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ABSTRACT  

Cooperative 3D printing (C3DP) is a novel approach to 
additive manufacturing, where multiple mobile 3D printing 
robots work together cooperatively to print the desired part. 
At the core of C3DP lies the chunk-based printing strategy. 
This strategy splits the desired part into smaller chunks, and 
then the chunks are assigned and scheduled to be printed by 
individual printing robots. In our previous work, we 
presented various hardware and software components of 
C3DP, such as mobile 3D printers, chunk-based slicing, 
scheduling, and simulation. In this study, we present a fully 
integrated and functional C3DP platform with all necessary 
components, including chunker, slicer, scheduler, printing 
robots, build floor, and outline how they work in unison from 
a system-level perspective. To realize C3DP, new 
developments of both hardware and software are presented, 
including new chunking approaches, scalable scheduler for 
multiple robots, SCARA-based printing robots, a mobile 
platform for transporting printing robots, modular floor tiles, 
and a charging station for the mobile platform. Finally, we 
demonstrate the capability of the system using two case 
studies. In these demonstrations, a CAD model of a part is fed 
to the chunker, divided into smaller chunks, passed to the 
scheduler, and assigned and scheduled to be printed by the 
scheduler with a given number of robots. The slicer generates 
G-code for each of the chunks and combines G-code into one 
file for each robot. The simulator then uses the G-code 
generated by the slicer to generate animations for 
visualization purposes.  
 

Keywords: Cooperative 3D printing, Swarm 3D 
Printing, Chunking, Multi-robot 3D printing  
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1.    INTRODUCTION 
While 3D printing has been making steady progress with 

increasing printing capability and decreasing cost, its further 
adoption has been limited by its lack of scalability in terms of both 
printing size and speed [1]. Researchers and academics have 
proposed different approaches to overcome these issues. Most of 
the efforts focus on increasing the size of the 3D printer itself, such 
as BAAM [2] and the large 3D printing system from the 
University of Maine [3]. This approach faces inherent challenges 
as the increase of printer size leads to a nonlinear increase of the 
printer cost, poses higher requirements of the accuracy of the 
motion systems (e.g., it is challenging to maintain a variation of 
less than 100 um in Z movement while the printhead moves across 
several meters in XY direction), and reduces the printing 
resolution. Some other approaches employ multiple printing 
extruders simultaneously to shorten the print time, such as the 
Autodesk’s project Escher [4, 5]. Although this approach can 
speed up the process, the major limitation still rests in the 
scalability because there is a limit on the number of nozzles that 
can fit within the printer frame, which has since been discontinued 
by Autodesk. 

Cooperative 3D printing is a novel approach to 3D printing 
that utilizes multiple mobile 3D printing robots to print a 
largescale part. In C3DP, a part is first divided into smaller chunks 
using a sloped-based chunking strategy and these chunks are 
assigned to individual robots for printing. C3DP does not require 
any post-processing, such as gluing the chunks, surface finishing, 
and etcetera2. Once the chunks are assigned, multiple robots will 
work together to print the part in less time compared to 
conventional 3D printers. Since printing is not constrained by a 
“box”, C3DP can theoretically print parts as large as the factory 
floor size allows. Moreover, since printing is kept local and the 

https://www.youtube.com/watch?v=Ruw145U0Lpc
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nozzle size is regular, the print quality of C3DP can be as 
good as conventional desktop 3D printers.   

In our previous studies, we have established experimental 
and theoretical foundations on which C3DP can be 
implemented. In terms of software, we have developed a 
chunk-based slicer and the impact of chunk-based printing on 
the mechanical strength of parts [6] [7]. While there exists 
many slicing software such a Cura [8], Slic3r [9], Skeinforge 
[10], they lack slicing capabilities to support multi-robot 
C3DP. Also, we have developed a scalable scheduling 
strategy for printing with multiple robots [11]. In that study, a 
framework is introduced to validate newly generated print 
schedules against geometric constraints for collision-free 
print. The valid schedules, described as a Directed 
Dependency Tree (DDT), can be then evaluated for 
estimating the total print time [12]. In terms of hardware, we 
demonstrated the first generation of mobile printer design in 
[13], consisting of four components: the mobile platform, the 
Z-stage, the main circuit, and the wireless communication 
system. This design was important in demonstrating the 
viability of mobile printing but was prone to positioning 
errors as the printer moved back and forth during printing. 
Thus, to avoid positioning errors and to make the entire 
hardware more robust, we have made a significant 
improvement to the previous design. The details of the new 
hardware design are presented in Section 3.  

This paper presents the overall architecture of the C3DP 
system and our recent progress of integrating all the software 
and hardware development achieved so far, as shown in 

Figure 1. In this paper, we present how these components 
communicate with each other and what role each component plays 
as a part of the entire system. The main contributions of the study 
are summarized below:  
1. The integration of different components of software and 

hardware that form a system for realizing cooperative 3D 
printing.   

2. An enhanced C3DP software system that offers more 
chunking options, better slicing operations based on the open-
source slicing engine, and a more robust simulator that can 
demonstrate new chunking strategies.   

