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ABSTRACT | Building a quantum computer that surpasses

the computational power of its classical counterpart is a

great engineering challenge. Quantum software optimizations

can provide an accelerated pathway to the first generation

of quantum computing (QC) applications that might save

years of engineering effort. Current quantum software stacks

follow a layered approach similar to the stack of classical

computers, which was designed to manage the complexity.

In this review, we point out that greater efficiency of QC sys-

tems can be achieved by breaking the abstractions between
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these layers. We review several works along this line, includ-

ing two hardware-aware compilation optimizations that break

the quantum instruction set architecture (ISA) abstraction

and two error-correction/information-processing schemes that

break the qubit abstraction. Last, we discuss several possible

future directions.

KEYWORDS | Quantum computing (QC), software design, sys-

tem analysis and design.

I. I N T R O D U C T I O N
Quantum computing (QC) has recently transitioned from a

theoretical prediction to a nascent technology. With

development of noisy intermediate-scale quantum (NISQ)

devices, cloud-based quantum information processing

(QIP) platforms with up to 53 qubits are currently acces-

sible to the public. It has also been recently demonstrated

by the Quantum Supremacy experiment on the Sycamore

quantum processor, a 53-qubit QC device manufactured

by Google, that quantum computers can outperform cur-

rent classical supercomputers in certain computational

tasks [7], although alternative classical simulations have

been proposed that scale better [73], [74]. These develop-

ments suggest that the future of QC is promising. Neverthe-

less, there is still a gap between the ability and reliability of

current QIP technologies and the requirements of the first

useful QC applications. The gap is mostly due to the pres-

ence of qubit decoherence and systematic errors including

gate errors, state preparation, and measurement (SPAM)

errors. As an example, the best reported qubit decoherence

time on a superconducting (SC) QIP platform is around

500 µs (meaning that in 500 µs, the probability of a

logical 1 state staying unflipped drops to 1/e ≈ 0.368),
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Fig. 1. Workflow of the QC stack roughly followed by current

programming environments (e.g., Qiskit, Cirq, ScaffCC) based on the

quantum circuit model.

the best error rate of 2-qubit gates is around 0.3%–1% in a

device, measurement error of a single qubit is between 2%

and 5% [1], [75]. In addition to the errors in the elemen-

tary operations, emergent error modes such as crosstalk

are reported to make significant contributions to the cur-

rent noise level in quantum devices [18], [60]. With these

sources of errors combined, we are only able to run quan-

tum algorithms of very limited size on current QC devices.

Thus, it will require tremendous efforts and invest-

ment to solve these engineering challenges, and we can-

not expect a definite timeline for its success. Because of

the uncertainties and difficulties in relying on hardware

breakthroughs, it will also be crucial in the near term to

close the gap using higher-level quantum optimizations

and software hardware codesign, which could maximally

utilize noisy devices and potentially provide an accelerated

pathway to real-world QC applications.

Currently, major quantum programming environments,

including Qiskit [6] by IBM, Cirq [3] by Google, PyQuil

[58] by Rigetti, and strawberry fields [66] by Xanadu,

follow the quantum circuit model. These programming

environments support users in configuring, compiling, and

running their quantum programs in an automated work-

flow and roughly follow a layered approach as illustrated

in Fig. 1. In these environments, the compilation stack

is divided into layers of subroutines that are built upon

the abstraction provided by the next layer. This design

philosophy is similar to that of its classical counterpart,

which has slowly converged to this layered approach over

many years to manage the increasing complexity that

comes with the exponentially growing hardware resources.

In each layer, burdensome hardware details are well encap-

sulated and hidden behind a clean interface, which offers

a well-defined, manageable optimization task to solve.

Thus, this layered approach provides great portability and

modularity. For example, the Qiskit compiler supports both

the SC QIP platform and the trapped ion QIP platform as

the backend (see Fig. 2). In the Qiskit programming envi-

ronment, these two backends share a unified, hardware-

agnostic programming frontend even though the hardware

characteristics, and the qubit control methods of the two

platforms are rather different. SC qubits are macroscopic

LC circuits placed inside dilution fridges of temperature

near absolute zero. These qubits can be regarded as arti-

ficial atoms and are protected by a metal transmission

line from environmental noise. For SC QIP platforms, qubit

control is achieved by sending microwave pulses into the

transmission line that surrounds the LC circuits to change

the qubit state, and those operations are usually done

within several hundreds of nanoseconds. On the other

hand, trapped ion qubits are ions confined in the potential

of electrodes in vacuum chambers. Trapped ion qubits have

a much longer coherence time (>1 s) and a modulated

laser beam is utilized (in addition to microwave pulse

control) in performing quantum operations. The quantum

gates are also much slower than that of SC qubits but the

qubit connectivity (for 2-qubit gates) are much better. In

Qiskit’s early implementation, the hardware characteristics

of the two QIP platforms are abstracted away in the quan-

tum circuit model so that the higher level programming

environment can work with both backends.

However, the abstractions introduced in the layered

approach of current QC stacks restrict opportunities for

cross-layer optimizations. For example, without accessing

the lower level noise information, the compiler might not

be able to properly optimize gate scheduling and qubit

mapping with regard to the final fidelity. For near-term

QC, maximal utilization of the scarce quantum resources

and reconciling quantum algorithms with noisy devices

is of more importance than to manage complexity of

the classical control system. In this review, we propose a

shift of the QC stack toward a more vertical integrated

architecture. We point out that breaking the abstraction

layers in the stack by exposing enough lower level details

could substantially improve the quantum efficiency. This

claim is not that surprising—there are many supporting

examples from the classical computing world such as the

emergence of application-specific architectures like the

graphics processing unit (GPU) and the tensor processing

unit (TPU). However, this view is often overlooked in the

software/hardware design in QC.
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Fig. 2. Same abstractions in the QC stack on the logical level can be mapped to different physical implementations. Here, we take the SC

QIP platform and the trapped ion QIP platform as examples of the physical implementations. (Left) In the quantum circuit model, both SC

qubits and trapped-ion qubits are abstracted as two-level quantum systems and their physical operations are abstracted as quantum

gates, even though these two systems have different physical properties. (Middle) SC qubits are SC circuits placed inside a long, metal

transmission line. The apparatus requires a dilution fridge of temperature near absolute zero. The orange standing waves are oscillations in

the transmission line, which are driven by external microwave pulses and used to control the qubit states. (Right) Trapped ion qubits are

confined in the potential of cylindrical electrodes. Modulated laser beam can provide elementary quantum operations for trapped ion qubits.

The apparatus is usually contained inside a vacuum chamber of pressure around 10−8 Pa. The two systems require different high-level

optimizations for better efficiency due to their distinct physical features.

We examine this methodology by looking at several

previous works along this line. We first review two

compilation optimizations that break the instruction

set architecture (ISA) abstraction by exposing pulse

level information (see Section II) and noise information

(see Section III). Then, we discuss an information

processing scheme that improves general circuit latency

by exposing the third energy level of the underlying

physical space, that is, breaking the qubit abstraction

using qutrits (see Section IV). Then, we discuss the

Gottesman–Kitaev–Preskill (GKP) qubit encoding in a

quantum harmonic oscillator (QHO) that exposes error

information in the form of small shifts in the phase

space to assist the upper level error mitigation/correction

procedure (see Section V).

At last, we envision several future directions that could

further explore the idea of breaking abstractions and assist

the realization of the first quantum computers for real-

world applications.

