
 1 ©2020 by ASME

Proceedings of the ASME 2020

International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference

IDETC/CIE2020
August 16-19, 2020, St. Louis, MO, USA

IDETC2020-22711

ARCHITECTING THE COOPERATIVE 3D PRINTING SYSTEM

Laxmi Poudel, Lucas Galvan Marques, Robert Austin Williams, Zachary Hyden, Pablo Guerra, Oliver

Luke Fowler, Stephen Joe Moquin, Zhenghui Sha1, Wenchao Zhou1

Department of Mechanical Engineering
University of Arkansas, Fayetteville, AR 72701, USA

ABSTRACT

Cooperative 3D printing (C3DP) is a novel approach to
additive manufacturing, where multiple mobile 3D printing
robots work together cooperatively to print the desired part.
At the core of C3DP lies the chunk-based printing strategy.
This strategy splits the desired part into smaller chunks, and
then the chunks are assigned and scheduled to be printed by
individual printing robots. In our previous work, we
presented various hardware and software components of
C3DP, such as mobile 3D printers, chunk-based slicing,
scheduling, and simulation. In this study, we present a fully
integrated and functional C3DP platform with all necessary
components, including chunker, slicer, scheduler, printing
robots, build floor, and outline how they work in unison from
a system-level perspective. To realize C3DP, new
developments of both hardware and software are presented,
including new chunking approaches, scalable scheduler for
multiple robots, SCARA-based printing robots, a mobile
platform for transporting printing robots, modular floor tiles,
and a charging station for the mobile platform. Finally, we
demonstrate the capability of the system using two case
studies. In these demonstrations, a CAD model of a part is fed
to the chunker, divided into smaller chunks, passed to the
scheduler, and assigned and scheduled to be printed by the
scheduler with a given number of robots. The slicer generates
G-code for each of the chunks and combines G-code into one
file for each robot. The simulator then uses the G-code
generated by the slicer to generate animations for
visualization purposes.

Keywords: Cooperative 3D printing, Swarm 3D
Printing, Chunking, Multi-robot 3D printing

1 Corresponding authors: zsha@uark.edu or zhouw@uark.edu
2 The demonstration of the cooperative 3D printing method using two robots: https://www.youtube.com/watch?v=Ruw145U0Lpc

1. INTRODUCTION
While 3D printing has been making steady progress with

increasing printing capability and decreasing cost, its further
adoption has been limited by its lack of scalability in terms of both
printing size and speed [1]. Researchers and academics have
proposed different approaches to overcome these issues. Most of
the efforts focus on increasing the size of the 3D printer itself, such
as BAAM [2] and the large 3D printing system from the
University of Maine [3]. This approach faces inherent challenges
as the increase of printer size leads to a nonlinear increase of the
printer cost, poses higher requirements of the accuracy of the
motion systems (e.g., it is challenging to maintain a variation of
less than 100 um in Z movement while the printhead moves across
several meters in XY direction), and reduces the printing
resolution. Some other approaches employ multiple printing
extruders simultaneously to shorten the print time, such as the
Autodesk’s project Escher [4, 5]. Although this approach can
speed up the process, the major limitation still rests in the
scalability because there is a limit on the number of nozzles that
can fit within the printer frame, which has since been discontinued
by Autodesk.

Cooperative 3D printing is a novel approach to 3D printing
that utilizes multiple mobile 3D printing robots to print a
largescale part. In C3DP, a part is first divided into smaller chunks
using a sloped-based chunking strategy and these chunks are
assigned to individual robots for printing. C3DP does not require
any post-processing, such as gluing the chunks, surface finishing,
and etcetera2. Once the chunks are assigned, multiple robots will
work together to print the part in less time compared to
conventional 3D printers. Since printing is not constrained by a
“box”, C3DP can theoretically print parts as large as the factory
floor size allows. Moreover, since printing is kept local and the

https://www.youtube.com/watch?v=Ruw145U0Lpc

 2 ©2020 by ASME

nozzle size is regular, the print quality of C3DP can be as
good as conventional desktop 3D printers.

In our previous studies, we have established experimental
and theoretical foundations on which C3DP can be
implemented. In terms of software, we have developed a
chunk-based slicer and the impact of chunk-based printing on
the mechanical strength of parts [6] [7]. While there exists
many slicing software such a Cura [8], Slic3r [9], Skeinforge
[10], they lack slicing capabilities to support multi-robot
C3DP. Also, we have developed a scalable scheduling
strategy for printing with multiple robots [11]. In that study, a
framework is introduced to validate newly generated print
schedules against geometric constraints for collision-free
print. The valid schedules, described as a Directed
Dependency Tree (DDT), can be then evaluated for
estimating the total print time [12]. In terms of hardware, we
demonstrated the first generation of mobile printer design in
[13], consisting of four components: the mobile platform, the
Z-stage, the main circuit, and the wireless communication
system. This design was important in demonstrating the
viability of mobile printing but was prone to positioning
errors as the printer moved back and forth during printing.
Thus, to avoid positioning errors and to make the entire
hardware more robust, we have made a significant
improvement to the previous design. The details of the new
hardware design are presented in Section 3.

This paper presents the overall architecture of the C3DP
system and our recent progress of integrating all the software
and hardware development achieved so far, as shown in

Figure 1. In this paper, we present how these components
communicate with each other and what role each component plays
as a part of the entire system. The main contributions of the study
are summarized below:
1. The integration of different components of software and

hardware that form a system for realizing cooperative 3D
printing.

2. An enhanced C3DP software system that offers more
chunking options, better slicing operations based on the open-
source slicing engine, and a more robust simulator that can
demonstrate new chunking strategies.

