Downloaded by 99.126.135.141 At 07:01 12 October 2018 (PT)

remeraldinsight

Rapid Prototyping Journal
A chunk-based slicer for cooperative 3D printing
Jace McPherson, Wenchao Zhou,

Article information:

To cite this document:

Jace McPherson, Wenchao Zhou, (2018) "A chunk-based slicer for cooperative 3D printing", Rapid Prototyping Journal, https://
doi.org/10.1108/RPJ-07-2017-0150

Permanent link to this document:

https://doi.org/10.1108/RPJ-07-2017-0150

Downloaded on: 12 October 2018, At: 07:01 (PT)

References: this document contains references to 16 other documents.

To copy this document: permissions@emeraldinsight.com

Access to this document was granted through an Emerald subscription provided by Token:Eprints:XK3BIQFZHUJCGCEXWKY2:

For Authors

If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service
information about how to choose which publication to write for and submission guidelines are available for all. Please visit
www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com

Emerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of
more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online
products and additional customer resources and services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics
(COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.

*Related content and download information correct at time of download.

https://doi.org/10.1108/RPJ-07-2017-0150
https://doi.org/10.1108/RPJ-07-2017-0150
https://doi.org/10.1108/RPJ-07-2017-0150

Downloaded by 99.126.135.141 At 07:01 12 October 2018 (PT)

A chunk-based slicer
for cooperative 3D printing

Face McPherson and Wenchao Zhou
Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas, USA

Abstract

Purpose — The purpose of this research is to develop a new slicing scheme for the emerging cooperative three-dimensional (3D) printing platform
that has multiple mobile 3D printers working together on one print job.

Design/methodology/approach — Because the traditional lay-based slicing scheme does not work for cooperative 3D printing, a chunk-based
slicing scheme is proposed to split the print job into chunks so that different mobile printers can print different chunks simultaneously without
interfering with each other.

Findings — A chunk-based slicer is developed for two mobile 3D printers to work together cooperatively. A simulator environment is developed to
validate the developed slicer, which shows the chunk-based slicer working effectively, and demonstrates the promise of cooperative 3D printing.
Research limitations/implications — For simplicity, this research only considered the case of two mobile 3D printers working together. Future
research is needed for a slicing and scheduling scheme that can work with thousands of mobile 3D printers.

Practical implications — The research findings in this work demonstrate a new approach to 3D printing. By enabling multiple mobile 3D printers
working together, the printing speed can be significantly increased and the printing capability (for multiple materials and multiple components) can
be greatly enhanced.

Social implications — The chunk-based slicing algorithm is critical to the success of cooperative 3D printing, which may enable an autonomous
factory equipped with a swarm of autonomous mobile 3D printers and mobile robots for autonomous manufacturing and assembly.
Originality/value — This work presents a new approach to 3D printing. Instead of printing layer by layer, each mobile 3D printer will print one
chunk at a time, which provides the much-needed scalability for 3D printing to print large-sized object and increase the printing speed. The chunk-
based approach keeps the 3D printing local and avoids the large temperature gradient and associated internal stress as the size of the print

increases.

Keywords Chunk-based slicing, Cooperative 3D printing, Mobile 3D printing, Swarm 3D printing

Paper type Research paper

1. Introduction

Although additive manufacturing (AM) has become
increasingly popular in recent years, it has been significantly
limited by its slow printing speed and the size of the object it
can print. Cooperative three-dimensional (3D) printing is an
emerging technology that aims to address these limitations by
having multiple printhead-carrying mobile robots (or mobile
3D printers) working together on the same print job on a
factory floor. With the traditional layer-by-layer 3D printing
approach as defined by the ASTM F42 committee (ASTM-
F42-Committee, 2012), it would be difficult for the mobile 3D
printers to cooperate without interfering with the already
printed part and with each other, which calls for a different
approach of 3D printing.

In traditional 3D printing, a computer-aided design (CAD)
model needs to be sliced into layers and the path of the
printhead movement needs to be planned to deposit materials
for each layer. A slicer usually works by intersecting a plane at

The current issue and full text archive of this journal is available on
Emerald Insight at: www.emeraldinsight.com/1355-2546.htm

Rapid Prototyping Journal
© Emerald Publishing Limited [ISSN 1355-2546]
[DOI 10.1108/RPJ-07-2017-0150]

different Z-heights with the CAD model and calculating the
boundary segments on each layer. The movement path of the
printhead is then determined to infill the region within the
boundary at each layer. Many different slicers have been
developed, such as Slic3r (Ranellucci, 2015), Cura (Braam,
2016), Kisslicer (2016) and Skeinforge (2015). C Kirschman ez
al. developed a parallel slicing algorithm to improve the slicing
speed (ASTM-F42-Committee, 2012; Kirschman and Jara-
Almonte, 1992). Sabourin ez al. (1996) presented an adaptive
slicing algorithm for layer-based 3D printing that can slice with
different layer thickness. S. Lefebvre ez al. reported a graphics
processing unit-accelerated slicer (Lefebvre and Grand-Est,
2013). However, slicing for the emerging cooperative 3D
printing technology has not been investigated before.

A slicer is usually accompanied by a visualizer for the user to
see the slicing results. A G-code viewer is one of the most
common visualizers, such as the built-in viewer in Repetier’s
study (2017). Because cooperative 3D printing involves
multiple robots, a simulator that can visualize the dynamic path
of each mobile robots and how the materials are deposited over
time will be beneficial for validating the printing path and
optimizing the printing strategy for cooperative 3D printing.