II. B R E A K I N G T H E I S A A B S T R A C T I O N

U S I N G P U L S E - L E V E L C O M P I L AT I O N

In this section, we describe a quantum compilation

methodology proposed in [28] and [67] that achieves

an average of 5× speedup in terms of generated circuit

latency, by employing the idea of breaking the ISA abstrac-

tion and compiling directly to control pulses.

A. Quantum Compilation
Since the early days of QC, quantum compilation has

been recognized as one of the central tasks in realiz-

ing practical quantum computation. Quantum compilation

was first defined as the problem of synthesizing quantum

circuits for a given unitary matrix. The celebrated Solovay–

Kitaev theorem [34] states that such synthesis is always

possible if a universal set of quantum gates is given. Now

the term of quantum compilation is used more broadly and

almost all stages in Fig. 1 can be viewed as part of the

quantum compilation process.

There are many indications that current quantum com-

pilation stack (see Fig. 1) is highly inefficient. First, current

circuit synthesis algorithms are far from saturating (or

being closed to) the asymptotic lower bound in the general

case [34], [49]. Also, the formulated circuit synthesis prob-

lem is based on the fundamental abstraction of quantum

ISA (see Section II-B) and largely discussed in a hardware-

agnostic settings in previous work but the underlying

physical operations cannot be directly described by the

logical level ISA (as shown in Fig. 2). The translation from

the logical ISA to the operations directly supported by the
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hardware is typically done in an ad hoc way. Thus, there

is a mismatch between the expressive logical gates and the

set of instructions that can be efficiently implemented on

a real system. This mismatch significantly limits the effi-

ciency of the current QC stack, thus underlying quantum

devices’ computing ability and wastes precious quantum

coherence. While improving the computing efficiency is

always valuable, improving QC efficiency is do-or-die:

computation has to finish before qubit decoherence or the

results will be worthless. Thus, improving the compilation

process is one of the most, if not the most, crucial goals in

near-term QC system design.

By identifying this mismatch and the fundamental lim-

itation in the ISA abstraction, in [28] and [66], we pro-

posed a quantum compilation technique that optimizes

across existing abstraction barriers to greatly reduce

latency while still being practical for large numbers of

qubits. Specifically, rather than limiting the compiler to use

1- and 2-qubit quantum instructions, our framework aggre-

gates the instructions in the logical ISA into a customized

set of instructions that corresponds to optimized control

pulses. We compare our methodology to the standard

compilation workflow on several promising NISQ quantum

applications and conclude that our compilation method-

ology has an average speedup of 5× with a maximum

speedup of 10×. We use the rest of this section to introduce

this compilation methodology, starting with defining some

basic concepts.

B. Quantum ISA

In the QC stack, a restricted set of 1- and 2-qubit

quantum instructions are provided for describing the high-

level quantum algorithms, analogous to the ISA abstraction

in classical computing. In this article, we call this instruc-

tion set the logical ISA. The 1-qubit gates in the logical

ISA include the Pauli gates, P = {X, Y, Z}. It also includes

the Hadamard H gate, the symbol in the circuit model of

which is given as an example in Fig. 2 on the left column.

The typical 2-qubit instruction in the logical instruction set

is the controlled-NOT (CNOT) gate, which flips the state of

the target qubit based on the state of the control qubit.

However, usually QC devices does not directly support

the logical ISA. Based on the system characteristics, we can

define the physical ISA that can be directly mapped to

the underlying control signals. For example, SC devices

typically has cross-resonance (CR) gate or iSWAP gate

as their intrinsic 2-qubit instruction, whereas for trapped-

ion devices the intrinsic 2-qubit instruction can be the

Mølmer–Sørensen gate or the controlled phase gate.

C. Quantum Control

As shown in Fig. 2 and discussed in Section I, underlying

physical operations in the hardware such as microwave

control pulses and modulated laser beam are abstracted

as quantum instructions. A quantum instruction is simply

as prefined control pulse sequences.

The underlying evolution of the quantum system is

continuous and so are the control signals. The continuous

control signals offer much richer and flexible controllabil-

ity than the quantum ISA. The control pulses can drive

the QC hardware to a desired quantum states by varying

a system-dependent and time-dependent quantity called

the Hamiltonian. The Hamiltonian of a system determines

the evolution path of the quantum states. The ability to

engineer real-time system Hamiltonian allows us to navi-

gate the quantum system to the quantum state of interest

through generating accurate control signals. Thus, quan-

tum computation can be done by constructing a quantum

system in which the system Hamiltonian evolves in a way

that aligns with a QC task, producing the computational

result with high probability upon final measurement of the

qubits. In general, the path to a final quantum state is not

unique, and finding the optimal evolution path is a very

important but challenging problem [25], [39], [62].

D. Mismatch Between ISA and Control

Being hardware-agnostic, the quantum operation

sequences composed by logical ISA have limited freedom

in terms of controllability and usually will not be mapped

to the optimal evolution path of the underlying quantum

system, thus there is a mismatch between the ISA and

low-level quantum control. With two simple examples,

we demonstrate this mismatch.
1) We can consider the instruction sequence consists of

a CNOT gate followed by an X gate on the control

bit. In current compilation workflow, these two logical

gates will be further decomposed into the physical

ISA and be executed sequentially. However, on SC

QIP platforms, the microwave pulses that implement

these two instructions could in fact be applied simul-

taneously (because of their commutativity). Even the

commutativity can be captured by the ISA abstraction,

in the current compilation workflow, the compiled

control signals are suboptimal.

2) SWAP gate is an important quantum instruction

for circuit mapping. The SWAP operation is usually

decomposed as three CNOT operations, as realized

in the circuit below. This decomposition could be

thought of the implementation of in-place mem-

ory SWAPs with three alternating XORs for classi-

cal computation. However, for systems like quantum

dots [41], the SWAP operation is directly supported

by applying particular constant control signals for a

certain period of time. In this case, this decomposi-

tion of SWAP into three CNOTs introduces substantial

overhead.

In experimental physics settings, equivalences from sim-

ple gate sequences to control pulses can be hand opti-

mized [61]. However, when circuits become larger and

more complicated, this kind of hand optimization becomes
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less efficient and the standard decomposition becomes less

favorable, motivating a shift toward numerical optimiza-

tion methods that are not limited by the ISA abstraction.

E. Quantum Optimal Control

Quantum optimal control (QOC) theory provides an

alternative in terms of finding the optimal evolution path

for the quantum compilation tasks. QOC algorithms typ-

ically perform analytical or numerical methods for this

optimization, among which, gradient ascent methods,

such as the GRadient Ascent Pulse Engineering (GRAPE)

[15], [33] algorithm, are widely used. The basic idea of

GRAPE is as follows: for optimizing the control signals of

M parameters (u1, . . . , uM ) for a target quantum state,

in every iteration, GRAPE minimizes the deviation of the

system evolution by calculating the gradient of the final

fidelity with respect to the M control parameters in the

M -dimensional space. Then GRAPE will update the para-

meters in the direction of the gradient with adaptive step

size [15], [33], [39]. With a large number of iterations,

the optimized control signals are expected to converge and

find optimized pulses.

