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Data-Driven Predictive Modeling
of Tensile Behavior of Parts
Fabricated by Cooperative
3D Printing
3D printing has been extensively used for rapid prototyping as well as low-volume produc-
tion in aerospace, automotive, and medical industries. However, conventional manufactur-
ing processes (i.e., injection molding and CNC machining) are more economical than 3D
printing for high-volume mass production. In addition, current 3D printing techniques
are not capable of fabricating large components due to the limited build size of commer-
cially available 3D printers. To increase 3D printing throughput and build volume, a
novel cooperative 3D printing technique has been recently introduced. Cooperative 3D
printing is an additive manufacturing process where individual mobile 3D printers collab-
orate on printing a part simultaneously, thereby increasing printing speed and build
volume. While cooperative 3D printing has the potential to fabricate larger components
more efficiently, the mechanical properties of the components fabricated by cooperative
3D printing have not been systematically characterized. This paper aims to develop a
data-driven predictive model that predicts the tensile strength of the components fabricated
by cooperative 3D printing. Experimental results have shown that the predictive model is
capable of predicting tensile strength as well as identifying the significant factors that
affect the tensile strength. [DOI: 10.1115/1.4045290]

Keywords: cooperative 3D printing, tensile strength, predictive modeling, machine
learning

1 Introduction
While 3D printing has many advantages over traditional manu-

facturing processes, two primary challenges remain: (1) limited
build size and (2) low throughput [1,2]. For example, the build
volume of the majority of desktop and industrial-grade fused
deposition modeling (FDM) 3D printers is less than 150 mm×
150 mm×150 mm and 800 mm×800 mm×800 mm, respectively
[2]. While the build volume of industrial-grade 3D printers has
increased over the past few years, large-scale and high-speed 3D
printers are very expensive. For example, Ingersoll Machine
Tools developed the largest 3D printer in the world in collaboration
with the Oak Ridge National Laboratory. Ingersoll claimed that this
machine is capable of printing a wide range of composite plastics.
The maximum build volume of the machine is 6 m (L) × 2.4 m
(W) × 1.8 m (H). This 3D printer fabricates parts at an order of mag-
nitude larger than any other 3D printer does [2].
In addition to limited build size, the amount of build time it takes

to fabricate a complex part can be a few hours or even several days.
A 3D printing speed is dependent on the infill speed, outer wall
speed, inner wall speed, and support infill speed. These speeds
are also dependent on 3D printing process parameters such as print-
ing temperature, filament thickness, layer thickness, build orienta-
tion, and the volume of support structures. The majority of
desktop 3D printers on the market has a maximum 3D printing
speed of 150 mm/s. The Delta WASP 20 × 40 Turbo 2 desktop
3D printer can achieve a maximum 3D printing speed of
500 mm/s. The HP Jet Fusion 4200 industrial-grade 3D printer
can achieve a maximum 3D printing speed of 4500 cm3/h. The

big area 3D printer developed by the Oak Ridge National Labora-
tory can achieve a maximum feed rate of 80 pounds/h.
While several industrial-grade 3D printers with high speed and

large build volume have been developed, few manufacturers have
access to them because they are very expensive. To address this
issue, a cooperative 3D printing process was recently developed
[3]. Cooperative 3D printing is an additive manufacturing process
where individual mobile 3D printers fabricate a portion of a part
divided by a slicing algorithm. These mobile robots or extruders
work cooperatively on printing the part, thereby increasing manu-
facturing throughput and build volume. While cooperative 3D print-
ing has the potential to transform the 3D printing industry, the
mechanical properties of the parts fabricated by this novel 3D print-
ing process have not been examined. The main contributions of this
research include:

• While finite element analysis (FEA) has been used to model
the mechanical behavior of additively manufactured parts, it
is difficult to model the effects of 3D printing process param-
eters on mechanical behavior using FEA. While cohesive ele-
ments in FEA can be used to model bonded interfaces, it is
difficult to determine the boundary conditions at the bonded
interface between the objects printed by multiple printheads
in cooperative 3D printing. To address this issue, we intro-
duced a data-driven predictive modeling approach that can
predict the tensile strength of the specimens fabricated by
cooperative 3D printing. We also compared the performance
of the machine learning model with that of a linear regression
model. The machine learning model outperforms the linear
regression model significantly.