3. An upgraded C3DP hardware system which includes the new
SCARA-arm printer as well as the build floor.
The paper is organized as follows. In Section 2, the

architecture of cooperative 3D printing is presented focusing on
the software components and how they are inter-connected. The
new generation of the hardware platform is presented in Section
3. In Section 4, an explanation of the system (both hardware and
the software) is provided along with the validation and
implementation of the system. This includes validation using
simulation and actual implementation of C3DP using a case study.
Finally, Section 5 includes the conclusion and future works about
the project.

2. ARCHITECTURE OF THE C3DP SIMULATION

To realize C3DP, an integrated software system is required
that can incorporate the process of chunking, scheduling, slicing,
simulating, and printing all in one. However, there is no such
system that has all these features for multi-robot C3DP. To

Figure 1. The Physical system architecture of Cooperative 3D printing system

 3 ©2020 by ASME

address this gap, we have built a system that has integrated all
these capabilities, and its architecture is presented in Figure
2. Once a user uploads a CAD model of the desired object, the
part is first chunked by the chunker using the chunking
parameters specified by the user. Then, the scheduler
generates a print schedule of how the chunks will be printed
in sequence and in parallel by considering chunk
dependencies as well as the available resources, such as the
number of robots available. Chunk assignment is done along
with the print schedule in this step. After that, the slicer
generates G-code for each of these chunks, and the simulator
uses the generated G-code to animate the print schedule. In
the following sections, we describe the methods and
algorithms that enable each of these individual subsystems.

2.1 Chunker

The chunker takes the CAD model of the desired part as
input and splits the CAD model into smaller chunks based on
the parameters set by the user. In the current version of the
chunker, the sloped-surface chunking strategy [7] is the only
chunking strategy available, though, other chunking strategies
such as striping method, concurrent printing, etc., are
available in other collaborative printing platforms. Striping
method follows a similar approach to the printing method
adopted by Autodesk for project Escher [4] where each
printhead is responsible for printing certain portions of the
individual layer. The length of the path allocated to each
extruder changes every layer such that the location of the gap
(i.e., the spot at which one extruder stops and another begins)
changes at every layer. Similarly, concurrent printing [5]
assigns each G-code line to different printheads and checks
for what lines can be printed together with the available
number of printheads without colliding with each other.
However, further studies of these chunking strategies need to
be done, to ensure the mechanical properties are comparable

to that of the traditional printed part, before implementing those
chunking strategies in the C3DP system.

Once the desired object is uploaded to the system, the user
can see an interface that might look like Figure 3. This UI helps
the user choose different options for chunking parameters. The
yellow rectangular bar highlights different parameters that the
user can change. This includes: 1) build depth (the depth of chunk
in the y-direction), 2) slope angle for chunking the part, 3)
printhead depth of the robot (how far can the robot reach), 4)
number of available robots. If the user does not want to specify
the number of robots, the system can suggest the optimal number
of robots based on the dimension of the part and the dimension of
the robot. Similarly, the system also checks the value inputted by
the user to make sure no constraints are violated. An example of
such constraint could be the maximum value set for build depth or

Figure 2: Process flow in Cooperative 3D printing from a high
level perspective

Figure 3: The custom-designed UI extesnsion in Blender allows
user to choose different chunking parameters as well as the slicing

Zoomed in
View

 4 ©2020 by ASME

printhead depth that cannot be exceeded to avoid unrealistic
scenarios. In such a case, the system outputs error to let the
user know that the constraint has been violated and the value
needs to be altered. A user can also pick a different type of
sloped-surface chunking strategy to chunk the object. More
detailed information regarding selecting chunking parameters
is presented in our previous study [6], which includes slope
determination, chunking plane determination, etc. An
enhanced version of the chunker in this paper includes
chunking capability for multiple robots.

In this study, we present three additional chunking
options. Each of the chunking options has its benefits for a
specific type of situation. Below are some of the guidelines
for choosing a proper chunking option based on resource
availability, space availability, and the dimension of the
desired part.

1. If the user only has two robots available for printing,
previously developed two-robot sloped surface strategy is to
be used.

2. If the user has more than two printing robots, the printing
space is unlimited and, the dimension of the desired part is
large in only two out of three dimensions, then divide and
conquer strategy would provide the best outcome.

3. On the other hand, if the user faces the scenario 2, but the part
is large in all three-dimension, vertical chunking with divide
and conquer would provide the best outcome.

4. If the user has limited printing space, where the printer can
only be placed on one side of the part, such a scenario would
call for the same side chunking. For example, if the part starts
at 0 and expands only in the positive x-direction and no robots
can be placed beyond 0. In such situations, same-side
chunking must be used.
Having outlined chunking options, we now describe what

each of these different chunking options entails.

2.1.1 Divide and Conquer

This chunking option extends the two-robot chunking to
multi-robot chunking, where the chunker first centers the object
and then splits the object into multiple chunks along one direction
with the sloped-surface using a bisecting algorithm as shown in
Figure 4. In this strategy, the first phase of chunking takes place
along the axis specified by the user. If the user does not specify
the axis, the chunking is done along the default y-axis. If the
second phase of chunking is required, which depends on the
number of available robots and dimensions of the resulting chunk
row, it takes place along the axis that is different from the axis of
first phase chunking. The center chunk dimension or 𝑐𝑐𝑐𝑐𝑐𝑐 depends
on the reach of the robot and the slope angle chosen by the user.
The dimension is calculated using the slope angle of the chunk
and the reach of the printing robot as presented in Equation (1).
Chunking planes are created on each side of the centerline such
that they are 𝑐𝑐𝑐𝑐𝑐𝑐 apart from the center chunk. The chunks are
created by bisecting the part at these chunking
planes. This process is iterative and takes place on both sides
until the entire part is chunked as shown in Figure 5.

𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑅𝑅 + tan𝜃𝜃 × 𝑧𝑧ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 , (1)

where 𝑐𝑐𝑐𝑐𝑐𝑐 is the center chunk dimension, 𝑅𝑅 is the maximum
reach of the robot, 𝜃𝜃 is the slope angle and 𝑧𝑧ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 is the height of
part in the z-direction.

The resulting number of chunks depends on the number of
available robots and the desired size of the chunk and the size of
the part itself. The width of the chunk must be large enough so
that the hardware of two printers can fit while two robots are
printing the chunks that are on either side of the chunk. Thus, the
width of the chunk is

𝐶𝐶ℎ𝑢𝑢𝑢𝑢𝑢𝑢_𝑤𝑤𝑤𝑤𝑐𝑐𝑤𝑤ℎ = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑊𝑊𝑟𝑟 , 𝑊𝑊𝑝𝑝

𝑛𝑛𝑛𝑛𝑛𝑛_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟
), (2)

Figure 4: The flowchart demonstrating the divide and conquer
chunking method

 5 ©2020 by ASME

where 𝑊𝑊𝑟𝑟 is twice the width of the hardware of the printing
robot, 𝑊𝑊𝑝𝑝 is the width of the part along a specified direction
and, 𝑢𝑢𝑢𝑢𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤𝑟𝑟 is the number of available robots for
printing. Once the width of the chunk and number of chunks
are determined, the chunking plane is created by iteratively
spacing 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢_𝑤𝑤𝑤𝑤𝑐𝑐𝑤𝑤ℎ from the centerline of the chunk row.
The angle of the plane is alternated at every chunking plane
as shown in Figure 5 (using a dotted arrow) i.e., if a chunking
plane is created at 45° first, the next chunking plane is created
at 135° and so forth. Doing so allows us to create chunks with
alternating slopes, which allow multiple robots to print
simultaneously in each row

2.1.2 Same side chunking

Same side chunking applies to scenarios where the
printing arms cannot be mounted on either side of the center
row chunk. The same-side chunking uses a similar chunking
method as described in the divide and conquer approach. The
only difference lies in the location of origin chunk. The origin
chunk is created at the center of the part along the axis in
divide and conquer whereas, it is created at the end of the part
in the same side chunking. Once the origin chunk is created,
the chunking plane is iteratively shifted in one direction rather
than two directions. The second phase of chunking takes place
in the same manner as the divide and conquer approach.
Figure 6 presents the origin chunk in the same side chunking

and the iteration of the chunking plane along one direction until
the end of the part is reached.

2.1.3 Vertical chunking

The above two chunking options allow us to chunk a part in
the XY plane. But if the desired part is taller than the printer, the
aforementioned chunking strategies would not sufficiently handle
such printing scenarios. In such situations, we might need to
chunk the part in the vertical direction as well. Allowing such
chunking in vertical direction gives the user the option to divide a
part that is much taller than the printing robot and print one layer
at a time. To reach the subsequent layers that are taller than the
printer, either the platform of the robot has to be raised or some
sort of spacer can be designed that can hold the printing robot
stable while printing. The logistics for such options are to be
developed in the future.

In vertical chunking, once the object is uploaded, if the object
is taller than 300 𝑚𝑚𝑚𝑚, the chunker automatically chunks the part
in the vertical direction. Though this value is based on the largest
z-height the current generation of the robots can reach, the user
will have the option to change this default value as long as the
inputted value does not exceed the maximum reach of the robot’s
reach i.e., they can use smaller value but nothing larger than
300𝑚𝑚𝑚𝑚 . Based on the input value for the layer height, the
software will automatically calculate the number of vertical layers
using Equation (3). Each of the layers can be further divided into
smaller chunks based on the input and the machine parameters
using either of the chunking strategies outlined previously. As the
chunks are created, the dependencies between chunks are
generated. That means the printer should not print a layer above
without printing the bottom layer first. The vertical chunking is
demonstrated in Figure 7, where an architecture building of

Figure 5: Chunking process of a rectangular bar. First, the chunking
takes place along direction (x-direction). Center chunk is created
first and moves out in both direction in iterative manner to split the
part further until the end of the part. Second phase chunking, shown
in bottom, (only center shown for clarity). First, a center chunk is
created. The row is then iteratively chunked along the longitudinal
direction until the end of the chunk row is reached

Figure 6: Demonstration of how same-side chunking takes place in
Chunker (The space between the chunks is shown for demonstration
purpose only. No such space exists in reality)

Figure 7: Demonstration of vertical chunking in a tall cathedral that
requires chunking in z-direction. The height of the entire object is h,
which is divided into total of four vertical layers based on the layer
height l

 6 ©2020 by ASME

height ℎ, is divided into multiple vertical layers of height, 𝑙𝑙 as
defined by the user.

𝑁𝑁𝑢𝑢𝑚𝑚. 𝑟𝑟𝑜𝑜 𝑣𝑣𝑣𝑣𝑟𝑟𝑤𝑤𝑤𝑤𝑐𝑐𝑚𝑚𝑙𝑙 𝑙𝑙𝑚𝑚𝑙𝑙𝑣𝑣𝑟𝑟𝑟𝑟 = ℎ

𝑙𝑙
 (3)

2.2 Scheduler

Once the chunks are generated, the chunks are to be
assigned to individual robots and scheduled for printing based
on their dependency relations. The dependency relation is
generated since adjacent chunks share the same sloped
surfaces and the chunks with overhanging slope cannot be
printed before their adjacent chunks that support the
overhanging slopes, as shown in Figure 8.