3. An upgraded C3DP hardware system which includes the new 
SCARA-arm printer as well as the build floor. 
The paper is organized as follows. In Section 2, the 

architecture of cooperative 3D printing is presented focusing on 
the software components and how they are inter-connected. The 
new generation of the hardware platform is presented in Section 
3. In Section 4, an explanation of the system (both hardware and 
the software) is provided along with the validation and 
implementation of the system. This includes validation using 
simulation and actual implementation of C3DP using a case study. 
Finally, Section 5 includes the conclusion and future works about 
the project. 
 
2.    ARCHITECTURE OF THE C3DP SIMULATION  

To realize C3DP, an integrated software system is required 
that can incorporate the process of chunking, scheduling, slicing, 
simulating, and printing all in one. However, there is no such 
system that has all these features for multi-robot C3DP. To 

 
Figure 1. The Physical system architecture of Cooperative 3D printing system 
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address this gap, we have built a system that has integrated all 
these capabilities, and its architecture is presented in Figure 
2. Once a user uploads a CAD model of the desired object, the 
part is first chunked by the chunker using the chunking 
parameters specified by the user. Then, the scheduler 
generates a print schedule of how the chunks will be printed 
in sequence and in parallel by considering chunk 
dependencies as well as the available resources, such as the 
number of robots available. Chunk assignment is done along 
with the print schedule in this step. After that, the slicer 
generates G-code for each of these chunks, and the simulator 
uses the generated G-code to animate the print schedule. In 
the following sections, we describe the methods and 
algorithms that enable each of these individual subsystems.   
 
2.1  Chunker  

The chunker takes the CAD model of the desired part as 
input and splits the CAD model into smaller chunks based on 
the parameters set by the user. In the current version of the 
chunker, the sloped-surface chunking strategy [7] is the only 
chunking strategy available, though, other chunking strategies 
such as striping method, concurrent printing, etc., are 
available in other collaborative printing platforms. Striping 
method follows a similar approach to the printing method 
adopted by Autodesk for project Escher [4] where each 
printhead is responsible for printing certain portions of the 
individual layer. The length of the path allocated to each 
extruder changes every layer such that the location of the gap 
(i.e., the spot at which one extruder stops and another begins) 
changes at every layer. Similarly, concurrent printing [5] 
assigns each G-code line to different printheads and checks 
for what lines can be printed together with the available 
number of printheads without colliding with each other. 
However, further studies of these chunking strategies need to 
be done, to ensure the mechanical properties are comparable 

to that of the traditional printed part, before implementing those 
chunking strategies in the C3DP system. 

Once the desired object is uploaded to the system, the user 
can see an interface that might look like Figure 3. This UI helps 
the user choose different options for chunking parameters.  The 
yellow rectangular bar highlights different parameters that the 
user can change. This includes: 1) build depth (the depth of chunk 
in the y-direction), 2) slope angle for chunking the part, 3) 
printhead depth of the robot (how far can the robot reach), 4) 
number of available robots. If the user does not want to specify 
the number of robots, the system can suggest the optimal number 
of robots based on the dimension of the part and the dimension of 
the robot. Similarly, the system also checks the value inputted by 
the user to make sure no constraints are violated. An example of 
such constraint could be the maximum value set for build depth or 

 
Figure 2: Process flow in Cooperative 3D printing from a high 
level perspective 
 

        
Figure 3: The custom-designed UI extesnsion in Blender allows 
user to choose different chunking parameters as well as the slicing 

   
 

Zoomed in 
View 
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printhead depth that cannot be exceeded to avoid unrealistic 
scenarios. In such a case, the system outputs error to let the 
user know that the constraint has been violated and the value 
needs to be altered. A user can also pick a different type of 
sloped-surface chunking strategy to chunk the object. More 
detailed information regarding selecting chunking parameters 
is presented in our previous study [6], which includes slope 
determination, chunking plane determination, etc. An 
enhanced version of the chunker in this paper includes 
chunking capability for multiple robots.   

In this study, we present three additional chunking 
options. Each of the chunking options has its benefits for a 
specific type of situation. Below are some of the guidelines 
for choosing a proper chunking option based on resource 
availability, space availability, and the dimension of the 
desired part. 

1. If the user only has two robots available for printing, 
previously developed two-robot sloped surface strategy is to 
be used.  

2. If the user has more than two printing robots, the printing 
space is unlimited and, the dimension of the desired part is 
large in only two out of three dimensions, then divide and 
conquer strategy would provide the best outcome.   

3. On the other hand, if the user faces the scenario 2, but the part 
is large in all three-dimension, vertical chunking with divide 
and conquer would provide the best outcome.   

4. If the user has limited printing space, where the printer can 
only be placed on one side of the part, such a scenario would 
call for the same side chunking. For example, if the part starts 
at 0 and expands only in the positive x-direction and no robots 
can be placed beyond 0. In such situations, same-side 
chunking must be used.  
Having outlined chunking options, we now describe what 

each of these different chunking options entails.   
 