In [65], we utilize GRAPE to optimize our aggregated

instructions that are customized for each quantum circuit

as opposed to selecting instructions from a predefined

pulse sequences. However, one disadvantage of numer-

ical methods like GRAPE is that the running time and

memory use grow exponentially with the size of the

quantum system for optimization. In our work, we are

able to use GRAPE for optimizing quantum systems of

up to 10 qubits with the GPU-accelerated optimal control

unit [39]. As shown in our result, the limit of 10 qubits

does not put restrictions on the result of our compilation

methodology.

F. Pulse-Level Optimization: A Motivating
Example

Next, we will illustrate the workflow of our compila-

tion methodology with a circuit instance of the quantum

approximate optimization algorithm (QAOA) for solving

the MAXCUT problem on the triangle graph (see Fig. 3).1

This QAOA circuit with logical ISA (or variants of it up

to single qubit gates) can be reproduced by most existing

quantum compilers. This instance of the QAOA circuit is

generated by the ScaffCC compiler, as shown in Fig. 3(a).

We assume this circuit is executed on an SC architecture

with 1-D nearest neighbor qubit connectivity. A SWAP

instruction is inserted in the circuit to satisfy the linear

qubit connectivity constraints.

On the other hand, our compiler generates the aggre-

gated instruction set G1–G5 as illustrated in Fig. 3(b) auto-

matically, and uses GRAPE to produce highly optimized

pulse sequences for each aggregated instruction. In this

1The angle parameters γ and β can be determined by variational
methods [44] and are set to 5.67 and 1.26.

Fig. 3. Example of a QAOA circuit. (a) QAOA circuit with the logical

ISA. (b) QAOA circuit with aggregated instructions. (c) Generated

control pulses for G3 in the ISA-based compilation. (d) Control pulses

for G3 from aggregated instructions based compilation. Each curve

is the amplitude of a relevant control signal. The pulse sequences in

(d) provides a 3× speedup comparing to the pulse sequences in (c).

Pulse sequences reprinted with permission from [65].

minimal circuit instance, our compilation method reduces

the total execution time of the circuit by about 2.97× com-

pared to compilation with restricted ISA. Fig. 3(c) and (d)

shows the generated pulses for G3 with ISA-based compila-

tion and with our aggregated instruction based, pulse-level

optimized compilation.

G. Optimized Pulse-Level Compilation Using
Gate Aggregation: The Workflow

Now, we give a systematic view of the workflow of

our compiler. First, at the program level, our compiler
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Fig. 4. Example in Fig. 5 in the form of GDG. (a) Input GDG. (b) Commutativity detection. (c) Commutativity-aware scheduling.

performs module flattening and loop unrolling to pro-

duce the quantum assembly (QASM), which represents

a schedule of the logical operations. Next, the compiler

enters the commutativity detection phase. Different from

the ISA-based approach, in this phase, our compilation

process converts the QASM code to a more flexible logical

schedule that explores the commutativity between instruc-

tions. To further explore the commutativity in the schedule,

the compiler aggregates instructions in the schedule to

produce a new logical schedule with instructions that rep-

resents diagonal matrices (and are of high commutativity).

Then the compiler enters the scheduling and mapping

phase. Because of commutativity awareness, our compiler

can generate a much more efficient logical schedule by

rearranging the aggregated instructions with high com-

mutativity. The logical schedule is then converted to a

physical schedule after the qubit mapping stage. Then the

compiler generates the final aggregated instructions for

pulse optimization and use GRAPE for producing the corre-

sponding control pulses. The goal of the final aggregation

is to find the optimal instruction set that produces the

lowest-latency control pulses while preserving the paral-

lelism in the circuit aggregations that are small as much

as possible. Finally, our compiler outputs an optimized

physical schedule along with the corresponding optimized

control pulses. Fig. 4 shows the gate dependence graph

(GDG) of the QAOA circuit in Fig. 5 in different compila-

tion stages. Next, we walk through the compilation back-

end with this example, starting from the commutativity

detection phase.

1) Commutativity Detection: In the commutativity detec-

tion phase, the false dependence between commutative

instructions are removed and the GDG is restructureed.

This is because if a pair of gates commutes, the gates can

be scheduled in either order. Also, it can be further noticed

that, in many NISQ quantum algorithms, it is ubiquitous

Fig. 5. Example of CLS. With commutativity detected, the circuit

depth can be shortened. (a) Input circuit. (b) Commutativity

detection. (c) Commutativity-aware scheduling.

that for instructions within an instruction block to not

commute, but for the full instruction block to commute

with each other [19], [37]. As an example, in Fig. 5,

the CNOT-Rz-CNOT instruction blocks commute with each

other because these blocks correspond to diagonal unitary

matrices. However, each individual instruction in these
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circuit blocks does not commute. Thus, after aggregating

these instructions, the compiler is able to schedule new

aggregated instructions in any order, which is impossible

before. This commutativity detection procedure opens up

opportunities for more efficient scheduling.

2) Scheduling and Mapping:

a) Commutativity-aware logical scheduling (CLS): In

our scheduling phase, our logical scheduling algorithm

is able to fully utilize the detected commutativity in the

last compilation phase. The CLS iteratively schedules the

available instructions on each qubits. At each iteration,

the CLS draws instruction candidates that can be executed

in the earliest time step to schedule.

b) Qubit mapping: In this phase of the compilation,

the compiler transform the circuit to a form that respect

the topological constraints of hardware connectivity [43].

To conform to the device topology, the logical instructions

are processed in two steps. First, we place frequently

interacting qubits near each other by bisecting the qubit

interaction graph along a cut with few crossing edges,

computed by the METIS graph partitioning library [32].

Once the initial mapping is generated, 2-qubit operations

between nonneighboring qubits are prepended with a

sequence of SWAP rearrangements that move the control

and target qubits to be adjacent.

3) Instruction Aggregation: In this phase, the compiler

iterates with the optimal control unit to generate the final

aggregated instructions for the circuit. Then, the optimal

control unit optimizes each instruction individually with

GRAPE.

4) Physical Execution: Finally, the circuit will be sched-

uled again using the CLS from Section II-G2, the physical

schedules will be sent to the control unit of the underly-

ing quantum hardware and trigger the optimized control

pulses at appropriate timing and the physical execution.

H. Discussion

In [65], we selected nine important quantum/classical-

quantum hybrid algorithms in the NISQ era as our

benchmarks. Across all nine benchmarks, our compilation

scheme achieves a geometric mean of 5.07× pulse time

reduction comparing to the standard gate-based compi-

lation. The result in [65] indicates that addressing the

mismatch between quantum gates and the control pulses

by breaking the ISA abstraction can greatly improve the

compilation efficiency. Going beyond the ISA-based com-

pilation, this article opens up a door to new QC system

designs.

III. B R E A K I N G T H E I S A A B S T R A C T I O N

U S I N G N O I S E - A D A P T I V E

C O M P I L AT I O N

In recent years, QC compute stacks have been devel-

oped using abstractions inspired from classical computing.

The ISA is a fundamental abstraction which defines the

Fig. 6. Daily variations in qubit coherence time (larger is better)

and gate error rates (lower is better) for selected qubits and gates

in IBM’s 16-qubit system. The most or least reliable system

elements change across days. (a) Coherence time (T2). (b) CNOT

gate error rate.

interface between the hardware and software. The ISA

abstraction allows software to execute correctly on any

hardware which implements the interface. This enables

application portability and decouples hardware and soft-

ware development.