Received 21 July 2017
Revised 25 September 2017
Accepted 27 September 2017

http://dx.doi.org/10.1108/RPJ-07-2017-0150

Downloaded by 99.126.135.141 At 07:01 12 October 2018 (PT)

Chunk-based slicer

Rapid Prototyping Journal

Face McPherson and Wenchao Zhou

Many different simulators have been developed for mobile
robots, such as Gazebo (Koenig and Howard, 2004), EyeSim
(Bréunl, 2000), UberSim (Browning and Tryzelaar, 2003) and
Simbad (Hugues and Bredeche, 2006). These robot simulators
can effectively simulate the interaction of multiple robots in 2D
or 3D for evaluation of the design and the behavior of the
robots. However, simulators for visualizing the dynamic 3D
printing process of mobile 3D printers have not been reported.

In this paper, to address the possible geometric interference
arising from the layer-by-layer-based approach with multiple
mobile 3D printers, we present a chunk-by-chunk-based slicing
approach so that each mobile 3D printer only needs to print a
small chunk at a time, which can effectively separate the mobile
3D printers. The key difference of the chunk-based cooperative
3D printing from other types of robotic 3D printing, contour
crafting or multi-head/multi-axis 3D printing is that the
cooperation is amongst multiple independent AM systems.
The ultimate vision is to have a swarm of mobile 3D printers
and other specialized robots (e.g. a pick-and-place robot) to
work together in an autonomous digital factory. This chunk-
based printing can also keep 3D printing localized and
therefore potentially avoid the large temperature gradient and
internal stress that are common with 3D printing large objects.
With proper scheduling of each individual mobile printer, this
approach can be scaled to a very large number of mobile
printers without interference. To simplify the problem, the
slicing algorithm in this paper will be limited to the cooperative
3D printing between two mobile 3D printers that carry a fused
deposition modeling extruder. This chunk-by-chunk-based
slicing algorithm ensures good bonding between the chunks
and smooth transitioning when a mobile robot moves from one
chunk to another. It is worth noting that the positioning and
alignment of multiple mobile printers in the physical world is a
non-trivial problem, which deserves separate research.
Therefore, instead of validating the chunk-based slicing
algorithm on the physical mobile printers, we created a
simulator environment to simulate the dynamic printing
process over time and the communication between mobile
printers using the sliced results as an input. This simulator
environment makes it much easier and less expensive to
validate the slicing results, which provides a valuable tool to
understand and optimize the printing strategies and save time
and cost before submitting a print job. In addition, the
simulator environment takes similar inputs as the physical
mobile printers, which would make it effortless to submit the
printing job to the physical mobile printers after validation in
the simulator environment. Our results show that our chunk-
based slicer works effectively for the two-robot printing
strategy, as validated by the simulator. This new chunk-based
slicer and the new simulator environment presented in this
paper represent a significant step toward cooperative 3D
printing where multiple independent 3D printers can work
together.

This paper is organized as follows. A discussion of the overall
slicing process is presented in Section 2. Section 3 presents the
development of a chunker for the chunk-based slicing. The
slicer is discussed in Section 4. Section 5 presents a simulator to
simulate the sliced results. Conclusions are given in Section 6
and future work in Section 7.

2. Slicing for cooperative three-dimensional
printing

At the core of the cooperative 3D printing platform is a mobile
3D printer, as shown in Figure 1, which replaces the XY stage on
a regular 3D printer with a set of omnidirectional wheels to
translate the printhead in XY direction. This design enables
unlimited printing in the X direction, but the Y direction is
limited by the distance between the printhead and the front
wheels (termed as “build depth” in this paper) if a layer-by-layer-
based approach is used because the printed material in the
previous layers will block the path of the wheels in Y direction.

In this paper, we propose a chunk-by-chunk-based printing
strategy, where the mobile printer finishes all the layers of one
chunk before it moves to print another chunk, effectively
solving the problem of the blocked path by the printed
materials to enable the mobile printer printing unlimited in
both X and Y directions. Several methods for portioning CAD
models for 3D printing have been developed, but they are
mostly used for printing parts that can be assembled into a
single model in post-processing. Examples include Chopper
(Linjie er al., 2012), curvature-based partitioning methods
(Hao er al., 2011) and skeletonization (Xu ez al., 2016). While
these methods are useful at dividing model meshes for post-
process assembly, the chunking method for cooperative 3D
printing requires that all chunks be printed such that they are
attached without post-processing, requiring a new, different
method. One issue that arises is the bonding between
the chunks. Our solution to this issue is to use a sloped interface
(and/or an angled printhead) to allow more bonding surface
between the chunks. A general slicing strategy for cooperative
3D printing is illustrated in Figure 2:

« Chunker: A CAD model of the print job will be first input
into a “chunker,” which splits the CAD model into
chunks based on a set of criteria to ensure feasible printing
of each chunk and good bonding between chunks.

e Slicer: The chunks will then be sliced into layers using a
slicer, which generates commands for printing the chunks
(e.g. tool paths, material extrusion and temperature control),
schedules the sequence of printing the chunks among
multiple robots and inserts communication commands to
enable necessary communication among multiple robots.