2.1.1 Divide and Conquer 

This chunking option extends the two-robot chunking to 
multi-robot chunking, where the chunker first centers the object 
and then splits the object into multiple chunks along one direction 
with the sloped-surface using a bisecting algorithm as shown in 
Figure 4. In this strategy, the first phase of chunking takes place 
along the axis specified by the user. If the user does not specify 
the axis, the chunking is done along the default y-axis. If the 
second phase of chunking is required, which depends on the 
number of available robots and dimensions of the resulting chunk 
row, it takes place along the axis that is different from the axis of 
first phase chunking. The center chunk dimension or 𝑐𝑐𝑐𝑐𝑐𝑐 depends 
on the reach of the robot and the slope angle chosen by the user. 
The dimension is calculated using the slope angle of the chunk 
and the reach of the printing robot as presented in Equation (1). 
Chunking planes are created on each side of the centerline such 
that they are 𝑐𝑐𝑐𝑐𝑐𝑐 apart from the center chunk. The chunks are 
created by bisecting the part at these chunking 
planes. This process is iterative and takes place on both sides 
until the entire part is chunked as shown in Figure 5. 
 

𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑅𝑅 + tan𝜃𝜃 × 𝑧𝑧ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 ,         (1) 
 
where 𝑐𝑐𝑐𝑐𝑐𝑐 is the center chunk dimension, 𝑅𝑅  is the maximum 
reach of the robot, 𝜃𝜃 is the slope angle and 𝑧𝑧ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡  is the height of 
part in the z-direction.  

The resulting number of chunks depends on the number of 
available robots and the desired size of the chunk and the size of 
the part itself. The width of the chunk must be large enough so 
that the hardware of two printers can fit while two robots are 
printing the chunks that are on either side of the chunk. Thus, the 
width of the chunk is 

 
𝐶𝐶ℎ𝑢𝑢𝑢𝑢𝑢𝑢_𝑤𝑤𝑤𝑤𝑐𝑐𝑤𝑤ℎ =  𝑚𝑚𝑚𝑚𝑚𝑚(𝑊𝑊𝑟𝑟 , 𝑊𝑊𝑝𝑝

𝑛𝑛𝑛𝑛𝑛𝑛_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟
 ),               (2) 

 

 
Figure 4: The flowchart demonstrating the divide and conquer 
chunking method 
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where 𝑊𝑊𝑟𝑟 is twice the width of the hardware of the printing 
robot, 𝑊𝑊𝑝𝑝 is the width of the part along a specified direction 
and, 𝑢𝑢𝑢𝑢𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤𝑟𝑟  is the number of available robots for 
printing. Once the width of the chunk and number of chunks 
are determined, the chunking plane is created by iteratively 
spacing 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢_𝑤𝑤𝑤𝑤𝑐𝑐𝑤𝑤ℎ from the centerline of the chunk row. 
The angle of the plane is alternated at every chunking plane 
as shown in Figure 5 (using a dotted arrow) i.e., if a chunking 
plane is created at 45° first, the next chunking plane is created 
at 135° and so forth. Doing so allows us to create chunks with 
alternating slopes, which allow multiple robots to print 
simultaneously in each row 
 
2.1.2 Same side chunking 

Same side chunking applies to scenarios where the 
printing arms cannot be mounted on either side of the center 
row chunk. The same-side chunking uses a similar chunking 
method as described in the divide and conquer approach. The 
only difference lies in the location of origin chunk. The origin 
chunk is created at the center of the part along the axis in 
divide and conquer whereas, it is created at the end of the part 
in the same side chunking. Once the origin chunk is created, 
the chunking plane is iteratively shifted in one direction rather 
than two directions. The second phase of chunking takes place 
in the same manner as the divide and conquer approach. 
Figure 6 presents the origin chunk in the same side chunking 

and the iteration of the chunking plane along one direction until 
the end of the part is reached. 
 
2.1.3 Vertical chunking 

The above two chunking options allow us to chunk a part in 
the XY plane. But if the desired part is taller than the printer, the 
aforementioned chunking strategies would not sufficiently handle 
such printing scenarios. In such situations, we might need to 
chunk the part in the vertical direction as well. Allowing such 
chunking in vertical direction gives the user the option to divide a 
part that is much taller than the printing robot and print one layer 
at a time. To reach the subsequent layers that are taller than the 
printer, either the platform of the robot has to be raised or some 
sort of spacer can be designed that can hold the printing robot 
stable while printing. The logistics for such options are to be 
developed in the future.  

In vertical chunking, once the object is uploaded, if the object 
is taller than 300 𝑚𝑚𝑚𝑚, the chunker automatically chunks the part 
in the vertical direction. Though this value is based on the largest 
z-height the current generation of the robots can reach, the user 
will have the option to change this default value as long as the 
inputted value does not exceed the maximum reach of the robot’s 
reach i.e., they can use smaller value but nothing larger than 
300𝑚𝑚𝑚𝑚 . Based on the input value for the layer height, the 
software will automatically calculate the number of vertical layers 
using Equation (3). Each of the layers can be further divided into 
smaller chunks based on the input and the machine parameters 
using either of the chunking strategies outlined previously. As the 
chunks are created, the dependencies between chunks are 
generated. That means the printer should not print a layer above 
without printing the bottom layer first. The vertical chunking is 
demonstrated in Figure 7, where an architecture building of 

 
Figure 5: Chunking process of a rectangular bar. First, the chunking 
takes place along direction (x-direction). Center chunk is created 
first and moves out in both direction in iterative manner to split the 
part further until the end of the part. Second phase chunking, shown 
in bottom, (only center shown for clarity). First, a center chunk is 
created. The row is then iteratively chunked along the longitudinal 
direction until the end of the chunk row is reached 
 

 
Figure 6: Demonstration of how same-side chunking takes place in 
Chunker (The space between the chunks is shown for demonstration 
purpose only. No such space exists in reality) 
 

 
Figure 7: Demonstration of vertical chunking in a tall cathedral that 
requires chunking in z-direction. The height of the entire object is h, 
which is divided into total of four vertical layers based on the layer 
height l 
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height ℎ, is divided into multiple vertical layers of height, 𝑙𝑙 as 
defined by the user. 