• To understand the process-property relationship in the compo-
nents fabricated by cooperative 3D printing, we evaluated the
effects of three 3D printing parameters on tensile strength with
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machine learning algorithms. Experimental results have shown
that the effect of the angle of incline on tensile strength is sig-
nificant. We compared the performance of the machine learn-
ing model with the analysis of variance (ANOVA), which is a
traditional statistical method. The results generated by
machine learning are consistent with those of ANOVA.

The remainder of this paper is organized as follows: Sec. 2 pre-
sents the related work on the modeling and simulation approaches
to the prediction of the mechanical properties of specimens built
by 3D printing processes. Section 3 presents an ensemble learning
algorithm. Section 4 introduces the design of experiments and
tensile tests. Section 5 presents the accuracy of the predictive
model. Section 6 summarizes the conclusions.

2 Related Work
This section presents an overview of related work on the model-

ing and prediction of mechanical properties of additively manufac-
tured parts as well as cooperative 3D printing.

2.1 Prediction of Mechanical Properties of Additively
Manufactured Components. Melenka et al. [4] developed a
volume averaging stiffness approach that can predict the tensile
modulus of the Kevlar fiber-reinforced specimens. The MarkOne
3D printer was used to print the specimens with different volume
of fibers. The predictive model was demonstrated to be effective
especially when the fiber volume is high. Hayes et al. [5] developed
a constitutive equation that can make predictions of the yield
strength of the Ti–6Al–4V specimens fabricated by an electron
beam 3D printing process. Experimental results have revealed
that the predictive model can predict the yield strength with a pre-
diction error of 5%. Tapia et al. [6] developed a predictive model
based on Gaussian process to predict the porosity of metallic spec-
imens fabricated by selective laser melting (SLM). Experimental
results have indicated that the proposed method can predict the
porosity of stainless steel specimens with a mean-squared error of
0.2593. Campoli et al. [7] developed a finite element (FE) model
in order to predict the elastic constants including Young’s
modulus and Poisson’s ratio of the specimens fabricated by SLM.
Based on the experimental results, the FE model outperformed
the analytical models of the mechanical properties. Mukherjee
et al. [8] developed a heat transfer and fluid flow model that can
predict the residual stresses and distortion in 3D printing. The pre-
dicted temperature and residual stress were compared with the
experimental data. Experimental results have implied that the pro-
posed model can achieve high prediction accuracy for the speci-
mens made of Inconel 718 and Ti–6Al–4V.

2.2 Cooperative 3D Printing. McPherson and Zhou [3]
developed a new chunk-based slicing algorithm and a cooperative
printing platform in order to improve 3D printing throughput. The
slicing algorithm split a printing task into small parallel subtasks
such that multiple mobile robots can print a part cooperatively. A
simulator was developed to validate the slicing algorithm. Poudel
et al. [9] evaluated the tensile strength of dog-bone specimens fab-
ricated by a cooperative 3D printing process. The effect of the slope
angle, number of shells, and overlapping length between chunks on
tensile strength was evaluated. A comparative study of the tensile
strength of the specimens fabricated by the cooperative printing
process and the standard FDM process was performed. Based on
the experimental results, tensile strength decreases as the slope
angle and overlapping length between chunks increase. Hunt
et al. [10] developed a flying robot-assisted 3D printing prototype
that is capable of depositing materials by a quadcopter with an
on-board printing module. The flying robot-assisted 3D printing
prototype was demonstrated by two printing scenarios.
In summary, while extensive work has been devoted to the mod-

eling and prediction of the mechanical properties of a wide range of

materials fabricated by 3D printing processes, little research has
been reported on the prediction of the tensile strength of specimens
fabricated by cooperative 3D printing processes. To fill this research
gap, this paper aims to develop a data-driven predictive modeling
approach to estimate the tensile strength of polymers fabricated
by the cooperative 3D printing process.

3 Ensemble Learning
Ensemble learning is a supervised machine learning algorithm

that combines multiple learning algorithms (also known as base
learners) in order to enhance prediction performance. The output
of the ensemble learning algorithm has the following form:

ψ(W) =
∑K
i=1

wiψ i (1)

where K represents the number of base learners and wi is the weight
of the ith base learner ψi. The optimal weight vector W0 is deter-
mined using non-negative least squares, which can be formulated as

W0 = argmin
ω

1
2
‖Aω − b‖

[ ]
subject to ω ≥ 0

(2)