The detail of how the chunk assignment takes place and
how the dependent relationship is used for scheduling is
presented in our previous study [6]. In this section, we discuss
how the theoretical information such as scheduling strategy,
presented in the previous paper is encoded into the software
to achieve collision-free printing. For two-robot printing, a
simple strategy is adopted where the origin chunk is assigned

along with all the chunks on the left side to one robot and
remaining chunks on the right side to the second robot [6]. As the
chunking becomes more complicated, the complexity of the chunk
assignment increases. The approach for the chunk assignment is
presented in Figure 9. For simplification, all the robots are
divided into two groups randomly, then the assignment approach
used in the two-robot printing scenario is implemented. After that,
the chunks in each group are assigned among the robots in their
respective groups. If 𝐶𝐶𝑐𝑐 represents center row chunks (example:
chunk1 in Figure 8), 𝐶𝐶𝐿𝐿 represents left row chunks (example:
chunk3 in Figure 8) and 𝐶𝐶𝑅𝑅 right row chunks (example: chunk2
in Figure 8) and the total available robots are randomly divided
into two groups, 𝐺𝐺𝐴𝐴, and 𝐺𝐺𝐵𝐵. Then, all the chunks in 𝐶𝐶𝑐𝑐 and 𝐶𝐶𝐿𝐿 and
assigned to 𝐺𝐺𝐴𝐴 and rest to 𝐺𝐺𝐵𝐵. The assignment of chunks to a
group is done based on human heuristics and might not be optimal.

𝐶𝐶𝑐𝑐 = � 𝐶𝐶𝑣𝑣𝑢𝑢𝑤𝑤𝑣𝑣𝑟𝑟 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢1,𝐶𝐶𝑣𝑣𝑢𝑢𝑤𝑤𝑣𝑣𝑟𝑟 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢2,
𝐶𝐶𝑣𝑣𝑢𝑢𝑤𝑤𝑣𝑣𝑟𝑟 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢3, … . . ,𝐶𝐶𝑣𝑣𝑢𝑢𝑤𝑤𝑣𝑣𝑟𝑟 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢 �

𝐶𝐶𝐿𝐿 = [𝐿𝐿𝑣𝑣𝑜𝑜𝑤𝑤 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢1, 𝐿𝐿𝑣𝑣𝑜𝑜𝑤𝑤 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢 2 … … . 𝐿𝐿𝑣𝑣𝑜𝑜𝑤𝑤 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢]
𝐶𝐶𝑅𝑅 = [𝑅𝑅𝑤𝑤𝑅𝑅ℎ𝑤𝑤 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢1,𝑅𝑅𝑤𝑤𝑅𝑅ℎ𝑤𝑤 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢 2 … … .𝑅𝑅𝑤𝑤𝑅𝑅ℎ𝑤𝑤 𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢]

𝐺𝐺𝐴𝐴 = [𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤 1,𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤3, … … . .𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤 𝑚𝑚 − 1]
𝐺𝐺𝐵𝐵 = [𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤 0,𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤 2, … … . .𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑤𝑤 𝑚𝑚]

𝐺𝐺𝐴𝐴 → {𝐶𝐶𝐶𝐶 ,𝐶𝐶𝐿𝐿} (Group A is assigned to center chunks and left

chunks)
 𝐺𝐺𝐵𝐵 → {𝐶𝐶𝑅𝑅} (Group B is assigned to right chunks)

Once the chunk assignment is completed, a print schedule is
generated based on the chunk dependency following the rules
below:

• The chunks with no dependencies are printed first.
• Once those chunks are printed, the chunks with already

printed chunks as dependencies are chosen for printing.
This process iterates till all the chunks are printed.

2.3 Slicer

In our previous study [6], we developed a simple custom-
designed slicer that could generate toolpaths for all the printing
robots based on the chunk assignment and schedule. To handle
more complicated geometries with higher efficiency and
robustness, we have decided to utilize a professional slicer (e.g.,
open-source slicer CuraEngine is chosen for this paper). However,
none of the professional slicers support the collaboration of
multiple robots. Fundamentally, for two robots to collaborate, they
must be able to align in space and time. The spatial alignment is
enabled by the positioning mechanisms embedded in our
hardware platform as described in Section 3, the temporal
alignment is realized with a pair of custom G-code command:
“WAIT”, “NOTIFY”, which are used by robots to tell each other
via wireless communication when they should pause and when
they may proceed to execute the next line of G-code. A “WAIT”
command is inserted at the beginning of any chunk that has chunk

Figure 8: Adjacent chunks with sloped surface. Chunk 1 has
to be printed prior to printing chunk 2 and chunk 3 otherwise
the print nozzle of the printer will collide with the overhang of
chunk 2 and chunk 3

Figure 9 Chunk Assignment of the robots in scaled-chunker method

 7 ©2020 by ASME

dependencies, i.e., another chunk has to be printed before
printing the current chunk. A “NOTIFY” command, on the
other hand, is added at the end of the G-code of the chunk on
which another chunk depends. This allows the robot to notify
another robot that the dependency has been satisfied and it can
go ahead with printing the chunk.

