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Access and reuse of authoritative phylogenetic knowledge have been a longstanding challenges
in the evolutionary biology community ��� leading to a number of research e®orts (e.g. focused

on interoperation, standardization of formats, and development of minimum reporting

requirements). The Phylotastic project was launched to provide an answer to such challenges���
as an architectural concept collaboratively designed by evolutionary biologists and computer
scientists. This paper describes the ¯rst comprehensive implementation of the Phylotastic ar-

chitecture, based on an open platform for Web services composition. The implementation

provides a portal, which composes Web services along a ¯xed collection of work°ows, as well as
an interface to allow users to develop novel work°ows. The Web services composition is guided

by automated planning algorithms and built on a Web services registry and an execution

monitoring engine. The platform provides resilience through seamless automated recovery from

failed services.

Keywords: Bioinformatics; phylogenies; Web services; services composition.

1. Introduction

Phylogenetic trees are useful in all areas of biology (and beyond, e.g. in linguistic

studies), both to provide instruments to organize knowledge in taxonomic forms

and for process-based models, which allow scientists to make robust inferences from
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comparisons of descriptive characters (e.g. DNA, phenotypes) of evolved entities

(e.g. genes, species). Indeed, intense e®orts have been invested in the assembling of

a Tree of Life (ToL), a phylogeny covering 107 or more species [19]. The ¯rst draft

of a grand phylogenetic synthesis ��� a single synthetic tree with 2:5� 106 species

(tree.opentreeo°ife.org) ��� emerged from the Open Tree of Life ðOpenTreeÞ
project.

Though useful, neither this tree nor any other individual phylogenetic tree, will be

the sole authority on phylogenetic knowledge. Indeed, several components of the

OpenTree are synthetic and not yet grounded in actual biological knowledge.

Therefore, when researchers refer to the \ToL" they often do not mean any single

tree, but the dispersed set of available trees that represent the current state of ToL

knowledge. While experts continue expanding the ToL, addressing gaps and con-

°icts, an unexpected challenge has appeared: how to disseminate and reuse such

knowledge, i.e. how ToL knowledge can be e®ectively placed in the hands of

researchers, educators, and the broad public. The vision of this project, referred to as

Phylotastic, is to enable easy online and programmatic access and use of biological

phylogenetic knowledge (e.g. species trees).

The premise of disseminating knowledge is that it will be reused. Studies con-

ducted show that the level of reuse of phylogenetic trees is limited; indeed, it is more

common to see phylogenetic trees being inferred de novo for each speci¯c study

instead of being used as-is from previous investigations [34]. Yet, with a greater

emphasis placed on the construction of large species trees and the creation of au-

thoritative phylogenies, we are seeing an increasing interest toward reuse of phylo-

genetic knowledge. In a sample of 40 phylogeny papers, the authors of [34] found six

cases in which scientists obtained a desired tree by extraction from a larger species

tree. We refer to this important pattern of reuse as subtree extraction from ToL

source trees. The potential impact of facilitating the process of subtree extraction

from authoritative phylogenetic trees is huge, and has been discussed in the seminal

paper on the Phylotastic project [33].

While simple in principle, this mode of reuse currently presents technical barriers,

which justify the need of a dedicated informatics infrastructure. The vast majority of

users simply do not have the ability to handle a tree with more than a 1000 species,

even if they know how to locate the right tree ��� a challenge, as only 4% of trees are

archived [34]. Tree ¯les generally lack machine-processable metadata on sources and

methods, crucial for quality evaluation and for documentation of the scienti¯c in-

vestigation being conducted. The largest, most valuable species trees often provide a

topology without branch lengths, yet users often need branch lengths in downstream

analysis steps; pro¯cient users may create crude branch lengths with specialized

software. Even matching a list of species names with a source tree is problematic,

given the proliferation of aberrant names, due to spelling errors and lexical variants

[22]. Whereas subtree extraction is conceptually simple, real-world uses are sur-

rounded by complications, requiring a combination of expert skills, hands-on at-

tention, and specialized software. To achieve the Phylotastic vision of simple and
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°exible reuse of phylogenies, this paper proposes an open Web-based system that

enables on-the-°y delivery of phylogenetic knowledge.

The novelty of this work is the development of the ¯rst ever complete architecture

implementing the Phylotastic vision. Phylotastic provided an ideal architecture but

the original design, presented in [33] failed to recognize the technological challenges

to be addressed to establish a Phylotastic architecture that is neutral with respect to

content and that is usable and useful to ¯nal users. The objective of the architecture

is to reliably deliver data that traces to expert sources. The quality of outputs will

depend on the state of inputs, relying on sources like name services (e.g. GNR,

iPlant) and Web service accessible species tree repositories, such as TreeBASE [23],

an archive of about 10,000 gene and species trees, the Phylomatic service [42], sup-

plying the APG tree and derivatives, and OpenTree [12], providing � 4000 source

trees, plus synthetic tree of 2:5� 106 species. The proposed developed architecture is

both fronted by a client with a graphical interface as well as a programmable Web

services interface. Novelty of the architecture includes the use of advanced auto-

mated planning techniques to provide Web service composition and to automatically

repair an execution work°ow in case of failure and the use of natural language

generation (NLG) techniques to automatically generate textual explanation of

work°ows and their execution.

