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Access and reuse of authoritative phylogenetic knowledge have been a longstanding challenges
in the evolutionary biology community — leading to a number of research efforts (e.g. focused
on interoperation, standardization of formats, and development of minimum reporting
requirements). The Phylotastic project was launched to provide an answer to such challenges —
as an architectural concept collaboratively designed by evolutionary biologists and computer
scientists. This paper describes the first comprehensive implementation of the Phylotastic ar-
chitecture, based on an open platform for Web services composition. The implementation
provides a portal, which composes Web services along a fixed collection of workflows, as well as
an interface to allow users to develop novel workflows. The Web services composition is guided
by automated planning algorithms and built on a Web services registry and an execution
monitoring engine. The platform provides resilience through seamless automated recovery from
failed services.
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1. Introduction

Phylogenetic trees are useful in all areas of biology (and beyond, e.g. in linguistic
studies), both to provide instruments to organize knowledge in taxonomic forms
and for process-based models, which allow scientists to make robust inferences from
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comparisons of descriptive characters (e.g. DNA, phenotypes) of evolved entities
(e.g. genes, species). Indeed, intense efforts have been invested in the assembling of
a Tree of Life (ToL), a phylogeny covering 107 or more species [19]. The first draft
of a grand phylogenetic synthesis — a single synthetic tree with 2.5 x 10° species
(tree.opentreeoflife.org) — emerged from the Open Tree of Life (OpenTree)
project.

Though useful, neither this tree nor any other individual phylogenetic tree, will be
the sole authority on phylogenetic knowledge. Indeed, several components of the
OpenTree are synthetic and not yet grounded in actual biological knowledge.
Therefore, when researchers refer to the “ToL” they often do not mean any single
tree, but the dispersed set of available trees that represent the current state of ToL
knowledge. While experts continue expanding the Tol,, addressing gaps and con-
flicts, an unexpected challenge has appeared: how to disseminate and reuse such
knowledge, i.e. how ToL. knowledge can be effectively placed in the hands of
researchers, educators, and the broad public. The vision of this project, referred to as
Phylotastic, is to enable easy online and programmatic access and use of biological
phylogenetic knowledge (e.g. species trees).

The premise of disseminating knowledge is that it will be reused. Studies con-
ducted show that the level of reuse of phylogenetic trees is limited; indeed, it is more
common to see phylogenetic trees being inferred de novo for each specific study
instead of being used as-is from previous investigations [34]. Yet, with a greater
emphasis placed on the construction of large species trees and the creation of au-
thoritative phylogenies, we are seeing an increasing interest toward reuse of phylo-
genetic knowledge. In a sample of 40 phylogeny papers, the authors of [34] found six
cases in which scientists obtained a desired tree by extraction from a larger species
tree. We refer to this important pattern of reuse as subtree extraction from ToL
source trees. The potential impact of facilitating the process of subtree extraction
from authoritative phylogenetic trees is huge, and has been discussed in the seminal
paper on the Phylotastic project [33].

While simple in principle, this mode of reuse currently presents technical barriers,
which justify the need of a dedicated informatics infrastructure. The vast majority of
users simply do not have the ability to handle a tree with more than a 1000 species,
even if they know how to locate the right tree — a challenge, as only 4% of trees are
archived [34]. Tree files generally lack machine-processable metadata on sources and
methods, crucial for quality evaluation and for documentation of the scientific in-
vestigation being conducted. The largest, most valuable species trees often provide a
topology without branch lengths, yet users often need branch lengths in downstream
analysis steps; proficient users may create crude branch lengths with specialized
software. Even matching a list of species names with a source tree is problematic,
given the proliferation of aberrant names, due to spelling errors and lexical variants
[22]. Whereas subtree extraction is conceptually simple, real-world uses are sur-
rounded by complications, requiring a combination of expert skills, hands-on at-
tention, and specialized software. To achieve the Phylotastic vision of simple and
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flexible reuse of phylogenies, this paper proposes an open Web-based system that
enables on-the-fly delivery of phylogenetic knowledge.

The novelty of this work is the development of the first ever complete architecture
implementing the Phylotastic vision. Phylotastic provided an ideal architecture but
the original design, presented in [33] failed to recognize the technological challenges
to be addressed to establish a Phylotastic architecture that is neutral with respect to
content and that is usable and useful to final users. The objective of the architecture
is to reliably deliver data that traces to expert sources. The quality of outputs will
depend on the state of inputs, relying on sources like name services (e.g. GNR,
iPlant) and Web service accessible species tree repositories, such as TreeBASE [23],
an archive of about 10,000 gene and species trees, the Phylomatic service [42], sup-
plying the APG tree and derivatives, and OpenTree [12], providing ~ 4000 source
trees, plus synthetic tree of 2.5 x 106 species. The proposed developed architecture is
both fronted by a client with a graphical interface as well as a programmable Web
services interface. Novelty of the architecture includes the use of advanced auto-
mated planning techniques to provide Web service composition and to automatically
repair an execution workflow in case of failure and the use of natural language
generation (NLG) techniques to automatically generate textual explanation of
workflows and their execution.

2. Background
2.1. Ewvolutionary biology

Phylogenies are abstractions that have been used extensively in the field of evo-
lutionary biology to describe the relationships among entities (e.g. biological en-
tities like proteins or genomes) derived from a process of evolution. This paper
refers to the entities studied in a phylogeny as tazonomic units (TUs) or, simply,
as taza.