To utilize a professional slicer for cooperative 3D
printing, we developed a Feeder system. The Feeder system
imports individual STL models of the chunks output by
Chunker one at a time to generate the G-code of each chunk
using the professional slicer based on the slicer settings, such
as infill density, print speed, layer height, etc. Once the G-
code files for all the chunks assigned to an individual robot
are generated, additional transitional information, such as
telling robots move from one chunk to next chunk, or
“WAIT” until another robot finishes printing certain chunk,
or “NOTIFY” another robot and proceed with executing their
next G-code line, are added between the G-code files of
chunks based on the schedule output by the scheduler that is
then integrated into one G-code file and sent to the robot. The
entire process is demonstrated in Figure 10.

2.4 Simulator
The simulator presents a visualization of the G-code

obtained after slicing. It animates the printing process and
provides a visual aid of how the printing unfolds and how the
final product looks. In our previous work, we developed a
simulator based on a Blender environment to visualize such
animation. The same simulator is used to provide a
demonstration in this study as well. To generate visualization,
frames are generated at the rate of 30 frames per second, i.e.,
one frame represents 1/30 of a second. Users can choose to

change the number of frames per second in UI. Increasing the
frame per second (fps) would result in better animation resolution
but would require more computational resources and decreasing
the fps would result in coarser animation but would be
computationally extensive. Thus, the user can choose to either
increase or decrease fps based on their desired outcome. A more
detailed explanation of how the simulator works can be found in
[6].

3. HARDWARE PLATFORM DEVELOPMENT

The hardware platform has gone through major updates since
the previously presented first generation [13]. This current
hardware platform consists of four main components:
1. An immobile SCARA 3D printer for printing.
2. A mobile platform that transports the SCARA printer from

one location to another after the completion of a chunk
printing.

3. A modularized floor tile system that assists the navigation of
the mobile platform, allows SCARA printers to mount, and
provides power supply and a charging station for the mobile
platform.

4. A wireless network that coordinates the wireless
communication between SCARA printers and mobile
platforms.

In a typical printing process, the assembled G-code files from
the Feeder system are sent to their assigned SCARA printers
respectively, which will execute their assigned G-code file line by
line. To begin printing, a custom G-code command “MOVE” calls
the mobile platform to transport the SCARA printer to the print
location on the floor. Once the mobile platform reaches the
location of the SCARA printer, it notifies the printer to mount onto
the platform and unmount from the floor tile. Once mounting and
unmounting is complete, the platform carrying the printer
maneuvers to its destination. While the printer is mounted onto the
mobile platform, it is powered using the battery pack installed on
the mobile platform. Once the destination is reached, the platform
notifies the printer to start mounting into the floor and unmount
from the mobile platform. After this, the SCARA printer will start
to execute the rest of the G-code, until it hits a “WAIT” command.
The “WAIT” command is inserted at the beginning of the chunk
to notify the printer that to print the current chunk, its dependency
has to be printed first. Once the dependency chunk is printed by
another SCARA printer, it sends another custom G-code
command “NOTIFY” to the printer that has been waiting for the
chunk dependency to be printed. This notifies the SCARA printer
to start printing the next chunk. To do so, the “MOVE” command
is used again to call the mobile platform to the current location so
that it can be transported to the mount location for next chunk
printing. This process continues until all the chunks are printed.
To simplify the matter, currently, only one SCARA printer can
request the mobile platform at a time. If multiple printers request
transportation, first in first out approach is used to pick the printer.

Figure 10. Once the part is uploaded and chunked, the feeder
subsystem feeds one chunk at a time and send it to the slicer. Once
the G-code is created, the other relevant information is added to the
G-code. The G-code of all chunks of a robot are consolidated into
one single file and used for visualization

 8 ©2020 by ASME

3.1 SCARA Printer
With the wide adoption of robotic arms in modern

factories, we developed a robotic arm for C3DP for an easier
transition in the future. In this study, we developed a SCARA
(Selective Compliance Assembly Robot Arm) 3D printer for
filament extrusion as shown in Figure 11.

The main functionalities of the SCARA printer are:
1. Print the assigned chunks: The SCARA printer is

equipped with a single extruder and uses 1.75mm
filament to print assigned chunks. The print
specifications are presented in Table 1. The printer is
equipped with three mounting leads that screw into the
nuts installed in the mounting holes in the floor tile.
While the printer is printing, it is mounted using those
lead screws to prevent any vibration or movement. These
lead screws also work as a connector to supply power to
the printer from the power source installed in the floor
tile. Such a locking mechanism allows the printer to
minimize vibration as well as tipping over, which is a
concern especially when the arm is fully extended.

2. Communication with the mobile platform: The SCARA
printer is immobile but communicates with the mobile
platform wirelessly if it needs to move from one location
to another. The printers have two additional mounting
pegs that are used to mount onto the mobile platform for
secure transportation. These mounts also act as
connectors to supply power from the battery pack of the
mobile platform to printer during transportation. This
along with the power source installed in the floor tile
source ensures that the SCARA printers always have at
least one source of power.
The maximum reach of the SCARA is much larger than

the previous generation of printing robots. It can reach from
50 𝑚𝑚𝑚𝑚 to 350 𝑚𝑚𝑚𝑚, i.e., it cannot print anything that is closer
than 50 𝑚𝑚𝑚𝑚 to its mounting location and can reach 350 𝑚𝑚𝑚𝑚
when it is fully extended. Currently, the auto-calibration
system is being worked on using an auto bed leveling sensor.

This calibration system will use a four-point calibration system,
one for each corner of the build plate.