Figure 1 lllustration of a mobile 3D printer

Note: It can print indetinitely in X direction but
limited in Y direction

https://www.emeraldinsight.com/action/showImage?doi=10.1108/RPJ-07-2017-0150&iName=master.img-000.jpg&w=191&h=171

Downloaded by 99.126.135.141 At 07:01 12 October 2018 (PT)

Chunk-based slicer

Rapid Prototyping Journal

Face McPherson and Wenchao Zhou

Figure 2 lllustration of the slicing strategy for cooperative 3D printing

=)

L

" Simulator.

Notes: (1) The chunker splits the printing job into chunks and
ensures feasible printing of each chunk and good bonding
between chunks; (2) the slicer slices the chunks into layers,
generates commands for printing the chunks, schedules the
sequence of printing the chunks among multiple robots and
inserts communication commands to enable necessary
communication among multiple robots; (3) the simulator
visualizes the dynamic printing process using the commands
generated by the slicer

« Simulator: The command generated by the slicer is
interpreted by a simulator, which visualizes and animates
the dynamic printing process over time to provide a tool
for evaluating the chunking and slicing parameters and
results.

3. Chunker

The objective of chunking is to divide the printing job into
chunks such that they can be assigned to as many robots as
possible to increase the printing speed. Therefore, the overall
chunking strategy is highly dependent on the geometry of the
print, the number of available robots and how the robots will be
scheduled. To simplify the problem, we will only consider how
to chunk for two robots in this paper and leave scaling to many
robots for the future. The methodology for splitting a print job
into chunks for two robots will generally be applicable for many
robots through a “divide and conquer” strategy.

To chunk for two robots, we will split the object into multiple
chunks along one direction (Y direction in Figure 1) with
sloped planes to ensure good bonding between chunks. Two
robots start from the center chunk and print along +Y and —Y
direction, respectively, to finish each chunk. To calculate the
geometries of these chunks, we simply bisect the original
geometry multiple times around multiple planes. Because we
have constrained the problem to chunking only in the +Y and
—Y directions, each plane can be defined by two things: its slope
and Y position.

3.1 Slope determination
A sloped interface between chunks is needed for this chunk-by-
chunk-based 3D printing strategy. The angle of the sloped

plane needs to be carefully determined because of the

conflicting objectives:

+ A maximum slope angle will maximize the volume of each
chunk and increase printing efficiency.

+ A minimum slope angle will maximize the area of the
bonding interface and increase the bonding strength.

In addition, the range of the slope angle is limited by the robot
parameters, as illustrated in Figure 3, which should be

determined by:
h
0, — tan”! "—) 1
tan (n 3 (n

0 nin = tan™ ! <bh—d) 2

where 0, and @,,;, are the limits of the slope angle, nk and nd
are the nozzle height and nozzle depth, /% is the height of the
object to be printed and bd is the build depth of the printer, as
illustrated in Figure 3.

If the angle is very large or very small, either the front wheels
of the robot or the nozzle will interfere with the printed
material. It should be noted that the range of the angle is
dependent on the printer design and the limits can be easily
changed with a tilted nozzle or a printer with a changeable build
depth. Tests should be performed to choose an appropriate
slope angle. In this paper, we use the calculated 6,,,, for all our
tests.

3.2 Chunking plane determination

With a determined slope, we will also need to know where we
want to split the object. For the chunking strategy with two
robots, we first need a center chunk, which can only be printed
by one robot. After the center chunk is completed, the two
robots will finish the chunks on the left and the right sides,
respectively. The center chunk’s chunking planes can both be
represented with their normal vector, #, and any point on the
plane, p,. This is the most convenient representation because

Figure 3 lllustration of robot build limits

(b)

Notes: (a) The smallest slope angle of a chunk depends on
the ratio of the object height, £, and the robot build depth,
bd (b) the largest slope angle of a chunk 1s limited by the
ratio of the nozzle height, nh, and the nozzle depth, nd

https://www.emeraldinsight.com/action/showImage?doi=10.1108/RPJ-07-2017-0150&iName=master.img-001.jpg&w=236&h=264
https://www.emeraldinsight.com/action/showImage?doi=10.1108/RPJ-07-2017-0150&iName=master.img-002.jpg&w=215&h=196

Downloaded by 99.126.135.141 At 07:01 12 October 2018 (PT)

Chunk-based slicer

Rapid Prototyping Journal

Face McPherson and Wenchao Zhou

the bisecting algorithm (specifically, the bisecting algorithm in
Blender) we were using requires only these two values to bisect
a 3D geometry around the plane. The left and right chunking
planes for the center chunk can be determined by:

h
(0,0,h) + wan() Le '),

Plane L :n = <g><

h
Dy = (Pc + ml£> 3)

Plane R :n = <g><

(0,0,h) _%J—E‘)E

h
5= (2 i 4) @

where ¢ is the normal vector of the center line of the object, p, is
a point on the center line and 6 is the angle of the chunking
plane previously determined, and:

J_(x,y,z) = (73}7 X, Z) (5)

After calculating these two planes, we can iteratively shift those
planes outward by a shift amount, s, from the center chunk (by
iterating p; 11 < p.+ s¢). We can use these planes to slice the
model into subse;quent “left” and “right” chunks. Figure 4
demonstrates the iterative chunking process, starting with the
center chunk, and then shifted the chunking planes to the right
and the left, respectively.