The field of Phylogenetics developed from the domain of biology as a powerful
instrument to investigate similarities among entities that arose as a result of an
evolutionary process. Evolutionary theory provides a powerful framework for com-
parative biology, by converting similarities and differences into events reflecting
evolutionary processes. As such, evolutionary-based methods provide more reliable
answers than the traditional similarity-based methods, since they employ a theory of
evolution to describe changes, instead of relying on simple pattern matching. Indeed,
evolutionary analyses have become the norm in a variety of areas of biological
analysis (e.g. [8, 11, 16, 35, 38—40, 43]).

Phylogenetic analysis has found applications in domains that are outside of bi-
ology. For example, a rich literature has explored the evolution of languages (e.g. [6,
10, 30, 36]). The definitions and techniques employed are analogous — of course the
notion of “observable property” will be different. Starting from genes one notice
differences using string matching algorithms. But differences (to be analyzed and
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explained) can be more macroscopic, such as the presence/absence of a tail in an
animal or the way one says “father” in a language.

2.2. FEvolutionary informatics

The literature on informatics support for evolutionary biology is extensive. In broad
strokes, the existing proposals can be organized as follows: (a) data representation,
storage, and management; and (b) operations and applications development (auto-
mation, run control, composition, reuse and re-purposing).

2.2.1. Data

Representation of DNA or protein sequences, phylogenetic, and other classes of
biologically relevant data has traditionally relied on a large variety of data repre-
sentation formats, each typically concentrated about a particular aspect, e.g. nu-
cleotide sequences (e.g. GenBank, GFF), protein structures (e.g. PDB/mmCIF),
species-specific data formats (e.g. FlyBase), and multiple alignments (e.g. Phylip,
MEGA). Recently, we witnessed a move toward XML-based formats to create at
least an underlying syntax similarity (e.g. XEMBL, SWISS-PROT, PDBML). Data
representation formats are typically coupled with appropriate data storage formats,
ranging from flat file storage schemes, to relational models, to more recent object-
oriented and XML-based models.

There have been attempts to develop formats that address the needs of more than
one class of applications, providing support to represent different classes of data
within the same paradigm, as is the case of NEXUS [18] and NeXML [41] in the
context of evolutionary biology. Nevertheless, the issue of interoperation and in-
terchange of biomedically relevant data is still open, and further complicated by the
poor formalization of many of these data formats (as exemplified by the variety of
flavors of NEXUS adopted by different applications).

Data formats mostly focus on encoding the “appearance” of data (i.e. syntax),
while the true challenge in modern phylogenetic approaches requires access to the
semantics of the data and the ability to conduct different types of “reasoning” and
transformation. For example, these are needed to enable data integration, to facili-
tate reuse of domain knowledge, its exchange, and interoperation between separate
stages of evolutionary analysis. This leads to the need for ontologies. Some efforts
have attempted to cross the barriers of narrowly focused ontologies to provide
controlled vocabularies that can span the needs of wider branches of bioinformatics
applications. In the immediate context of evolutionary biology, a consortium of
researchers developed the Comparative Data Analysis Ontology (CDAO) [4]. CDAO
provides a formal ontology for describing phylogenies, their associated characters,
and character state matrices. It provides a general framework for talking about the
relationships between taxa, characters, states, their matrices, and associated phy-
logenies. The ontology is organized around four central concepts: (1) Operational
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Tazonomic Units (OTUs); (2) characters and character states; (3) phylogenetic
trees; and (4) transitions. A phylogenetic analysis starts with the identification of a
collection of OTUs, representing the entities being described (e.g. species, genes).
Each OTU is described, in the analysis, by a collection of properties, typically re-
ferred to as characters. The values that characters can assume are called character
states. In phylogenetic analysis, it is common to collect the characters and associated
states in a matrix, the character state matriz, where the rows correspond to the
OTUs and the columns correspond to the characters. Phylogenetic trees and net-
works are used to represent paths of descent-with-modification, capturing the evo-
lutionary process underlying the considered OTUs. Since evolution moves forward in
time, the branches of a tree are typically directed. The terminal nodes are anchored
in the present, as they represent observations or measurements made on existing
organisms. Different types of representations of evolutionary knowledge are avail-
able, differentiated based on structure of the representation (e.g. resolved trees,
unresolved trees, rooted trees), the nature of the encoded knowledge (e.g. phylogenies
versus taxonomies) and the methods used to derive them.

2.2.2. Software

The traditional view of software support for bioinformatics research relies on the
development of independent, task-specific services and applications (e.g. Clustalw,
RAP), using different input and output formats (often vaguely specified), and
frequently not designed to interoperate. While data formats employed by many
such systems are not standardized, the types of data that are generated are often
very similar, e.g. most analysis methods applied to sequence alignments (or other
character data) generate column-wise attributes of character data; node-wise and
branch-wise attributes of trees; or node-and-character-wise attributes. Many of
them also estimate parameters for evolutionary transition models that can be
represented in a standard form (when there are N character states, an N x N
matrix suffices to represent rates of transition). While most analysis programs limit
the user to a few pre-specified types of analysis, there are now generalized systems
for evaluating phylogenetic likelihood models that have a clean interface and that
can be adapted to many different uses, such as HyPhy and PAL. This suggests that
generalizations of data formats (e.g. through ontologies) and of transformations are
feasible.

A step forward is represented by the development of multi-component packages,
such as Phylip [9], consisting of many task-specific applications that can work to-
gether, and integrated systems such as MEGA [14]. Note, however, that these
approaches do not represent arbitrary open systems (where new components can be
introduced with ease) and none of these approaches has been specifically designed
with the issue of programmable interoperability in mind.

