
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/335587242

Computational Design of Scheduling Strategies for Multi-Robot Cooperative 3D

Printing

Conference Paper · August 2019

DOI: 10.1115/DETC2019-97640

CITATIONS

2
READS

141

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Microheater Array Powder Sintering : Monolithic Silicon Carbide Heaters View project

Microheater Array Powder Sintering View project

Laxmi Prasad Poudel

University of Arkansas

10 PUBLICATIONS 13 CITATIONS

SEE PROFILE

Zhenghui Sha

University of Arkansas

55 PUBLICATIONS 212 CITATIONS

SEE PROFILE

All content following this page was uploaded by Laxmi Prasad Poudel on 04 February 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/335587242_Computational_Design_of_Scheduling_Strategies_for_Multi-Robot_Cooperative_3D_Printing?enrichId=rgreq-ad01ec127f1f36420d37e4dcb1b69d00-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4NzI0MjtBUzo4NTQ4ODA1NTgyNjQzMjNAMTU4MDgzMDgxNjM2OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/335587242_Computational_Design_of_Scheduling_Strategies_for_Multi-Robot_Cooperative_3D_Printing?enrichId=rgreq-ad01ec127f1f36420d37e4dcb1b69d00-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4NzI0MjtBUzo4NTQ4ODA1NTgyNjQzMjNAMTU4MDgzMDgxNjM2OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Microheater-Array-Powder-Sintering-Monolithic-Silicon-Carbide-Heaters?enrichId=rgreq-ad01ec127f1f36420d37e4dcb1b69d00-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4NzI0MjtBUzo4NTQ4ODA1NTgyNjQzMjNAMTU4MDgzMDgxNjM2OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Microheater-Array-Powder-Sintering?enrichId=rgreq-ad01ec127f1f36420d37e4dcb1b69d00-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4NzI0MjtBUzo4NTQ4ODA1NTgyNjQzMjNAMTU4MDgzMDgxNjM2OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ad01ec127f1f36420d37e4dcb1b69d00-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4NzI0MjtBUzo4NTQ4ODA1NTgyNjQzMjNAMTU4MDgzMDgxNjM2OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Laxmi_Poudel?enrichId=rgreq-ad01ec127f1f36420d37e4dcb1b69d00-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4NzI0MjtBUzo4NTQ4ODA1NTgyNjQzMjNAMTU4MDgzMDgxNjM2OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Laxmi_Poudel?enrichId=rgreq-ad01ec127f1f36420d37e4dcb1b69d00-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4NzI0MjtBUzo4NTQ4ODA1NTgyNjQzMjNAMTU4MDgzMDgxNjM2OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Arkansas?enrichId=rgreq-ad01ec127f1f36420d37e4dcb1b69d00-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4NzI0MjtBUzo4NTQ4ODA1NTgyNjQzMjNAMTU4MDgzMDgxNjM2OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Laxmi_Poudel?enrichId=rgreq-ad01ec127f1f36420d37e4dcb1b69d00-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4NzI0MjtBUzo4NTQ4ODA1NTgyNjQzMjNAMTU4MDgzMDgxNjM2OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenghui_Sha?enrichId=rgreq-ad01ec127f1f36420d37e4dcb1b69d00-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4NzI0MjtBUzo4NTQ4ODA1NTgyNjQzMjNAMTU4MDgzMDgxNjM2OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenghui_Sha?enrichId=rgreq-ad01ec127f1f36420d37e4dcb1b69d00-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4NzI0MjtBUzo4NTQ4ODA1NTgyNjQzMjNAMTU4MDgzMDgxNjM2OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Arkansas?enrichId=rgreq-ad01ec127f1f36420d37e4dcb1b69d00-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4NzI0MjtBUzo4NTQ4ODA1NTgyNjQzMjNAMTU4MDgzMDgxNjM2OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenghui_Sha?enrichId=rgreq-ad01ec127f1f36420d37e4dcb1b69d00-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4NzI0MjtBUzo4NTQ4ODA1NTgyNjQzMjNAMTU4MDgzMDgxNjM2OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Laxmi_Poudel?enrichId=rgreq-ad01ec127f1f36420d37e4dcb1b69d00-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4NzI0MjtBUzo4NTQ4ODA1NTgyNjQzMjNAMTU4MDgzMDgxNjM2OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