We have applied this chunking algorithm to two different
geometries using different chunking settings to demonstrate its
effectiveness, including a cylinder and a car model, as shown in
Figure 5. The yellow chunk is the center chunk. As we can see,
the chunker works effectively with complex geometries and
different settings.

3.3 Speedup discussion

To determine the speedup gains of cooperative 3D printing, we

can adapt the Amdahl’s law used for parallel computing. The

print job can be split up into two parts:

1 a part that can only be printed by one robot (i.e., the
center chunk); and

Figure 4 Iterative chunking results

2 a part that can be printed simultaneously by multiple
robots (i.e. the rest of the chunks).

Assuming the average build speed is b cm®/hour, the total
volume of the print is V,,,,; and the volume of the center chunk
as Ve the total printing time with one single printer would
be:

_ I/wml o I/center I/tm:al - I/cemer

T
! b b b

Q)

As a general discussion, assuming the printing job of the non-
center chunks can be split among N printers, the total printing
time would become:

I/cenzer I/zotal - Vcenzer
In = + 7
N7 bx N ™

So the printing time reduction “7” with N “printer” is:

o In _ Veenter + 1 <1 I/center)

B Tl - I/total N B I/toml

r

®

And the speedup gain s = 1/r. It is clear that the V0 Viowas
needs to be minimized to maximize the speedup gain. In our
current two-robot printing scenario (N = 2), if we assume
Veonzer Viorar = 0.05 for example, the speedup gain would be:

1
*70.05+ 1(1-0.05)

=1.905)

To maximize speedup, we have already set up the calculations
of the center chunk to minimize the center chunk volume by
using the maximum slope angle possible for the chunk faces

emax-

4. Slicer

The objective of the slicer is to make sure that the robots can

work together to finish the printing according to the printing

strategy. Unlike a regular slicer that only generates the tool

path, the slicer for cooperative printing needs to accomplish

three functions:

1 assign chunks to each robot and determine their printing
sequence;

2 generate tool paths for each chunk and the tool paths for
transition between chunks; and

Notes: Planes I. and R are reused and shifted to split further chunks on the left and right of the center
chunk. (a) Center chunk; (b) shified plane R to the right by one chunk; (c) shified plane R to all the
right chunks; and (d) shifted plane L to all the left chunks

https://www.emeraldinsight.com/action/showImage?doi=10.1108/RPJ-07-2017-0150&iName=master.img-003.jpg&w=371&h=120

Downloaded by 99.126.135.141 At 07:01 12 October 2018 (PT)

Chunk-based slicer

Rapid Prototyping Journal

Face McPherson and Wenchao Zhou

Figure 5 Chunker results with two different objects, a cylinder and a car model

Notes: (a) Cylinder with short build depth and steep chunking slope; (b) cylinder with deep build
depth and moderate slope; (¢) car with short build depth and steep chunking slope; (d) car with deep

build depth and moderate slope

3 generate commands based on the tool path for the robots
to execute and provide a mechanism for the robots to
communicate with each other in case one robot’s printing
task is dependent on the status of the printing task of
another robot.

4.1 Printing sequence

To determine the path for a robot to follow, the robot must first
know the chunks it will print and their sequence. As we only
consider two robots in this paper, we can use the following
simple strategy to assign the chunks to the robots, where C4
represents Robot A’s chunks and Cp represents Robot B’s
chunks:

Cy = [center chunk, left chunk 1, left chunk 2,...]
(10)

Cp = [right chunkl, right chunk 2, .. (11)

where Robot A is assigned with the center chunk and all the
chunks on the left, and Robot B is assigned with all the chunks
on the right. The chunks then need to be ordered based on the
scheduling strategy for the print job. Because the chunks were
generated in order by the chunker, there is no need to order the
chunks for the simplified two-robot printing in this paper.

4.2 Tool path generation and transition between chunks
With the ordered chunks assigned to each robot, we need to
generate a sequential tool path for each robot to finish its
assigned chunks. This task can be accomplished in steps, as
illustrated in Figure 6:

» generate tool path for each chunk;

« generate tool path between chunks; and

+ combine the tool paths in sequence.

4.2.1 Tool path generation for chunks

The tool path generation for a chunk is similar to what a regular
slicer does for a printing object. The general process is
illustrated in Figure 7. Instead of starting from an standard
triangle language file (or additive manufacturing file format or
other file formats), the tool path generation algorithm starts
with triangular meshes generated by our chunker. Based on the
specified layer thickness, a list of horizontal planes is generated
to split the model into multiple layers. The horizontal planes
are then intersected with the triangular mesh to calculate the

intersection line segments at each layer. Figure 8 shows an
algorithm we used to calculate the line segments at each layer.
The line segments are then ordered into a ring to form a
perimeter for each layer. Infill paths are then generated for the
parameters at each layer. Because this process has been well
established in current slicers, we are omitting the details here,
although the slicing process is by no means a trivial task.
Building a general purpose slicer involves accounting for
oddities in models, such as multiple isolated meshes, non-
closed geometries, holes in closed geometries and more. The
development of a proprietary slicer consumed much of the
work on this research.

The results of the tool path generation can be seen in
Figure 9, which shows that the slicing and infill algorithms are
working correctly.