Here, A represents the output of all base learners and b represents
the observed value. In this study, the non-negative least squares
problem was solved using the Lawson–Hanson algorithm.
The selection of base learners is critical to the prediction perfor-

mance. Equation (1) suggests that the output of ensemble learning
has the form of a linear model. Each base learner can be considered
as a single feature. In order to reduce the collinearity between dif-
ferent features, the selected base learners should be accurate and
diverse. Selecting too many base learners in a model does not
always improve prediction performance because it might cause
the overfitting problem. In this study, the performance of multiple
base learners, including gradient boosting, extreme gradient boost-
ing, bootstrap aggregating, random forests, extremely randomized
trees, kernel k-nearest neighbors, support vector regression, step-
wise regression, multivariate adaptive regression splines, general-
ized linear models, Bayesian generalized linear models, and
Lasso and ridge regression, was tested. Different combinations of
these algorithms were evaluated in order to achieve the best perfor-
mance. After comparing the performance of different combinations
of base learners, three base learners, including Lasso, support vector
regression (SVR), and extreme gradient boosting (XGBoost), were
selected from three different machine learning categories. The final
predictive model trained by the ensemble learning algorithm com-
bines Lasso, SVR, and XGBoost to achieve better prediction accu-
racy. These base learners are briefly introduced in Secs. 3.1–3.3.

3.1 Lasso. Lasso was first introduced by Tibshirani [11]. As a
shrinkage method, Lasso regularizes the coefficient for the
least-squares estimates. For the data with the predictor variables
xi= (xi1,…, xip) and the response variables yi, i= 1, 2,…, N, the
objective function of Lasso can be written as

J =
∑N
i=1

yi − β0 −
∑p
j=1

βjxij

( )2

+ λ
∑p
j=1

|βj| (3)

where β0 and βj represent the coefficients in the least squares esti-
mates. λ is a tuning parameter. The first term of the objective func-
tion denotes the loss between the observed value and the fitted
value. The second term of the objective function denotes a shrink-
age penalty. The tuning parameter λ controls the shrinking effect.
The advantage of Lasso over least squares is that the introduction
of the penalty term can balance the trade-off between the variance
and bias. In the hyperparameter tuning process, a total number of
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100 different λ values were tested. The optimal value of λwas deter-
mined using 10-fold cross-validation.

3.2 Support Vector Regression. SVR is an instance-based
machine learning algorithm for regression analysis [12]. SVR
involves a margin function that separates hyperplanes. The region
separated by hyperplanes is called the margin. The margin function
can be written as

f (x, ω) =
∑m
j=1

ωjgj(x) + b (4)

where gj(x) is the nonlinear transformation, ωj is the weight for each
transformation, and b is the intercept or bias term.
The margin is often referred to as the ɛ boundary. The ɛ-intensive

loss function is calculated by the distance between these points and
the predicted ɛ boundary. As a result, only response values that fall
within the boundary can determine the fitted line while the outside
data points have little impact on the result, which makes this algo-
rithm robust and efficient. The ɛ-intensive loss function of SVR is
described by

Lε(y, f (x, ω)) =
0

|y − f (x, ω)| − ε
if |y − f (x, ω)| ≤ ε

otherwise

{
(5)

If a training dataset is not linearly separable, slack variables ξi
and ξ*i (i= 1, …, n) are introduced into the loss function to form
a soft margin. These two variables work as a tolerance term on
the original ɛ boundary so that more data are included to decide
the fitted line. The problem coming with such modification is a
larger chance of overfitting, so the complexity of the model is
further optimized by introducing the penalty terms. The norm
value ∥ω∥2 is for the weights regularization, and the box constraint
C is introduced to penalize the slack variables. As a conclusion, the
objective function of the SVR algorithm can be described as

J =
1
2
‖ω‖2 + C

∑n
i=1

( ξi + ξ*i )

Subject to

yi − f (xi, ω) ≤ ε + ξ*i
f (xi, ω) − yi ≤ ε + ξi

ξi, ξ*i ≥ 0, i = 1, . . . , n

⎧⎪⎪⎨⎪⎪⎩ (6)

To optimize the performance of SVR, the hyperparameters such
as the boundary ɛ and the box constraint C in Eq. (6) need to be opti-
mized. In this study, the values of the boundary ɛ ranged from 0.05
to 0.15 with a step of 0.01 and the values of the box constraint C
ranged from 10 to 30 with a step of 2. The selection of hyperpara-
meters and corresponding value ranges were discussed in detail in
[13]. The grid search method was used to find the optimal values
of the hyperparameters.