2. Background

2.1. Evolutionary biology

Phylogenies are abstractions that have been used extensively in the ¯eld of evo-

lutionary biology to describe the relationships among entities (e.g. biological en-

tities like proteins or genomes) derived from a process of evolution. This paper

refers to the entities studied in a phylogeny as taxonomic units (TUs) or, simply,

as taxa.

The ¯eld of Phylogenetics developed from the domain of biology as a powerful

instrument to investigate similarities among entities that arose as a result of an

evolutionary process. Evolutionary theory provides a powerful framework for com-

parative biology, by converting similarities and di®erences into events re°ecting

evolutionary processes. As such, evolutionary-based methods provide more reliable

answers than the traditional similarity-based methods, since they employ a theory of

evolution to describe changes, instead of relying on simple pattern matching. Indeed,

evolutionary analyses have become the norm in a variety of areas of biological

analysis (e.g. [8, 11, 16, 35, 38–40, 43]).
Phylogenetic analysis has found applications in domains that are outside of bi-

ology. For example, a rich literature has explored the evolution of languages (e.g. [6,

10, 30, 36]). The de¯nitions and techniques employed are analogous ��� of course the

notion of \observable property" will be di®erent. Starting from genes one notice

di®erences using string matching algorithms. But di®erences (to be analyzed and
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explained) can be more macroscopic, such as the presence/absence of a tail in an

animal or the way one says \father" in a language.

2.2. Evolutionary informatics

The literature on informatics support for evolutionary biology is extensive. In broad

strokes, the existing proposals can be organized as follows: (a) data representation,

storage, and management; and (b) operations and applications development (auto-

mation, run control, composition, reuse and re-purposing).

2.2.1. Data

Representation of DNA or protein sequences, phylogenetic, and other classes of

biologically relevant data has traditionally relied on a large variety of data repre-

sentation formats, each typically concentrated about a particular aspect, e.g. nu-

cleotide sequences (e.g. GenBank, GFF), protein structures (e.g. PDB/mmCIF),

species-speci¯c data formats (e.g. FlyBase), and multiple alignments (e.g. Phylip,

MEGA). Recently, we witnessed a move toward XML-based formats to create at

least an underlying syntax similarity (e.g. XEMBL, SWISS-PROT, PDBML). Data

representation formats are typically coupled with appropriate data storage formats,

ranging from °at ¯le storage schemes, to relational models, to more recent object-

oriented and XML-based models.

There have been attempts to develop formats that address the needs of more than

one class of applications, providing support to represent di®erent classes of data

within the same paradigm, as is the case of NEXUS [18] and NeXML [41] in the

context of evolutionary biology. Nevertheless, the issue of interoperation and in-

terchange of biomedically relevant data is still open, and further complicated by the

poor formalization of many of these data formats (as exempli¯ed by the variety of

°avors of NEXUS adopted by di®erent applications).

Data formats mostly focus on encoding the \appearance" of data (i.e. syntax),

while the true challenge in modern phylogenetic approaches requires access to the

semantics of the data and the ability to conduct di®erent types of \reasoning" and

transformation. For example, these are needed to enable data integration, to facili-

tate reuse of domain knowledge, its exchange, and interoperation between separate

stages of evolutionary analysis. This leads to the need for ontologies. Some e®orts

have attempted to cross the barriers of narrowly focused ontologies to provide

controlled vocabularies that can span the needs of wider branches of bioinformatics

applications. In the immediate context of evolutionary biology, a consortium of

researchers developed the Comparative Data Analysis Ontology (CDAO) [4]. CDAO

provides a formal ontology for describing phylogenies, their associated characters,

and character state matrices. It provides a general framework for talking about the

relationships between taxa, characters, states, their matrices, and associated phy-

logenies. The ontology is organized around four central concepts: (1) Operational
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Taxonomic Units (OTUs); (2) characters and character states; (3) phylogenetic

trees; and (4) transitions. A phylogenetic analysis starts with the identi¯cation of a

collection of OTUs, representing the entities being described (e.g. species, genes).

Each OTU is described, in the analysis, by a collection of properties, typically re-

ferred to as characters. The values that characters can assume are called character

states. In phylogenetic analysis, it is common to collect the characters and associated

states in a matrix, the character state matrix, where the rows correspond to the

OTUs and the columns correspond to the characters. Phylogenetic trees and net-

works are used to represent paths of descent-with-modi¯cation, capturing the evo-

lutionary process underlying the considered OTUs. Since evolution moves forward in

time, the branches of a tree are typically directed. The terminal nodes are anchored

in the present, as they represent observations or measurements made on existing

organisms. Di®erent types of representations of evolutionary knowledge are avail-

able, di®erentiated based on structure of the representation (e.g. resolved trees,

unresolved trees, rooted trees), the nature of the encoded knowledge (e.g. phylogenies

versus taxonomies) and the methods used to derive them.

