible or not
reversible (Figure 1). For quantum computing, the requirements of
reversibility are stricter. Here, the definition of reversible is that you
must always be able to perform an opposite operation that results
in the original inputs, knowing only the outputs of an operation
and the operation itself.

Consider logical operations. If you apply the NOT operation
three times to a variable with a result of 0, can you reverse that
operation and obtain the original input? Yes. Because NOT is its
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Figure 1: Two panes of an 8-pane zine about Reversibility
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Figure 2: Making a reversible AND operation. The third input
is an ancilla bit, which holds the result (allowing the extra
information necessary to reverse the operation).
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own inverse, you would apply NOT three times to reverse the three
original NOT's and obtain 1.

Now consider the logical AND operation. There are four possible
input combinations but only two possible output values. If the
output is 0, there are three possible input combinations: (0,0),
(0,1), (1,0). This means that if you know the operation (AND) and
the output (0), you do not have enough information to determine
the inputs because there are three valid combinations. To make
the AND operation reversible (Figure 2), we would need to add
an output bit to distinguish between the combinations of inputs
that have the same output. Because there are three possibilities, we
must add two bits. Thus, there are three output bits: one bit that
contains the AND calculation and two bits that make it reversible.
The two inputs are passed through, and an extra bit is necessary
for the result. This extra bit is called an ancilla bit. Note that this
adds only what is necessary for reversibility - quantum computing
operations have other constraints that we do not address in this

paper.
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5 MATERIALS DEVELOPMENT

Our goal is to develop learning trajectories for reversibility and
other concepts in quantum computing, as well as activities that
help learners meet the goals within the learning trajectories. The
challenge in this endeavor is that, unlike previous efforts to create
learning trajectories, we are attempting to create learning trajec-
tories before materials exist, for an audience with breadth in both
age and technical background. Existing textbooks take a mathemat-
ical approach, showing how quantum computing works through
the application of quantum gates on quantum state. Our goal is
to extract larger principles that can be separated from quantum
computing itself so they can be conveyed in other contexts. This
allows us to take advantage of the fonts of knowledge that a broader
audience has to build intuition that supports quantum concepts
before introducing the mathematics.

Our interdisciplinary group consisted of faculty members, grad-
uate students, and staff with expertise in quantum computing, com-
puter science education, and/or science education. Through weekly
discussions, this group collaboratively designed informal activities
for wide age ranges and created zines, cartoon-ish introductions
of each concept (see Figure 1 for an example). As team members
contributed ideas for activities for the everyday analogies included
in the zines, these ideas were dissected as to the ways in which they
did and did not accurately reflect the quantum computing concept
involved. This process of identifying possible misconceptions or
misunderstandings, then pivoting to identifying partial understand-
ings, allowed us to identify concepts that could be taught apart from
the traditional math-based or physics-based approaches. These par-
tial understandings became nodes in the learning trajectory. The
nodes were ordered utilizing learning theories with respect to learn-
ing trajectories. In particular, using constructivist principles, partial
understandings most directly connected to everyday knowledge
were ordered first. Aligned with a “knowledge in pieces” approach,
different nodes without strong dependence were not connected.

The Learning Trajectory (LT), zine, and informal activity devel-
opment followed a cyclic process, whereby the zines and activities
were initially used to draft the LT’s. The LT’s were then used to
refine the zines to more smoothly present the concept as well as
identify gaps in activity coverage and so that brainstorming could
occur to fill that gap (Figure 3). We now present the learning trajec-
tory, zine, and activity.

5.1 Learning Trajectory

Figure 4 depicts the reversibility learning trajectory. It begins with
the accessible concepts of actions being reversible and not reversible

actions, and continues to reversible and not reversible calculations.
The reversibility of calculations was chosen because for young
children, they learn addition and subtraction (1st and 2nd grade,
ages 6-8), as well as multiplication and division (3rd grade, ages
8-9)[8]. The trajectory follows with how to convert an operation
that is not reversible into something that is reversible (by storing
extra information, which leads to the inclusion of ancilla bits). This
is not unlike making a non-invertible function invertible, which is
in the Common Core State Standards for high school[8]. Therefore,
reasoning about whether something is reversible is simpler than
converting something from not being reversible to being reversible.