 1 © 2019 by ASME

Proceedings of the ASME 2019

International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference

IDETC/CIE2019
August 18-21, 2019, Anaheim, CA, USA

IDETC2019-97640

COMPUTATIONAL DESIGN OF SCHEDULING STRATEGIES FOR MULTI-ROBOT
COOPERATIVE 3D PRINTING

Laxmi Poudel

Department of Mechanical
Engineering

University of Arkansas
Fayetteville, AR

Wenchao Zhou
Department of Mechanical

Engineering
University of Arkansas

Fayetteville, AR

Zhenghui Sha1
Department of Mechanical

Engineering
University of Arkansas

Fayetteville, AR

ABSTRACT
Cooperative 3D printing (C3DP) is a novel approach to

additive manufacturing, where multiple printhead-carrying
mobile robots work together cooperatively to print a desired
part. The core of C3DP is the chunk-based printing strategy in
which the desired part is first split into smaller chunks, and then
the chunks are assigned to individual printing robots. These
robots will work on the chunks simultaneously and in a
scheduled sequence until the entire part is complete. Though
promising, C3DP lacks proper framework that enables
automatic chunking and scheduling given the available number
of robots. In this study, we develop a computational framework
that can automatically generate print schedule for specified
number of chunks. The framework contains 1) a random
generator that creates random print schedule using adjacency
matrix which represents directed dependency tree (DDT)
structure of chunks; 2) a set of geometric constraints against
which the randomly generated schedules will be checked for
validation; and 3) a printing time evaluation metric for
comparing the performance of all valid schedules. With the
developed framework, we present a case study by printing a
large rectangular plate which has dimensions beyond what
traditional desktop printers can print. The study showcases that
our computation framework can successfully generate a variety
of scheduling strategies for collision-free C3DP without any
human interventions.

Keywords: Cooperative 3D printing, Task scheduling,
Multirobot system

NOMENCLATURE

𝐴𝑆𝑅,𝑖(𝑡) Accessible space of robot, i, at time, t
𝑆𝑉𝑅,𝑖(𝑡) Swept volume of robot, i, at time, t
ASc (t) Occupied space by printed chunk at time, t

1 Contact author: zsha@uark.edu

1. INTRODUCTION

As additive manufacturing (AM) transitions from rapid
prototyping to digital manufacturing over the past years, the
current cost structure of the technologies is too expensive to be
viable for mainstream manufacturing adoption. One critical
factor of the cost structure for adoption is the scalability issue, in
terms of both print size and printing speed. Extensive research
has been performed on increasing the size of the printer for
printing larger parts, e.g., BAAM (big area additive
manufacturing) system developed by Oak Ridge National Lab
[1] and Sciacky EBAM 300 machine. Also, there are other
researches on improving printing speed with multiple extruders.
For example, Project Escher makes the use of multiple 3D print
heads for massive jobs, where each print head acts like a separate
printer but works in parallel on different areas of the same part
[2]. It was demonstrated that the printing time can be
significantly shortened with five extruders. Although the build
volume is large, it is still limited to the size of the printer.
Similarly, Jin et al. presented a concept of concurrent fused
filament deposition, where multiple printing extruders are
utilized simultaneously to print individual layer of a desired part
[3]. They have developed an optimization model to minimize the
printing makespan and developed a toolpath allocation and
scheduling methodology for multiple extruders, where they
allocate portion of each layer to individual extruders. They were
able to reduce each layer printing time by as much as 60% using
three extruders. While promising, the issue of scalability is not
properly addressed as the demonstration has only been done
using few extruders. Since the printing takes place in an enclosed
box, this approach faces similar limitation of print size as Project
Escher. Therefore, there is a limit on the maximum number of
extruders that can be used in this system as well as the limit on
the size of a part that can fit in the build volume.

 2 © 2019 by ASME

While some of the aforementioned approaches made good
progress on tackling the problem of print time and print size, the
print quality might be impacted. A larger printer with large
extruders can shorten the print time and accommodate larger part
but the print quality will lower as a result of coarser resolution.
In order to achieve a balance for this “impossible triangle” of
print quality, print time, and print size, we have developed the
Swarm 3D Printing and Assembly (SPA) platform, where a
swarm of printhead-carrying mobile robots work simultaneously
to print and assemble large objects [4]. One of the most important
features of SPA, that distinguishes itself from traditional layer-
based 3D printing system is the chunk-based printing strategy –
a 3D model of a desired part is divided into smaller chunks first
and each of these chunks are assigned to individual printing
robots. Each individual robot prints one chunk at a time, but
many printing robots work in parallel, and layer by layer for each
chunk as illustrated in the Figure 1. Therefore, a large number
of printing robots can be employed to print a large part. Since the
printing can be parallelized, i.e., multiple chunks can be printed
simultaneously, the total print time can be significantly reduced.

Figure 1: Chunk-based Cooperative 3D printing

In our preliminary work, we have developed a chunk-
based slicer in order to slice STL objects so that two 3D printing
robots can work on printing the part simultaneously to reduce the
total print time [5]. To achieve cooperative 3D printing (C3DP),
the part is split into chunks with a sloped interface between them
and the mechanical properties of the chunk-based parts studied
in our prior work [6] shows that the chunk-based 3D printed part
has comparable tensile strength to traditional layer-based 3D
printed part. To scale C3DP to multiple robots in [7], we
developed a heuristic-based scaling strategy, Scalable Parallel
Array of Robots for 3DP (SPAR3), which enables a large number
of mobile 3D printers to work cooperatively to finish a printing
job without colliding with each other, as illustrated in Figure 2.
First, two robots start working on the alternate chunks in the
center row as shown in Figure 2. These robots then move over
to print the remaining chunks in the same row in order to fill the
gaps between the initially printed chunks. Once complete, active
robots retreat to work on the next row of chunks. Meanwhile, the
two additional robots, waiting for the completion of the central
row of chunks, become active and start printing second row of

chunks on the opposite side of central row as shown in the
Figure 2. Similar to the central row, robots print alternate chunks
first and once complete, move over to print the remaining chunks
filling the gaps between previously printed chunks. This process
alternates and continues until the entire part is finished.