 
𝑁𝑁𝑢𝑢𝑚𝑚. 𝑟𝑟𝑜𝑜 𝑣𝑣𝑣𝑣𝑟𝑟𝑤𝑤𝑤𝑤𝑐𝑐𝑚𝑚𝑙𝑙 𝑙𝑙𝑚𝑚𝑙𝑙𝑣𝑣𝑟𝑟𝑟𝑟 =   ℎ

𝑙𝑙
   (3) 

 
2.2  Scheduler 

Once the chunks are generated, the chunks are to be 
assigned to individual robots and scheduled for printing based 
on their dependency relations. The dependency relation is 
generated since adjacent chunks share the same sloped 
surfaces and the chunks with overhanging slope cannot be 
printed before their adjacent chunks that support the 
overhanging slopes, as shown in Figure 8.   

The detail of how the chunk assignment takes place and 
how the dependent relationship is used for scheduling is 
presented in our previous study [6]. In this section, we discuss 
how the theoretical information such as scheduling strategy, 
presented in the previous paper is encoded into the software 
to achieve collision-free printing. For two-robot printing, a 
simple strategy is adopted where the origin chunk is assigned 

along with all the chunks on the left side to one robot and 
remaining chunks on the right side to the second robot [6]. As the 
chunking becomes more complicated, the complexity of the chunk 
assignment increases. The approach for the chunk assignment is 
presented in Figure 9. For simplification, all the robots are 
divided into two groups randomly, then the assignment approach 
used in the two-robot printing scenario is implemented. After that, 
the chunks in each group are assigned among the robots in their 
respective groups. If 𝐶𝐶𝑐𝑐 represents center row chunks (example: 
chunk1 in Figure 8), 𝐶𝐶𝐿𝐿 represents left row chunks (example: 
chunk3 in Figure 8) and 𝐶𝐶𝑅𝑅 right row chunks (example: chunk2 
in Figure 8) and the total available robots are randomly divided 
into two groups, 𝐺𝐺𝐴𝐴, and 𝐺𝐺𝐵𝐵. Then, all the chunks in 𝐶𝐶𝑐𝑐 and 𝐶𝐶𝐿𝐿 and 
assigned to 𝐺𝐺𝐴𝐴 and rest to 𝐺𝐺𝐵𝐵. The assignment of chunks to a 
group is done based on human heuristics and might not be optimal. 
 

𝐶𝐶𝑐𝑐 =  � 𝐶𝐶𝑣𝑣𝑢𝑢𝑤𝑤𝑣𝑣𝑟𝑟 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢1,𝐶𝐶𝑣𝑣𝑢𝑢𝑤𝑤𝑣𝑣𝑟𝑟 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢2,
𝐶𝐶𝑣𝑣𝑢𝑢𝑤𝑤𝑣𝑣𝑟𝑟 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢3, … . . ,𝐶𝐶𝑣𝑣𝑢𝑢𝑤𝑤𝑣𝑣𝑟𝑟 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢 � 

 
𝐶𝐶𝐿𝐿 =  [𝐿𝐿𝑣𝑣𝑜𝑜𝑤𝑤 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢1, 𝐿𝐿𝑣𝑣𝑜𝑜𝑤𝑤 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢 2 … … . 𝐿𝐿𝑣𝑣𝑜𝑜𝑤𝑤 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢 ] 
𝐶𝐶𝑅𝑅 =  [𝑅𝑅𝑤𝑤𝑅𝑅ℎ𝑤𝑤 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢1,𝑅𝑅𝑤𝑤𝑅𝑅ℎ𝑤𝑤 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢 2 … … .𝑅𝑅𝑤𝑤𝑅𝑅ℎ𝑤𝑤 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢 ] 

 
𝐺𝐺𝐴𝐴 =  [𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤 1,𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤3, … … . .𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤 𝑚𝑚 − 1 ] 
𝐺𝐺𝐵𝐵 =  [𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤 0,𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤 2, … … . .𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤 𝑚𝑚 ] 
 
𝐺𝐺𝐴𝐴  → {𝐶𝐶𝐶𝐶 ,𝐶𝐶𝐿𝐿} (Group A is assigned to center chunks and left 

chunks) 
  𝐺𝐺𝐵𝐵  → {𝐶𝐶𝑅𝑅} (Group B is assigned to right chunks) 
 

Once the chunk assignment is completed, a print schedule is 
generated based on the chunk dependency following the rules 
below: 

• The chunks with no dependencies are printed first.   
• Once those chunks are printed, the chunks with already 

printed chunks as dependencies are chosen for printing. 
This process iterates till all the chunks are printed. 