3.3 Extreme Gradient Boosting. Extreme gradient boosting
(XGBoost), introduced by Chen et al. [14], is an enhanced gradient
tree boosting method. XGBoost generates a group of trees sequen-
tially, and the new tree is decided by the previous trees. It has the
power to ensemble the weak tree structures in order to produce a
strong model. The prediction output built with a total of K trees
can be described as

ŷi =
∑K
k=1

fk(xi), fk ∈ F (7)

The set F represents all tress generated in the model and the func-
tion f is the weight score function of each tree within F. The

objective function of the XGBoost algorithm at the t-th iteration is

Jt =
∑n
i=1

l(yi, ŷ(t−1)i + εft(xi)) + γT +
1
2
λ
∑T
j=1

ω2
j (8)

where ŷ(t−1)i represents the i-th prediction result in the (t− 1)-th iter-
ation. ɛ denotes the shrinkage factor that controls overfitting. T
denotes the total number of leaves in a decision tree, and ω is the
weight value of each leaf. γ and λ are corresponding restraint param-
eters. Equation (8) is formed with two parts. The first part∑n

i=1 l (yi, ŷ(t−1)i + εft(xi)) is the loss function. It measures how

close the predicted value is from the observed data. The term of
ŷ(t−1)i helps to create new trees based on the evaluation of the previ-
ous trees. The second part γT + (1/2)λ

∑T
j=1 ω

2
j is the regularization

term, which is used to penalize the complexity of the model.
In the XGBoost algorithm, the loss function in Eq. (8) is replaced

by the second-order Taylor expansion, and it has the form of∑n
i=1 [gift(xi) +

1
2hif

2
t (xi)] where gi and hi correspond to the first-

and second-order gradient statistics of the loss function, respec-
tively. To decide the optimal split at each node, a gain function is
calculated with

Gain =
1
2

G2
L

HL + λ
+

G2
R

HR + λ
−

(GL + GR)2

HL + HR + λ

[ ]
− γ (9)

where GL and HL represent the sum of the first- and second-order
gradient at the left branch after splitting. GR and HR are for the
right branch after splitting. For each iteration, the splitting node is
selected to make the gain function maximum.
To optimize the performance of XGBoost, four different hyper-

parameters were tuned in this study. For the number of trees, 500,
1000, and 2000 were used in the grid search method. The depth
of a tree describes the length from the root to the top in a tree,
and it was set as 4, 5, and 6 in the grid search. The stopping crite-
rion, which represents the minimum number of observations in each
node, was tested using 1, 2, and 3 in this study. The shrinkage factor
ɛ was set as 0.1 and 0.01 in the grid search method. The selection of
the hyperparameters and the corresponding values were determined
based on the study in [15].

4 Experiment
4.1 Specimen Preparation. In this study, the cooperative 3D

printing experiments were conducted on a MakerGear M3 printer
with two independent dual printheads. Each specimen was first
divided into two portions by an inclined plane, and then the toolpath
was modified so that the dual printheads can fabricate the specimen
chunk by chunk. SIMPLIFY3D, a slicing software package, was used
for converting the digital model in STL format into the commands
in G-code format that can be read by the 3D printer. Figure 1 shows
the shape and dimension of the specimen according to ASTM D638
[16]. The specimen has a 30 deg dividing plane.

Fig. 1 Illustration of the specimen with a 30 deg dividing plane
(unit in millimeters)
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Figure 2 shows two chunks divided by an inclined plane. With a
modified printing path, chunk-1 was first printed using extruder-1,
and then chunk-2 was printed using extruder-2. In order to
achieve cooperative printing using the conventional 3D printer,
the toolpath for each chunk was generated individually using SIMPLI-

FY3D. The toolpath for each chunk was then combined together such
that no collision between the printheads occurs. The G-code was
modified in order to change the toolpath of the extruder-2 when it
moved to the starting position in order to print the second chunk.
Prior to uploading the G-code for printing, the modified toolpath
was simulated in SIMPLIFY3D to ensure that there is no collision
between the printed part and the extruder. Table 1 lists the 3D print-
ing parameter setting for the experiments.