Figure 2: SPAR3 strategy illustration

While a print schedule based on this simple heuristic for a
simple geometry with finite number of robots might give us good
results, as the number of chunks increases, the heuristics might
not provide the best solution as the large part of design space
remain unexplored. For example, if we increase the number of
chunks from 20 to 100, ignoring the constraints, the possible
number of print schedule increases exponentially. This would
result in 100! possible plans just for sequential printing. Adding
parallel printing (multiple chunks being printed simultaneously),
increases the number of potential plans even more. So, we need
to ensure that these larger design space unexplored by the
heuristic approach is traversed thoroughly. In order to do so, a
new approach needs to be developed so that, we can search for
print schedules for complex geometries, which often cannot be
handled by human heuristics, that can maximize the use of the
resources in hand. A computational framework that can be
transformed in algorithms so as to automatically generate many
different valid scheduling strategies is essential to the
development of scalable C3DP. Therefore, the research
objective of this paper is to establish a computational framework
that can explore larger design space that would otherwise remain
unexplored and generate valid scheduling strategies from that
space. In order to do just that, in this paper, we develop a new
algorithm to automatically generate printing schedules for a
given number of robots and evaluate the validity of the generated
schedules based on the geometric constraints produced by both
printing robots and chunks. Once validated, we can make
comparison between the printing schedules heuristically
generated with the ones computationally generated, using the
printing time evaluation metrics.

 3 © 2019 by ASME

The remaining of the paper is organized as follows. Section
2 presents the related work and the research gap that this paper
aims to fill. Section 3 explains the general research approach and
the computational framework, which includes the model for
C3DP, geometric constraints and the time evaluation metrics. A
case study is presented in Section 4 that demonstrate the utility
and performance of the proposed framework. Finally, result of
the case study and the discussion are presented in Section 5,
followed by conclusion in Section 6.

2. RELATED WORK AND RESEARCH GAP

Although the SPA platform presents many benefits, as a new
approach to digital manufacturing, it brings additional
challenges in task scheduling (i.e., to optimally generate a
printing sequence that minimizes the total time of printing, in our
case) and task allocation (i.e., to assign chunks to individual
robots). This makes it an integrated planning and scheduling
(IPPS) problem. The addition of 3D printing as a manufacturing
process compounds the difficulty of IPPS problem further,
making it a NP-hard problem to solve [8][9]. IPPS has widely
been researched ever since Chryssoulouris et al. first presented
the concept of integrating the process planning and scheduling
problems [10][11]. Though many optimization methods
(simultaneously optimize both planning and scheduling
functions) have been presented over the years using different
approaches such as meta heuristics approach (e.g., Genetic
Algorithm [11][12][14]) and agent based approaches (e.g.,
Particle Swarm Optimization [9] and Ant Colony Optimization
[15]), the problem definition is limited around the job shop
scheduling problems, where multiple jobs needs to be scheduled
in multiple workstations. Scheduling plans for robotic
applications is not studied in most of the related research.
Robotic application adds more complexity to the problem as it
necessitates the generation of motion trajectories for multiple
mobile robots. Petrovic et al. performed a pioneering study to
optimize schedule plans using chaos theory with particle swarm
optimization (cPSO) algorithm and used it to generate motion
trajectories followed by mobile robots in IPPS problem[9].
Though the work presents and demonstrates the motion
trajectories of mobile robots, scope of work does not include
collision detection between the mobile robots, where
spatiotemporal constraints needs to be developed and applied.

Similarly, multi-robot systems (MRS) is another active field
that deals with task assignment and collision-free scheduling of
multiple robots. Koes et al. presented a novel framework and a
centralized anytime algorithm with error bounds to address
multi-robot scheduling and task allocation problem as mixed
integer linear programming (MILP) problem, which could
outperform greedy heuristics, and market-based approaches
which separates scheduling and task allocation [16]. In a related
study, a connectivity graph along with Liaison method was used
to generate sequence for multi-robot assembly by Mishra et al.
[17]. Parallel execution of assembly sequences for multi-robot
work cell was studied by Park et al. [18]. While they developed
constraints to avoid infeasible assembly sequence, no constraints
were developed in order to avoid robot-to-robot collision as only

single gripping robot was used for demonstration. A novel
algorithm, Terico, was developed to generate schedule fulfilling
temporospatial constraints for multi-robot system by Gombolay
et al. [19]. This algorithm could perform near-optimal task
assignments and schedule up to 10 robots and 500 tasks in less
than 20 seconds on average but lacks clarity on how the
algorithm behave as the number of robots is greater than 10. Wan
et al. proposed a newly developed planner for finding optimal
assembly sequence to assemble objects and demonstrated the
results by optimally scheduling Soma cube [20]. While the
scheduling approach of this work could be applicable, the work
is only applicable to single robots, which eliminates complexity
associated with the collision between working robots.