The actions—>calculations->quantum gates progression was a
specific attempt based on constructivism to be accessible to the
broadest population at the beginning and narrow as we got closer
to quantum computing. We begin with analogies like navigation on
city streets and then move on to simple calculations with addition.

5.2 Reversibility Zine

The progression in the learning trajectory is depicted in our zine.
As shown in Figure 1, we begin with the learning goal some actions
are reversible, followed by some actions are not reversible. Then, we
modify the definition of reversible to require getting back the same
inputs and apply this to math in panel 3 (Figure 5). This covers both
some calculations are reversible and some calculators are not reversible.
In panel 4, we then address learning goals related to information:
information may need to be saved to reverse an operation and extra
information is required to make an irreversible calculation reversible
by showing how to make addition reversible. Finally, we tie these
concepts to quantum computing in the final panes, Figure 6.

5.3 Activity

Our iterative process led to the design of several reversibility ac-
tivities. In this paper, we focus on one activity that we piloted in
a classroom, “Is It Reversible?” (inspired by a life science activity,
“Is It Living?”). At its heart, it is a categorization activity. Students
categorize examples of actions, ranging from clear to ambiguous
with respect to reversibility, with the goal of getting them to reason
about ambiguous cases and articulate their thinking as to how they
categorize things. The activity consists of three phases - categoriza-
tion, argumentation, and assessment.

We had two goals in designing our activity. Our first goal in
designing this idea was to provide students with minimal direct
instruction and instead provide them opportunities to think about,
discuss, and articulate to use their thoughts about reversibility.
As in constructivist thinking, we wanted to understand how they
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Figure 6: Tying reversibility to quantum computing.

connected reversibility to their everyday thoughts so that we could
identify the ways in which their everday understandings did or did
not match the way reversibility is used in quantum information
science. Therefore, in each phase, students are given a task in which
there is an outcome that they decide and articulate their reasons
for that decision. Our second goal was to create an activity that
satisfies learning goals outside of quantum information science for
this age group. The second phase satisfies this goal - we created
an argumentation activity that exercises students’ logical thinking
and articulation of an argument.

The first phase of the activity, categorization, begins with an
introductory discussion on the concept of reversibility. The facili-
tator bring up every day actions, such as zipping up a jacket and
cutting a piece of paper, and discuss whether the action can be
undone to bring everything back to its exact original state. Then,
groups of participants are given a set of "reversibility cards" and
asked to categorize each card as “reversible”, “not reversible”, and
“unsure”. Each reversibility card has before and after pictures and
text describing an action on an object. There are a total of 17 cards;
two examples are shown in Figure 7: folding paper into a crane and
cracking eggs in a carton. Once participants have finished catego-
rizing the cards, the whole group discusses how each small group
categorized the cards and why. During this part of the activity, we

Unfolded paper Paper folded into a crane

Eggsin a carton Cracked egg

Figure 7: Reversibility cards

Is It Reversible?

Consider each of the actions described below.
Circle the actions that you think are reversible.
Cross out the actions that you think are not reversible.
It’s OK if you’re not sure!

Building a Watching a Jumping in a Climbing a
tower of movie puddle ladder
blocks -H
. ia

Figure 8: Reversibility assessment

encourage participants to think about the detailed differences or
similarities between the original item and the “reversed” item.

The next activity phase is argumentation. Each participant com-
pletes a “Reversible or Not?” worksheet. On the worksheet, they
describe one action or change. Then, they indicate whether they
think that action/change is reversible or not reversible, and write
down their reasoning for this categorization. Once all the partici-
pants complete this portion of the worksheet, they participate in
a gallery walk to view what others wrote. The bottom half of the
worksheet allows participants to agree or disagree with the original
author’s claim and explain their own reasoning.