2.2.2. Software

The traditional view of software support for bioinformatics research relies on the

development of independent, task-speci¯c services and applications (e.g. Clustalw,

RAP), using di®erent input and output formats (often vaguely speci¯ed), and

frequently not designed to interoperate. While data formats employed by many

such systems are not standardized, the types of data that are generated are often

very similar, e.g. most analysis methods applied to sequence alignments (or other

character data) generate column-wise attributes of character data; node-wise and

branch-wise attributes of trees; or node-and-character-wise attributes. Many of

them also estimate parameters for evolutionary transition models that can be

represented in a standard form (when there are N character states, an N �N

matrix su±ces to represent rates of transition). While most analysis programs limit

the user to a few pre-speci¯ed types of analysis, there are now generalized systems

for evaluating phylogenetic likelihood models that have a clean interface and that

can be adapted to many di®erent uses, such as HyPhy and PAL. This suggests that

generalizations of data formats (e.g. through ontologies) and of transformations are

feasible.

A step forward is represented by the development of multi-component packages,

such as Phylip [9], consisting of many task-speci¯c applications that can work to-

gether, and integrated systems such as MEGA [14]. Note, however, that these

approaches do not represent arbitrary open systems (where new components can be

introduced with ease) and none of these approaches has been speci¯cally designed

with the issue of programmable interoperability in mind.

To aid in the development of custom software systems for large-scale evolutionary

analyses, a number of programming libraries and toolboxes have been proposed. For
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instance, BioPerl [2] provides input/output of alignment objects in Phylip format

and tree objects in Newick format; Bio::Tools::Phylo::PAML provides a PAML

[44] output parser. Extensions of traditional programming languages with modules

and libraries for evolutionary analyses can be found in BioJava [26] and R [13]. These

frameworks address the issue of programmable composition of tasks, but they are

still relatively closed system; in particular, they make quite cumbersome the inclu-

sion of new transformations (implemented by existing applications) and they force

scientists to explicitly handle low-level implementation details.

3. The Phylotastic Infrastructure

3.1. Motivations

The primary motivation underlying the Phylotastic principle is to deliver expert ToL

knowledge in a computable, convenient, and credible way. The system must deliver

computable information, including trees encoded using standard formats, and

metadata encoded using available standards (e.g. for citations), based on formal

ontologies or controlled vocabularies. The user interaction must be convenient, in the

sense of the following:

(1) Enabling interfaces that align with user expectations;

(2) Returning results in seconds or minutes (not hours, days or weeks, as for de novo

tree inference); and

(3) Returning the form of result that integrates into downstream steps.

The system must provide a credible alternative to de novo inference for quan-

titatively important use cases. In phylogenetics, where the external standard of

truth for an inference ��� actual evolutionary history ��� is inaccessible, trees are

judged by how they are produced, or who produces them, which means that the

system must generate a description of sources and methods, su±cient to satisfy

users who may wish to include such a description in the methods section of a

scienti¯c paper. The second design criterion is to foster a sustainable and adaptable

community infrastructure. The main implication of this criterion, in the context of

an ever-changing landscape of resource-providers and funding [32], is that the

system must be distributed, °exible and open. Ultimately, Phylotastic envisions a

community of practice in which di®erent groups of experts can add resources to the

system independently, via modular components that interact through common

standards.

In our initial design, based on the general principles explored in [33], a controller

satis¯es the user's query by composing a work°ow from available Web services.

A client is any program that uses one or more component services, even indirectly. A

controller is a client that mediates work°ow operations (e.g. linking the output of X

to the input of Y ). It may have a user interface or be a library module included in

client applications. Our main controller will access a registry of services and invoke
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planning algorithms for work°ow composition, but other controllers may be simpler.

In a typical °ow of operations (see Fig. 1), the controller:

(1) Receives a query from user (through a client), issues ticket;

(2) Invokes a Taxonomic Name Resolution Service (TNRS) to clean up names;

(3) Contacts repositories of phylogenies to discover trees that satisfy the query with

optimal coverage;

(4) Invokes an extractor to get the relevant subtrees;

(5) Invokes a scaling service to add branch lengths or dates;

(6) Provides the resulting subtrees to the user, with metadata including a report on

provenance.

Separate from the development of a production service, a critical contribution of

this project is the development of an abstract architecture, composed of standards

(e.g. Application Programming Interface (APIs), ontologies), methodologies, and

libraries to enable the creation of new services and their integration. This o®ers

several advantages. Phylotastic provides a complete set of production services for the

canonical work°ow, but the system is open. Anyone with a Web server can imple-

ment an API, register their service, and begin processing any requests they receive.

Metadata aids users in the selection of services (e.g. in terms of Quality of Services

(QoS) or \authority" of data sources).

There is not just one way to use ToL knowledge. The canonical work°ow

(Fig. 1) takes advantage of four key steps. However, if the problem is merely to

Fig. 1. Typical °ow of operations.
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discover all available trees with species A, B, and C, the work°ow might have one

step (tree discovery) or two (name reconciliation then tree discovery); if the

problem is merely to validate names, then only the TNRS is needed, etc. Similarly,

the four-component work°ow can be expanded with additional operations (e.g. to

enrich trees with additional metadata) or embedded in larger analysis work°ows.

Furthermore, given many work°ows, there may be many controllers. For the same

work°ow, there may be di®erent clients that cater to di®erent cases, e.g. our client

for Web resources will be distinct from that for analyzing high-value comparative

data sets.