For QC systems, the hardware–software interface is typ-

ically defined as a set of legal instructions and the con-

nectivity topology of the qubits [14], [20]–[22], [58]—it

does not include information about qubit quality, gate

fidelity, or micro-operations used to implement the ISA

instructions. While technology independent abstractions

are desirable in the long run, our work [46], [47]

reveals that such abstractions are detrimental to program

correctness in NISQ quantum computers. By exposing

microarchitectural details to software and using intelligent

compilation techniques, we show that program reliability

can be improved significantly.

A. Noise Characteristics of QC Systems

QC systems have spatial and temporal variations in

noise due to manufacturing imperfections, imprecise qubit

control, and external interference. To motivate the neces-

sity for breaking the ISA abstraction barrier, we present

real-system statistics of hardware noise in systems from

three leading QC vendors—IBM, Rigetti, and University

of Maryland. IBM and Rigetti systems use SC qubits

[10], [12] and the University of Maryland (UMD) uses
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Fig. 7. (a) IR of the Bernstein-Vazirani algorithm (BV4). Each horizontal line represents a program qubit. X and H are single qubit gates.

The CNOT gates from each qubit p0−−2 to p3 are marked by vertical lines with XOR connectors. The readout operation is indicated by the

meter. (b) Qubit layout in IBMQ16, a naive mapping of BV4 onto this system. The black circles denote qubits and the edges indicate hardware

CNOT gates. The edges are labeled with CNOT gate error (×10−2). The hatched qubits and crossed gates are unreliable. In this mapping,

a SWAP operation is required to perform the CNOT between p1 and p3 and error-prone operations are used. (c) Mapping for BV4 where qubit

movement is not required and unreliable qubits and gates are avoided.

trapped ion qubits [16]. The gates in these systems are

periodically calibrated and their error rates are measured.

Fig. 6 shows the coherence times and 2-qubit gate error

rates in IBM’s 16-qubit system (ibmnamefull). From daily

calibration logs we find that, the average qubit coherence

time is 40 µs, 2-qubit gate error rate is 7%, readout

error rate is 4%, and single qubit error rate is 0.2%. The

2-qubit and readout errors are the dominant noise sources

and vary up to 9× across gates and calibration cycles.

Rigetti’s systems also exhibit error rates and variations

of comparable magnitude. These noise variations in SC

systems emerge from material defects due to lithographic

manufacturing, and are expected in the future systems

also [35], [36].

Trapped ion systems also have noise fluctuations even

though the individual qubits are identical and defect-free.

On a 5-qubit trapped ion system from UMD, we observed

up to 3× variation in the 2-qubit gate error rates because

of fundamental challenges in qubit control using lasers and

their sensitivity to motional mode drifts from temperature

fluctuations.

We found that these microarchitectural noise variations

dramatically influence program correctness. When a pro-

gram is executed on a noisy QC system, the results may be

corrupted by gate errors, decoherence, or readout errors on

the hardware qubits used for execution. Therefore, it is cru-

cial to select the most reliable hardware qubits to improve

the success rate of the program (the likelihood of correct

execution). The success rate is determined by executing

a program multiple times and measuring the fraction of

runs that produce the correct output. High success rate

is important to ensure that the program execution is not

dominated by noise.

B. Noise-Adaptive Compilation: Key Ideas

Our work breaks the ISA abstraction barrier by develop-

ing compiler optimizations which use hardware calibration

data. These optimizations boost the success rate a program

run by avoiding portions of the machine with poor coher-

ence time and operational error rates.

We first review the key components in a QC compiler.

The input to the compiler is a high-level language program

(Scaffold in our framework) and the output is machine

executable assembly code. First, the compiler converts the

program to an intermediate representation (IR) composed

of single and 2-qubit gates by decomposing high-level QC

operations, unrolling all loops and inlining all functions.

Fig. 7(a) shows an example IR. The qubits in the IR

(program qubits) are mapped to distinct qubits in the hard-

ware, typically in a way that reduces qubit communication.

Next, gates are scheduled while respecting data depen-

dences. Finally, on hardware with limited connectivity,

such as SC systems, the compiler inserts SWAP operations

to enable 2-qubit operations between nonadjacent qubits.

Fig. 7(a) and (b) shows two compiler mappings for a

4-qubit program on IBM’s 16-qubit system. In the first

mapping, the compiler must insert SWAPs to perform the

2-qubit gate between p1 and p3. Since SWAP operations

are composed of three 2-qubit gates, they are highly error

prone. In contrast, the second mapping requires no SWAPs

because the qubits required for the CNOTs are adjacent.

Although SWAP optimizations can be performed using the

device ISA, the second mapping is also noise-optimized,

that is, it uses qubits with high coherence time and low

operational error rates. By considering microarchitectural

noise characteristics, our compiler can determine such

noise-optimized mappings to improve the program success

rate.

We developed three strategies for noise optimization.

First, our compiler maps program qubits onto hardware

locations with high reliability, based on the noise data.

We choose the initial mapping based on 2-qubit and read-

out error rates because they are the dominant sources of

error. Second, to mitigate decoherence errors, all gates are

scheduled to finish before the coherence time of the hard-

ware qubits. Third, our compiler optimizes the reliability

of SWAP operations by minimizing the number of SWAPs

whenever possible and performing SWAPs along reliable

hardware paths.

C. Implementation Using Satisfiability Modulo
Theory (SMT) Optimization

Our compiler implements the above strategies by find-

ing the solution to a constrained optimization problem
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Fig. 8. Noise-adaptive compilation using SMT optimization. Inputs

are a QC program IR, details about the hardware qubit

configuration, and a set of options, such as routing policy and solver

options. From these, compiler generates a set of appropriate

constraints and uses them to map program qubits to hardware

qubits and schedule operations. The output of the optimization is

used to generate an executable version of the program.

using an SMT solver. The variables and constraints in the

optimization encode program information, device topology

constraints, and noise information. The variables express

the choices for program qubit mappings, gate start times,

and routing paths. The constraints specify that qubit

mappings should be distinct, the schedule should respect

program dependences, and that routing paths should be

nonoverlapping. Fig. 8 summarizes the optimization-based

compilation pipeline for IBMQ16.

The objective of our optimization is to maximize the

success rate of a program execution. Since the success rate

can be determined only from a real-system run, we model

it at compile time as the program reliablity. We define the

reliability of a program as the product of reliability of all

gates in the program. Although this is not a perfect model

for the success rate, it serves as a useful measure of overall

correctness [7], [40]. For a given mapping, the solver

determines the reliability of each 2-qubit and readout

operation and computes an overall reliability score. The

solver maximizes the reliability score over all mappings by

tracking and adapting to the error rates, coherence limits,

and qubit movement based on program qubit locations.

In practice, we use the Z3 SMT solver to express and

solve this optimization. Since the reliability objective is a

nonlinear product, we linearize the objective by optimizing

for the additive logarithms of the reliability scores of each

gate. We term this algorithm as R-SMT⋆ . The output of

the SMT solver is used to create machine executable code

in the vendor-specified assembly language.

Fig. 9. Measured success rate of R-SMT⋆compared to Qiskit and

T-SMT⋆. (Of 8192 trials per execution, success rate is the

percentage that achieve the correct answer in real-system

execution.) ω is a weight factor for readout error terms in the

R-SMT⋆objective, 0.5 is equal weight for CNOT and readout errors.

R-SMT⋆obtains higher success rate than Qiskit because it adapts

the qubit mappings according to dynamic error rates and also avoids

unnecessary qubit communication.