All of the literature discussed above, both in the field of
IPPS and MRS, and other extant literatures provide different
elegant solutions to multi-robot planning and scheduling
problem and though at first glance it might seem like the
problems addressed are similar to the problems facing the SPA
platform, it is not the case. The literature in MRS are mostly
focused on solving discrete problems, i.e., problems that can be
solved by taking discrete number of steps, e.g., pick and place
assembly, patterns formations, search and rescue, etc. While the
literature in IPPS are mostly focused on job shop type of
problems, where multiple machines (usually fixed) or
workstations are available and multiple tasks needs to be
completed. The problem of C3DP, on the other hand, is a unique
blend of these two types of aforementioned problems. This
complicates the problem, as not only do we have to worry about
the planning and scheduling of chunks but also collisions
between the mobile robots and their motion planning while doing
so. In addition to this, the integration of 3D printing makes the
manufacturing process continuous, where material is
continuously deposited temporospatially until a desired part is
manufactured. There is no existing method that could take a
design of a desired part computationally and implement 3D
printing using multiple printing robots. Thus, there is a clear gap
for generating viable and valid scheduling strategies for C3DP.
Moreover, different chunking methods of C3DP will result in
different temporospatial constraints that could be even more
complicated than our previously proposed slope angle-based
chunking. Thus, a general framework is needed to handle parallel
task scheduling for continuous 3D printing process with complex
temporospatial constraints.

3. RESEARCH APPROACH

3.1 The Computational Framework for C3DP
Scheduling

Prior to jumping at explaining the computational
framework, it is paramount that we explain the entire printing
process of C3DP. We approach the continuous problem of C3DP
by first discretizing the entire process using a chunk-based
approach. Doing so converts the continuous C3DP into multi-
stage discrete process as illustrated in Figure 3 such that there
are inter-dependencies between multiple stages.

 4 © 2019 by ASME

In order to achieve C3DP, first, a part is divided into small
chunks. Once the chunk division is complete, a print schedule is
generated for a given number of printing mobile robots. The
scheduling is represented using a Directed Dependency Tree
(DDT) where the nodes represent the chunks and the edges
represent dependency between the nodes as shown in Figure 4
[7]. A DDT can define both print schedule and the dependency
relationships between the chunks at the same time. The order of
layers from top to bottom represents the print order, and the
number of chunks at each layer represents the number of print
tasks that can be done in parallel.

In the proposed computational framework, a random DDT
is first generated, which contains the scheduling information

such as chunk dependencies and number of sequence (i.e., the
depth of a tree). Then, the path planning is done for the generated
DDT. Prior to printing, geometric constraints validation will be
performed. The geometric constraints validation will ensure that
no collision takes place between the printing robots (R2R
collision) and between the printing robots and printed parts (R2P
collision). This entire process of C3DP and the computational
framework of automatically scheduling are depicted in Figure 3.

3.2 Random Generation of Print Sequence

For random generation of C3DP schedules, a part is first
divided into n chunks by a chunker. Once the chunking is
complete, a sparse adjacency matrix of dimension 𝑛 × 𝑛 is
generated with binary values of either 1 or 0 at random indices.
Value of 1 represents a dependent relationship between two
chunks and 0 represents absence of dependency between the

chunks. For example, if a part is divided into 12 chunks
(numbered 0-11), one of the generated dependency matrices (and
the corresponding dependency tree) might look like the one
shown in Figure 4. Both the adjacency matrix and the DDT
present the same information but only represented differently.
The chunks with no dependency in the matrix will be placed at
the root node at the top of the dependency tree (chunk 0 and
chunk 1). The chunks that depend on either one of those chunks
(or both) will be placed below the root nodes (chunk 2 and
chunk3). This method of adding chunks as nodes is continued
until the end of rows in the adjacency matrix. In order to
minimize the number invalid trees and impossible printing
scenarios, following rules are created and will be implemented

while generating the matrix:

1) It is important that the generated matrix results in print
schedule that has a structure that is layered and not cyclic. A
cyclic dependency could result in a scenario where two
chunks could have direct or indirect dependencies on each
other. For example, in the dependency tree shown in Figure
4, currently Node-2 has two dependencies, Chunk-0 and
Chunk-1. Allowing cyclic dependency results in the
scenario, where Chunk-1 could have dependency on Chunk-
2. This can result in stalemate situation where Chunk-2
cannot be printed prior to Chunk-1 and Chunk-1 cannot be
printed prior to Chunk-2. In order to check whether the
created matrix has cyclic dependency, we take transpose of

Figure 3: Flowchart depicting the different stages of C3DP after discretizing

 5 © 2019 by ASME

the generated matrix and calculate Hadamard product (also
known as entry wise product) of the two matrices. If the
result of the Hadamard product is not a zero matrix, the
generated matrix is ignored as it contains cyclic
dependencies between the chunks. Otherwise, the generated
matrix is passed on to the next stage.

2) Transitive reduction is used to eliminate double dependency
between two chunks. For example, if Chunk-8 has
dependent relation with Chunk-1 via Chunk-2, there is no
need of edge between Chunk-8 and Chunk-1.