Table 1. Technical parameters of the new 3D printing SCARA printer

XY reach 50mm-350mm

Max Z-height 300 mm

Filament Feed Bowden, 1.75mm
Nozzle Single extruder

Maximum
Temperature

295° C

Hot End Single extruder

X/Y Motion 2 axis SCARA
Z motion 300 mm guide motion driven by a

lead screw
Layer resolution 10 µm

Print Speed 50 mm/s
Print repeatability 5 µm

Power Input build floor, battery-pack via a mobile
platform

Power consumption 78.62 W
Software compatible with open source software

Connectivity Wireless

3.2 Mobile Platform

Because the printing robots spend most of the time printing
and little time moving between chunks, we separate the mobile
platform from the SCARA printer. This new design (see Figure
11(b)), on one hand, enhances the stability of the SCARA printers
in printing, and on the other hand, reduces the overall cost by
allowing multiple SCARA printers to share mobile platforms.
The main functionalities of the mobile platform are:
1. Navigate on the floor: The mobile platform is equipped with

mecanum wheels due to its omnidirectional property for
maneuverability. To maneuver from one location to another
accurately, the platform is also equipped with infrared
sensors. These sensors are used to align the mobile platform
with the navigation lines on the floor. In addition to the
sensors, it is also equipped with a camera that can utilize
computer vision to verify the positional accuracy. The camera
read the barcode on the floor tile to get accurate positional
information and adds a layer of position verification. The
barcode ensures that the platform moves to the desired
location, instead of a different location by mistake. If that
happens, there will be a discrepancy between the the
positional information provided by the barcode and the actual
destination that is assigned to the mobile platform, raising a
warning flag. Thus, this information in conjunction with the
positional movement that is tracked by the encoder in the

Figure 11. (a) The updated 3D printer, equipped with scara-arm to
increase the reach of the robot and mitigating the issues of the
previous generation of mobile robot (b) The new mobile platform
that transports scara arm from one print location to another

 9 ©2020 by ASME

motors of the mobile platform is used to rectify any
positional discrepancies that might occur due to some
unforeseen mishaps.

2. Carry the SCARA printer and power supply: The mobile
platform is responsible for transporting the printing arm
from one location to another. While doing so it needs to
ensure that the arm is safely transported. To do that, it is
equipped with two mounting pegs with holes in the center
on the top. Once the SCARA printer’s location is
reached, the printer is notified wirelessly, and the printer
starts lowering the leads to mounting into the holes of the
platform. These holes also act as a female connector that
connects with the male connector of the printer to supply
power to the printer so that the printer can mount and
unmount while it is not in connection with the floor tile.
Once the printer is securely mounted, it unmounts from
the floor tile and is transported to its next location. Once
the location is reached, the above-described process takes

place in reverse order until the printer is securely mounted
into the floor.

3. Autonomous charging: The mobile platform is equipped with
a rechargeable battery pack that has a life cycle of 2 hours of
continuous use and idle time of 6 hours. But if it is not being
used for more than 5 minutes, it automatically retreats to a
charging station located in one of the corners on the build
floor.
Once a printing arm receives G-code instruction, it sends a

signal to the mobile platform. The mobile platform will move to
the location where the printing arm is at currently and locks into
the arm. At this point, the arm disengages from the build floor and
the mobile platform carries the printing arm to the next print
location as instructed in the G-code. Once it reaches the new
location, the arm starts engaging with the build floor using the
mounting holes and the mobile platform unlocks itself from the
arm and moves back either to its charging location or the location
of another print arm. Table 2 provides the specifications of the
mobile platform.

Table 2. Specifications of the mobile platform

Wheels Mecanum wheels, omnidirectional
Travel Speed 60 mm/s
Navigation Infrared sensors, camera
Communication Wireless communication
Power Source Battery pack, charging station
Battery life 2 hours use, 6 hours idle
Power Consumption 78 Watts
Product dimension 25 cm×33 cm×9 cm

3.3 Floor Tile

A modularized floor tile system is developed to provide a base
for the C3DP platform. It consists of modularized floor tiles and
connectors between tiles for scaling to a size as large as the factory
size. Each floor tile is 600 mm × 600 mm with 4 mounting
locations spaced at 300 mm apart in both X and Y directions, as
illustrated in Figure 12 The modular floor tiles have a slot on each
side which is used to align two-floor tiles together. A connector
that sits flush in this slot can be used to attach floor tiles with high
accuracy. The floor tile system provides the following
functionalities:
1. Mounting and powering the SCARA 3D printers: Each of the

four mounting locations consists of five mounting holes. Nuts
are installed inside these mounting holes so that the lead
screws in the SCARA arm can mount into them. To auto-
correct the slight misalignment sometimes due to tolerances
stacking, each mounting hole has countersink on the top
surface. Besides, the floor tile system is equipped with
electrified stainless-steel conductive strips of alternating
polarity on the bottom side of the floor tile. Once the leads of
the SCARA printer mount into the mounting holes, they come

Figure 12: (a) Floor tile with build plate. (b) Build plate

 10 ©2020 by ASME

in contact with the conductive strips, which transfers
power to the printing arm. A rectifier circuit is used to
sort the polarity of the current to ensure that current flows
are in the correct direction regardless of the polarity of
active strips. This powers the SCARA printer during the
entirety of the printing and allows us to avoid the use of
wires for power.

2. Assist navigation of mobile platform: The floor tile is
equipped with navigation lines that are of black colored
markers to contrast with the floor tile. These navigation
lines are followed by the infrared sensors to maneuver
from one mount location to another. In addition to having
navigation guides, the floor tile also includes an
embedded barcode system to provide positional
information. This barcode includes positional
information such as to what row and column do it belong.
This is used by the camera installed on the mobile
platform to get positional awareness.