D. Real-System Evaluation

We present real-system evaluation on IBMQ16. Our eval-

uation uses 12 common QC benchmarks, compiled using

R-SMT⋆and T-SMT⋆ which are variants of our compiler

and IBM’s Qiskit compiler (version 0.5.7) [6] which is the

default for this system. R-SMT⋆ optimizes the reliability of

the program using hardware noise data. T-SMT⋆ optimizes

the execution time of the program considering real-system

gate durations and coherence times, but not operational

error rates. IBM Qiskit is also noise-unaware and uses

randomized algorithms for SWAP optimization. For each

benchmark and compiler, we measured the success rate on

IBMQ16 system using 8192 trials per program. A success

rate of 1 indicates a perfect noise-free execution.

Fig. 9 shows the success rate for the three compilers

on all the benchmarks. R-SMT⋆ has higher success rate

than both baselines on all benchmarks, demonstrating the

effectiveness of noise-adaptive compilation. Across bench-

marks R-SMT⋆ obtains geomean 2.9× improvement over

Qiskit, with up to 18× gain. Fig. 10 shows the mapping

used by Qiskit, T-SMT⋆, and R-SMT⋆for BV4. Qiskit places

qubits in a lexicographic order without considering CNOT

and readout errors and incurs extra swap operations. Sim-

ilarly, T-SMT⋆is also unaware of noise variations across

the device, resulting in mappings which use unreliable

hardware. R-SMT⋆outperforms these baselines because

it maximizes the likelihood of reliable execution by

leveraging microarchitectural noise characteristics during

compilation.

Full results of our evaluation on seven QC systems from

IBM, Rigetti, and UMD can be found in [47] and [48].

E. Discussion

Our work represents one of the first efforts to exploit

hardware noise characteristics during compilation. We

developed optimal and heuristic techniques for noise
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Fig. 10. For real data/experiment, on IBMQ16, qubit mappings for Qiskit and our compiler with three optimization objectives, varying the

type of noise-awareness. The edge labels indicate the CNOT gate error rate (×10−2), and the node labels indicate the qubit’s readout error

rate (×10−2). The thin red arrows indicate CNOT gates. The thick yellow arrows indicate SWAP operations. ω is a weight factor for readout

error terms in the R-SMT⋆objective. (a) Qiskit finds a mapping which requires SWAP operations and uses hardware qubits with high readout

errors. (b), T-SMT⋆finds a a mapping which requires no SWAP operations, but it uses an unreliable hardware CNOT between p3 and p0.

(c) Program qubits are placed on the best readout qubits, but p0 and p3 communicate using swaps. (d) R-SMT⋆finds a mapping which has the

best reliability where the best CNOTs and readout qubits are used. It also requires no SWAP operations. (a) IBM Qiskit. (b) T-SMT⋆:Optimize

duration without error data. (c) R-SMT⋆(ω � 1): Optimize readout reliability. (d) R-SMT⋆(ω � 0.5): Optimize CNOT�readout reliability.

adaptivity and performed comprehensive evaluations on

several real QC systems [47]. We also developed tech-

niques to mitigate crosstalk, another major source of

errors in QC systems, using compiler techniques that

schedule programs using crosstalk characterization data

from the hardware [48]. In addition, our techniques

are already being used in industry toolflows [54], [59].

Recognizing the importance of efficient compilation, other

research groups have also recently developed mapping and

routing heuristics [11], [72] and techniques to handle

noise [67], [68].

Our noise-adaptivity optimizations offer large gains in

success rate. These gains mean the difference between

executions which yield correct and usable results and

executions where the results are dominated by noise.

These improvements are also multiplicative against bene-

fits obtained elsewhere in the stack and will be instrumen-

tal in closing the gap between near-term QC algorithms

and hardware. Our work also indicates that it is important

to accurately characterize hardware and expose charac-

terization data to software instead of hiding it behind a

device-independent ISA layer. Additionally, our work also

proposes that QC programs should be compiled once-per-

execution using the latest hardware characterization data

to obtain the best executions.

Going beyond noise characteristics, we also studied

the importance of exposing other microarchitectural infor-

mation to software. We found that when the compiler

has access to the native gates available in the hard-

ware (micro operations used to implement ISA-level

gates), it can further optimize programs and improve

success rates. Overall, our work indicates that QC

machines are not yet ready for technology independent

abstractions that shield the software from hardware.

Bridging the information gap between software and hard-

ware by breaking abstraction barriers will be increas-

ingly important on the path toward practically useful

NISQ devices.

IV. B R E A K I N G T H E Q U B I T

A B S T R A C T I O N V I A T H E

T H I R D E N E R G Y L E V E L

Although quantum computation is typically expressed with

the two-level binary abstraction of qubits, the underlying

physics of quantum systems are not intrinsically binary.

Whereas classical computers operate in binary states at the

physical level (e.g., clipping above and below a threshold

voltage), quantum computers have natural access to an

infinite spectrum of discrete energy levels. In fact, hard-

ware must actively suppress higher level states in order

to realize an engineered two-level qubit approximation.

In this sense, using three-level qutrits (quantum trits) is

simply a choice of including an additional discrete energy

level within the computational space. Thus, it is appealing

to explore what gains can be realized by breaking the

binary qubit abstraction.

In prior work on qutrits (or more generally, d-level

qudits), researchers identified only constant factor gains

from extending beyond qubits. In general, this prior work

[53] has emphasized the information compression advan-

tages of qutrits. For example, N qubits can be expressed as

(N/ log2(3)) qutrits, which leads to log2(3) ≈ 1.6-constant

factor improvements in runtimes.

Recently, however, our research group demonstrated a

novel qutrit approach that leads to exponentially faster

runtimes (i.e., shorter in circuit depth) than qubit-only
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approaches [26], [27]. The key idea underlying the

approach is to use the third state of a qutrit as temporary

storage. Although qutrits incur higher per-operation error

rates than qubits, this is compensated by dramatic reduc-

tions in runtimes and quantum gate counts. Moreover, our

approach applies qutrit operations only in an intermedi-

ary stage: the input and output are still qubits, which is

important for initialization and measurement on practical

quantum devices [56], [57].

The net result of our work is to extend the frontier

of what quantum computers can compute. In particular,

the frontier is defined by the zone in which every machine

qubit is a data qubit, for example a 100-qubit algorithm

running on a 100-qubit machine. In this frontier zone,

we do not have space for nondata workspace qubits known

as ancilla. The lack of ancilla in the frontier zone is a

costly constraint that generally leads to inefficient circuits.

For this reason, typical circuits instead operate below the

frontier zone, with many machine qubits used as ancilla.

Our work demonstrates that ancilla can be substituted with

qutrits, enabling us to operate efficiently within the ancilla-

free frontier zone.

A. Qutrit-Assisted AND Gate

We develop the intuition for how qutrits can be useful

by considering the example of constructing an AND gate.

In the framework of QC, which requires reversibility, AND

is not permitted directly. For example, consider the output

of 0 from an AND gate with two inputs. With only this

information about the output, the value of the inputs

cannot be uniquely determined (00, 01, and 10 all yield

an AND output of 0). However, these operations can be

made reversible by the addition of an extra, temporary

workspace bit initialized to 0. Using a single additional

such as ancilla, the AND operation can be computed

reversibly as in Fig. 11. Although this approach works,

it is expensive—in order to decompose the Toffoli gate

in Fig. 11 into hardware-implementable one- and two-

input gates, it is decomposed into at least six CNOT gates.