Finally, the last phase of the activity is the assessment portion,
which is completed by each participant individually. The assess-
ment worksheet, “Is it Reversible?”, consists of 16 actions which the
participant is asked to categorize as reversible or not. Again, these
actions range from clear to ambiguous with respect to reversibil-
ity. Four of the actions are shown in Figure 8. Then, participants
briefly describe the "rule" they used to determine if the actions are
reversible or not.

6 METHODS

6.1 Experimental Design

Students in this IRB-approved study were recruited from one 3rd
grade (8-9 year olds) classroom in a large, urban, private school



in the Midwestern United States. The activity was facilitated by a
researcher in quantum computing and computer science education.
In addition, three computer science education and/or quantum
computing researchers observed the activities. Students participated
in three activities over three weeks, which focused on measurement
disturbing state, reversibility, and superposition. Of the 23 students
in the class, 15 students and their parents gave consent for data
collection. Here we report on the reversibility activity to explore
8-9 year olds’ thoughts and understandings of an early learning
goal in reversibility.

6.2 Data Collected

Data were collected in the form of student work: the “Reversible or
Not?” worksheet from the argumentation phase of the activity and
the “Is It Reversible?” worksheet from the assessment phase of the
activity. Researchers also recorded observation notes.

6.3 Data Analysis

First, each “Reversible or Not?” worksheet was analyzed. It had
space for 4 student answers: the original’s student’s reasoning
on whether the action they chose was reversible or not, another
student’s reason for agreeing, another student’s reason for disagree-
ing, and another student’s reason for being unsure. We analyzed
students’ understanding of reversibility as shown in these short
answers by categorizing each answer qualitatively. In order to de-
velop the categories, one researcher read the answers and identified
emerging themes in how students reasoned about reversibility. The
themes were refined and clarified over several discussions between
the two researchers performing the coding. The final coding scheme
is shown in Table 1. Prior to discussing the coding scheme, there
was a 30% (14/47) agreement between the two researcher. Of the
70% of answers on which they disagreed, 26% (12/47) were deter-
mined to belong in multiple categories and subsequently labeled
as thus. The remaining 44% (21/47) of answers were discussed and
placed into one category after reaching agreement.

Second, the “Is It Reversible?” assessment worksheet was ana-
lyzed. The binary answer (reversible or not reversible) was recorded
for each item for each student. Observation notes were consulted
to identify reasons students cited that were counter to the majority
of answers. Finally, we analyzed the final question asking how they
determined whether something was reversible or not reversible us-
ing the same categorization scheme as for the "Reversible or Not?"
worksheet.

7 RESULTS

We present two sets of results, focusing on our questions of how
students think about reversibility when applied to real-life everyday
actions and how student reasoning aligns with the definition of
reversibility utilized in quantum computing.

7.1 Argumentation Activity

For the argumentation phase, we first present the categories that
emerged from qualitative coding, then analyze the results.

Table 1: Three Themes for Categorization

Theme Code Categorization
RV if components of object can
R be replaced

NR if components of object can-

1. Components not be replaced

of Object

RV if original components of ob-
ject can be maintained

NR if original components can-
not be maintained

RV if object retains its function
F despite changes in appearance
NR if function of object changes

2. Function of RV if object retains both func-

Object X tion and appearance
NR if function and/or appear-
ance is modified
RV if action can be undone but
A might modify object
NR if action cannot be undone
RV if action can be undone with-
) out modifying object
5 SPeaﬁc S NR if undoing the action
Action

changes the object

RV if action can be repeated con-
tinuously

NR if action can only be done
once

RV = Reversible, NR = Not reversible.

7.1.1  Argumentation Categories. Three themes emerged from qual-
itative coding of student written arguments and discussions during
the activity.