3. Provide a charging station for the mobile platform: The
floor tile also is equipped with a charging station that is
mounted onto the edge of the tile. This charging station
resembles a cart storage area outside a supermarket,
where a mobile platform can park itself into. Once the
platform is aligned, a connection is formed between the
charging station and the platform initiating the charging
of the platform.

4. Provide a base to mount build plate: Build plate is a 300
𝑚𝑚𝑚𝑚 × 300 𝑚𝑚𝑚𝑚 modular square block where a part is
printed on. It is mounted on the build floor with a base
that has four conical pegs resembling countersink tools.
Having such pegs helps align the build plates at the
correct location and also prevents the movement of build
plate in the XY plane.

3.4 Wireless Network
The communication between the different components of the

hardware takes place via a wireless communication network. Both
the SCARA printer and the mobile platform are equipped with a
wireless communicator. Both of these components are connected
to a local server via the wireless network. The local server collects
all the pertinent information required for planning and
coordination from different components of the system to
implement cooperative 3D printing. This local server takes
information from the software components such as G-code
information for each SCARA printer, which is then transmitted to
the individual arms wirelessly. This flow of information between
the different components of the C3DP is presented in Figure 13.

4. VALIDATION OF THE SYSTEM

To validate and demonstrate the capability of the developed
C3DP system, we have conducted two case studies with two
objects. The first object has relatively simpler geometry but is
largely aiming to demonstrate the system’s scalability. The second
object is to demonstrate the capability of the software in handling
more complicated geometries.

Object I: A bar with honeycomb design

The first print object is a rectangular bar with a honeycomb
internal structure. Its dimension is 844𝑚𝑚𝑚𝑚 ×90𝑚𝑚𝑚𝑚 ×12𝑚𝑚𝑚𝑚 (see
Figure 14). The chunking parameters used are presented in Table
3.

Table 3 important chunking and slicing information used for first
chunking and then slicing the rectangular bar

Parameters Value (units)

Number of robots 6
Slope Angle 70 degrees
Build depth 35 mm
Printhead depth 30 mm
Chunking Option Divide and conquer

Figure 13. The information flow in Cooperative 3D printing system
between different components

Figure 14. The 3D model of rectangular bar with honeycomb
design along with specified dimension used for C3DP print
simulation using 6 robots

 11 ©2020 by ASME

 In total 18 chunks are obtained from chunking, and the
chunks are shown in Figure 15 (a). The Chunker also outputs
the chunk dependency in JSON format, which is then used to
generate a print schedule with a chunk assignment. Both print
schedules and chunk assignments are outputted in JSON file
by Scheduler. The slicer then generates G-code for one chunk
at a time, adds other pertinent information related to the
position and dependency. All the chunks assigned to the same
robot are processed together and a single G-code file is
outputted. This G-code file contains printing commands as
well as “WAIT” and “NOTIFY” command to implement
dependency between chunks. Figure 15 (b) shows the
different views of the part obtained after slicing. The different
color of the chunks does not represent the actual color of the
chunks to be printed but is used to differentiate a chunk from
adjacent chunks.

Once the G-code files for all the robots are created, the
printing is simulated. The Simulator visualizes the print
sequence and the entire print process. The screenshots of the
simulation at different time steps are presented in Figure 16.
First, the chunks that do not have any dependencies are
printed (three chunks in the center row as shown in Figure
16(a)). Once those are complete, the same robots move over
to print the gap chunks as shown in Figure 16(b). After
finishing the center row, half the robot moves to one side of
the row and the other half moves to another half and starts
working on the chunks as shown in Figure 16(c) and (d) until
the part is completed.

Object II: A Razorback Cutout

The second object is a Razorback cutout shown in Figure 17.
It has a dimension of 610𝑚𝑚𝑚𝑚 × 267𝑚𝑚𝑚𝑚 × 52𝑚𝑚𝑚𝑚. The chunking
and slicing parameter used in this case study in listed Table 4.
The output of the Chunker for the Razorback cutout is presented
in Figure 18. The chunking parameters resulted in 24 chunks.
Once the chunking is complete, the schedule will be generated
based on the chunk dependencies. The Slicer generates a G-code
of different chunks to be printed individual robot, one at a time
and outputs the G-code files. The output of slicer is presented in
Figure 18 (b), and the snapshots of the simulation are presented
in Figure 19.

Table 4 important chunking and slicing information used for first
chunking and then slicing the Razorback cutout

Parameters Value (units)
Number of robots 4
Slope Angle 70(degrees)
Build depth 70 mm
Printhead depth 55 mm
Chunking Option Divide and conquer

5. CONCLUSION AND FUTURE WORK

In this paper, we presented an integrated C3DP platform with
all the necessary software and hardware components. The
software component includes five critical subsystems. A chunker
divides a part into small chunks with different options, such as
divide and conquer, same side chunking, and vertical chunking.

Figure 15. The output of the Chunker and Slicer (a) Output of the
Chunker containing 18 chunks (top view (bottom), Isometric view
(top)) (b) Output of the Slicer (top view, side view, lateral view

Figure 18. Chunking output and slicing output for

Figure 17. The Razorback cutout with specified dimension used for
C3DP print simulation using 6 robots

Figure 16. Snapshots of multi-robot printing at different time

stamps. The small dashed boxes represent chunks that are printed
during the print sequence and the larger rectangular shows the
outline of the entire part.