However, if we break the qubit abstraction and allow

occupation of a higher qutrit energy level, the cost of the

Toffoli AND operation is greatly diminished. Before pro-

ceeding, we review the basics of qutrits, which have three

Fig. 11. Reversible AND circuit using a single ancilla bit. The

inputs are on the left, and time flows rightward to the outputs. This

AND gate is implemented using a Toffoli (CCNOT) gate with inputs

q0, q1 and a single ancilla initialized to 0. At the end of the circuit,

q0 and q1 are preserved, and the ancilla bit is set to 1 if and only if

both other inputs are 1.

Fig. 12. Toffoli decomposition via qutrits. Each input and output is

a qubit. The red controls activate on |1i and the blue controls

activate on |2i. The first gate temporarily elevates q1 to |2i if both

q0 and q1 were |1i. We then perform the X operation only if q1 is |2i.

The final gate restores q0 and q1 to their original state.

computational basis states: |0i, |1i, and |2i. A qutrit state

|ψi may be represented analogously to a qubit as |ψi =

α|0i + β|1i + γ|2i, where kαk2 + kβk2 + kγk2 = 1. Qutrits

are manipulated in a similar manner to qubits; however,

there are additional gates which may be performed on

qutrits. We focus on the X+1 and X−1 operations, which

are addition and subtraction gates, modulo 3. For example,

X+1 elevates |0i to |1i and elevates |1i to |2i, while

wrapping |2i to |0i.
Just as single-qubit gates have qutrit analogs, the same

holds for two-qutrit gates. For example, consider the

CNOT operation, where an X gate is performed condi-

tioned on the control being in the |1i state. For qutrits,

an X+1 or X−1 gate may be performed, conditioned on

the control being in any of the three possible basis states.

Just as qubit gates are extended to take multiple controls,

qutrit gates are extended similarly.

In Fig. 12, a Toffoli decomposition using qutrits is given.

A similar construction for the Toffoli gate is known from

the past work [38], [55]. The goal is to perform an X

operation on the last (target) input qubit q2 if and only

if the two control qubits, q0 and q1, are both |1i. First,

a |1i-controlled X+1 is performed on q0 and q1. This

elevates q1 to |2i if and only if q0 and q1 were both |1i.
Then, a |2i-controlled X gate is applied to q2. Therefore, X

is performed only when both q0 and q1 were |1i, as desired.

The controls are restored to their original states by a

|1i-controlled X−1 gate, which undoes the effect of the

first gate. The key intuition in this decomposition is that

the qutrit |2i state can be used instead of ancilla to store

temporary information.

B. Generalized Toffoli Gate

The intuition of our technique extends to more

complicated gates. In particular, we consider the

generalized Toffoli gate, a ubiquitous quantum operation

which extends the Toffoli gate to have any number of

control inputs. The target input is flipped if and only if

all of the controls are activated. Our qutrit-based circuit

decomposition for the generalized Toffoli gate is presented

in Fig. 13. The decomposition is expressed in terms of

three-qutrit gates (two controls and one target) instead

of single- and two- qutrit gates because the circuit can

be understood purely classically at this granularity.
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Fig. 13. Our circuit decomposition for the generalized Toffoli gate

is shown for 15 controls and 1 target. The inputs and outputs are

both qubits, but we allow occupation of the |2i qutrit state in

between. The circuit has a tree structure and maintains the property

that the root of each subtree can only be elevated to |2i if all of its

control leaves were |1i. Thus, the U gate is only executed if all

controls are |1i. The right-half of the circuit performs uncomputation

to restore the controls to their original state. This construction

applies more generally to any multiply controlled U gate. Note that

the three-input gates are decomposed into six two-input and seven

single-input gates in our actual simulation, as based on the

decomposition in [17].

In actual implementation and in our simulation,

we used a decomposition [17] that requires six two-

qutrit and seven single-qutrit physically implementable

quantum gates.

Our circuit decomposition is most intuitively understood

by treating the left half of the circuit as a tree. The desired

property is that the root of the tree, q7, is |2i if and

only if each of the 15 controls was originally in the |1i
state. To verify this property, we observe the root q7 can

only become |2i if and only ifq7 was originally |1i and

q3 and q11 were both previously |2i. At the next level of

the tree, we see q3 could have only been |2i if q3 was

originally |1i and both q1 and q5 were previously |2i, and

similarly for the other triplets. At the bottom level of the

tree, the triplets are controlled on the |1i state, which are

activated only when the even-index controls are all |1i.
Thus, if any of the controls were not |1i, the |2i states

would fail to propagate to the root of the tree. The right-

half of the circuit performs uncomputation to restore the

controls to their original state.

After each subsequent level of the tree structure,

the number of qubits under consideration is reduced by

a factor of ∼2. Thus, the circuit depth is logarithmic in N ,

which is exponentially smaller than ancilla-free qubit-only

circuits. Moreover, each qutrit is operated on by a constant

number of gates, so the total number of gates is linear

in N .

Table 1 Scaling of Circuit Depths and Two-Qudit Gate Counts for All

Three Benchmarked Circuit Constructions for the N-Controlled General-

ized Toffoli

We verified our circuits, both formally and via sim-

ulation. Our verification scripts are available on our

GitHub [4].

C. Simulation Results

Table 1 shows the scaling of circuit depths and two-qudit

gate counts for all three benchmarked circuits. The QUBIT-

based circuit constructions from the past work are linear in

depth and have a high linearity constant. Augmenting with

a single borrowed ancilla (QUBIT+ANCILLA) reduces the

circuit depth by a factor of 8. However, both circuit con-

structions are significantly outperformed by our QUTRIT

construction, which scales logarithmically in N and has a

relatively small leading coefficient. Although there is not

an asymptotic scaling advantage for two-qudit gate count,

the linearity constant for our QUTRIT circuit is 70× smaller

than for the equivalent ancilla-free QUBIT circuit.

We ran simulations under realistic SC and trapped ion

device noise. The simulations were run in parallel on

over 100 n1-standard-4 Google Cloud instances. These

simulations represent over 20 000 CPU hours, which were

sufficient to estimate mean fidelity to an error of 2σ < 0.1%

for each circuit-noise model pair.

The full results of our circuit simulations are shown

in Fig. 14. All simulations are for the 14-input (13 controls

and 1 target) generalized Toffoli gate. We simulated each

of the three circuit benchmarks against each of our noise

models (when applicable), yielding the 16 bars in the

figure. Note that our qutrit circuit consistently outper-

forms qubit circuits, with advantages ranging from 2× to

10 000×.

D. Discussion

The results presented in our work in [26] and [27] are

applicable to QC in the near term, on machines that are

expected within the next five years. By breaking the qubit

abstraction barrier, we extend the frontier of what is com-

putable by quantum hardware right now, without needing

to wait for better hardware. As verified by our open-source

circuit simulator coupled with realistic noise models, our

circuits are more reliable than qubit-only equivalents, sug-

gesting that qutrits offer a promising path toward scal-

ing quantum computers. We propose further investigation

into what advantage qutrits or qudits may confer. More

broadly, it is critical for quantum architects to bear in

mind that standard abstractions in classical computing do

not necessarily transfer to quantum computation. Often,
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Fig. 14. Circuit simulation results for all possible pairs of circuit constructions and noise models. Each bar represents 1000� trials, so the

error bars are all 2σ < 0.1�. Our QUTRIT construction significantly outperforms the QUBIT construction. The QUBIT�ANCILLA bars are drawn

with dashed lines to emphasize that it has access to an extra ancilla bit, unlike our construction. Figure reprinted with permission from [27].