Finally, for purposes of testing, the system presented here implements the mini-

mal redundancy (at least two of each component). Community adoption will result

in multiple components of each type, e.g. repositories of phylogenies like TreeBASE

[23] and ToLWeb [17] may o®er their content via the TreeStore API.

3.2. Overall architecture

The Phylotastic project proposes a °exible system for on-the-°y delivery of custom

trees, that would support many kinds of phylogenies reuse, and be open for both

users and data providers. The overall structure of the Phylotastic architecture is

illustrated in Fig. 2. This architecture is an open architecture, composed of a

collection of Web services relevant to access and reuse of phylogenetic knowledge.

Web services are supported by external providers, and novel Web services can be

added. Web services available for use within Phylotastic are registered in a Web

Services Registry. In addition, Phylotastic consists of the following:

(1) Web Services Execution Monitoring;

(2) a Work°ow Con¯guration Module;

(3) a Data Portal.

Fig. 2. Overall Phylotastic architecture.
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The °ow of execution of the architecture starts with the Work°ow Con¯guration

Module ��� a graphical user interface that allows the user to provide information

about the desired requirements of the phylogenetic trees extraction process. The

con¯guration module is capable of automatically assembling the Web services nec-

essary to implement the requirements set by the user, leading to an executable

work°ow. The result of such con¯guration can be visualized and re¯ned; an NLG

module can be used to produce English descriptions of the work°ow and of the

work°ow execution. Finally, the executed work°ow will be enacted and monitored by

the Execution Monitoring module. Alternatively, to the con¯guration module, the

Phylotastic Data Portal provides a number of custom-built work°ows, implementing

the most commonly used user queries; the portal automatically assembles such ¯xed

work°ows using available Web services, provides redundancy, easy to use access, and

visualization.

3.3. Phylotastic data portal

The Phylotastic data portal is developed to bridge the gap between the technical

di±culties of using Web services and the application of these Web services to access

and reuse phylogenetic knowledge. The portal supports a collection of predetermined

execution work°ows, composed of the following steps (Fig. 3):

(1) The input is aimed at identifying a collection of species names; these names can

be either provided directly as a list of names, or they can be extracted from a

given document (e.g. a PDF document or a Web page). The portal allows the

user to store and retrieve lists of names. In addition, the portal allows the user to

request a sample of species belonging to a given group (e.g. a genus, a family) of a

Fig. 3. Overall work°ow portal.
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given size and meeting additional user-selected criteria (e.g. belonging to the

same geographic region, selected among the most popular species);

(2) The given species names are cleared through a name resolution service to correct

misspellings and map to canonical scienti¯c names;

(3) The ¯nal list of species names is used to access one of the several repositories of

phylogenies and extract a phylogeny that covers the selected species;

(4) If requested, the resulting phylogenetic tree can be scaled (using one of several

alternative scaling methods);

(5) Finally, the resulting phylogenetic tree can be visualized; the visualization can be

manipulated, e.g. by including common names, requesting images to be added to

the tips, drawing boxes around subtrees, etc. The ¯nal image can be exported as

well as it is possible to export the tree with its supporting metadata.

While the set of possible steps is ¯xed, the portal executes them via on-the-°y

assembling of available Web services; redundancy is present to provide transparent

recovery from possible failure of services during the execution.

The Phylotastic data portal is built using a combination of technologies, aimed at

ensuring e±ciency and reliability. The portal is written in Ruby on Rails (RoR), a

model-view-controller (MVC) framework. RoR itself is a Web development frame-

work and it is written in the Ruby programming language. Ruby was in°uenced by

Perl, Smalltalk, Ei®el, Ada, and Lisp.a The design of Ruby is like a simple Lisp

language at its core, with an object-oriented structure inspired by Smalltalk, blocks

inspired by higher-order functions, and practical utilities like that of Perl.b Ruby

follows the principle of least astonishment (POLA), meaning that the language

should behave in such a way as to minimize confusion for experienced users. The

philosophy behind Ruby's design is for programmer productivity, leading to code

which is self-documented, intuitive and expressive. Finally, RoR is an open-source

framework, which provides access to a large ecosystem of pre-built code packages

(Gem) written in Ruby, covering applications from databases to Web servers.

The portal depends on the following packages (Fig. 4):

. PostgreSQL for database management, to store names generated by users;

. Paperclip for managing ¯le attachments;

. TwitterBootstrap, JQuery, and FontAwesome for front-end development;

. Devise for authentication management — each user of the portal can create an

account to maintain lists and trees generated;

. Wicked PDF for PDF generation;

. Capybara, Poltergeist, and Minitest for automated testing;

. Phusion Passenger, Docker, and Kubernetes, for deployment;

. Sidekiq for background job processing.

ahttp://www.ruby-lang.org/en/about/.
bhttp://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/179642.
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The test suite covers model tests, controller tests, and interactive tests (simulated

in Poltergeist, which mimics user interactions).

3.4. Services and service registry

3.4.1. Service type

There are two types of Web services in the Phylotastic project: synchronous and

asynchronous. Synchronous Web services are services with which clients invoke a

request and wait for a response. Synchronous services are suitable for applications

that require quick responses from the server. Most of the Web services in the Phy-

lotastic project fall into this category. In asynchronous services, clients initiate a

request and then resume its processing without waiting for a response from the

server. The client can retrieve the response at some later point when the server has

¯nished handling the request. The client can also check the status of the request

while it is still being processed. Asynchronous services are well suited for tasks that

have high computational overhead and require long time to ¯nish.