 These specified criteria are ingrained into the algorithm that
generates random C3DP schedules and thus the generated tree
will not violate the rules.

Figure 4: Adjacency matrix representing the directed dependency tree

3.3 Geometric Constraints
The generated DDT regulates both the printing sequence and the
dependency relationships between the chunks. However, the
generated DDT might not be valid due to potential physical
constraints, i.e., the DDT might represent a printing sequence
that results in collision between either printing robots (R2R
collision) or the printed parts and the printing robots (R2P
collision). For example, the print sequence might have two
chunks adjacent to each other, being printed simultaneously,
which would result in collision between the printing robots. Such
scenarios need to be avoided prior to implementing the print
schedule. Therefore, a set of constraints must be formulated
which a printing strategy can be evaluated against to reject the
print strategies that could result in collision, and only accept the
collision-free print strategies. These constraints can then serve as
a sufficient condition for the validation of a printing strategy, i.e.,
if a printing strategy doesn’t violate any of the constraints, the
printing strategy is valid and would result in collision-free C3DP.
So, any valid printing strategy must satisfy the following:

1) A robot, i, does not collide with already printed chunks. This
constraint can be mathematically represented using the
concept of accessible space of robot (ASR,i), which is 3D
space occupied by the printing robot, i, and occupied space
of printed chunks (ASc), which is 3D space that is occupied
by the chunks that are already printed. The mathematical
formulation of this constraints is presented in Equation (1).

𝐴𝑆𝑅,𝑖(𝑡) ∩ 𝐴𝑆𝑐(𝑡) = ∅ , 𝑖 = 1,2,3 … , 𝑛 (1)

2) A robot, i, does not collide with any other robot, j, at any
time during the entire printing process. This can be
mathematically represented using the concept of swept
volume, which is the entire 3D space covered by the printing
robot as it prints an assigned chunk. The differentiation
between the accessible space and the swept volume of a
robot is presented in Figure 5. The mathematical
formulation of this constraints is presented in equation (2).

𝑆𝑉𝑅,𝑖(𝑡) ∩ 𝑆𝑉𝑅,𝑗(𝑡) = ∅, (2)

𝑖 = 1,2,3 … , 𝑛; 𝑗 = 1,2,3 … , 𝑛; 𝑗 ≠ 𝑖,

The discretization of C3DP makes it possible to check the
geometric constraints at different time resolution. The check for
potential R2R collision is done in the following manner:
• The default check is done at chunk level, i.e., the collision

between the two printing robots is checked while they
work on their respective chunks. Though this check rejects
all the invalid print schedule, it also could potentially reject
some valid schedules. This happens when the swept
volumes of robots overlap with each other, but the robots
might not occupy same exact location at same time. For
example, if two robots are working on adjacent chunks,
their swept volume will overlap but they might not arrive
at the overlapping location at the same time.

• In order to reduce the possibility of false negatives
mentioned above (overlapping of swept volume but no
collision), the check can be done at layer-level, i.e., the
collision between two printing robots is checked while they
work on individual level of their respective chunks. Similar
to the check at chunk level, this rejects all the invalid, but
some valid schedules could be rejected as well.

• To further ensure that false negative has not taken place,
we can run check at line-level or G-code level, where a
check for collision is done at each G-code line. Though
accurate, this is computationally taxing as it requires more
frequent checks whereas, the chunk-level check requires
least frequent checks.

Thus, first chunk-level check is conducted, if the results are
valid, we move on to the next print sequence. Otherwise, layer-
level check can be conducted. Similarly, if valid, we can move
on to the next layer. Otherwise, line-level check can be
conducted. If this produces invalid result, the schedule is
discarded as an invalid print schedule. Thus, any generated print
strategies can be validated using the geometric constraints
presented in Equations (1) and (2) to ensure that the collision
does not take place between the printing robots as well as
between the printed parts and printing robots.

3.4 Time Evaluation using DDT

 6 © 2019 by ASME

In our previous work [7], we presented the idea of using
DDT to calculate the total print time of a printing schedule. The
number of rows in the trees (i.e., the tree depth) represents the
total number of print sequence, i.e., the number of printing steps
whereas, the column or the width of the tree represents the
number of robots used for parallel printing. For instance, the
DDT presented in Figure 4, depicts a print schedule with four
printing sequence and utilizes maximum of four robots (but only
two are needed in two initial sequence). In order to calculate the
print time, a recursive function is presented in Equation (3).

𝑇(𝐷, 𝑐𝑖) = max{[𝑇(𝐷, 𝑐𝑚)|𝑐𝑚 ∈ 𝑐𝑖 . 𝑑𝑒𝑝𝑠], 0} + 𝑡(𝑐𝑖) (3)

𝑖 = 1,2,3 … . 𝑛, and 𝑚 = 1,2,3, … … 𝑁𝑖

where, 𝑁𝑖 is the number of dependency chunks of 𝑐𝑖. In Equation
(3), 𝑇(𝐷, 𝑐𝑖) is the time it takes to print chunk, 𝑐𝑖, in a given DDT,
𝐷, which is the sum of the time it takes to print the single chunk
𝑐𝑖, i.e., 𝑡(𝑐𝑖) and the time it takes to print all of its dependencies,
𝑐𝑚, i.e., 𝑇(𝐷, 𝑐𝑚). This equation can be generalized to calculate
the total print time of a DDT as shown in Equation (4), where,
𝑇𝑡𝑜𝑡𝑎𝑙 is the total time needed to print the entire sequence of 𝐷,
with 𝑛 chunks. This is equal to the sum of the time it takes to
print the last chunk, n, and time it takes to print all of its
dependencies, m.