Ability to replace components. Some students reasoned not based
on reversing the action but through recycling or replacing compo-
nents. For example, a used tissue could be recycled by shredding
it and recycling it into new tissue paper. One student stated in the
worksheet that they were unsure whether writing with a pencil
was a reversible action, saying, "If you had a mechanical pencil,
you could put more lead in it" Here, the student is not analyzing
the reversibility of the action of writing itself, but rather thinking
about replacing a part of the pencil that has been lost because of
the action of writing.

Within this framework of thinking, we developed two specific
categories. Student answers that included statements about whether
components could be replaced were categorized into code R. The
mechanical pencil answer above is such an example.

Student answers that included statements about whether the
replaced component was the exact same, original component and
not a new one were categorized into code O. For example, one
student stated that taking Tic Tacs out of the box and eating them



was not a reversible action because "you can’t find the exact same
tic-tacs. You need to put the exact same tic-tacs." Here, the student
still thinks about reversibility in terms of replacing components
rather than reversing the action. However, the student recognizes
that replacing original components with similar components still
alters the object in some way.

Functionality of object. When reasoning about reversibility, some
students focused on whether the functionality of the object re-
mained intact. For example, one reversibility card shows scissors
cutting a piece of paper. Instead of reasoning about the action of
cutting the paper, some students looked at the functionality of the
scissors instead. They stated that the action was reversible because
the scissors would still be able to cut more paper after the action
was complete. Here, students viewed an action as reversible if the
functionality of the object involved was left intact.

Once again, we developed two categories within this theme. If
the student’s reasoning focused on the functionality of the object
after a specific action regardless of cosmetic loss, we categorized it
into code F. For example, one student reasoned that the action of
erasing was reversible because "if it breaks the eraser will still work."
Here, the student argues for reversibility based on the functionality
of the eraser, but does not take into account that the appearance of
the eraser changed because of the action.

If the student’s reasoning focused on both the functionality and
appearance of the object, we categorized it into code X. For example,
one of the reversibility cards show the action of stretching a rubber
band. One student stated that this action must be not reversible
because while the rubber band can still hold things, it will be larger
because it has been stretched out. Once again, the student focuses
on the function of the rubber band to hold things, but this time
takes into consideration the changes to the appearance of the rubber
band.

Action Type. Finally, many students reasoned about the reversibil-
ity of an action by considering the action itself as opposed to fo-
cusing solely on the characteristics of the objects involved. For
example, when reasoning about the action of tying shoelaces, one
student responded that the action was reversible because, "You
can untie your shoes." Here, the student is thinking about how the
actual action can be reversed.

Three categories were developed within this theme. First, some
students reasoned that an action is reversible if it can be reversed,
regardless of whether the related object might be modified or have
an altered appearance. These answers were categorized into code A.
For example, one reversibility card shows the coloring of a coloring
page. Some students argued that applying white-out would reverse
the action of coloring, even though the markings would be obvious.
We also categorized student answers as A if the answer didn’t con-
sider whether reversing the action would cause such modifications
to the related objects. For example, one student stated that the ac-
tion of filling a water bottle was reversible because, "You can take
the water back out" Here, the student focuses on simply reversing
the action and does not consider whether the wet state of the water
bottle from the action impacts the reversibility of the action.

If a student answer did consider how reversing the action could
modify the related object, it was categorized into code S. For exam-
ple, when reasoning about the reversibility of tying a shoelace, one

student said that the action was not reversible because, "it will be
wrinkled later" Here, the student not only analyzes the reversibility
of the action itself, but also considers any possible modifications to
the object from its previous state before the action.

Some students looked at the action, but rather than thinking
about reversing the action, thought about whether the action could
be repeated or not. These answers were categorized into code C.
For example, when analyzing the action of sharpening a pencil,
one student responded saying the action was not reversible be-
cause, "You can’t sharpen it too many times or it will be too short
to sharpen.” The student’s reasoning does look at the action, but
instead of thinking about how to reverse the sharpening, it thinks
about whether the sharpening can be repeated.