Figure 5 shows the work°ow of an asynchronous service. Clients make requests

and retrieve responses through the service API. Upon receiving a new request from

the client, the service API creates a new task and passes it to the broker. The broker

places the task into a queue and maintains the task queue. The broker is responsible

for taking the tasks from the task queue and distribute them to worker processes or

threads. Workers execute the tasks and put the results in a back-end storage. When

the client makes a request to check the status of a running task, the service API

receives the current progress from the back-end storage and reports back to the

Fig. 4. Some technologies in the portal.
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client. In the Phylotastic project, we adopt Celery [3] to support the distributed task

queue and RabbitMQ [25] to implement the broker.

3.4.2. Web services design

The Web services for the Phylotastic project have been designed as RESTful Web

services, i.e. services that are built using the Representational State Transfer (REST)

architectural style: data and functionality are considered as resources, such resources

are exchanged between clients and servers using standardized communication pro-

tocols, such as HTTP. The key elements of a RESTful implementation are as follows:

(1) Resource representation: A REST resource can be any Phylogenetic tree data.

This resource can be represented by a plain text ¯le, an XML document or an

image ¯le;

(2) Uniform Resource Identi¯er ðURIÞ: A URI is a sequence of characters to identify

a Web resource. A client can use the URI to determine the data access method

and parameters to locate and retrieve the speci¯c resource;

(3) Resource access methods: Resources are manipulated using a set of well-de¯ned

methods — such as creating or deleting a resource. For example, in the case of

the HTTP protocol, four di®erent methods can be used to access resources: GET,

POST, PUT, and DELETE.

3.4.3. Services implementation

Currently, there are 40 Web services registered in the Phylotastic project. Some of

these services are wrappers of existing external services, while others have been

developed speci¯cally for this project. Most of the service implementations and

wrappers have been coded using the Python 2.7 language and they make use of the

CherryPy [37] application server, in conjunction with the Nginx [5] Web server. All

of these services can be divided into the following broad functional categories.

Fig. 5. Asynchronous service work°ow.
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Taxonomic Name Resolution. These services are used to resolve input strings

to standard taxonomic names. Based on the resolution procedure, these services

can be of two types. The ¯rst type of service resolves misspelled or incorrect

scienti¯c names to correct taxonomic names by performing exact or fuzzy

matching of strings against known taxonomic sources, such as the Catalogue of

Lifec or the National Center for Biotechnology Information (NCBI).d For example,

GNR TNRS wrapper accepts scienti¯c names as input and returns resolved names

with identi¯ers using the Global Names Resolver.e The second type of service

resolves common names (vernacular names) of organisms into the corresponding

scienti¯c names based on a standard taxonomy. For example, NCBI common

name takes a list of common names and suggests their scienti¯c names depending

on the NCBI taxonomy.f

Scienti¯c Names Extraction. These services are used to extract scienti¯c names

of organisms embedded in text documents, Web pages, PDF documents, Microsoft

O±ce documents, and even images. For instance, the GNRD wrapper URL service

of Phylotastic accepts the URL of a Web resource (which may be an HTML page

or an electronic ¯le) and identi¯es the scienti¯c names using the Global Names

Recognition & Discovery (GNRD) tool.g

Sampling of a Taxon. The services in this category accept a higher taxon name as

input and, based on some criteria, return a sample of species belonging to that taxon.

For example, the Taxon genome species service takes a taxon name as input and

provides in output a subset of species within that taxon for which there is a genome

sequence available in NCBI.

Retrieval of Taxon Information and Image Links. The services of this cate-

gory retrieve information and image links of input species or higher taxon names

from di®erent sources. For example, the EOL Habitat Conservation service takes a

list of species as input and returns the habitat and conservation status, using the

Encyclopedia of Life (EOL)h traits bank. The Image url species service receives a list

of species names as input and obtains image URLs (along with corresponding license

information), using the service API provided by EOL.

List Management. These services are used to publish, access, update, or remove

lists of species owned by a Phylotastic Web application/services user. For example,

the Remove list service allows any valid user (e.g. users with a Gmail address) to

remove any public or private list of species from the Phylotastic list server.

chttp://www.catalogueo°ife.org/.
dhttps://www.ncbi.nlm.nih.gov/.
ehttp://resolver.globalnames.org/.
fhttps://www.ncbi.nlm.nih.gov/taxonomy.
ghttp://gnrd.globalnames.org/.
hhttp://eol.org/api/.
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Phylogenetic Tree Retrieval. The services in this category accept a list of sci-

enti¯c names as input and return phylogenetic trees as output ��� the trees are

expected to have the given species (or at least a signi¯cant subset of them) as tips.

For example, the OToL wrapper Tree service takes a list of input taxa, uses the

Open ToL (OToL) match names method API to get the Open Tree Taxonomy

(OTT) identi¯ers of the input list, and then uses the induced subtree method API of

OToL to retrieve the relevant phylogenetic tree (in Newick format).