To aid in the development of custom software systems for large-scale evolutionary
analyses, a number of programming libraries and toolboxes have been proposed. For
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instance, BioPerl [2] provides input/output of alignment objects in Phylip format
and tree objects in Newick format; Bio::Tools: :Phylo: :PAML provides a PAML
[44] output parser. Extensions of traditional programming languages with modules
and libraries for evolutionary analyses can be found in BioJava [26] and R [13]. These
frameworks address the issue of programmable composition of tasks, but they are
still relatively closed system; in particular, they make quite cumbersome the inclu-
sion of new transformations (implemented by existing applications) and they force
scientists to explicitly handle low-level implementation details.

3. The Phylotastic Infrastructure
3.1. Motivations

The primary motivation underlying the Phylotastic principle is to deliver expert ToL
knowledge in a computable, convenient, and credible way. The system must deliver
computable information, including trees encoded using standard formats, and
metadata encoded using available standards (e.g. for citations), based on formal
ontologies or controlled vocabularies. The user interaction must be convenient, in the
sense of the following:

(1) Enabling interfaces that align with user expectations;

(2) Returning results in seconds or minutes (not hours, days or weeks, as for de novo
tree inference); and

(3) Returning the form of result that integrates into downstream steps.

The system must provide a credible alternative to de novo inference for quan-
titatively important use cases. In phylogenetics, where the external standard of
truth for an inference — actual evolutionary history — is inaccessible, trees are
judged by how they are produced, or who produces them, which means that the
system must generate a description of sources and methods, sufficient to satisfy
users who may wish to include such a description in the methods section of a
scientific paper. The second design criterion is to foster a sustainable and adaptable
community infrastructure. The main implication of this criterion, in the context of
an ever-changing landscape of resource-providers and funding [32], is that the
system must be distributed, flexible and open. Ultimately, Phylotastic envisions a
community of practice in which different groups of experts can add resources to the
system independently, via modular components that interact through common
standards.

In our initial design, based on the general principles explored in [33], a controller
satisfies the user’s query by composing a workflow from available Web services.
A client is any program that uses one or more component services, even indirectly. A
controller is a client that mediates workflow operations (e.g. linking the output of X
to the input of Y). It may have a user interface or be a library module included in
client applications. Our main controller will access a registry of services and invoke
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planning algorithms for workflow composition, but other controllers may be simpler.
In a typical flow of operations (see Fig. 1), the controller:
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Fig. 1. Typical flow of operations.

(1) Receives a query from user (through a client), issues ticket;

(2) Invokes a Taxonomic Name Resolution Service (TNRS) to clean up names;

(3) Contacts repositories of phylogenies to discover trees that satisfy the query with
optimal coverage;

(4) Invokes an extractor to get the relevant subtrees;

(5) Invokes a scaling service to add branch lengths or dates;

(6) Provides the resulting subtrees to the user, with metadata including a report on
provenance.

Separate from the development of a production service, a critical contribution of
this project is the development of an abstract architecture, composed of standards
(e.g. Application Programming Interface (APIs), ontologies), methodologies, and
libraries to enable the creation of new services and their integration. This offers
several advantages. Phylotastic provides a complete set of production services for the
canonical workflow, but the system is open. Anyone with a Web server can imple-
ment an API, register their service, and begin processing any requests they receive.
Metadata aids users in the selection of services (e.g. in terms of Quality of Services
(QoS) or “authority” of data sources).

There is not just one way to use TolL. knowledge. The canonical workflow
(Fig. 1) takes advantage of four key steps. However, if the problem is merely to
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discover all available trees with species A, B, and C, the workflow might have one
step (tree discovery) or two (name reconciliation then tree discovery); if the
problem is merely to validate names, then only the TNRS is needed, etc. Similarly,
the four-component workflow can be expanded with additional operations (e.g. to
enrich trees with additional metadata) or embedded in larger analysis workflows.
Furthermore, given many workflows, there may be many controllers. For the same
workflow, there may be different clients that cater to different cases, e.g. our client
for Web resources will be distinct from that for analyzing high-value comparative
data sets.

Finally, for purposes of testing, the system presented here implements the mini-
mal redundancy (at least two of each component). Community adoption will result
in multiple components of each type, e.g. repositories of phylogenies like TreeBASE
[23] and ToLWeb [17] may offer their content via the TreeStore APIL

3.2. Owerall architecture

The Phylotastic project proposes a flexible system for on-the-fly delivery of custom
trees, that would support many kinds of phylogenies reuse, and be open for both
users and data providers. The overall structure of the Phylotastic architecture is
illustrated in Fig. 2. This architecture is an open architecture, composed of a

(—thlntastit Architecture

. User Requests a
Goals Data Portal Natural Language — ~
! -
- Configuration Execution i Phylogenies
Phylogenies Module Monitaring Phylogenies Repositories
Metadata 9
Visualizations .
: Queries
Executions Execution Requests

‘Web Services Registry

Fig. 2. Overall Phylotastic architecture.

collection of Web services relevant to access and reuse of phylogenetic knowledge.
Web services are supported by external providers, and novel Web services can be
added. Web services available for use within Phylotastic are registered in a Web
Services Registry. In addition, Phylotastic consists of the following:

(1) Web Services Execution Monitoring;
(2) a Workflow Configuration Module;
(3) a Data Portal.
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The flow of execution of the architecture starts with the Workflow Configuration
Module — a graphical user interface that allows the user to provide information
about the desired requirements of the phylogenetic trees extraction process. The
configuration module is capable of automatically assembling the Web services nec-
essary to implement the requirements set by the user, leading to an executable
workflow. The result of such configuration can be visualized and refined; an NLG
module can be used to produce English descriptions of the workflow and of the
workflow execution. Finally, the executed workflow will be enacted and monitored by
the Execution Monitoring module. Alternatively, to the configuration module, the
Phylotastic Data Portal provides a number of custom-built workflows, implementing
the most commonly used user queries; the portal automatically assembles such fixed
workflows using available Web services, provides redundancy, easy to use access, and
visualization.