Relationship to Quantum Reversibility. Analysis that matches
quantum reversibility would take into consideration all objects in
the system (the scissors and the paper, for example) and only allow
the action to reverse, not any components to be replaced or recycled.
From this perspective, an action that is reversible must adhere to
qualitative codes O (all components of the system must be main-
tained), X (the system retains both function and appearance), and
S (can be done without modifying the components in the system).
Qualitative code C indicates a very useful way of analyzing whether
changes occur but is not an additional requirement for reversibility.

7.1.2  Categorization Results. The categorization results are shown
in Table 1. Answers that were missing were categorized as M, and
answers that were difficult to understand due to grammatical or
logical errors were categorized as U. With 15 students and 4 possible
student answers for each worksheet, there were 60 possible answers.
Of these, 13 were missing (M), leaving 47 analyzed answers.

Figure 9 shows the number of answers categorized into each
theme. The graph shows the total number of counts for all the
answers (blue), the answers supporting reversibility of an action
(green), the answers supporting non-reversibility of an action (red),
and the answers that were uncertain (yellow). Note that the number
of categorizations do not add up to 47 because 12 of the answers
were categorized with two different codes. When student reasoning
was coded into multiple categories, the most common combination
was A and R.

As seen in Figure 9, most student arguments for the reversibility
of an action analyzed the actual action itself (Theme 3). This was
followed by analysis of the components of the object affected by the
action (Theme 1). Only a few separated out the functionality and
the aesthetics of the object (Theme 2). These patterns are consistent
for answers defending both reversibility and non-reversibility. The
number of “Not Sure” answers are too few to determine if there is
a trend.

Table 2 provides more detailed results, showing the number of
answers in each specific category. Note that the number of cate-
gorizations do not add up to 47 because 12 of the answers were
categorized into two different codes. The detailed breakdown of
counts shows that within Theme 3, the majority of answers (19
out of 32) were coded A, and a large minority of answers (10 out
of 32) were coded S. Categorization into A means that students
analyzed just the reversibility of an action, while categorization
into S means that students took the analysis a step further - looking
at any modifications to the object the action may have made, as
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Table 2: Categorization Results

Code RV NR NS Total
R 8 2 3 13

O 1 3 0 4

F 1 2 0 3

X 0 0 0 0

A 17 1 1 19

S 0 7 3 10

C 1 2 0 3

RV = Reversible, NR = Not reversible, NS = Not sure.
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Figure 10: Number of students who categorized each activity
as being reversible

well. Most student answers categorized into code A (17 out of 19)
argued for reversibility of an action, and most student answers
categorized into code S (7 out of 10) argued for non reversibility
of an action. This suggests that students who considered how an
action could modify related objects were more likely to find more
nuanced reasons that an action was not reversible.

Table 3: Breakdown of Articulated General Reasoning

Components | Function Action
NA | R (@) F| X |A|S|C
8 |0 1 0 0 3121

7.2 Assessment

For the "Is it reversible?" assessment, we first looked at how student
answers varied across actions included in the assessment. Figure 10
shows the number of students (out of 15 total) who thought each
of the actions shown was reversible. All students thought “turning
on a lamp” was a reversible action, while no students thought
“baking a pie” was a reversible action. These edge cases show that
after participating in the reversibility activities, many students
generally understood the concept of an action being reversible.
Baking a pie is clearly a task that is impossible to reverse, and all
students agreed that it was a non-reversible action. However, we
also see that students did not agree on whether most of the actions
were reversible or not. This indicates that students’ differences in
argumentation approaches and interpretations resulted in different
conclusions about reversibility.

This also shows how student impressions changed throughout
the activity. At the start of the activity, when discussing the re-
versibility cards, many students thought that coloring a picture was
areversible action because they could use white-out on the parts
they had colored - even though it would be clear that those parts
had been modified. In the assessment, only 1 student thought that
painting a picture was a reversible action.