Phylogenetic Tree Scaling. These services can be used for ¯tting a phylogenetic

tree to a geologic time scale. For example, the Datelife scale tree service takes a

phylogenetic tree (in Newick format) in input and produces a tree with assigned

branch lengths, determined using the Datelife R package.i

Phylogenetic Tree Comparison. These services are used to compare two phy-

logenetic trees. For instance, the Compare trees service accepts two phylogenetic

trees (in Newick format) and returns true if the trees are equivalent. This service is

implemented using the DendroPyj Python library and uses the unweighted

Robinson–Foulds distance to perform the symmetric comparison between the

trees.

3.4.4. Service registry

A service registry is required to discover all available Web services. A service registry

serves as a centralized repository where clients can ¯nd information about the

functionality of the services and how to invoke them. In order to publish, sponsors of

Web services need to properly describe the services using XML-based documents, e.g.

coded using Web Service Description Language (WSDL) [1], and store them per-

sistently through the service registry.

The Web services registry for the Phylotastic project has been implemented as a

Web application. It has mainly two layers: the application layer and the data layer.

In the application layer, the Drupalk technology Content Management System

(CMS) is used to manage the content objects, which are Web services, and a Nginx

Web server to serve the service registry to the clients. In the data layer, a MySQL

Database Management System (DBMS) is used to store the WSDL ¯le locations, the

metadata of the Web services and the description of the services. The Phylotastic

service registry supports the following basic features:

(1) Accounts management for both users and Phylotastic administrators;

(2) The upload of WSDL ¯les and addition of descriptions of Web services;

(3) The edit of descriptions of Web services;

(4) The removal of WSDL ¯les and relevant descriptions.

ihttp://datelife.org/.
jhttp://dendropy.org/.
khttps://www.drupal.org/.
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3.5. Execution monitoring

The outcome of the Web services composition framework and the operations un-

derlying the portal are complete work°ows, composed of a sequence of Web ser-

vices, whose execution is expected to lead to the result requested by the users. Each

Web service in the work°ow is described by its WSDL pro¯le. In order to execute

the work°ow, the Phylotastic architecture provides an Execution Monitoring

module. Such module makes use of the information in the WSDL pro¯les (extracted

from the registry) and the structure of the work°ow (e.g. connections between

inputs and outputs of the services) to execute the services [20]. The goals of this

module are to enact the work°ow, producing an execution, and also to monitor the

execution to identify possible failures and take appropriate recovery actions. In the

current implementation, the recovery process is based on repeating the con¯gu-

ration phase with an added constraint that excludes the failed service. The Exe-

cution Monitoring module has multiple components. The ¯rst component is a

WSDL parser; its goal is to parse the WSDL information into data structure

models, such as Web services object model, operations object model, parameter

components, and elements.

The second component is the Execution Program that can execute a concrete

Web service operation based on its WSDL pro¯le. This software consumes several

parameters: the WSDL URI, the name of the operation, and the list of input com-

ponents data. The execution module performs the following steps:

. Given the URI pointing to the service WSDL pro¯le, the execution modules calls

the WSDL parser to interpret the pro¯le.

. The detailed pro¯le of the selected service operation is extracted from the WSDL

data. This pro¯le includes service endpoints, input and output parameters, con-

tent encoding, protocol, etc.

. The execution module issues HTTP/SOAP requests based on the service end-

points and the operation information derived during the previous step. The body

of the HTTP/SOAP request includes the inputs to the service (the third param-

eter mentioned earlier, list of input components data), arranged according to the

description of the input parameters obtained in the previous step.

. After receiving the response from the service host, the execution module parses the

response based on the structure of output parameters of this operation, and

analyzes the response to determine how to continue.

The third component is a Combination Program that automatically performs

repeated calls to the Execution Program, in order to execute the entire work°ow. The

calls follow the structure of the work°ow, properly matching inputs and outputs of

the di®erent services executed.

The last component is a Recovery Program that will be activated when a failure

or error in the processing of a single Execution Program occurs; this is observed from

the status of the Web service (e.g. unavailable, failed, timeout exception, network
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problem, forbidden access, etc.). As mentioned earlier, in the current implementa-

tion, the Recovery Program performs the following steps:

. Detects the failed/unavailable Web service;

. Activates the con¯guration phase, adding a constraint into Planning Engine to

exclude the failed service from the work°ow; this phase results in a new work°ow

without failed service.

. Calls the Execution Monitoring with the new work°ow.

3.6. Natural language generation

From the user perspective, it is handy to extract phylogenetic trees using the features

of the Phylotastic portal, but the way the portal brings the results back to the users is

potentially confusing. In order to address the problem of clarifying the methods used

to determine and extract the phylogenetic tree, Phylotastic provides a NLG module;

such module is responsible for the automated development of a readable description

of the work°ow and its execution. The NLG module is integrated with a visual

display which describes the work°ow being executed as a diagram; the diagram

displays the component of the work°ow (e.g. inputs, outputs, services). The diagram

is interactive, allowing the user to either abstract the components of the work°ow

(e.g. describe the work°ow in terms of general classes of operations being performed)

or to drill down to the details of each speci¯c service being executed. The process of

abstracting/concretizing the components of the work°ow is based on the Phylotastic

ontology describing the Web services. The diagram is synchronized with an auto-

matically generated English description of the content of the diagram, created by the

NLG module.