3.3. Phylotastic data portal

The Phylotastic data portal is developed to bridge the gap between the technical
difficulties of using Web services and the application of these Web services to access
and reuse phylogenetic knowledge. The portal supports a collection of predetermined
execution workflows, composed of the following steps (Fig. 3):
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Fig. 3. Overall workflow portal.

(1) The input is aimed at identifying a collection of species names; these names can
be either provided directly as a list of names, or they can be extracted from a
given document (e.g. a PDF document or a Web page). The portal allows the
user to store and retrieve lists of names. In addition, the portal allows the user to
request a sample of species belonging to a given group (e.g. a genus, a family) of a
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given size and meeting additional user-selected criteria (e.g. belonging to the
same geographic region, selected among the most popular species);

(2) The given species names are cleared through a name resolution service to correct
misspellings and map to canonical scientific names;

(3) The final list of species names is used to access one of the several repositories of
phylogenies and extract a phylogeny that covers the selected species;

(4) If requested, the resulting phylogenetic tree can be scaled (using one of several
alternative scaling methods);

(5) Finally, the resulting phylogenetic tree can be visualized; the visualization can be
manipulated, e.g. by including common names, requesting images to be added to
the tips, drawing boxes around subtrees, etc. The final image can be exported as
well as it is possible to export the tree with its supporting metadata.

While the set of possible steps is fixed, the portal executes them via on-the-fly
assembling of available Web services; redundancy is present to provide transparent
recovery from possible failure of services during the execution.

The Phylotastic data portal is built using a combination of technologies, aimed at
ensuring efficiency and reliability. The portal is written in Ruby on Rails (RoR), a
model-view-controller (MVC) framework. RoR itself is a Web development frame-
work and it is written in the Ruby programming language. Ruby was influenced by
Perl, Smalltalk, Eiffel, Ada, and Lisp.* The design of Ruby is like a simple Lisp
language at its core, with an object-oriented structure inspired by Smalltalk, blocks
inspired by higher-order functions, and practical utilities like that of Perl.” Ruby
follows the principle of least astonishment (POLA), meaning that the language
should behave in such a way as to minimize confusion for experienced users. The
philosophy behind Ruby’s design is for programmer productivity, leading to code
which is self-documented, intuitive and expressive. Finally, RoR is an open-source
framework, which provides access to a large ecosystem of pre-built code packages
(Gem) written in Ruby, covering applications from databases to Web servers.

The portal depends on the following packages (Fig. 4):

o PostgreSQL for database management, to store names generated by users;

o Paperclip for managing file attachments;

o TwitterBootstrap, JQuery, and FontAwesome for front-end development;

e Devise for authentication management — each user of the portal can create an
account to maintain lists and trees generated;

e Wicked PDF for PDF generation;

o Capybara, Poltergeist, and Minitest for automated testing;

o Phusion Passenger, Docker, and Kubernetes, for deployment;

e Sidekiq for background job processing.

2http://www.ruby-lang.org/en/about/.
bhttp://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby /ruby-tallk/179642.
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Fig. 4. Some technologies in the portal.

The test suite covers model tests, controller tests, and interactive tests (simulated
in Poltergeist, which mimics user interactions).

3.4. Services and service registry
3.4.1. Service type

There are two types of Web services in the Phylotastic project: synchronous and
asynchronous. Synchronous Web services are services with which clients invoke a
request and wait for a response. Synchronous services are suitable for applications
that require quick responses from the server. Most of the Web services in the Phy-
lotastic project fall into this category. In asynchronous services, clients initiate a
request and then resume its processing without waiting for a response from the
server. The client can retrieve the response at some later point when the server has
finished handling the request. The client can also check the status of the request
while it is still being processed. Asynchronous services are well suited for tasks that
have high computational overhead and require long time to finish.

Figure 5 shows the workflow of an asynchronous service. Clients make requests
and retrieve responses through the service API. Upon receiving a new request from
the client, the service API creates a new task and passes it to the broker. The broker
places the task into a queue and maintains the task queue. The broker is responsible
for taking the tasks from the task queue and distribute them to worker processes or
threads. Workers execute the tasks and put the results in a back-end storage. When
the client makes a request to check the status of a running task, the service API
receives the current progress from the back-end storage and reports back to the
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Fig. 5. Asynchronous service workflow.

client. In the Phylotastic project, we adopt Celery [3] to support the distributed task
queue and RabbitMQ [25] to implement the broker.

3.4.2. Web services design

The Web services for the Phylotastic project have been designed as RESTful Web
services, i.e. services that are built using the Representational State Transfer (REST)
architectural style: data and functionality are considered as resources, such resources
are exchanged between clients and servers using standardized communication pro-
tocols, such as HTTP. The key elements of a RESTful implementation are as follows:

(1) Resource representation: A REST resource can be any Phylogenetic tree data.
This resource can be represented by a plain text file, an XML document or an
image file;

(2) Uniform Resource Identifier (URI): A URI is a sequence of characters to identify
a Web resource. A client can use the URI to determine the data access method
and parameters to locate and retrieve the specific resource;

(3) Resource access methods: Resources are manipulated using a set of well-defined
methods — such as creating or deleting a resource. For example, in the case of
the HTTP protocol, four different methods can be used to access resources: GET,
POST, PUT, and DELETE.