4.2 Design of Experiments. In the cooperative 3D printing
process, each specimen was divided into different parts for multiple
robots to print. Thus apart from the traditional 3D printing parame-
ters, the factors introduced along with the cooperative printing
process will also influence the tensile strength of the specimen. In
this study, three parameters, the angle of incline, the overlapping
length, and the number of shells, were studied for their impact on
the tensile strength. As illustrated in Fig. 3, the angle of incline θ
describes the slope angle of the plane that divides two parts. The
design of the angle of incline will facilitate the deposition of mate-
rial on the surface. Previous research [9] has shown that a smaller
angle of incline is equivalent to a larger bonding surface, which
makes the specimen stronger in tensile tests.
The overlapping length describes how much the layers from

two parts overlap with each other at the bonding surface. Figure 4
shows both the top and lateral views of the bonding area with 0
and 0.3 mm overlapping length. As shown in Figs. 4(a) and 4(c),
a zero overlapping length means that the layers from the left and
right parts are fabricated exactly along the dividing plane. Figures
4(b) and 4(d ) show a 0.3 mm overlapping length, meaning the
layers are squeezed into the bonding surface to form a denser struc-
ture. According to the previous research [9], a more overlapped
interface between two parts generally means more material is laid
on the bonding area and thus a stronger bonding strength can be
achieved.
In the traditional FDM printing process, adding shells to the spec-

imens helps to increase the total strength. The existence of shells in
the cooperative printing, however, shows a negative effect on the
tensile strength according to the previous research [9]. Figure 5
shows the bonding surfaces of two specimens with zero and two
shells.

Table 1 Parameter setting

Parameters Values

Material Polylactide (PLA)
Nozzle temperature (°C) 195
Build plate temperature (°C) 60
First layer thickness (mm) 0.10
Subsequent layer thickness (mm) 0.20
Nozzle diameter (mm) 0.35
3D printing speed (mm/s) 58
Infill speed (mm/s) 46
Infill density 100%
Raster angle (deg) 45/−45
Air gap (mm) 0

Fig. 2 Cooperative 3D printing process

Fig. 3 Illustration of angle of incline

Fig. 4 Illustration of overlapping length: (a) top view of the bonding area with zero over-
lapping length, (b) top view of the bonding area with 0.3 mm overlapping length,
(c) lateral view of the bonding area with zero overlapping length, and (d ) lateral view of
the bonding area with 0.3 mm overlapping length
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Some other factors that might affect the quality of 3D printing
processes include raster orientation, infill density, air gap, and so
on. The effects of these factors are not studied in this study. All
of these parameters other than the three listed above were set as
constant during the experiments.
To evaluate the effects of three selected 3D printing parameters

on tensile strength, we designed an experiment as shown in
Table 2. Each factor has four levels. The value of each level for
each parameter was chosen based on the preliminary study in the
previous work [9]. For each parameter combination in Table 2,
three identical specimens were built to test the variations of the
tensile strength. A total number of 192 data points were generated
for model training and validation.

4.3 Tensile Testing. The tensile tests were conducted on an
MTS® tensile testing machine with a 5KN load cell. A 2 mm/
min loading rate was applied to the specimens. Figure 6 shows
that the specimens broke at the bonding surface of two parts,
which means that the tests result was indeed the strength at the
bonding surface.

5 Results and Discussions
5.1 Tensile Strength. Figure 7 shows how the angle of incline

affects the tensile strength when the overlapping length varies from
0 to 0.5 mm. Each tensile strength shown in Fig. 7 is the average
value with a standard deviation of three repeated experiments.
Figure 7 shows the tensile strength of the specimens with one and
three shells. As indicated in Figs. 7(a)–7(d ), the tensile strength
tends to drop when the angle of incline increases. In Fig. 7(d ),

when the overlapping length is 0.5 mm and the number of shells
is one, specimens with a 30 deg angle of incline have an
average tensile strength of 31.95 MPa, which is 106% higher
than 15.51 MPa at the 45 deg angle of incline. Figure 7 also indi-
cates that a smaller number of shells will make the tensile strength
higher in most cases. As shown in Fig. 7(c), when the overlapping
length is 0.3 mm and the angle of incline increases from 30 deg to
45 deg, the tensile strength for specimens with one shell is by
average 7.8 MPa higher than those with three shells. According
to the previous research [9], specimens with a smaller angle of
incline have a larger contact area between two chunks, which
makes the bonding surface stronger and thus a higher tensile
strength is achieved.
Figure 8 shows the effect of the overlapping length on the tensile