 
2.3  Slicer 

In our previous study [6], we developed a simple custom-
designed slicer that could generate toolpaths for all the printing 
robots based on the chunk assignment and schedule. To handle 
more complicated geometries with higher efficiency and 
robustness, we have decided to utilize a professional slicer (e.g., 
open-source slicer CuraEngine is chosen for this paper). However, 
none of the professional slicers support the collaboration of 
multiple robots. Fundamentally, for two robots to collaborate, they 
must be able to align in space and time. The spatial alignment is 
enabled by the positioning mechanisms embedded in our 
hardware platform as described in Section 3, the temporal 
alignment is realized with a pair of custom G-code command: 
“WAIT”, “NOTIFY”, which are used by robots to tell each other 
via wireless communication when they should pause and when 
they may proceed to execute the next line of G-code. A “WAIT” 
command is inserted at the beginning of any chunk that has chunk 

 
Figure 8: Adjacent chunks with sloped surface. Chunk 1 has 
to be printed prior to printing chunk 2 and chunk 3 otherwise 
the print nozzle of the printer will collide with the overhang of 
chunk 2 and chunk 3 
 

 
Figure 9 Chunk Assignment of the robots in scaled-chunker method 
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dependencies, i.e., another chunk has to be printed before 
printing the current chunk. A “NOTIFY” command, on the 
other hand, is added at the end of the G-code of the chunk on 
which another chunk depends. This allows the robot to notify 
another robot that the dependency has been satisfied and it can 
go ahead with printing the chunk.   

To utilize a professional slicer for cooperative 3D 
printing, we developed a Feeder system. The Feeder system 
imports individual STL models of the chunks output by 
Chunker one at a time to generate the G-code of each chunk 
using the professional slicer based on the slicer settings, such 
as infill density, print speed, layer height, etc. Once the G-
code files for all the chunks assigned to an individual robot 
are generated, additional transitional information, such as 
telling robots move from one chunk to next chunk, or 
“WAIT” until another robot finishes printing certain chunk, 
or “NOTIFY” another robot and proceed with executing their 
next G-code line, are added between the G-code files of 
chunks based on the schedule output by the scheduler that is 
then integrated into one G-code file and sent to the robot. The 
entire process is demonstrated in Figure 10.  

2.4  Simulator 
The simulator presents a visualization of the G-code 

obtained after slicing. It animates the printing process and 
provides a visual aid of how the printing unfolds and how the 
final product looks. In our previous work, we developed a 
simulator based on a Blender environment to visualize such 
animation. The same simulator is used to provide a 
demonstration in this study as well. To generate visualization, 
frames are generated at the rate of 30 frames per second, i.e., 
one frame represents 1/30 of a second. Users can choose to 

change the number of frames per second in UI. Increasing the 
frame per second (fps) would result in better animation resolution 
but would require more computational resources and decreasing 
the fps would result in coarser animation but would be 
computationally extensive. Thus, the user can choose to either 
increase or decrease fps based on their desired outcome. A more 
detailed explanation of how the simulator works can be found in 
[6]. 
 
3.   HARDWARE PLATFORM DEVELOPMENT   

The hardware platform has gone through major updates since 
the previously presented first generation [13]. This current 
hardware platform consists of four main components:  
1. An immobile SCARA 3D printer for printing.  
2. A mobile platform that transports the SCARA printer from 

one location to another after the completion of a chunk 
printing.  

3. A modularized floor tile system that assists the navigation of 
the mobile platform, allows SCARA printers to mount, and 
provides power supply and a charging station for the mobile 
platform.  

4. A wireless network that coordinates the wireless 
communication between SCARA printers and mobile 
platforms.  

In a typical printing process, the assembled G-code files from 
the Feeder system are sent to their assigned SCARA printers 
respectively, which will execute their assigned G-code file line by 
line. To begin printing, a custom G-code command “MOVE” calls 
the mobile platform to transport the SCARA printer to the print 
location on the floor. Once the mobile platform reaches the 
location of the SCARA printer, it notifies the printer to mount onto 
the platform and unmount from the floor tile. Once mounting and 
unmounting is complete, the platform carrying the printer 
maneuvers to its destination. While the printer is mounted onto the 
mobile platform, it is powered using the battery pack installed on 
the mobile platform. Once the destination is reached, the platform 
notifies the printer to start mounting into the floor and unmount 
from the mobile platform. After this, the SCARA printer will start 
to execute the rest of the G-code, until it hits a “WAIT” command. 
The “WAIT” command is inserted at the beginning of the chunk 
to notify the printer that to print the current chunk, its dependency 
has to be printed first. Once the dependency chunk is printed by 
another SCARA printer, it sends another custom G-code 
command “NOTIFY” to the printer that has been waiting for the 
chunk dependency to be printed. This notifies the SCARA printer 
to start printing the next chunk. To do so, the “MOVE” command 
is used again to call the mobile platform to the current location so 
that it can be transported to the mount location for next chunk 
printing. This process continues until all the chunks are printed. 
To simplify the matter, currently, only one SCARA printer can 
request the mobile platform at a time. If multiple printers request 
transportation, first in first out approach is used to pick the printer.   
 