We also analyzed student responses to the question, "How did
you decide if an action was reversible or not?" using the catego-
rization scheme discussed above. The results are in Table 3. Of the
15 responses, 8 were uncategorizable because they were too vague
to understand (labeled NA). Examples of these types of responses
include, "I pictured it in my head" and "You can reverse a lot of
things." Of the remaining 7 responses, 6 fell into analyzing actions
and 1 analyzed the components of the system (code O). Examples
of responses categorized as action include, "You can turn on a lamp
and turn off a lamp" and "If you can undo the action and make it
the exact same then I think it’s reversible!" The high number of
uncategorizable responses suggests that it is difficult for students
this age to articulate their decision mechanism in a general way.

7.3 Discussion

This study highlights two pieces of knowledge that are important
for students to learn in order to properly categorize actions as
reversible or not reversible from a quantum perspective. The connec-
tions are challenging since QIS reversibility is normally described
in very precise mathematical terms, not in terms on actions at the
macro level, so we must make analogies to the everyday physical
world.

First, students need to think about not only the action itself
but its effect on all components in the system. For example, when
considering whether “tie my shoes" or “brading hair" was reversible,
some students only considered the action (“you can untie your
shoes”), while others considered the result upon the shoelace (“it



will be wrinkled later"). In a quantum system, to be reversible, all
outputs need to be restored to their original state. Because the shoe
lace and hair are inputs to the operation, they would need to be
restored to their original state.

Second, when thinking about the system components, students
need to recognize the need to preserve the original items, not add
new things into the system through replacement or recycling. When
there is a before and after picture of an action, the restoration needs
to be limited to the items in that picture. In quantum computing,
there is a closed system. Even something needed temporarily, like an
ancilla bit, is inputted into the operation and included in the analysis
of whether or not it is reversible. Therefore, any replacement items
would be inputs to the original operations. Therefore, it cannot
“replace” the other item. If there were two tissues initially, soiling
one and replacing it with the other is not sufficient - the system
went from two clean tissues to one clean and one dirty tissue.

We also see that the activities led students to think more carefully
about actions being completely reversible.

The wide range of opinions on activities such as “braiding hair”
show that students were divided on actions that modified the system.
For example, one student who said that the action was not reversible
stated that “If you can undo the action and make it the exact same
then I think it’s reversible” - while braiding hair is an action that
can be undone, the waves left in the hair fails to make it “the exact
same” as before. Meanwhile, another student who looked just at the
action, saying “you sometimes untie the braid”, marked the action
as reversible.

Finally, we found that students seem better able to reason about
the reversibility of specific actions than to generalize about the
concept. This is reflected in the large number of uncategorizable
responses to the assessment question. Additionally, for the few
responses that were categorizable, several discussed specific actions
that the students had already reasoned about rather than the general
conditions that make an action reversible.

8 IMPLICATIONS

This study has two sets of implications, one on the learning trajec-
tories themselves and another on instruction for students this age
on quantum reversibility.

8.1 Learning Trajectories

These results indicate that the learning trajectory for quantum re-
versibility should be augmented to include a more precise definition
of what makes an action reversible.

Figure 11 illustrates the new learning trajectory. There are several
differences informed by this study.

First, we make a distinction between actions that “can be undone"
and actions that are “reversible.” We consider the former to be the
real-world notion of reversibility, which could be quite flexible in
how it is defined. Students have this knowledge prior to instruction,
making it a lower anchor point. We then include the two core
requirements for making something reversible: that the action of
reversing restores all parts of the system to their original state and
that additional elements from outside the system are not added to
the system to assist in the reversing. Just as in our activity, these two
concepts can arise in any order based on student conversations, so,

informed by the Pieces of Knowledge framework, we place those in
either order. Those lead to the understanding of reversible actions,
as more closely defined by quantum computing.