3.4.3. Services implementation

Currently, there are 40 Web services registered in the Phylotastic project. Some of
these services are wrappers of existing external services, while others have been
developed specifically for this project. Most of the service implementations and
wrappers have been coded using the Python 2.7 language and they make use of the
CherryPy [37] application server, in conjunction with the Nginx [5] Web server. All
of these services can be divided into the following broad functional categories.
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Taxonomic Name Resolution. These services are used to resolve input strings
to standard taxonomic names. Based on the resolution procedure, these services
can be of two types. The first type of service resolves misspelled or incorrect
scientific names to correct taxonomic names by performing exact or fuzzy
matching of strings against known taxonomic sources, such as the Catalogue of
Life’ or the National Center for Biotechnology Information (NCBI).d For example,
GNR_TNRS_wrapper accepts scientific names as input and returns resolved names
with identifiers using the Global Names Resolver.® The second type of service
resolves common names (vernacular names) of organisms into the corresponding
scientific names based on a standard taxonomy. For example, NCBI_common_
name takes a list of common names and suggests their scientific names depending
on the NCBI taxonomy.’

Scientific Names Extraction. These services are used to extract scientific names
of organisms embedded in text documents, Web pages, PDF documents, Microsoft
Office documents, and even images. For instance, the GNRD_wrapper_URL service
of Phylotastic accepts the URL of a Web resource (which may be an HTML page
or an electronic file) and identifies the scientific names using the Global Names
Recognition & Discovery (GNRD) tool.®

Sampling of a Taxon. The services in this category accept a higher taxon name as
input and, based on some criteria, return a sample of species belonging to that taxon.
For example, the Tazxon_genome_species service takes a taxon name as input and
provides in output a subset of species within that taxon for which there is a genome
sequence available in NCBIL.

Retrieval of Taxon Information and Image Links. The services of this cate-
gory retrieve information and image links of input species or higher taxon names
from different sources. For example, the EOL_Habitat_Conservation service takes a
list of species as input and returns the habitat and conservation status, using the
Encyclopedia of Life (EOL)h traits bank. The Image_url_species service receives a list
of species names as input and obtains image URLs (along with corresponding license
information), using the service API provided by EOL.

List Management. These services are used to publish, access, update, or remove
lists of species owned by a Phylotastic Web application/services user. For example,
the Remowve_list service allows any valid user (e.g. users with a Gmail address) to
remove any public or private list of species from the Phylotastic list server.

Chttp://www.catalogueoflife.org/.

dhttps:/ /www.ncbi.nlm.nih.gov/.
€http://resolver.globalnames.org,/ .
fhttps:/ /www.ncbi.nlm.nih.gov/taxonomy.
&http://gnrd.globalnames.org/.
bhttp://eol.org/api/.
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Phylogenetic Tree Retrieval. The services in this category accept a list of sci-
entific names as input and return phylogenetic trees as output — the trees are
expected to have the given species (or at least a significant subset of them) as tips.
For example, the OToL_wrapper_Tree service takes a list of input taxa, uses the
Open ToL (OToL) match-names method API to get the Open Tree Taxonomy
(OTT) identifiers of the input list, and then uses the induced_subtree method API of
OToL to retrieve the relevant phylogenetic tree (in Newick format).

Phylogenetic Tree Scaling. These services can be used for fitting a phylogenetic
tree to a geologic time scale. For example, the Datelife_scale_tree service takes a
phylogenetic tree (in Newick format) in input and produces a tree with assigned
branch lengths, determined using the Datelife R package.!

Phylogenetic Tree Comparison. These services are used to compare two phy-
logenetic trees. For instance, the Compare_trees service accepts two phylogenetic
trees (in Newick format) and returns true if the trees are equivalent. This service is
implemented using the DendroPy Python library and uses the unweighted
Robinson—Foulds distance to perform the symmetric comparison between the
trees.

3.4.4. Service registry

A service registry is required to discover all available Web services. A service registry
serves as a centralized repository where clients can find information about the
functionality of the services and how to invoke them. In order to publish, sponsors of
Web services need to properly describe the services using XML-based documents, e.g.
coded using Web Service Description Language (WSDL) [1], and store them per-
sistently through the service registry.

The Web services registry for the Phylotastic project has been implemented as a
Web application. It has mainly two layers: the application layer and the data layer.
In the application layer, the Drupal® technology Content Management System
(CMS) is used to manage the content objects, which are Web services, and a Nginx
Web server to serve the service registry to the clients. In the data layer, a MySQL
Database Management System (DBMS) is used to store the WSDL file locations, the
metadata of the Web services and the description of the services. The Phylotastic
service registry supports the following basic features:

(1) Accounts management for both users and Phylotastic administrators;
(2) The upload of WSDL files and addition of descriptions of Web services;
(3) The edit of descriptions of Web services;

(4) The removal of WSDL files and relevant descriptions.

Thttp://datelife.org/.
Jhttp://dendropy.org/.
Khttps:/ /www.drupal.org/.
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3.5. Execution monitoring

The outcome of the Web services composition framework and the operations un-
derlying the portal are complete workflows, composed of a sequence of Web ser-
vices, whose execution is expected to lead to the result requested by the users. Each
Web service in the workflow is described by its WSDL profile. In order to execute
the workflow, the Phylotastic architecture provides an Fzxecution Monitoring
module. Such module makes use of the information in the WSDL profiles (extracted
from the registry) and the structure of the workflow (e.g. connections between
inputs and outputs of the services) to execute the services [20]. The goals of this
module are to enact the workflow, producing an execution, and also to monitor the
execution to identify possible failures and take appropriate recovery actions. In the
current implementation, the recovery process is based on repeating the configu-
ration phase with an added constraint that excludes the failed service. The Eze-
cution Monitoring module has multiple components. The first component is a
WSDL parser; its goal is to parse the WSDL information into data structure
models, such as Web services object model, operations object model, parameter
components, and elements.