Fig. 15. Phase space diagrams for a CHO, the ground state, and the first excited state of a QHO and the logic 0 and 1 state of the GKP

qubit. For quantum phase space diagrams, the plotted distribution is the Wigner quasi-probability function, where red indicates positive

values and blue indicates negative values.

this presents unrealized opportunities, as in the case

of qutrits.

V. B R E A K I N G T H E Q U B I T A B S T R A C -

T I O N V I A T H E G K P E N C O D I N G

Currently, there are many competing physical qubit imple-

mentations. For example, the transmon qubits [2] are

encoded in the lowest two energy levels of the charge

states in SC LC circuits with Josephson junctions; trapped

ion qubits can be encoded in two ground state hyperfine

levels [9] or a ground state level and an excited level

of an ion [13]; quantum dot qubits use electron spin

triplets [41]. These QIP platforms have rather distinct

physical characteristics, but they are all exposed to the

other layers in the stack as qubits and other implemen-

tation details are often hidden. This abstraction is nat-

ural for classical computing stack because the robustness

of classical bits decouples the programming logic from

physical properties of the transistors except the logical

value. In contrast, qubits are fragile so there are more

than (superpositions of) the logical values that we want

to know about the implementation. For example, in the

transmon qubits and trapped ion qubits, logical states can

be transferred to higher levels of the physical space by

unwanted operations and this can cause leakage errors

[24], [71]. It will be useful for other layers in the stack

to access this error information and develop methods

to mitigate it. In Section IV, we discussed the qutrit

approach that directly uses the third level for information

processing, however, it could be more interesting if we

can encode the qubit (qudit) using the whole physical

Hilbert space to avoid leakage errors systematically and

use the redundant degrees of freedom to reveal infor-

mation about the noise in the encoding. The encoding

proposed by Gottesman et al. [29] provides such an exam-

ple. GKP encoding is free of leakage errors and other

errors (in the form of small shifts in phase space) can

be identified and corrected by quantum nondemolition

(QND) measurements and simple linear optical operations.

In realistic implementations of approximate GKP states

(see Section V-C), there are leakage errors between logical

states, but the transfer probability is estimated to be at the

order of 10−10 with current techonology, thus negligible.

A. Phase Space Diagram

We describe the GKP qubits in the phase space. For a

comparison, we first discuss the phase space diagram for a

classical harmonic oscillator (CHO) and an SC qubit.

1) Classical Harmonic Oscillators: Examples of CHOs

include LC circuits, springs, and pendulums with small dis-

placement. The voltage/displacement (denoted as p) and
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Fig. 16. Left: an LC circuit. In SC LC circuits, normal current

becomes SC current. Right: the energy potential of a harmonic

oscillator. In QHOs like the SC LC circuits, the system energy

becomes equally spaced discrete values. The plotted two levels are

the ground state and the first excited state.

the current/momentum (denoted as q) value completely

characterize the dynamics of CHO systems. The phase

space diagram plots p versus q, which for CHOs are circles

(up to normalization) with the radius representing the

system energy. The energy of CHOs can be any nonnegative

real value.

2) Quantum Harmonic Oscillators: The QHO is the quan-

tized version of the CHO and is the physical model for

SC LC circuits and SC cavity modes. One of the values

get quantized for QHOs is the system energy, which can

only take equally spaced nonzero discrete values (see

Fig. 16). The lowest allowed energy is not 0 but (1/2)

(up to normalization). We call the quantum state with the

lowest energy the ground state. For a motion with a certain

energy, the phase space diagram is not a circle anymore but

a quasidistribution that can be described by the Wigner

function. We say the distribution is a “quasi” distribution

because the probability can be negative. The phase space

diagram for the ground state and first excited state is plot

in Fig. 15.

3) SC Charge Qubits: The QHO does not allow us selec-

tively address the energy levels, thus leakage errors will

occur if we use the lowest two levels as the qubit logic

space. For example, a control signal that provides the

energy difference ∆E enables the transition |0i → |1i,
but will also make the transition |1i → |2i which brings

the state out of the logic space. To avoid this problem,

the Cooper pair box (CPB) design of an SC charge qubit

replaces the inductor (see Fig. 17) with a Josephson junc-

tion, making the circuit an anharmonic oscillator, in which

the energy levels are not equally spaced anymore. The

Fig. 17. Left: an LC circuit. In SC LC circuits, normal current

becomes SC current. Right: the energy potential of a harmonic

oscillator. In QHOs like the SC LC circuits, the system energy

becomes equally spaced discrete values. The plotted two levels are

the ground state and the first excited state.

Fig. 18. Squeezed vacuum state.

Wigner function for CPB eigenstates are visually similar to

those of QHO and only differ from them to the first order

of the anharmonicity, thus we do not plot them in Fig. 15

separately.

B. Heisenberg Uncertainty Principle

We hope that with utilizing the whole physical states

(higher energy levels), we can use the redundant

space to encode and extract error information. However,

the Heisenberg uncertainty principle sets the fundamental

limit on what error information we can extract from the

physical states—the more we know about the q variable,

the less we know about the p variable. For example, we can

“squeeze” the ground state of the QHO (also known as the

vacuum state) in the p-direction; however, the distribution

in the q-direction spreads, as shown in Fig. 18. Usually,

we have to know both the p and q values to characterize

the error information unless we know the error is biased.

Thus, it is a great challenge to design encodings in the

phase space to reveal error information.

C. GKP Encoding

The GKP states are also called the grid states because

each of them is a rectangular lattice in the phase space (see

Fig. 15). There are also other types of lattice in the GKP

family, for example, the hexagonal GKP [29]. Intuitively,

the GKP encoding “breaks” the Heisenberg uncertainty

principle—we do not know what are the measured p and

q values of the state (thus expected values of p and q

remain uncertain), but we do know that they must be

integer multiples of the spacing of the grid. Thus, we have

access to the error information in both directions and if

we measure values that are not multiples of the spacing of

the grid, we know there must be errors. Formally, the ideal

GKP logical states are given by

|0igkp =

∞�

k=−∞

Sk
p |q = 0i

|1igkp =
∞�

k=−∞

Sk
p |q =

√
πi (1)
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Fig. 19. Approximate GKP |0i state in q- and p-axis.

where Sp = e−2i(π)1/2p is the displacement operator in

q space, which shifts a wave function in the q-direction

by 2(π)1/2. These definitions show that for GKP logical

0 and 1, the spacing of the grid in q-direction is 2(π)1/2

and the spacing in p is (π)1/2. In q-direction, the logical

|0i state has peaks at even multiples of (π)1/2, and the

logical |1i state has peaks at odd multiples of (π)1/2.

For logical |+i and |−i, the spacing in p and q grids is

switched.

1) Approximate GKP States: The ideal GKP states require

infinite energy, thus they are not realistic. In the laboratory,

we can prepare approximate GKP states as illustrated

in Fig. 19, where peaks and the envelope are Gaussian

curve.

2) Error Correction With GKP Qubits: GKP qubits are

designed to correct shift errors in q- and p-axis. A simple

decoding strategy will be shifting the GKP state back to

the closest peak. For example, if we measure a q value

to be 2(π)1/2 + ∆q, where ∆q < ((π)1/2/2), then we

can shift it back to 2(π)1/2. With this simple decoding,

GKP can correct all shift errors smaller than ((π)1/2/2).