 12 ©2020 by ASME

Users can choose the most appropriate strategy based on
parts’ geometries and their preferences. The scheduler takes
the dependencies between the chunks, which is generated
during the chunking process, to generate print schedules. The
scheduler also automatically assigns chunks based on the
number of available robots. The current C3DP system
adopted a more robust slicer, called Cura, and we develop a
feeder system to adapt it to the C3DP environment. The same
feeder adds pertinent information that includes but not limited
to mounting location for a printer, “WAIT” and “NOTIFY”
command to enforce the print schedule, etc. The simulator
generates an amination based on the generated G-code.

The hardware includes a new SCARA printer and a
separate mobile platform for printer transportation. Also, a
new modular floor tile is developed that serves as a power
source for the SCARA printer and provides positional
information to the mobile platform. Finally, to validate the
system, two case studies are conducted: a rectangular bar and
a Razorback cutout, where all the five components of the
software system are tested and verified. The major
contributions of this study are in three aspects:
1. This is the first time a fully integrated and functional

C3DP platform is presented, which makes the promise of

autonomous manufacturing using multiple mobile robots for
manufacturing more tangible.

2. We developed new chunking strategies that can be used to
subdivide a part into smaller chunks and utilizes multiple
mobile robots to print them cooperatively.

3. We successfully adapted a conventional slicer into the C3DP
environment.
The demonstration presented in this paper provides a

blueprint for how the swarm manufacturing can move forward.
Although the paper mainly focuses on 3D printing, the application
of the approach can easily be expanded to other manufacturing
approaches such as machining, welding, laser cutting. Moreover,
heterogeneous tasks can be realized by our system using a swarm
of heterogeneous robots equipped with different manufacturing
capabilities. Such an approach has the potential to revolutionize
the manufacturing industry and propel it to the next level required
for sustainability. The actual implementation of C3DP using the
hardware platform is underway and will be reported soon in our
future studies.

6. ACKNOWLEDGMENT

This project is supported by the National Science Foundation
(NSF) Division of IIP through Grant #1914249 and the
commercialization fund through The Office of Vice Chancellor
for Economic Development from the University of Arkansas.

REFERENCES
[1] J. Go, S. N. Schiffres, A. G. Stevens, and A. J. Hart, “Rate

limits of additive manufacturing by fused filament
fabrication and guidelines for high-throughput system
design,” Addit. Manuf., vol. 16, pp. 1–11, 2017.

[2] L. J. Love, “Utility of Big Area Additive Manufacturing
(BAAM) For The Rapid Manufacture of Customized
Electric Vehicles.” United States. Dept. of Energy. Office
of Energy Efficiency and Renewable Energy ;,
Washington, D.C., 2015.

[3] D. Kr and V. Artemov, “(12) Patent Application
Publication (10) Pub. No.: US 2012/0184582 A1,” vol. 1,
no. 19, 2012.

[4] Autodesk, Project Escher. 2016.
[5] Y. Jin, H. A. Pierson, and H. Liao, “Toolpath allocation

and scheduling for concurrent fused filament fabrication
with multiple extruders,” IISE Trans., vol. 51, no. 2, pp.
192–208, 2019.

[6] J. McPherson and W. Zhou, “A Chunk-based Slicer for
Cooperative 3D Printing,” From Rapid Prototyp. J., vol.
24, no. 9, pp. 1436–1446, 2018.

[7] L. Poudel, Z. Sha, and W. Zhou, “Mechanical strength of
chunk-based printed parts for cooperative 3D printing,” in
Procedia Manufacturing, 2018, vol. 26, pp. 962–972.

[8] Ultimaker, “Cura 3D printing slicing software,” 2012.
[9] A. Ranellucci, “Reprap/Slic3r and the future of 3D

printing,” Canessa, E., Fonda, C., Zennaro, ed.,“Low-
cost 3D Print. Sci. Educ. Sustain. Dev., pp. 75–82, 2013.

Figure 19: Snapshots of multi-robot print simulation at different time
steps.

 13 ©2020 by ASME

[10] S. Lefebvre and L. N. Grand-Est, “IceSL: A GPU
accelerated CSG modeler and slicer,” in 18th
European Forum on Additive Manufacturing
(AEFA’13), 2013.

[11] L. Poudel, C. Bair, J. McPherson, Z. Sha, and W.
Zhou, “A Heuristic Based Scaling Strategy For
Coperative 3D Printing,” ASME. J. Comput. Inf. Sci.
Eng., 2019.

[12] L. Poudel, Z. Sha, and W. Zhou, “Computational
Design of Scheduling Strategies for Multi-Robot
Cooperative 3D Printing,” Idetc/Cie. Anahiem, CA,
2019.

[13] L. G. Marques, R. A. Williams, and W. Zhou, “A
Mobile 3D Printer for Cooperative 3D Printing.”

	Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
	IDETC2020-22711
	Laxmi Poudel, Lucas Galvan Marques, Robert Austin Williams, Zachary Hyden, Pablo Guerra, Oliver Luke Fowler, Stephen Joe Moquin, Zhenghui Sha0F , Wenchao Zhou1
	ABSTRACT
	1. INTRODUCTION
	2. ARCHITECTURE OF THE C3DP SIMULATION
	2.1 Chunker
	2.1.1 Divide and Conquer
	2.1.2 Same side chunking
	2.1.3 Vertical chunking
	2.2 Scheduler
	2.3 Slicer
	2.4 Simulator

	3. HARDWARE PLATFORM DEVELOPMENT
	3.1 SCARA Printer
	3.2 Mobile Platform
	3.3 Floor Tile
	3.4 Wireless Network

	4. VALIDATION OF THE SYSTEM
	Object II: A Razorback Cutout
	5. CONCLUSION AND FUTURE WORK
	6. ACKNOWLEDGMENT