4.2.2 Transition between chunks

In addition to the print path for each chunk, the robot must
have a way of moving from one chunk to the next. A simple
direct line would not work, as the robot could knock against
previously printed materials. Instead, we generate a separate
path from the endpoint of the current chunk to the starting
point of the next chunk. There are possible ways to optimize
this path to save printing time, but we are using a simple
approach that is not optimized but always works. Figure 10
visually demonstrates how we generate this transition path.
Four points comprise the path: the endpoint of the current
chunk p1, the start point of the next chunk p4 and two points in
between. For p2, we simply shift the printhead upwards by a
small amount. For p3, we move the extruder to the boundary of
the chunk (i.e. to the same x and y positions as p4). The path
generation process is detailed in Figure 11.

4.3 Command generation and communication

Till this point, we have generated the entire tool path for each
robot, which are organized in a multi-level hierarchical data
structure, as illustrated in Figure 12.

With the entire tool path generated, the slicer needs to
generate commands that can be interpreted by the robots to
execute the movements. One of the most common types of
commands used in a regular 3D printer is G-code commands.
In this paper, we use similar commands for our simulator to
interpret. For example, we use a “MOVE X Y Z” command,
which moves the robot from its current position to the specified
position (X, Y and Z). It is equivalent to a G1 command in G-
code and thus makes it easy to output the commands to a real

https://www.emeraldinsight.com/action/showImage?doi=10.1108/RPJ-07-2017-0150&iName=master.img-004.jpg&w=372&h=113

Downloaded by 99.126.135.141 At 07:01 12 October 2018 (PT)

Chunk-based slicer Rapid Prototyping Journal
Face McPherson and Wenchao Zhou

Figure 6 Path generation for each robot

Generate
Next Chunk—»- toolpath for
chunk

Save total End
toolpath

Note: Generate tool path for each chunk and generate path to transition between chunks

Generate path
between this chunk —
and next chunk

Append paths to
total toolpath

Figure 7 lllustration of the tool path generation process

Notes: (a) Original model; (b) model split into horizontal layers; (¢) perimeters calculated for each layer
by intersecting the triangular mesh with a plane at each layer; (d) generate infill path for the perimeter at
each layer; (e) combine all the tool path generated at each layer

Figure 8 Process for calculating the line segments for the perimeter path of a layer

Start TriangularMesh Set intersection plane in
o = Triangle| | XY planeatZ=0

g

Increase intersection

Add LineSegments] | . .
p|.|n|_' Z position |1_\-'

Fal Intersection plane
“alse—

“True—p Return Slices| |

Slices . is 2 ?
to Slices| | SLICE THICKNESS L ibove model
~ + =
Setj=0
-v\ .
. j < Number of . Plane intersects . '\[m_“w”h ing linie
False<(riangles in mesh2,” ' ¢ > <Jrian ularMesh[j |2 —Tiwe SUEImon: e
L2ng S L : LineSegments[|
|
False
\
i=]+1
robot. As the tool path is just a list of line segments, this one mechanism for the robots to communicate. For example, in our
command will be sufficient to instruct the robot to move along two-robot situation, the second robot must wait until the first
its tool path. robot finishes printing the center chunk to start printing and
Now that the robots know where to move based on the thus has to know when the first robot finishes printing the
generated commands, they also need to know when to move. In center chunk. One direct way is for the robots to have real-time
the situation when one robot’s next move is dependent on constant communication with each other, but it would

another robot’s printing status, it is necessary to provide a significantly increase the complexity when many robots are

https://www.emeraldinsight.com/action/showImage?doi=10.1108/RPJ-07-2017-0150&iName=master.img-005.jpg&w=383&h=111
https://www.emeraldinsight.com/action/showImage?doi=10.1108/RPJ-07-2017-0150&iName=master.img-006.jpg&w=383&h=105
https://www.emeraldinsight.com/action/showImage?doi=10.1108/RPJ-07-2017-0150&iName=master.img-007.jpg&w=466&h=245

Downloaded by 99.126.135.141 At 07:01 12 October 2018 (PT)

Chunk-based slicer

Rapid Prototyping Journal

Face McPherson and Wenchao Zhou

Figure 9 Tool path generation from the slicer algorithm (thick filament
was used for better visualization)

Notes: (a) Without chunking; (b) with chunking first

Figure 10 Transition path between chunks (p1 — p2 — p3 — p4)

Notes: The printhead moves slightly upward from
previously printed materials and navigates to the next
chunk. The endpoint of the current chunk is p1 and the start
point of the next chunk is p4. p2 and p3 are points used to
generate the transition path n

involved. Luckily, the interdependence of the printing tasks can
usually be pre-determined in the chunking or slicing stage.
Therefore, we can pre-implant a communication command at
the stage when communication is needed. In this paper, we

Figure 11 Process of generating transition path between two chunks

Start '

Figure 12 Data structure of the tool paths for the robots

Array of Robots|z] Array of Chunks
Array o obots|z2 ___’_ y

for each Robot|n|

.

implemented a “NOTIFY” command, which is inserted
behind a MOVE command to notify the other robot that a
certain movement has been finished. Because our situation only
involves the center-chunk waiting period, only one NOTIFY
command is needed for the entire print. The second robot will
not begin along its toolpath until it receives the NOTIFY
command from the first robot.