While there are other proposals for encoding qubits in

QHO [45], [50], [52] that are designed for realistic errors

such as photon loss, it is shown that GKP qubits have the

most error correcting ability in the regime of experimental

relevance [5].

In addition, GKP qubits can also provide error correc-

tion information when concatenating with quantum error

correction codes (QECCs) and yield higher thresholds. For

example, when combining the GKP qubits with a surface

code, the measured continuous p and q values in the

stabilizer measurement can reveal more about the error

distribution than traditional qubits [23], [51], [69].

Finally, it has been shown that given a supply of GKP-

encoded Pauli eigenstates, universal fault-tolerant quan-

tum computation can be achieved using only Gaussian

operations [8]. Compared to qubit error correction codes,

the GKP encoding enables much simpler fault-tolerant

constructions.

D. Fault-Tolerant Preparation of
Approximate GKP States

The GKP encoding has straightforward logical oper-

ation and promising error correcting performance.

However, the difficulty of using GKP qubits in QIP plat-

forms lies in its preparation since they live in highly non-

classical states with relatively high mean photon number

(i.e., the average energy levels). Thus, reliable prepa-

ration of encoded GKP states is an important problem.

In [64], we gave fault-tolerance definitions for GKP prepa-

ration in SC cavities and designed a protocol that fault-

tolerantly prepares the GKP states. We briefly describe the

main ideas.

1) Goodness of Approximate GKP States: Naturally,

because of the finite width of the peaks of approximate

GKP states, it will not be possible to correct a shift error in

p or q of magnitude at most ((π)1/2/2) with certainty. For

example, suppose we have an approximate |0i GKP state

with a peak at q = 0 subject to a shift error e−ivp with

|v| ≤ ((π)1/2/2). The finite width of the Gaussian peaks

will have a nonzero overlap in the region ((π)1/2/2) < q <

(3(π)1/2/2) and (−3(π)1/2/2) < q < (−(π)1/2/2). Thus,

with nonzero probability the state can be decoded to |1i
instead of |0i (see Fig. 20 for an illustration).

In general, if an approximate GKP state is afflicted by

a correctable shift error, we would like the probability of

decoding to the incorrect logical state to be as small as

possible. A smaller overlap of the approximate GKP state

in regions in q and p space that lead to decoding the state

to the wrong logical state will lead to a higher proba-

bility of correcting a correctable shift error by a perfect

GKP state.

2) Preparation of Approximate GKP States Using Phase

Estimation: We observe that the GKP states are the eigen-

states of the Sp operator, thus we can use phase estima-

tion to gradually project a squeezed vacuum state to an

approximate GKP state. The phase estimation circuit for

preparing an approximate |0̃i GKP state is given in Fig. 21.

The first horizontal line represents the cavity mode that

we want to prepare the GKP states. The second line is a

Fig. 20. Peaks centered at even integer multiples of �π�1/2 in q

space. The peak on the left contains large tails that extend into the

region where a shift error is decoded to the logical |1i state. The

peak on the right is much narrower. Consequently for some

interval δ, the peak on the right will correct shift errors of size

��π�1/2/2�− δ with higher probability than the peak on the left.
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Fig. 21. Phase estimation circuit with the flag qubit. The protocol

is aborted if the flag qubit measurement is nontrivial.

transmon ancilla initialized to |+i. The third line is a

transmon flag qubit initialized to |0i. The H gate is the

Hadamard gate. Λ(eiγ) = diag(1, eiγ) is the gate with a

control parameter γ in each round of the phase estimation

to increase the probability of projecting the cavity state to

an approximate eigenstate of the displacement operator

after the measurement. After applying several rounds of

the circuit in Fig. 21, the input squeezed vacuum state

is projected onto an approximate eigenstate of Sp with

some random eigenvalue eiθ. Additionally, an estimated

value for the phase θ is obtained. After computing the

phase, the state can be shifted back to an approximate +1

eigenstate of Sp.

In our protocol, we use a flag qubit to detect any damp-

ing event during the controlled-displacement gate, if a

nontrivial measurement is obtained, we abort the protocol

and start over. Using our simulation results, we also find

a subset of output states that are robust to measurement

errors in the transmon ancilla and only accept states in

that subset. We proved that our protocol is fault-tolerant

according to the definition we gave. In practice, our pro-

tocol produces “good” approximate GKP states with high

probability and we expect to see experimental efforts to

implement our protocol.

E. Discussion

The GKP qubit architecture is a promising candidate

for both near-term and fault-tolerant QC implementations.

With intrinsic error-correcting capabilities, the GKP qubit

breaks the abstraction layer between error correction and

the physical implementation of qubits. In [64], we dis-

cussed the fault-tolerant preparation of GKP qubits and

realistic experimental difficulties. We believe that qubit

encodings like the GKP encoding will be useful for reli-

able QC.

VI. C O N C L U S I O N A N D F U T U R E

D I R E C T I O N S

In this review, we proposed that greater quantum efficiency

can be achieved by breaking abstraction layers in the QC

stack. We examined some of the previous work in this

direction that are closing the gap between current quan-

tum technology and real-world QC applications. We would

also like to briefly discuss some promising future directions

along this line.

A. Noise-Tailoring Compilation

We can further explore the idea of breaking the ISA

abstraction. Near-term quantum devices have errors from

elementary operations like 1- and 2-qubit gates, but

also emergent error modes like crosstalk. Emergent error

modes are hard to characterize and to mitigate. Recently,

it has been shown that randomized compiling could trans-

form complicated noise channels including crosstalk, SPAM

errors, and readout errors into simple stochastic Pauli

errors [70], which could potentially enable subsequent

noise-adaptive compilation optimizations. We believe if

compilation schemes that combine noise tailoring and

noise adaptation could be designed, they will outperform

existing compilation methods.

B. Algorithm-Level Error Correction

Near-term quantum algorithms such as variational

quantum eigensolver (VQE) and QAOA are tailored for

NISQ hardware, breaking the circuit/ISA abstraction.

We could take a step further and look at high-

level algorithms equipped with customized error

correction/mitigation schemes. Prominent examples

of this idea are the generalized superfast encoding

(GSE) [63] and the Majorana loop stabilizer code

(MLSC) [30] for quantum chemistry. In GSE and MLSC,

the overhead of mapping Fermionic operators onto qubit

operators stays constant with the qubit number (as

opposed to linear scaling in the usual Jordan–Wigner

encoding or logarithmic in Bravyi–Kitaev encoding).

On the other hand, qubit operators in these mappings are

logical operators of a distance 3 stabilizer error correction

code so that we can correct all weight 1-qubit errors in

the algorithm with stabilizer measurements. These works

are the first attempts to algorithm-level error correction,

and we are expecting to see more efforts of this kind to

improve the robustness of near-term algorithms.

C. Dissipation-Assisted Error Mitigation

We generally think of dissipation as competing with

quantum coherence. However, with careful design of the

quantum system, dissipation can be engineered and used

for improving the stability of the underlying qubit state.

Previous work on autonomous qubit stabilization [42] and

error correction [31] suggests that properly engineered

dissipation could largely extend qubit coherence time.

Exploring the design space of such systems and their asso-

ciated error correction/mitigation schemes might provide

alternative paths to an efficient and scalable QC stack.
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