The second component is the Fxecution Program that can execute a concrete
Web service operation based on its WSDL profile. This software consumes several
parameters: the WSDL URI, the name of the operation, and the list of input com-
ponents data. The execution module performs the following steps:

e Given the URI pointing to the service WSDL profile, the execution modules calls
the WSDL parser to interpret the profile.

e The detailed profile of the selected service operation is extracted from the WSDL
data. This profile includes service endpoints, input and output parameters, con-
tent encoding, protocol, etc.

e The execution module issues HTTP/SOAP requests based on the service end-
points and the operation information derived during the previous step. The body
of the HTTP/SOAP request includes the inputs to the service (the third param-
eter mentioned earlier, list of input components data), arranged according to the
description of the input parameters obtained in the previous step.

o After receiving the response from the service host, the execution module parses the
response based on the structure of output parameters of this operation, and
analyzes the response to determine how to continue.

The third component is a Combination Program that automatically performs
repeated calls to the Execution Program, in order to execute the entire workflow. The
calls follow the structure of the workflow, properly matching inputs and outputs of
the different services executed.

The last component is a Recovery Program that will be activated when a failure
or error in the processing of a single Fxecution Program occurs; this is observed from
the status of the Web service (e.g. unavailable, failed, timeout exception, network
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problem, forbidden access, etc.). As mentioned earlier, in the current implementa-
tion, the Recovery Program performs the following steps:

e Detects the failed /unavailable Web service;

e Activates the configuration phase, adding a constraint into Planning Engine to
exclude the failed service from the workflow; this phase results in a new workflow
without failed service.

e Calls the Ezecution Monitoring with the new workflow.

3.6. Natural language generation

From the user perspective, it is handy to extract phylogenetic trees using the features
of the Phylotastic portal, but the way the portal brings the results back to the users is
potentially confusing. In order to address the problem of clarifying the methods used
to determine and extract the phylogenetic tree, Phylotastic provides a NLG module;
such module is responsible for the automated development of a readable description
of the workflow and its execution. The NLG module is integrated with a visual
display which describes the workflow being executed as a diagram; the diagram
displays the component of the workflow (e.g. inputs, outputs, services). The diagram
is interactive, allowing the user to either abstract the components of the workflow
(e.g. describe the workflow in terms of general classes of operations being performed)
or to drill down to the details of each specific service being executed. The process of
abstracting /concretizing the components of the workflow is based on the Phylotastic
ontology describing the Web services. The diagram is synchronized with an auto-
matically generated English description of the content of the diagram, created by the
NLG module.

A part of the workflow is illustrated in Fig. 6 (left). The boxes represent the input
of a service, the service itself which has green background, and the output of that

/ resource_FreeText /

f resource_FreeText ;

4

names_extraction_text

| phylotastic_FindScientificNamesFromFreeText GNRD_GET |

y

/ resource_SetOfSciName /
/ resource_SetOfSciName /

Fig. 6. A part of generated workflow before (left) and after (right) navigating.
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service. We can infer that the service phylotastic_FindScientificNamesFromFree-
Text. GNRD_GET requires only one input, which is a text document, and it will
return a possible set of scientific names as output. On the right-hand side is the arrow
for navigating the level of abstraction of the workflow description. Because phylo-
tastic_FindScientificNamesFromFree Text. GNRD_GET is a service which belongs to
the class of services names_extraction_text in the ontology, when the user clicks on
the up arrow on the right-hand side of service box, the new diagram will be generated
as in Fig. 6 (right). The generated text is updated corresponding to the change in
diagram. Figure 7 provides the explanation of a workflow along with the image of the
generated phylogenetic tree.

Text is phylotastic_findscientificnamesfromfreetext_gnrd_get's input
and both a set of scientific names and a set of names are
phylotastic_findscientificnamesfromfreetext_gnrd_get's output. Text
uses plain text format. A set of scientific names is input of
phylotastic_resolvedscientificnames_ot_tnrs_get and a set of names ,
a set of taxon and a set of resolved names are
phylotastic_resolvedscientificnames_ot_tnrs_get's output. A set of
scientific names uses names_format_resolved_ot format.
[o_resource_httpcode] use integer format. A set of resolved names
uses list of strings format. A set of names uses list of strings format. A
set of taxon uses list of strings format.
Phylotastic_getphylogenetictree_ot_get requires a set of taxon and it
returns species tree and tree. A set of taxon uses list of strings format.
Figure 1 illustrates the extracted tree.

Bamona_ott4596590
Acrolophidae_ott474404
Anthelidae_ott705300
Cimelioidea_ott626083
Adelidae_ott557830
Aglossata_ott663285

—
167

Fig.1 - Extracted tree.

Fig. 7. Description generated for a workflow.