𝑇𝑡𝑜𝑡𝑎𝑙 = max({𝑇(𝐷, 𝑐𝑚) | 𝑚 ∈ [0, 𝑛 − 1]}) (4)

4. CASE STUDY

To demonstrate how the computational framework works,
we present a simple illustrative case study. There are two
primary reasons for using a simple model to demonstrate the
computational framework: 1) the use of simple model allows
audience to focus on the actual computational framework rather
than getting distracted by the complexity of the model (and its
chunking) and jargons associated with the additional complexity.
2) The use of simple model allows audience to visualize the
sloped-interface chunking strategy in an intuitive manner. The
chunking of simple geometry results in regular geometric shapes
which makes it much easier to understand and visualize how the
geometric constraints translate to actual physical constraint.

The part considered for this case study is a rectangular block
for demonstration purpose. The dimensions of block are
100cm × 80cm × 1.5cm and has a total volume of 12,000 𝑐𝑚3.
The block is printed using PLA. The rectangular block and the
resulting chunks (chunked using sloped-interface chunking
method) obtained after chunking is presented in Figure 5. Four
robots are used for this case study. In addition, the following
assumptions are made:
1) The chunks created have equal volume and can only have

one of the shapes shown in Figure 5. If different chunking
strategy is chosen for chunking, the shape of the chunks
could be different. Since the volume is equal, and the
printing parameters are the same for all the printers, the time
to print each chunk is assumed to be equal for simplifying
the evaluation of print time. Assuming the material is

deposited at the rate of 16 𝑚𝑚3

𝑠⁄ using a 0.4 𝑚𝑚 nozzle,
the estimated time to print a chunk is 10.42 hours.

2) Once a chunk is printed, printing robot moves to the location
of next chunk immediately. The travel time between the
chunks is ignored in the calculation.

The output of chunker (i.e., the chunking algorithm) consists

of eight coordinate points, four coordinates for four corners of
the base and the other four coordinates for the top corners of the
chunks. In addition to this, chunk number is also outputted. The
eight coordinates are used for checking constraints and the chunk
number is used for generating adjacency matrix as well as a
DDT. The following steps were taken to implement the
computational framework in this case study:

Figure 5: Rectangular block showing the chunks line, exploded view
of the chunks that combine to make a rectangular block and top view

of exploded chunks with chunk number marked

1) Generation of print schedule for rectangular block
The result of chunking is shown in Figure 5. The algorithm

then generates adjacency matrix that meets all the predefined
criteria specified in Section 3.2. This generated matrix
represents a print schedule. The next step is to check the validity
of the print schedule using the geometric constraints presented
in Section 3.2.

Figure 6:(a) Accessible Space of robot (reduced to z-stage) (b) Swept
Volume of robot while print a chunk. Position of robot shown at

different chunk corner coordinate

 7 © 2019 by ASME

2) Validation check of generated schedules using geometric
constraints
In order to check the geometric constraints, the swept

volumes (SV) of the active robots are defined as shown in the
Figure 6. The algorithm checks for overlap between the

swept volumes of the printing robots (for R2R collision check).
The second type of check is conducted between the printing
robot and the already printed part (R2P collision check). First,
the accessible space (𝐴𝑆𝑅) of the robot is defined. In this case
study, a reduced constraint was used to define 𝐴𝑆𝑅 . This
constraint is generated by considering only the z-stage of the
print robot, shown in

Figure 6(a)2. After that, the occupied space (𝐴𝑆𝐶) by the
chunk is defined using the eight coordinates outputted by the
chunker. The 𝐴𝑆𝐶 for each individual chunk is defined using a
list of its individual corner coordinates.

The algorithm goes through the sequence and does all the
constraint checks. For example, if there are multiple chunks
being printed in a sequence, it checks for R2R collision using
swept volume of the involved robots. If there is no collision, the
chunks coordinates are stored in a printed chunk list so that they
can be used for R2P collision check during subsequent
sequences. If the print schedule does not violate either of the
geometric constraints, the DDT is considered valid, otherwise
discarded as invalid.

3) Time evaluation of the valid print schedules

For this case study, 1000 DDTs were randomly generated
first, and the computational framework returns us with 60 valid
trees. Rest of the 940 trees were either invalid or duplicates of
valid trees. Upon the completion of generation and constraints
check, the valid print schedules were evaluated using time
metrics presented in Section 3.4. Each chunk takes about
10.42 ℎ𝑜𝑢𝑟𝑠 to print, which is the maximum time it takes to
complete each sequence.