A part of the work°ow is illustrated in Fig. 6 (left). The boxes represent the input

of a service, the service itself which has green background, and the output of that

Fig. 6. A part of generated work°ow before (left) and after (right) navigating.
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service. We can infer that the service phylotastic FindScienti¯cNamesFromFree-

Text GNRD GET requires only one input, which is a text document, and it will

return a possible set of scienti¯c names as output. On the right-hand side is the arrow

for navigating the level of abstraction of the work°ow description. Because phylo-

tastic FindScienti¯cNamesFromFreeText GNRD GET is a service which belongs to

the class of services names extraction text in the ontology, when the user clicks on

the up arrow on the right-hand side of service box, the new diagram will be generated

as in Fig. 6 (right). The generated text is updated corresponding to the change in

diagram. Figure 7 provides the explanation of a work°ow along with the image of the

generated phylogenetic tree.

The NLG module is designed as a standalone service which is powered by the

Grammatical Framework (GF) [27] for language encoding. In this version, the NLG

module is developed manually following three major processing phases: (1) document

planning (content determination); (2) micro-planning; and (3) surface realization as

described in [29]. The result after processing these phases is a set of grammar rules

and needed vocabulary which, combined with information from the Phylotastic

ontology, form the desired language for encoding in the GF. The language is encoded

using the portable grammar format (pgf) and can be loaded in any server that uses

the GF Runtime API.

Fig. 7. Description generated for a work°ow.
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4. From Prede¯ned Work°ows to Automated Con¯guration

While the Phylotastic portal allows the execution of prede¯ned work°ows, which

should satisfy common users interested in the extraction of phylogenetic trees (e.g. in

an educational context), we envision situations where the user may want to go

beyond these ¯xed work°ows and develop her/his own analysis pipelines. The

work°ow con¯guration component provides an infrastructure to achieve such ob-

jective. The con¯guration component receives as input a partially speci¯ed work°ow

designed using a graphical user interface; the speci¯cation may include an identi¯-

cation of inputs (e.g. the URL of a document), description of a desired result (e.g. a

scaled species tree), and even classes of operations that should be part of the

work°ow (e.g. include a call to a name resolution service). The problem ofmapping the

set of requirements speci¯ed by the user into a satisfactory work°ow is an instance of

the Web services composition problem [7, 15, 28]. The results of the Web service

composition process comprise a work°ow that can be executed by the Execution

Monitoring module. A work°ow is a directed acyclic graph, whose nodes represent the

services at di®erent levels of granularity and whose links represent the data °ow be-

tween the services as well as the constraints on the execution of the work°ow.

The visual interface of the con¯guration module allows the user to express the

requirements by designing a graph; the interface is Web-based, developed using

HTML5 and JavaScript. The speci¯c requirements that can be described include the

following:

. Input: The input of the work°ow can be anything that can be consumed by the

registered Web services. Often, the input of is a collection of classes of resources

and data formats described using the Phylotastic ontology. Since the ontology

organizes the classes of resources as a taxonomy, the user interface allows the user

to navigate the taxonomy of resources to select the desired class of inputs.

. Output: The output of the work°ow can be anything produced by the registered

Web services. The user can specify the outputs via tree view and dialogs Web

components that allow the navigation of the Phylotastic ontology.

. Inclusion services: The module allows the users to request particular Web services

(or classes of Web services) to be used as nodes in work°ow — i.e. the ¯nal

work°ow needs to include such operations. For example, in order to compute a

reconciliation tree (desired output) from a species tree and a gene tree

(desired inputs), the user may request the inclusion of a scaling tree service to

ensure that trees are scaled before the reconciliation process.

. Avoidance services: The module allows the users to request exclusion of Web

services from the work°ow. For example, a user may request to avoid using

get phylogeny tree TreeBase, i.e. a tree retrieval service based on the TreeBase

repository [23], as this may provide inadequate coverage of certain species.

. Insertion services: This is a special case of an inclusion request, which allows the

user to specify the relative ordering of such services in the work°ow.
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After the users requirements are con¯gured, these data will be sent to the Plan-

ning Engine. This module maps the collection of requirements into a planning

problem [24, 31], whose resulting plans correspond to the possible work°ows satis-

fying the given requirements. In the case of Phylotastic, the planner has been

encoded using Answer Set Programming; a thorough description of the planner can

be found in [20]. In addition to the direct generation of a work°ow from a set of

requirements, the Phylotastic con¯guration module allows the users to re¯ne and

modify a work°ow, e.g. by requesting addition and/or removal of operations. The

modi¯cations are provided using the same interface used to describe the initial

requirements, in the form of editing of a graph representation of the computed

work°ow. Modi¯cations of a work°ow will require reactivation of the planner to

determine a new work°ow that is consistent with the required modi¯cations. In these

situations, the planner will determine a work°ow that accommodates the requested

changes while preserving as much as possible the original work°ow [21]. In addition,

the module provides users with the following capabilities:

. Con¯guration: A work°ow can be saved, updated and reused.

. Feasibility checking: A work°ow is an \underspeci¯ed" plan that, ideally, can be

expanded to an executable plan. To provide this capability, the Work°ow Con-

¯guration Module sends the work°ow to the Planning Engine and requests a

possible completion. When no completion exists, the Work°ow Con¯guration

Module noti¯es the users that the work°ow is not executable.