In addition to the MOVE and NOTIFY commands, the
robot also needs to know when the materials should be
deposited. This is because the robot does not print materials
along all the tool paths. For example, when the robot is
transitioning for one chunk to another, no materials need to be
printed. Therefore, we implemented a “TOOL ON/OFF”
command to indicate whether the robot should print materials.
When “TOOL ON” command is issued, materials will be
printed along all the following tool path until a “TOOL OFF”
command is issued. Based on the tool path data and how we
want to robot to communicate and print materials, we can
translate the tool paths into commands for the robots to execute
the printing process using the three commands we have
implemented. This process is shown in Figure 13.

5. Simulator

Simulating dynamic processes in 3D is usually challenging
because of intensive computation. The objective of the
simulator is to animate the command output from the slicer to
visualize the dynamic printing process in a computationally
effective way so that we can validate the chunking and slicing
results and evaluate the overall printing strategy. Two essential
functions are needed for the simulator:

1 interpret and visualize each single command from the

slicer output; and

position "
iti ; » p2 = (plx ply, pl.z + shift)
osition
|
X S—
p3 = (p4.x pty. pliz)
|
4 =
Return [p1, p2, p3, p4] P End '
Array of Slices for Array of Paths for
) >)
each Chunk|{m] each Slice|p]
I'wo Points for Array of Line
each Line Segment je——— Segments for each

|2] Path|q
L —————

https://www.emeraldinsight.com/action/showImage?doi=10.1108/RPJ-07-2017-0150&iName=master.img-008.jpg&w=236&h=105
https://www.emeraldinsight.com/action/showImage?doi=10.1108/RPJ-07-2017-0150&iName=master.img-009.jpg&w=214&h=120
https://www.emeraldinsight.com/action/showImage?doi=10.1108/RPJ-07-2017-0150&iName=master.img-010.jpg&w=431&h=107
https://www.emeraldinsight.com/action/showImage?doi=10.1108/RPJ-07-2017-0150&iName=master.img-011.jpg&w=357&h=105

Downloaded by 99.126.135.141 At 07:01 12 October 2018 (PT)

Chunk-based slicer

Rapid Prototyping Journal

Face McPherson and Wenchao Zhou

Figure 13 Conversion from the tool paths to robot commands

Y
o = Add "Move to
Add “Tool Off" to 3 -
o B ; Path[0]" to -Next Patt More Paths?
Commands . 5
Commands
Y
Add "Tool On" to
Commands
Y

No more Vectors

More Vectors?

Add "Move to Next

Vector" to Commands

»<_ More Chunks?

Next Slice

Add "Notify” to
Commands

k4

Return Commands '

2 animate the sequential commands in correct timing
sequence and speed.

5.1 Command interpretation

The simulator needs to be able to read in the text commands
(G-code) generated from the slicer, parse them, and visualize
them one by one on the same scene. As we only have three
commands (MOVE, TOOL ON/OFF and NOTIFY) with
well-defined meanings, it is straightforward to interpret them.
Figure 14 demonstrates the interpretation of a small set of
commands as an example. A cylindrical tube is used to visualize
the printed filament.

5.2 Commands animation

A simple approach to animate the commands is to visualize
each command as one video frame. As we step through each
command, we will generate frames for a video. However, this
naive approach does not work well. This is because
commands take different times to execute in reality but they
will all appear to take the same time in the animation, as each
command is represented by one frame in the video. For
example, if the robot is moving at the same speed, “MOVE
10, 0, 0” will take ten times longer than “MOVE 1, 0, 0” in

Figure 14 Demonstration of interpretation and visualization of a small
set of commands

Sample Commands:

MOVE 0,0,0 4(0,1,0)

TOOL ON x 3:(1,1,0)
MOVE 1,0,0] .fll

MOVE 1,1,0 [|

MOVE 0,1,0 1000

TOOL OFF \4 — [

"“*--H_H,"Iz: (1,0,0)

reality, but they will appear to take the same time in the
animation.

Therefore, we implement the concept of a “time step,” which
is a defined period of time to be simulated between each frame.
Based on the robot’s speed and the distance the robot must
travel for each command, we can calculate how long the robot
should take to execute a given “MOVE” command. To
simulate real-time movements, our approach is to execute as
many commands in the queue as will fit within the pre-defined
time step. If the next command execution results in going over
the time step, then we only execute parr of that command. This
requires a linear interpolation operation to calculate where the
robot’s extruder will be located along the movement path at the
end of the time step.

In addition to simulating the robot’s movements, we have to
simulate the extruded material from the printhead. We
accomplish this by creating a Bezier curve (the robot’s path) for
every time step, then creating a cylindrical tube (for 3D
rendering purposes) that follows the path. We only create these
tubes if the robot’s current state is “T'OOL ON.” Otherwise, no
extruded material is created. Figure 15 includes pseudocode for
the path animation function. The function is supplied with a list
of commands and the robot’s current location and produces a
data set for each frame, which includes:

« the robot’s new position; and
« alist of extruded material objects (Bezier paths) to display
for that frame.

The snapshots of the simulated animation are shown in
Figure 16. The results show that the chunk-based slicing works
as intended without robot collisions and the simulator also
correctly visualizes the slicing results, which provides a tool to
visualize the moving path of the mobile robots to evaluate
different printing strategies and printing time.