5. RESULTS AND DISCUSSION

Once the valid trees were evaluated, all of the 60 trees were
ranked based on the total time it takes to print the entire print
sequence. The validity of the generated valid trees is also double-
checked by hand to ensure that the algorithm works as intended.
The top five print time generated using the algorithm along with
the one created using heuristic approach are presented in the
Table 1.

2 The assumption is made in order to make it more applicable to robotic

arm/ Scara arm 3D printers.

Table 1.0 Top five print schedule generated using the algorithm in
addition to the one generated using the heuristic approach (labelled
“H”) and their total print time

Label Print Sequence Time
(hrs)

1 {0,0,1,1,2,3,4,5,6,7,8,9,2,3,6,6,8,9,10,10} 114.62
2 {0,0,1,1,2,3,4,4,5,6,7,8,3,2,4,5,6,7,8,9} 104.2
3 {0,0,1,1,2,2,3,4,6,5,7,8,3,2,4,5,6,7,8,9} 104.2
4 {0,0,1,1,2,2,5,3,6,6,8,7,3,4,5,6,6,7,8,9} 104.2
5 {0,0,1,1,2,2,4,3,7,6,8,7,2,3,5,6,4,7,8,9} 104.2
H {0,0,1,1,2,2,3,3,4,4,5,5, 2,2,3,3,4,4,5,5} 62.52

The print sequence in Table 1 is presented in list format,

where each element represents the sequence number and not the
chunk number. The first element of the list represents the
sequence for Chunk-0, second element represents the sequence
of Chunk-1 and third element represents the sequence number of
Chunk 3 and so on, giving us total of 20 elements. For example,
for print sequence labelled 1, first two elements are both 0, which
means Chunk-0 and Chunk-1 are printed together during the first
print sequence (labelled 0). The third and fourth elements are
both 1, which means Chunk-2 and Chunk-3 are printed during
the second print sequence (labelled 1). The fifth element is 2,
which means Chunk-4 is printed during the third print sequence
(labelled 2). This process goes on until the end of the list.

The top five generated print schedule are presented in DDT
format in Figure 8 and the print sequence developed using
heuristic approach is presented in Figure 7

Figure 7: The dependency tree associated with the print sequence
developed using heuristic approach

8 © 2019 by ASME

The total print time for the print schedules generated using
the algorithm is much longer (~1.67 times longer) compared to
the one for heuristically created. This is clear when we take a
look at the tree presented in Figure 7 and Figure 8. While the
heuristically generated print schedule utilizes most of the
available printing robots (two while printing the initial chunks in
center row and four afterwards), the automatically generated
only utilizes two or three at a time leaving spare printers without
use. In subsequent version of the algorithm development, we
could introduce some sort of incentive in the algorithm for
utilizing more robots to shorten the print time. Though the total
print time of heuristic approach was faster for this case, we’d like
to highlight that this study is the stepping stone towards the
bigger picture – to develop a computational framework that can
take the input from chunking algorithm to automatically generate
print schedules for objects with very complex geometries. In
those situations, human heuristics would easily fail due to the
cognitive limitations of human brain. In this study, we present a
case study with simple geometry for the illustrative purpose of
demonstrating the entire process and the framework.

In order to see how the distribution of total print time looks
like for the generated valid print schedules, we plotted the total
print time of every generated print schedules against the label
number of the generated valid schedules. The plot is presented in
Figure 9. In order to compare the total print time between the
print schedules generated using the algorithm with the heuristic

approach, a reference line (i.e., the print time form the heuristic
approach) is plotted in the graph.

Figure 9: The plot showing the total print time for each valid

generated tree and the total print time for schedule generated using
heuristic approach

6. CONCLUSION
In this paper, a printing schedule of cooperative 3D printing

(C3DP) for a given number of chunks was algorithmically
created with specified number of robots. The generated schedule
is validated using the newly developed geometric constraints for
cooperative 3D printing. These geometric constraints check for
collision between the robots (R2R) while they are working in
parallel as well as for collision between the printing robots and

0

20

40

60

80

100

120

140

160

180

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

To
ta

l P
rin

t T
im

e
(m

in
ut

es
)

Label Number

Time comparison between the heuristic approach vs. algorithmic approach

Algorithm Approach

Heuristic Approach

Figure 8: The dependency tree associated with the print sequence represented in Table 1.0

 9 © 2019 by ASME

the printed parts (R2P). If a generated schedule does not satisfy
the geometric constraints, they are rejected as invalid. The list of
valid trees is then evaluated in order to calculate the total print
time for each tree, using the time metrics developed. The valid
print schedule with shortest print time is chosen for printing. The
key contributions of this study are:
• Development of print sequence generator that can

automatically generate a print schedule for specified number
of chunks and available number of robots using output of
chunker.

• Identification and mathematical formulation of geometric
constraints that can check the validity of the generated print
 schedules.

• Development of evaluation time metric using directed
dependency tree (DDT) to determine the total print time for
each valid print schedule.