The NLG module is designed as a standalone service which is powered by the
Grammatical Framework (GF) [27] for language encoding. In this version, the NLG
module is developed manually following three major processing phases: (1) document
planning (content determination); (2) micro-planning; and (3) surface realization as
described in [29]. The result after processing these phases is a set of grammar rules
and needed vocabulary which, combined with information from the Phylotastic
ontology, form the desired language for encoding in the GF. The language is encoded
using the portable grammar format (pgf) and can be loaded in any server that uses
the GF Runtime API.
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4. From Predefined Workflows to Automated Configuration

While the Phylotastic portal allows the execution of predefined workflows, which
should satisfy common users interested in the extraction of phylogenetic trees (e.g. in
an educational context), we envision situations where the user may want to go
beyond these fixed workflows and develop her/his own analysis pipelines. The
workflow configuration component provides an infrastructure to achieve such ob-
jective. The configuration component receives as input a partially specified workflow
designed using a graphical user interface; the specification may include an identifi-
cation of inputs (e.g. the URL of a document), description of a desired result (e.g. a
scaled species tree), and even classes of operations that should be part of the
workflow (e.g. include a call to a name resolution service). The problem of mapping the
set of requirements specified by the user into a satisfactory workflow is an instance of
the Web services composition problem [7, 15, 28]. The results of the Web service
composition process comprise a workflow that can be executed by the Ezecution
Monitoring module. A workflow is a directed acyclic graph, whose nodes represent the
services at different levels of granularity and whose links represent the data flow be-
tween the services as well as the constraints on the execution of the workflow.

The visual interface of the configuration module allows the user to express the
requirements by designing a graph; the interface is Web-based, developed using
HTML5 and JavaScript. The specific requirements that can be described include the
following:

e Input: The input of the workflow can be anything that can be consumed by the
registered Web services. Often, the input of is a collection of classes of resources
and data formats described using the Phylotastic ontology. Since the ontology
organizes the classes of resources as a taxonomy, the user interface allows the user
to navigate the taxonomy of resources to select the desired class of inputs.

e QOutput: The output of the workflow can be anything produced by the registered
Web services. The user can specify the outputs via tree view and dialogs Web
components that allow the navigation of the Phylotastic ontology.

o Inclusion services: The module allows the users to request particular Web services
(or classes of Web services) to be used as nodes in workflow — i.e. the final
workflow needs to include such operations. For example, in order to compute a
reconciliation tree (desired output) from a species tree and a gene tree
(desired inputs), the user may request the inclusion of a scaling tree service to
ensure that trees are scaled before the reconciliation process.

o Awoidance services: The module allows the users to request exclusion of Web
services from the workflow. For example, a user may request to avoid using
get_phylogeny_tree TreeBase, i.e. a tree retrieval service based on the TreeBase
repository [23], as this may provide inadequate coverage of certain species.

o Insertion services: This is a special case of an inclusion request, which allows the
user to specify the relative ordering of such services in the workflow.
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After the users requirements are configured, these data will be sent to the Plan-
ning Engine. This module maps the collection of requirements into a planning
problem [24, 31], whose resulting plans correspond to the possible workflows satis-
fying the given requirements. In the case of Phylotastic, the planner has been
encoded using Answer Set Programming; a thorough description of the planner can
be found in [20]. In addition to the direct generation of a workflow from a set of
requirements, the Phylotastic configuration module allows the users to refine and
modify a workflow, e.g. by requesting addition and/or removal of operations. The
modifications are provided using the same interface used to describe the initial
requirements, in the form of editing of a graph representation of the computed
workflow. Modifications of a workflow will require reactivation of the planner to
determine a new workflow that is consistent with the required modifications. In these
situations, the planner will determine a workflow that accommodates the requested
changes while preserving as much as possible the original workflow [21]. In addition,
the module provides users with the following capabilities:

e Configuration: A workflow can be saved, updated and reused.

o Feasibility checking: A workflow is an “underspecified” plan that, ideally, can be
expanded to an executable plan. To provide this capability, the Workflow Con-
figuration Module sends the workflow to the Planning Engine and requests a
possible completion. When no completion exists, the Workflow Configuration
Module notifies the users that the workflow is not executable.

o Workflow execution: The module activates the execution of the workflow.
After the desired workflow is generated successfully, it will be sent to the
Ezecution Monitoring corresponding with data of input to execute and get the
final result.

5. Evaluation
5.1. Sample execution of the Phylotastic portal

The portal supports various options to extract species names from a biological
taxonomy. For example, to query five species of the family Canidae, which includes
domestic dogs, wolves, coyotes, etc., the user needs to fill in a form as in Fig. 8:

Figure 9 displays the result from the portal which is a list of species. In this
particular example, the species have been selected based on a popularity service. The
user can interact with the list to select/deselect any species that the user wants or
does not want to include in rest of the analysis. After pushing the Get tree button,
the user is redirected to the tree visualizer interface, illustrated in Fig. 10. Here, the
interface allows the user to modify the appearance of the tree and/or attach more
information (such as images for species or show the common names) to the tree. The
user can also freely export the tree in multiple formats, read more about the species
or query the supporting studies about the extracted tree.
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Get a sample of species from a group

% Taxon name Canidae
@ Enter the scientific name of a taxonomic group such as a genus, family or order. See the FAQ
for how to find scientific names. You may choose only one taxon. When subsetting by NCBI
genome, queries using large taxa are possible. Otherwise, we can't process queries on taxa with
more than a few hundred species.

Subset (choose one) - DY country United States B

by known genomes

by popularity 5 °
at random 10 s
Name for list Canidae family
Description domestic dogs, wolves, coyotes, foxes, jackals, etc.

Fig. 8. The form to query five species of biological family Canidae.