To demonstrate that the developed chunk-based slicer and
simulator can handle complex geometry, we also simulated the
printing of an airplane model, as shown in Figure 17. As can be
seen in the second snapshot, the center chunk was sliced
correctly into three distinct pieces in the first few layers because

https://www.emeraldinsight.com/action/showImage?doi=10.1108/RPJ-07-2017-0150&iName=master.img-012.jpg&w=479&h=200
https://www.emeraldinsight.com/action/showImage?doi=10.1108/RPJ-07-2017-0150&iName=master.img-013.jpg&w=236&h=108

Chunk-based slicer
Face McPherson and Wenchao Zhou

Rapid Prototyping Journal

Figure 15 Pseudo code for animating the commands output from the slicer

(: Rabot
Start
\ Commands

-8

Set CurrentFrame = o
Set CurrentCommand = o

Set ToolState = OFF p=—fp
Set AccumulatedTime = o
Set FrameData = Array()

Add (CurrentLocation,
Null) to Frames

-

limeStep =1
FramesPersecond

Downloaded by 99.126.135.141 At 07:01 12 October 2018 (PT)

/

~CurrentCommand <

| \ of Commands?

False

b— CurrentCommand += | =

Get
Current
Command

”
" Command is
“Notify'"?

l'rue

Set NotifyFrame =
CurrentFrame

End

] (Y —

T'rue I'rue

V.4
" 1s ToolState
; ON?

//Is ToolState
: OFF?
False

] False

Set ToolState = ON

[CurrentLocation]

Set ExtrudedPath = p=—True

True

¥

Set ToolState = OFF;
ExtrudedPath.append(

CurrentLocation);

Create 3D Object
(Tube) from

ExtrudedPath
PrintedObject

PrintedObjects.append(
PrintedObject);
ExtrudedPath.clear()

ft———

i

CurrentLocation =
Command.Location;
ExtrudedPath.append(

CurrentLocation);

T

True

" AccumulatedTime +
4 TimeToComplete <

/ True TimeStep?
Fal " Is ToolState Accumulated Time
i ON? += TimeToComplete
e

False

Linear Interpolate the
machine's position at the
end of this time step —
CurrentLocation

AccumulatedTime = o

True
Estimate time to
complete this Move

Command —
TimeToComplete

P
> IsTE}orLS?tale

“alse
¢ ﬁ‘r]"lf
FrameData.append(Create 30 Object —
CurrentFrame +=1 (CurrentLocation, PrintedObjects.append((Tube) from ExtrudedPath.append(
i setie o o il o e < e [bl 1 ¢ -_ir
PrintedObjects.clear() PrintedObject) PrintedObject) ExtrudedPath — CurrentLocation)
) PrintedObject

of the complex geometric characteristics of the airplane model.
The chunker, slicer and the simulator all behaved correctly with
the complex geometry.

6. Conclusion
In this paper, we presented a new chunk-by-chunk-based
approach to 3D printing for a cooperative 3D printing

platform. In contrast to a layer-by-layer-based approach, this
new approach enables a plurality of mobile 3D printers to
carry out a printing job simultaneously, which can provide the
scalability to 3D printing, in terms of both print size and
printing time. The chunk-based strategy also keeps printing
localized and thus alleviates large temperature gradient and
internal stress that are common to large-scale 3D printing.

https://www.emeraldinsight.com/action/showImage?doi=10.1108/RPJ-07-2017-0150&iName=master.img-014.jpg&w=455&h=550

Downloaded by 99.126.135.141 At 07:01 12 October 2018 (PT)

Chunk-based slicer

Rapid Prototyping Journal

Face McPherson and Wenchao Zhou

Figure 16 Snapshots of the roughly simulated animation of two robots printing a cube cooperatively

—

Notes: During the process, no collisions have occurred. Afier the process, the intended model has

been successfully printed

Figure 17 Snapshots of a realistic simulated animation of two robots cooperatively printing an airplane model

=

o

We first presented a general strategy for the chunk-based
printing strategy. A chunker is then developed for two-robot
printing to demonstrate a general chunking methodology. A
slicer is also developed to slice the chunks and coordinate
multiple robots for the printing. A simulator is then
developed to visualize and animate the dynamic cooperative
3D printing process to validate the developed chunker and
slicer. The results show great promise to a new direction of
3D printing that may provide a path to make 3D printing a
mainstream manufacturing technology with autonomous
printing robots.

7. Future work

As the basic viability of chunk-based cooperative 3D printing
has been demonstrated in this paper, more work is needed to
establish the complete viability of our vision to realize an
autonomous digital factory equipped with a swarm of mobile
3D printers and other specialized robots to manufacture
complex parts. One of the next steps is to investigate the
scalability of this chunk-based slicing method and develop
scheduling strategies for a large number of robots. Although the
critical elements of cooperative 3D printing with multiple
robots have been addressed in this paper (i.e. chunking,
transition between chunks and communication between

robots), two mobile printers are not enough to produce at the
speed required for mass manufacturing. In order for
cooperative 3D printing to reach its maximum potential, many
robots must be able to work in parallel to produce parts rapidly.
Slicing algorithms for the incorporation of gripper robots that
can pick and place pre-manufactured components to be
embedded in a 3D printed structure during the 3D printing
process can also greatly enhance the capability of 3D printing in
fabricating electromechanical devices and other sophisticated
products.

References

ASTM-F42-Committee (2012), “Standard terminology for
additive = manufacturing technologies”, in ASTM
International, West Conshohocken, PA.

Braam, D. (2016), “Cura (software)”, Wikipedia.

Bréunl, T. (2000), The EyeSim Mobile Robot Simulator, CITR,
The University of Auckland.