• Development of computational framework that
amalgamates print sequence generator, geometric constraint
check and time evaluation metric that can automatically
generate, validate and, evaluate print schedule for given
chunking strategy.
While we successfully developed algorithm to generate

print schedule for given number of chunks, the generated
schedules take much longer to complete printing compared to the
heuristic approach. The logical step is to integrate an
optimization framework to obtain collision-free print schedule
that take shorter make span than the heuristics. In addition to this,
all the robots were not utilized while printing so, we can
implement incentives to promote higher utilization of available
robots in subsequent version of the algorithm.

ACKNOWLEDGEMENT
The authors would like to thank Jace McPherson for his
contribution in helping us create multi-robot print simulations
for C3DP.

REFERENCES
[1] L. J. Love, “Utility of Big Area Additive Manufacturing

(BAAM) For The Rapid Manufacture of Customized
Electric Vehicles.” United States. Dept. of Energy.
Office of Energy Efficiency and Renewable Energy ;,
Washington, D.C. :, 2015.

[2] Autodesk, Project Escher. 2016.
[3] Y. Jin, H. Pierson, and H. Liao, Toolpath Allocation and

Scheduling for Concurrent Fused Filament Fabrication
with Multiple Extruders. 2017.

[4] L. G. Marques, R. A. Williams, and W. Zhou, “A Mobile
3D Printer for Cooperative 3D Printing.”

[5] J. McPherson and W. Zhou, “A Chunk-based Slicer for
Cooperative 3D Printing,” From Rapid Prototyp. J., vol.
Accepted, 2018.

[6] L. Poudel, Z. Sha, and W. Zhou, “Mechanical Strength
of Chunk-Based Printed Parts For Cooperative 3D
Printing,” in 46th SME North American Manufacturing
Research Conference, NAMRC 46, 2018, vol. Accepted.

[7] L. Poudel, C. Bair, J. McPherson, Z. Sha, and W. Zhou,
“A Heuristic Based Scaling Strategy For Coperative 3D
Printing,” Rapid Prototyp. J.

[8] T. Kis, “Job-shop scheduling with processing
alternatives,” Eur. J. Oper. Res., vol. 151, no. 2, pp. 307–
332, Dec. 2003.

[9] M. Petrović, N. Vuković, M. Mitić, and Z. Miljković,
“Integration of process planning and scheduling using
chaotic particle swarm optimization algorithm,” Expert
Syst. Appl., vol. 64, pp. 569–588, Dec. 2016.

[10] G. Chryssolouris, S. Chan, and W. Cobb, “Decision
making on the factory floor: An integrated approach to
process planning and scheduling,” Robot. Comput.
Integr. Manuf., vol. 1, no. 3–4, pp. 315–319, Jan. 1984.

[11] R. M. Sundaram and S.-S. Fu, “Process planning and
scheduling\—a method of integration for
productivity improvement,” Comput. Ind. Eng., vol. 15,
no. 1, pp. 296–301, 1988.

[12] N. MORAD and A. M. S. ZALZALA, “Genetic
algorithms in integrated process planning and
scheduling,” J. Intell. Manuf., vol. 10, no. 2, pp. 169–
179, Apr. 1999.

[13] X. Shao, X. Li, L. Gao, and C. Zhang, “Integration of
process planning and scheduling—A modified genetic
algorithm-based approach,” Comput. Oper. Res., vol. 36,
no. 6, pp. 2082–2096, Jun. 2009.

[14] X. Li, L. Gao, X. Shao, C. Zhang, and C. Wang,
“Mathematical modeling and evolutionary algorithm-
based approach for integrated process planning and
scheduling,” Comput. Oper. Res., vol. 37, no. 4, pp. 656–
667, Apr. 2010.

[15] C. W. Leung, T. N. Wong, K. L. Mak, and R. Y. K. Fung,
“Integrated process planning and scheduling by an
agent-based ant colony optimization,” Comput. Ind.
Eng., vol. 59, no. 1, pp. 166–180, Aug. 2010.

[16] M. Koes, I. Nourbakhsh, and K. Sycara, “Heterogeneous
Multirobot Coordination with Spatial and Temporal
Constraints,” in Proceedings of the 20th National
Conference on Artificial Intelligence - Volume 3, 2005,
pp. 1292–1297.

[17] N. Mishra, B. B. Choudhury, and B. B. Biswal, “An
effective technique for generation of assembly sequence
in multi-robotic assembly cells,” in 2012 NATIONAL
CONFERENCE ON COMPUTING AND
COMMUNICATION SYSTEMS, 2012, pp. 1–5.

[18] J. Hun Park and M. Jin Chung, “Automatic generation of
assembly sequences for multi-robot workcell,” Robot.
Comput. Integr. Manuf., vol. 10, no. 5, pp. 355–363, Oct.
1993.

[19] M. Gombolay, R. Wilcox, and J. Shah, “Fast scheduling
of multi-robot teams with temporospatial constraints,”
2013.

[20] W. Wan, K. Harada, and K. Nagata, “Assembly sequence
planning for motion planning,” Assem. Autom., vol. 38,
no. 2, pp. 195–206, Apr. 2018.

View publication statsView publication stats

https://www.researchgate.net/publication/335587242