5.2. Sample execution of workflow configuration

The paper demonstrates the Workflow Configuration Module using one of Phylo-
tastic use cases: generate a chronogram from Plain Text. In this use case, a workflow
for generating a chronogram (i.e. a phylogenetic tree with branch lengths) from a
plain text document is created. The first step of configuration is to set up the initial

Canidae family

i=Species & Taxon matching i List metadata

* Click on a row to select or deselect species which you want to use for extracting tree

# Species Select | ail @
1 Lycaon pictus
2 Canis aureus
3 Canis latrans
4 Canis lupus
5 Vulpes vulpes

Fig. 9. Five species of biological family Canidae selected by the portal.
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Tree version Customize view (Revert) Other
© Unscaled tree (5 tips) ) Ladderize Tree Load all images
“'Median scaled (5 tips) 1 Line thickness
- OT scaled (5 tips) Bl Line Color SXportash
| iNode labels

‘.; Show common names

-Canis lupus
+ -Lycaon pictus
-Canis latrans
+ -Canis aureus
Vulpes vulpes

Powered by etetoolkit

Fig. 10. The tree visualizer for the tree extracted from the list in Fig. 9.

input and the desired output of the workflow. In this step, all input/output resource
components attached with data formats are identified from the Phylotastic ontology
(Fig. 11). In this use case, the input includes two components: a free_texrt and a
method associated with plain_text and string data formats, respectively; the desired
output is a chronogram with Newick format. Figure 12 displays the successful con-
figuration of initial input and desired output.

) INITIAL STATE DEFINITION @ RESOURCES AND DATA FORMATS

£ Resources Tree - Click an item to select

v B phylotastic_resources

> B resource_SetOfThings
v [ resource_Object
> i resource_Document
v [ resource_Text
> | resource String
> B resource_Number

> i resource_Boolean

i resource_FreeText
> B resource_Image
> i resource_URI

> i resource_Tree

© Data format of selected resource
plain_text -

Fig. 11. Configure the resources and data formats of input/output components.
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# Home # Configuration 4 Services Engines 4 Tools

Init State : resource_FreeText, method

Goal State : resource_speciesTree_with_BranchLengths

Fig. 12. Initial input and desired output configuration.

Once the input and output components have been determined, the user can use
the function Generate Workflow of this module to generate the completed workflow.
Figure 13 illustrates the generated workflow based on the user’s request. In addition,

resource_FreeText,method i Scal

method

convert df sci names format 1 to 3 convert_df_sci names_format 5 to_OT

phylotastic_GetPhylogeneticTree OT_POST

XaLsald oI0S

SeiLsaroads

&
5

& 4
FindScientificN: romFreeText GNRD_GET

g phylotastic_ResolvedS&@ntifiéNames_OT_TNRS_GET

convert_df_sci Wames/format_3 to_5

Fig. 13. Original workflow with input/output configuration.

—
I}
8
5
4
2
s
3
H
8

at NMSU_to_NewickTree

_DateLife_POST

speciesTree_with_Branch

if users want to update or modify the given workflow, they can provide the modifi-
cation requirements (Sec. 4) using this same module and resubmit it to the system
using the Recomposition Workflow function, to get the updated workflow. In
our example, if the user wants to use the service ResolvedScientificNames-GNR_
TNRS_POST to provide taxonomic names resolution instead of the service Resol-
vedScientificNames_OT_-TNRS_GET, included in the original workflow, they can
configure to avoid ResolvedScientificNames-OT-TNRS_GET and include Resol-
vedScientificNames_.GNR_TNRS_POST, using the Avoidance services and Inclusion
services functions, respectively. Figure 14 displays the successful updated workflow

based on this modification requirement.
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resource_FreeText,method phylotastic_GetChronograms_ScaledSpeciesTree_DateLife_POST

) 4

ames_format_5_to_GNR
convert_df_taxons_format GNR_to_PhyloT

Goal State : resource_spggjesTree_with BranchLengths
phylotastic_GetPhyMienejlcTree PhyloT POST

FindScientificNalesFydmFreeText GNRD_GET §
" phylotastic_ResolvedScidiificNafnes GNR_TNRS_POST

convert_df_sci Wames/format_3_to 5

Fig. 14. Updated workflow with modification requests.

6. Conclusion and Future Work

This paper provides an overview of the Phylotastic system. The system has been
designed to provide a flexible and extensible architecture to facilitate access and
reuse of authoritative phylogenetic knowledge. The system provides easy retrieval
of relevant phylogenies for species named in documents and Websites, through a
flexible portal. The architecture allows the users to also design their own analysis
protocols, through a high-level graphical interface and an automated configuration
system, which automatically creates an executable workflow from a high level,
and possibly incomplete, specification. The Phylotastic architecture implements
both the portal and the configuration system using Web services — supported by
a service registry and a comprehensive ontology to describe services and the
artifacts manipulated by such services. The system has been developed and vali-
dated in collaboration with a community of evolutionary biologists, originated
from a working group part of the National Evolutionary Synthesis Center
(NESCENT). The working group provided the initial concept [33]. The original
idea of Phylotastic is derived from the realization of the limited level of reuse of
authoritative phylogenetic knowledge and the complexity of integrating phylo-
genetic trees within a more complex analysis pipeline. The current emphasis of
Phylotastic is to develop educational materials that integrate the use of the
Phylotastic portal.

The portal is accessible at portal.phylotastic.org while the overall Phylo-
tastic project has a dedicated site at www.phylotastic.org. This research directions
for the project include the following:

e Refinement of the Web services registry, to facilitate addition of new services; the
registry currently provides also APIs that can be used in a number of programming
languages (e.g. Python, R) to allow programmatic access to the services. On the
other hand, the API does not support, yet, the search of services in the registry
(e.g. using terms of the Phylotastic ontology as search keywords);

e Use of workflow refinements based on soft constraints (e.g. preferences);
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o Several phylogenetic Web services tend to be fragile; the team is currently working
in developing a more sophisticated approach to handle failures of services during
execution. We are exploring solutions that allow the automated generation of new
workflows upon failure; the new workflow should achieve the same goal as the
failed one and reuse as much as possible the parts of the original workflow that
have been successfully executed before failure.
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