. Work°ow execution: The module activates the execution of the work°ow.

After the desired work°ow is generated successfully, it will be sent to the

Execution Monitoring corresponding with data of input to execute and get the

¯nal result.

5. Evaluation

5.1. Sample execution of the Phylotastic portal

The portal supports various options to extract species names from a biological

taxonomy. For example, to query ¯ve species of the family Canidae, which includes

domestic dogs, wolves, coyotes, etc., the user needs to ¯ll in a form as in Fig. 8:

Figure 9 displays the result from the portal which is a list of species. In this

particular example, the species have been selected based on a popularity service. The

user can interact with the list to select/deselect any species that the user wants or

does not want to include in rest of the analysis. After pushing the Get tree button,

the user is redirected to the tree visualizer interface, illustrated in Fig. 10. Here, the

interface allows the user to modify the appearance of the tree and/or attach more

information (such as images for species or show the common names) to the tree. The

user can also freely export the tree in multiple formats, read more about the species

or query the supporting studies about the extracted tree.

Design and Implementation of Phylotastic, a Service Architecture for Evolutionary Biology 1543



5.2. Sample execution of work°ow con¯guration

The paper demonstrates the Work°ow Con¯guration Module using one of Phylo-

tastic use cases: generate a chronogram from Plain Text. In this use case, a work°ow

for generating a chronogram (i.e. a phylogenetic tree with branch lengths) from a

plain text document is created. The ¯rst step of con¯guration is to set up the initial

Fig. 8. The form to query ¯ve species of biological family Canidae.

Fig. 9. Five species of biological family Canidae selected by the portal.
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input and the desired output of the work°ow. In this step, all input/output resource

components attached with data formats are identi¯ed from the Phylotastic ontology

(Fig. 11). In this use case, the input includes two components: a free text and a

method associated with plain text and string data formats, respectively; the desired

output is a chronogram with Newick format. Figure 12 displays the successful con-

¯guration of initial input and desired output.

Fig. 10. The tree visualizer for the tree extracted from the list in Fig. 9.

Fig. 11. Con¯gure the resources and data formats of input/output components.
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Once the input and output components have been determined, the user can use

the function Generate Work°ow of this module to generate the completed work°ow.

Figure 13 illustrates the generated work°ow based on the user's request. In addition,

if users want to update or modify the given work°ow, they can provide the modi¯-

cation requirements (Sec. 4) using this same module and resubmit it to the system

using the Recomposition Work°ow function, to get the updated work°ow. In

our example, if the user wants to use the service ResolvedScienti¯cNames GNR

TNRS POST to provide taxonomic names resolution instead of the service Resol-

vedScienti¯cNames OT TNRS GET, included in the original work°ow, they can

con¯gure to avoid ResolvedScienti¯cNames OT TNRS GET and include Resol-

vedScienti¯cNames GNR TNRS POST, using the Avoidance services and Inclusion

services functions, respectively. Figure 14 displays the successful updated work°ow

based on this modi¯cation requirement.

Fig. 12. Initial input and desired output con¯guration.

Fig. 13. Original work°ow with input/output con¯guration.
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6. Conclusion and Future Work

This paper provides an overview of the Phylotastic system. The system has been

designed to provide a °exible and extensible architecture to facilitate access and

reuse of authoritative phylogenetic knowledge. The system provides easy retrieval

of relevant phylogenies for species named in documents and Websites, through a

°exible portal. The architecture allows the users to also design their own analysis

protocols, through a high-level graphical interface and an automated con¯guration

system, which automatically creates an executable work°ow from a high level,

and possibly incomplete, speci¯cation. The Phylotastic architecture implements

both the portal and the con¯guration system using Web services ��� supported by

a service registry and a comprehensive ontology to describe services and the

artifacts manipulated by such services. The system has been developed and vali-

dated in collaboration with a community of evolutionary biologists, originated

from a working group part of the National Evolutionary Synthesis Center

(NESCENT). The working group provided the initial concept [33]. The original

idea of Phylotastic is derived from the realization of the limited level of reuse of

authoritative phylogenetic knowledge and the complexity of integrating phylo-

genetic trees within a more complex analysis pipeline. The current emphasis of

Phylotastic is to develop educational materials that integrate the use of the

Phylotastic portal.

The portal is accessible at portal.phylotastic.org while the overall Phylo-

tastic project has a dedicated site at www.phylotastic.org. This research directions

for the project include the following:

. Re¯nement of the Web services registry, to facilitate addition of new services; the

registry currently provides also APIs that can be used in a number of programming

languages (e.g. Python, R) to allow programmatic access to the services. On the

other hand, the API does not support, yet, the search of services in the registry

(e.g. using terms of the Phylotastic ontology as search keywords);

. Use of work°ow re¯nements based on soft constraints (e.g. preferences);

Fig. 14. Updated work°ow with modi¯cation requests.
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. Several phylogenetic Web services tend to be fragile; the team is currently working

in developing a more sophisticated approach to handle failures of services during

execution. We are exploring solutions that allow the automated generation of new

work°ows upon failure; the new work°ow should achieve the same goal as the

failed one and reuse as much as possible the parts of the original work°ow that

have been successfully executed before failure.
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