strength when the angle of incline varies from 30 deg to 45 deg.
Each tensile strength shown in Fig. 8 is the average value with a
standard deviation of three repeated experiments. Figure 8 shows
the tensile strength of the specimens with one and three shells.
The impact of the overlapping length on the tensile strength is not
significant as shown in Fig. 8. In some cases, the specimens with
larger overlapping lengths have larger tensile strength. As indicated
in Fig. 8(c), when the angle of incline is 40 deg and the number of
shells is one, the specimens with an overlapping length of 0.5 mm
have an average tensile strength of 25.64 MPa, which is 65% higher
than 15.57 MPa at the 0 overlapping length. However, for the spec-
imens with 30 deg angle of incline and only one shell, the tensile
strength decreases from 41.83 MPa to 31.95 MPa when the overlap-
ping length increases from 0 to 0.5 mm. The reason why there is a
weak correlation between the overlapping length and tensile
strength is due to the uncertainty associated with the 3D printing
process. Since each experiment in this work was repeated three
times only, the high standard deviation as shown in Fig. 8 suggests
that more repeated experiments should be performed in order to
understand the impact of the overlapping length. The effect of the
number of shells on the tensile strength can also be observed in
Fig. 8. Almost all the specimens with only one shell have a larger
tensile strength than those built with three shells.
Figure 9 shows the effect of the number of shells on the tensile

strength when the overlapping length varies from 0 to 0.5 mm.
Each tensile strength shown in Fig. 9 is the average value with a
standard deviation of three repeated experiments. Figure 9 shows
the tensile strength of the specimens with 30 deg and 40 deg
angle of incline. Generally, when the number of shells increases,
the tensile strength drops correspondingly. As shown in
Fig. 9(b), the tensile strength for the specimens with 30 deg angle
of incline decreases from 36.37 MPa to 24.83 MPa when the
number of shells increases from 0 to 3. The curves shown in
Fig. 9 also indicates that the impact of number of shells on the
tensile strength is not as significant as the factor angle of incline,
but more significant than the overlapping length. Based on the
results shown in Figs. 7–9, the specimens fabricated with a
smaller angle of incline, and no shells tend to have a larger

Fig. 5 Illustration of shells: (a) no shells, (b) two shells, (c) lateral view of bonding interface
with no shells, and (d ) lateral view of bonding interface with two shells

Table 2 Levels of three different parameters

Parameters Level 1 Level 2 Level 3 Level 4

Angle of incline (deg) 30 35 40 45
Overlapping length (mm) 0 0.1 0.3 0.5
Number of shells 0 1 2 3

Fig. 6 Specimens after tensile tests
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Fig. 7 Effect of angle of incline on tensile strength for specimens with different overlapping
lengths: (a) 0 mm, (b) 0.1 mm, (c) 0.3 mm, and (d ) 0.5 mm

Fig. 8 Effect of overlapping length on tensile strength for specimens with different angle of
incline: (a) 30 deg, (b) 35 deg, (c) 40 deg, and (d ) 45 deg
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tensile strength. In addition, Figs. 7–9 show that the angle of incline
is the most important factor to influence the tensile strength while
the overlapping length is the least important parameter.

5.2 Performance Evaluation. Three different kinds of accu-
racy measurement were used to measure the discrepancy between
the observed value and the model prediction. Root-mean-squared

error (RMSE) is defined as RMSE =
∑n

i=1 (ŷi − yi)
2
/n

√
where yi

represents the observed value and ŷi represents the predicted
value. The RMSE will be small if the predicted value is close
to the observed value and will be large if the model fails to
make a good prediction. Relative error (RE) is defined as
RE = (1/n)

∑n
i=1 |(ŷi − yi)/yi|. RE describes the error relative to

the size of the measurement. It falls between 0 and 1 considering
how inaccurate the model is. Coefficient of determination (R2) is
defined as R2= 1− SSres/SStot. Here SSres is the residual sum of
squares, which has the form of

∑n
i=1 (ŷi − yi)