 
Figure 10. Once the part is uploaded and chunked, the feeder 
subsystem feeds one chunk at a time and send it to the slicer. Once 
the G-code is created, the other relevant information is added to the 
G-code. The G-code of all chunks of a robot are consolidated into 
one single file and used for visualization 
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3.1   SCARA Printer  
With the wide adoption of robotic arms in modern 

factories, we developed a robotic arm for C3DP for an easier 
transition in the future. In this study, we developed a SCARA 
(Selective Compliance Assembly Robot Arm) 3D printer for 
filament extrusion as shown in Figure 11.  

The main functionalities of the SCARA printer are: 
1. Print the assigned chunks: The SCARA printer is 

equipped with a single extruder and uses 1.75mm 
filament to print assigned chunks. The print 
specifications are presented in Table 1. The printer is 
equipped with three mounting leads that screw into the 
nuts installed in the mounting holes in the floor tile. 
While the printer is printing, it is mounted using those 
lead screws to prevent any vibration or movement. These 
lead screws also work as a connector to supply power to 
the printer from the power source installed in the floor 
tile. Such a locking mechanism allows the printer to 
minimize vibration as well as tipping over, which is a 
concern especially when the arm is fully extended.  

2. Communication with the mobile platform: The SCARA 
printer is immobile but communicates with the mobile 
platform wirelessly if it needs to move from one location 
to another. The printers have two additional mounting 
pegs that are used to mount onto the mobile platform for 
secure transportation. These mounts also act as 
connectors to supply power from the battery pack of the 
mobile platform to printer during transportation. This 
along with the power source installed in the floor tile 
source ensures that the SCARA printers always have at 
least one source of power.   
The maximum reach of the SCARA is much larger than 

the previous generation of printing robots. It can reach from 
50 𝑚𝑚𝑚𝑚 to 350 𝑚𝑚𝑚𝑚, i.e., it cannot print anything that is closer 
than 50 𝑚𝑚𝑚𝑚 to its mounting location and can reach 350 𝑚𝑚𝑚𝑚 
when it is fully extended. Currently, the auto-calibration 
system is being worked on using an auto bed leveling sensor. 

This calibration system will use a four-point calibration system, 
one for each corner of the build plate.   
 
Table 1. Technical parameters of the new 3D printing SCARA printer  

XY reach  50mm-350mm  

Max Z-height  300 mm  

Filament Feed  Bowden, 1.75mm   
Nozzle  Single extruder  

Maximum  
Temperature  

295° C  

Hot End  Single extruder  

X/Y Motion  2 axis SCARA   
Z motion  300 mm guide motion driven by a 

lead screw  
Layer resolution  10 µm  

Print Speed  50 mm/s  
Print repeatability   5 µm  

Power Input  build floor, battery-pack via a mobile 
platform  

Power consumption  78.62 W  
Software  compatible with open source software  

Connectivity  Wireless  
  
3.2 Mobile Platform  

Because the printing robots spend most of the time printing 
and little time moving between chunks, we separate the mobile 
platform from the SCARA printer. This new design (see Figure 
11(b)), on one hand, enhances the stability of the SCARA printers 
in printing, and on the other hand, reduces the overall cost by 
allowing multiple SCARA printers to share mobile platforms.  
The main functionalities of the mobile platform are:  
1. Navigate on the floor: The mobile platform is equipped with 

mecanum wheels due to its omnidirectional property for 
maneuverability. To maneuver from one location to another 
accurately, the platform is also equipped with infrared 
sensors. These sensors are used to align the mobile platform 
with the navigation lines on the floor. In addition to the 
sensors, it is also equipped with a camera that can utilize 
computer vision to verify the positional accuracy. The camera 
read the barcode on the floor tile to get accurate positional 
information and adds a layer of position verification. The 
barcode ensures that the platform moves to the desired 
location, instead of a different location by mistake. If that 
happens, there will be a discrepancy between the the 
positional information provided by the barcode and the actual 
destination that is assigned to the mobile platform, raising a 
warning flag. Thus, this information in conjunction with the 
positional movement that is tracked by the encoder in the 

 
Figure 11. (a) The updated 3D printer, equipped with scara-arm to 
increase the reach of the robot and mitigating the issues of the 
previous generation of mobile robot (b) The new mobile platform 
that transports scara arm from one print location to another 
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motors of the mobile platform is used to rectify any 
positional discrepancies that might occur due to some 
unforeseen mishaps. 

2. Carry the SCARA printer and power supply: The mobile 
platform is responsible for transporting the printing arm 
from one location to another. While doing so it needs to 
ensure that the arm is safely transported. To do that, it is 
equipped with two mounting pegs with holes in the center 
on the top. Once the SCARA printer’s location is 
reached, the printer is notified wirelessly, and the printer 
starts lowering the leads to mounting into the holes of the 
platform. These holes also act as a female connector that 
connects with the male connector of the printer to supply 
power to the printer so that the printer can mount and 
unmount while it is not in connection with the floor tile. 
Once the printer is securely mounted, it unmounts from 
the floor tile and is transported to its next location. Once 
the location is reached, the above-described process takes 

place in reverse order until the printer is securely mounted 
into the floor.  