Browning, B. and Tryzelaar, E. (2003), “Ubersim: a realistic
simulation engine for robot soccer”, Proceedings of
Autonomous Agents and Multi-Agent Systems, AAMAS’03.

Hao, J., Fang, L. and Williams, R.E. (2011), “An efficient
curvature-based partitioning of large-scale STL models”,

I o1 17 No. 2, pp. 116-127.

https://www.emeraldinsight.com/action/showImage?doi=10.1108/RPJ-07-2017-0150&iName=master.img-015.jpg&w=359&h=167
https://www.emeraldinsight.com/action/showImage?doi=10.1108/RPJ-07-2017-0150&iName=master.img-016.jpg&w=359&h=136
https://www.emeraldinsight.com/action/showLinks?doi=10.1108%2FRPJ-07-2017-0150&system=10.1108%2F13552541111113862&isi=000289579400005&citationId=p_5

Downloaded by 99.126.135.141 At 07:01 12 October 2018 (PT)

Chunk-based slicer

Rapid Prototyping Journal

Face McPherson and Wenchao Zhou

Hugues, L. and Bredeche, N. (2006), “Simbad: an
autonomous robot simulation package for education and
research”,

I

Kirschman, C. and Jara-Almonte, C. (1992), “A parallel slicing
algorithm for solid freeform fabrication processes”, Solkd
Freeform Fabrication Proceedings, Austin, TX, pp. 26-33.

Kisslicer (2016), available at: www.kisslicer.com/

Koenig, N. and Howard, A. (2004), “Design and use paradigms
for gazebo, an open-source multi-robot simulator”,

, IROS 2004), IEEE.
Lefebvre, S. and Grand-Est, L.ILN. (2013), “IceSL: a GPU
accelerated CSG modeler and slicer”, 18th European Forum
on Additive Manufacturing (AEFA’13).
Linjie, L., Ilya, B., Szymon, R. and Wojciech, M. (2012),
“Chopper: partitioning models into 3D-printable parts”,

I o ;! No. 6, Article 129
(November 2012), p. 9.

Ranellucci, A. (2015), “Slic3r: G-code generator for 3D
printers”, Pagina web oficial del projecte: available at: http://
slic3r.org/about (Gltim accés 25 October 2013).

Repetier (2017), “Repetier-Host”, RepRap Wiki.

Sabourin, E., Houser, S.A. and Helge Behn, J. (1996),
“Adaptive slicing using stepwise uniform refinement”, Rgaid
I Vol. 2 No. 4, pp. 20-26.

Skeinforge (2015), available at: http:/fabmetheus.crsndoo.
com/overview.php, RepRap Wiki.

Xu, W.P., Li, W. and Liu, L.G. (2016), “Skeleton-sectional
structural analysis for 3D printing”, | ENGTNG
I Vol 31 No. 3, pp. 439-449.

Corresponding author
Wenchao Zhou can be contacted at: zhouw@uark.edu

For instructions on how to order reprints of this article, please visit our website:

www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

http://www.kisslicer.com/
http://slic3r.org/about
http://slic3r.org/about
http://fabmetheus.crsndoo.com/overview.php
http://fabmetheus.crsndoo.com/overview.php
mailto:zhouw@uark.edu
https://www.emeraldinsight.com/action/showLinks?doi=10.1108%2FRPJ-07-2017-0150&crossref=10.1109%2FIROS.2004.1389727&citationId=p_9
https://www.emeraldinsight.com/action/showLinks?doi=10.1108%2FRPJ-07-2017-0150&crossref=10.1007%2F11840541_68&citationId=p_6
https://www.emeraldinsight.com/action/showLinks?doi=10.1108%2FRPJ-07-2017-0150&crossref=10.1109%2FIROS.2004.1389727&citationId=p_9
https://www.emeraldinsight.com/action/showLinks?doi=10.1108%2FRPJ-07-2017-0150&crossref=10.1007%2F11840541_68&citationId=p_6
https://www.emeraldinsight.com/action/showLinks?doi=10.1108%2FRPJ-07-2017-0150&system=10.1108%2F13552549610153370&isi=000203405000002&citationId=p_14
https://www.emeraldinsight.com/action/showLinks?doi=10.1108%2FRPJ-07-2017-0150&system=10.1108%2F13552549610153370&isi=000203405000002&citationId=p_14
https://www.emeraldinsight.com/action/showLinks?doi=10.1108%2FRPJ-07-2017-0150&isi=000311298900003&citationId=p_11
https://www.emeraldinsight.com/action/showLinks?doi=10.1108%2FRPJ-07-2017-0150&crossref=10.1007%2Fs11390-016-1638-2&isi=000375932200002&citationId=p_16
https://www.emeraldinsight.com/action/showLinks?doi=10.1108%2FRPJ-07-2017-0150&crossref=10.1007%2Fs11390-016-1638-2&isi=000375932200002&citationId=p_16

	A chunk-based slicer for cooperative 3D printing
	1. Introduction
	2. Slicing for cooperative three-dimensional printing
	3. Chunker
	3.1 Slope determination
	3.2 Chunking plane determination
	3.3 Speedup discussion

	4. Slicer
	4.1 Printing sequence
	4.2 Tool path generation and transition between chunks
	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed

	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed

	4.3 Command generation and communication

	5. Simulator
	5.1 Command interpretation
	5.2 Commands animation

	6. Conclusion
	7. Future work
	References