2. SStot is the total
sum of squares, and it can be expressed with

∑n
i=1 (yi − yi)2 where

yi denotes the mean of the observed values. R2 describes the
percentage of the response variation that is explained by the
model. A close to 100% R2 means that the model can explain
most of the variability.
The observed dataset contains 192 data points. For each data

point, there is one output of tensile strength and three input features,
which are the angle of incline, overlapping length, and the number
of shells. In order to evaluate the model performance, the dataset is
split into two parts, one for training and validation and the other for
testing. A 10-fold cross-validation method is applied to the training
set for the hyperparameter tuning and the base learner coefficients
optimization. In this research, three different sizes of training set
were selected to fit the model in order to evaluate the performance
under different circumstances. As mentioned in Sec. 4.2, for each
parameter combination in Table 2, three identical specimens were
built to test the variations of the tensile strength. Thus, the 192
data points can be separated into 64 groups. Within each group,

there are three data points that have the same input features. 50%,
70%, and 90% of the 64 groups were randomly selected as the train-
ing set. The remaining 50%, 30%, and 10% of the experimental data
were used as the test set.
Table 3 shows the RMSE, RE, and R2 of the prediction model

with different training data size. For the situation of 50% training
data size, there are only 96 data points for training and a small
RE of 15.246% is achieved with the prediction model. An
84.064% R2 also indicates that most of the variability can be
explained by the model. When the data size increases to 90%, the
RE decreases to 12.974% while the R2 increases to 95.945%.
This result shows that the predictive model is more accurate as
the training data size increases.
Table 4 lists the weights of each base learner with different

training data size. The 10-fold cross-validation was used to deter-
mine the weights. When the training data size changes, the

Fig. 9 Effect of number of shells on tensile strength for specimens with different overlap-
ping length: (a) 0 mm, (b) 0.1 mm, (c) 0.3 mm, and (d ) 0.5 mm

Table 3 Prediction accuracy with different training data

Training data size RMSE RE (%) R2 (%)

50% 3.627 15.246 84.064
70% 4.339 15.558 82.684
90% 2.648 12.974 95.945

Table 4 Weights of the base learners for different training data

Training data size

Weights

XGBoost Lasso SVR

50% 0.383 0.106 0.511
70% 0.370 0.058 0.572
90% 0.238 0.095 0.667
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hyperparameters tuned for each base learner will be different, and
the weights for each base learner change correspondingly. The
weights for Lasso are all below 0.11 in three different training
data size. They are far less than the weights of the other two base
learners, which indicate that Lasso is not as contributive as
XGBoost and SVR in the ensemble learning model. Figures 10–
12 show the relationship between the observed value and the pre-
dicted value in three different training data sizes. The dotted lines
in Figs. 10–12 are 45 deg lines where the observed values match
the predicted values. In all three cases, all the dots fall closely

toward these lines, which indicates that the predictions agree with
the observed values. All the results shown in Table 3 and Figs.
10–12 demonstrate that the ensemble learning method is effective
in making predictions accurate.
Table 5 shows the variable importance scores of the three factors

determined by XGBoost and SVR, respectively. For XGBoost, the
variable importance score is calculated based on how often the var-
iable is selected as a splitting feature in the tree structure. For SVR,
the variable importance score is determined based on how much the
output varies as the input varies [17]. As shown in Table 5, the rank-
ings of the variable importance scores calculated by XGBoost and
SVR are consistent. The angle of incline and the overlapping
length are the most and least important factors that affect the
tensile strength of the specimens, respectively. The numerical
result has good agreement with the experiment result shown in
Figs. 7–9. Therefore, if the parts fabricated by the cooperative 3D
printing process have a smaller angle of incline, then the tensile
strength of the parts is greater. In addition, the parts with fewer
shells have greater tensile strength. The effect of the overlapping
length on tensile strength is not significant.

5.3 Analysis of Variance. To compare the ensemble learning
method with traditional statistical methods, the variable importance
and prediction accuracy were also evaluated using the ANOVA and
regression analysis. The ANOVA statistics for the regression model
are listed in Table 6. The degree of freedom (DF) represents the
amount of information used for analysis. The adjusted sum of
squares (Adj SS) for a variable measures the variation of the
response data that can be explained by this variable. The Adj SS
for error measures the variation of the response data that cannot
be explained by all variables. The adjusted mean squares (Adj
MS) takes into account the degrees of freedom when measuring
the variations. The F-value is the ratio between the Adj MS for a
variable and the Adj MS for error. The F-value measures the statis-
tical significance of a variable. Based on the F-values shown in
Table 6, the angle of incline is the most significant variable that
affects the tensile strength while the overlapping length is the
least significant variable.
The simple linear regression analysis is performed to understand

the relationship between the variables (i.e., angle of incline, over-
lapping length, and number of shells) and the response (i.e.,
tensile strength). The parameters of the regression analysis are
listed in Table 7. The coefficient indicates how the variable
affects the response. The T-value is the ratio of the coefficient
and the corresponding standard error. The P-value measures the
probability against the null hypothesis. Both T and P values
describe the significance of the variable. The variable significance
based on the T and P values shown in Table 7 is in good agreement

Fig. 10 Predicted versus observed tensile strength with 50%
training data. The predictive model is built by ensemble learning
combining Lasso, SVR, and XGBoost as base learners.