3. Autonomous charging: The mobile platform is equipped with 
a rechargeable battery pack that has a life cycle of 2 hours of 
continuous use and idle time of 6 hours. But if it is not being 
used for more than 5 minutes, it automatically retreats to a 
charging station located in one of the corners on the build 
floor.  
Once a printing arm receives G-code instruction, it sends a 

signal to the mobile platform. The mobile platform will move to 
the location where the printing arm is at currently and locks into 
the arm. At this point, the arm disengages from the build floor and 
the mobile platform carries the printing arm to the next print 
location as instructed in the G-code. Once it reaches the new 
location, the arm starts engaging with the build floor using the 
mounting holes and the mobile platform unlocks itself from the 
arm and moves back either to its charging location or the location 
of another print arm. Table 2 provides the specifications of the 
mobile platform. 

 
Table 2. Specifications of the mobile platform  

Wheels  Mecanum wheels, omnidirectional  
Travel Speed  60 mm/s  
Navigation  Infrared sensors, camera  
Communication  Wireless communication  
Power Source  Battery pack, charging station  
Battery life  2 hours use, 6 hours idle  
Power Consumption  78 Watts  
Product dimension  25 cm×33 cm×9 cm  

  
3.3 Floor Tile 

A modularized floor tile system is developed to provide a base 
for the C3DP platform. It consists of modularized floor tiles and 
connectors between tiles for scaling to a size as large as the factory 
size. Each floor tile is 600 mm × 600 mm with 4 mounting 
locations spaced at 300 mm apart in both X and Y directions, as 
illustrated in Figure 12 The modular floor tiles have a slot on each 
side which is used to align two-floor tiles together. A connector 
that sits flush in this slot can be used to attach floor tiles with high 
accuracy. The floor tile system provides the following 
functionalities: 
1. Mounting and powering the SCARA 3D printers: Each of the 

four mounting locations consists of five mounting holes. Nuts 
are installed inside these mounting holes so that the lead 
screws in the SCARA arm can mount into them. To auto-
correct the slight misalignment sometimes due to tolerances 
stacking, each mounting hole has countersink on the top 
surface. Besides, the floor tile system is equipped with 
electrified stainless-steel conductive strips of alternating 
polarity on the bottom side of the floor tile. Once the leads of 
the SCARA printer mount into the mounting holes, they come 

 

Figure 12: (a) Floor tile with build plate. (b) Build plate  
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in contact with the conductive strips, which transfers 
power to the printing arm. A rectifier circuit is used to 
sort the polarity of the current to ensure that current flows 
are in the correct direction regardless of the polarity of 
active strips. This powers the SCARA printer during the 
entirety of the printing and allows us to avoid the use of 
wires for power.   

2. Assist navigation of mobile platform: The floor tile is 
equipped with navigation lines that are of black colored 
markers to contrast with the floor tile. These navigation 
lines are followed by the infrared sensors to maneuver 
from one mount location to another. In addition to having 
navigation guides, the floor tile also includes an 
embedded barcode system to provide positional 
information. This barcode includes positional 
information such as to what row and column do it belong. 
This is used by the camera installed on the mobile 
platform to get positional awareness.   

3. Provide a charging station for the mobile platform: The 
floor tile also is equipped with a charging station that is 
mounted onto the edge of the tile. This charging station 
resembles a cart storage area outside a supermarket, 
where a mobile platform can park itself into. Once the 
platform is aligned, a connection is formed between the 
charging station and the platform initiating the charging 
of the platform. 

4. Provide a base to mount build plate: Build plate is a 300 
𝑚𝑚𝑚𝑚 × 300 𝑚𝑚𝑚𝑚 modular square block where a part is 
printed on. It is mounted on the build floor with a base 
that has four conical pegs resembling countersink tools. 
Having such pegs helps align the build plates at the 
correct location and also prevents the movement of build 
plate in the XY plane.  

3.4 Wireless Network  
The communication between the different components of the 

hardware takes place via a wireless communication network. Both 
the SCARA printer and the mobile platform are equipped with a 
wireless communicator. Both of these components are connected 
to a local server via the wireless network. The local server collects 
all the pertinent information required for planning and 
coordination from different components of the system to 
implement cooperative 3D printing.  This local server takes 
information from the software components such as G-code 
information for each SCARA printer, which is then transmitted to 
the individual arms wirelessly. This flow of information between 
the different components of the C3DP is presented in Figure 13. 

 
4.   VALIDATION OF THE SYSTEM  

To validate and demonstrate the capability of the developed 
C3DP system, we have conducted two case studies with two 
objects. The first object has relatively simpler geometry but is 
largely aiming to demonstrate the system’s scalability. The second 
object is to demonstrate the capability of the software in handling 
more complicated geometries. 

 
Object I: A bar with honeycomb design 

The first print object is a rectangular bar with a honeycomb 
internal structure. Its dimension is 844𝑚𝑚𝑚𝑚 ×90𝑚𝑚𝑚𝑚 ×12𝑚𝑚𝑚𝑚 (see 
Figure 14). The chunking parameters used are presented in Table 
3. 