After this, students would be ready to either go further with
the real-world action analogy or tackle reversible mathematical
calculations. They could learn how to make irreversible actions
reversible by storing information. For example, students could have
a discussion about whether the action of walking from your house
to a playground is reversible. What needs to be done to reverse
it? Walk the same path? Walk in the same footsteps? If you need
the same path, what information do you have to store in order
to get back? They would discuss adding a notepad to the system,
recording your path, and then erasing it when you get back in order
to reverse all elements in the system. Alternatively, students could
then explore the same process with mathematical operations.

Although we did not research an activity related to reversible
calculations, we have applied what we learned to that part of the
trajectory. We more precisely define reversible actions as ones
that can be reversed with only knowledge of the output(s) and the
operation. Further research should be performed to find out whether
there are specific differences students encounter in reasoning about
reversible calculations.

8.2 Instruction

This activity was not merely a tool to elicit student ideas - it was an
instructional tool to teach them the nuances of reversibility in an
accessible way. We are able to evaluate the success of the activity in
creating discussions that developed student understandings about
reversibility.

All three phases of the activity were successful at getting stu-
dents to discuss and evolve their understanding of reversibility. For
example, when initially discussing the action of steeping tea, many
students focused on returning the object to its original state and
said that the action is reversible because the tea could be replaced
with new water and a dry teabag. During these discussions, we
pushed them to think about undoing the specific action on the
specific objects, rather than simply replacing changed components
of the object. The results in Figure 9 show that students began to
understand analyzing the action rather than the object. Further-
more, our analysis shows that a majority of answers categorized
into Theme 1 (10 out of 17) also considered the action (Theme 3).
Then, leading student discussions to look at the consequences of
an action and the related reversal of this action could help them
deepen their analysis of reversibility.

Analysis of the assessment and worksheet data show that the
activity successfully introduced ideas that help students analyze the
reversibility of an action. Throughout the activity, students were
able to discuss the actions themselves, the consequences of those
actions, and the state of the objects related to the actions in order
to start developing solid arguments for their reasoning. However,
they had more difficulty reasoning generally than reasoning about
specific actions.

Now that we know the particular differences between student
initial understandings and the quantum-inspired definition of re-
versibility, however, we can provide more targeted instruction to
help move students along the learning trajectory. From a high level,
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one of the most major challenges for students was thinking of not
only the action but of all of the items in the system. There are a
few ways that this could be accomplished.

One way to do this would be to have students be given a concrete
action to reverse, such as cutting a piece of paper. They could
then discuss whether different approaches (e.g. taping or gluing it
back together) would result in all items being just like they started.
Including this concrete example and discussion would allow the
facilitator to clarify the that it is important to identify all the parts
of the system that the action is working on in order to determine if
the action is reversible.

In addition, existing parts of the activity could be augmented to
draw student attention to the items in the system. For the middle
exercise, in which students identify an action that is or is not re-
versible, students would be asked to identify all of the items in the
system, the action that took place, and then draw before and after
pictures that include all of the items in the system.

Finally, when students categorize items in the final assessment,
instead of just having students identify something as reversible
or not reversible, we could have them categorize non-reversible
actions based on the reversibility rules they violate. This would
bring those elements to the forefront of their decision process and
help them generalize their reasoning.

9 LIMITATIONS

This study involves the consented subset of a single classroom of
students from a single school, resulting in only 15 students partici-
pating. While we have documented interesting ideas and thoughts
from those students, we are unable to make any statements about
whether this sample is representative of the general population of
8-9 year old students.

10 CONCLUSIONS

This report study the development and evolution of a learning
trajectory and activity for teaching quantum reversibility to a non-
technical audience. We found that even third-grade students are
able to reason about actions in a way that has synergy with quan-
tum reversibility. However, we identified two common patterns
of reasoning that do not match quantum reversibility - focusing
on the action but not requiring all items to be restored to their
original states and allowing substantial extra resources to be added
to the system to provide an equivalent, but not the same, item af-
ter reversal. This was used to revise the initial learning trajectory.
This revised learning trajectory can become a starting point for

research on how to move student understanding even closer to
what is necessary for making quantum computing contributions.
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