Fig. 11 Predicted versus observed tensile strength with 70%
training data. The predictive model is built by ensemble learning
combining Lasso, SVR, and XGBoost as base learners.

Fig. 12 Predicted versus observed tensile strength with 90%
training data. The predictive model is built by ensemble learning
combining Lasso, SVR, and XGBoost as base learners.

Table 5 Variable importance score

Features
Importance score by

XGBoost
Importance score by

SVR

Angle of incline 0.851 0.740
Number of shells 0.083 0.166
Overlapping length 0.066 0.094

Table 6 Analysis of variance

Source DF Adj SS Adj MS F-value

Angle of incline 1 12,649.8 12,649.8 616.84
Overlapping length 1 64.0 64.0 3.12
Number of shells 1 646.0 646.0 31.50
Error 188 3855.4 20.5 N/A
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with the ANOVA results in Table 6. Specifically, the angle of
incline and the overlapping length are the most and least significant
variables, respectively. The variance inflation factor (VIF) quanti-
fies the multicollinearity within a model. A VIF larger than five sug-
gests the existence of multicollinearity in the analysis. Although a
high level of multicollinearity might not weaken the prediction per-
formance in most cases, it will interfere in determining the precise
effect of each variable. The coefficient estimates with a high VIF
also become unstable as the result of increasing variance. In this
study, including the quadratic and interaction terms in the model
makes most of VIFs larger than 100, suggesting a very high level
of multicollinearity. Therefore, only simple linear regression was
selected in the analysis.
The Pareto chart as shown in Fig. 13 illustrates the standard-

ized effects of three variables on the tensile strength. The stan-
dardized effects are based on the T-values shown in Table 7.
The reference line marked with 1.97 suggests whether the
effect is statistically significant or not. In comparison with the
machine learning method, both ANOVA and regression analysis
make the same conclusion about the variable significance. The
linear regression model based on the regression analysis can be
expressed as

Tensile strength = 78.32 − 1.4520 × Angle of incline

+ 3.01 × Overlapping length − 1.641

× Number of shells

(10)

The ability to provide interpretable results with an explicit solu-
tion is the advantage of traditional statistical methods over machine
learning.
The prediction accuracy using the traditional linear regression

method was also evaluated. As mentioned in Sec. 5.2, the 192
data points were separated into 64 groups. Within each group,
there are three data points that have the same input features. 50%,
70% and 90% of the 64 groups were selected as the training set
to fit the linear regression model. The remaining 50%, 30%, and

10% of the experimental data were used as the test set to evaluate
the model performance. The selected data for each condition was
kept the same with those used in machine learning method so that
the performance comparison is valid. The prediction accuracy of
the linear regression method is shown in Table 8. When 90% data
were used for training dataset, the RE increases about 104.02%
and the R2 decreases about 9.43% comparing with the machine
learning method. Similarly, the RE increases and the R2 decreases
for both 70% and 50% training data size conditions. Based on the
prediction accuracy shown in Tables 3 and 8, the ensemble learning
method outperformed the linear regression model. For example, the
RMSEs of the ensemble learning model are 3.627, 4.339, and
2.648, while the RMSEs of the linear regression model are 5.28,
4.19, and 4.76 when 50%, 70%, and 90% of the total data are
used as training data.

6 Conclusions
In this paper, we developed a data-driven predictive modeling

approach to the prediction of the tensile strength of components fab-
ricated by the cooperative 3D printing process. The data-driven pre-
dictive modeling approach combines three base learners, including
Lasso, SVR, and XGBoost, in order to improve the accuracy of the
predictive model of the tensile strength. A linear regression model
was also built to conduct a comparative study. The experimental
results have shown that the ensemble learning model achieved
much higher prediction accuracy than the linear regression model.
In addition, the effects of three 3D printing process parameters
(i.e., angle of incline, overlapping length, and number of shells)
on tensile strength were evaluated using XGBoost and SVR, as
well as ANOVA. The results have shown that the effect of the
angle of incline on tensile strength is significant. We also found
that the effects of three 3D printing process parameters on tensile
strength revealed by the machine learning algorithms and
ANOVA are consistent.
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