 
Table 3 important chunking and slicing information used for first 
chunking and then slicing the rectangular bar  

Parameters  Value (units)  

Number of robots  6  
Slope Angle  70 degrees  
Build depth  35 mm  
Printhead depth  30 mm  
Chunking Option  Divide and conquer   

 
Figure 13. The information flow in Cooperative 3D printing system 
between different components 
 

 
Figure 14. The 3D model of rectangular bar with honeycomb 
design along with specified dimension used for C3DP print 
simulation using 6 robots 
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 In total 18 chunks are obtained from chunking, and the 
chunks are shown in Figure 15 (a). The Chunker also outputs 
the chunk dependency in JSON format, which is then used to 
generate a print schedule with a chunk assignment. Both print 
schedules and chunk assignments are outputted in JSON file 
by Scheduler. The slicer then generates G-code for one chunk 
at a time, adds other pertinent information related to the 
position and dependency. All the chunks assigned to the same 
robot are processed together and a single G-code file is 
outputted. This G-code file contains printing commands as 
well as “WAIT” and “NOTIFY” command to implement 
dependency between chunks. Figure 15 (b) shows the 
different views of the part obtained after slicing. The different 
color of the chunks does not represent the actual color of the 
chunks to be printed but is used to differentiate a chunk from 
adjacent chunks.   

Once the G-code files for all the robots are created, the 
printing is simulated. The Simulator visualizes the print 
sequence and the entire print process. The screenshots of the 
simulation at different time steps are presented in Figure 16. 
First, the chunks that do not have any dependencies are 
printed (three chunks in the center row as shown in Figure 
16(a)). Once those are complete, the same robots move over 
to print the gap chunks as shown in Figure 16(b). After 
finishing the center row, half the robot moves to one side of 
the row and the other half moves to another half and starts 
working on the chunks as shown in Figure 16(c) and (d) until 
the part is completed. 

 
Object II: A Razorback Cutout 

The second object is a Razorback cutout shown in Figure 17. 
It has a dimension of 610𝑚𝑚𝑚𝑚 × 267𝑚𝑚𝑚𝑚 × 52𝑚𝑚𝑚𝑚. The chunking 
and slicing parameter used in this case study in listed Table 4.   
The output of the Chunker for the Razorback cutout is presented 
in Figure 18. The chunking parameters resulted in 24 chunks. 
Once the chunking is complete, the schedule will be generated 
based on the chunk dependencies. The Slicer generates a G-code 
of different chunks to be printed individual robot, one at a time 
and outputs the G-code files. The output of slicer is presented in 
Figure 18 (b), and the snapshots of the simulation are presented 
in Figure 19. 
 
Table 4 important chunking and slicing information used for first 
chunking and then slicing the Razorback cutout 

Parameters Value (units) 
Number of robots 4 
Slope Angle 70(degrees)  
Build depth 70 mm 
Printhead depth 55 mm 
Chunking Option Divide and conquer  

 
5.   CONCLUSION AND FUTURE WORK  

In this paper, we presented an integrated C3DP platform with 
all the necessary software and hardware components. The 
software component includes five critical subsystems. A chunker 
divides a part into small chunks with different options, such as 
divide and conquer, same side chunking, and vertical chunking. 

Figure 15. The output of the Chunker and Slicer (a) Output of the 
Chunker containing 18 chunks (top view (bottom), Isometric view 
(top)) (b) Output of the Slicer (top view, side view, lateral view 
 

Figure 18. Chunking output and slicing output for 

 
Figure 17. The Razorback cutout with specified dimension used for 
C3DP print simulation using 6 robots 
 

 
Figure 16. Snapshots of multi-robot printing at different time 

stamps. The small dashed boxes represent chunks that are printed 
during the print sequence and the larger rectangular shows the 
outline of the entire part. 
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Users can choose the most appropriate strategy based on 
parts’ geometries and their preferences. The scheduler takes 
the dependencies between the chunks, which is generated 
during the chunking process, to generate print schedules. The 
scheduler also automatically assigns chunks based on the 
number of available robots. The current C3DP system 
adopted a more robust slicer, called Cura, and we develop a 
feeder system to adapt it to the C3DP environment. The same 
feeder adds pertinent information that includes but not limited 
to mounting location for a printer, “WAIT” and “NOTIFY” 
command to enforce the print schedule, etc. The simulator 
generates an amination based on the generated G-code. 

The hardware includes a new SCARA printer and a 
separate mobile platform for printer transportation. Also, a 
new modular floor tile is developed that serves as a power 
source for the SCARA printer and provides positional 
information to the mobile platform. Finally, to validate the 
system, two case studies are conducted: a rectangular bar and 
a Razorback cutout, where all the five components of the 
software system are tested and verified. The major 
contributions of this study are in three aspects:  
1. This is the first time a fully integrated and functional 

C3DP platform is presented, which makes the promise of 

autonomous manufacturing using multiple mobile robots for 
manufacturing more tangible.  

2. We developed new chunking strategies that can be used to 
subdivide a part into smaller chunks and utilizes multiple 
mobile robots to print them cooperatively.  

3. We successfully adapted a conventional slicer into the C3DP 
environment. 
The demonstration presented in this paper provides a 

blueprint for how the swarm manufacturing can move forward. 
Although the paper mainly focuses on 3D printing, the application 
of the approach can easily be expanded to other manufacturing 
approaches such as machining, welding, laser cutting. Moreover, 
heterogeneous tasks can be realized by our system using a swarm 
of heterogeneous robots equipped with different manufacturing 
capabilities. Such an approach has the potential to revolutionize 
the manufacturing industry and propel it to the next level required 
for sustainability. The actual implementation of C3DP using the 
hardware platform is underway and will be reported soon in our 
future studies. 
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