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ABSTRACT 
Cooperative 3D printing (C3DP) is a novel approach to 

additive manufacturing, where multiple printhead-carrying 
mobile robots work together cooperatively to print a desired 
part. The core of C3DP is the chunk-based printing strategy in 
which the desired part is first split into smaller chunks, and then 
the chunks are assigned to individual printing robots. These 
robots will work on the chunks simultaneously and in a 
scheduled sequence until the entire part is complete. Though 
promising, C3DP lacks proper framework that enables 
automatic chunking and scheduling given the available number 
of robots. In this study, we develop a computational framework 
that can automatically generate print schedule for specified 
number of chunks. The framework contains 1) a random 
generator that creates random print schedule using adjacency 
matrix which represents directed dependency tree (DDT) 
structure of chunks; 2) a set of geometric constraints against 
which the randomly generated schedules will be checked for 
validation; and 3) a printing time evaluation metric for 
comparing the performance of all valid schedules. With the 
developed framework, we present a case study by printing a 
large rectangular plate which has dimensions beyond what 
traditional desktop printers can print. The study showcases that 
our computation framework can successfully generate a variety 
of scheduling strategies for collision-free C3DP without any 
human interventions. 

 
Keywords: Cooperative 3D printing, Task scheduling, 
Multirobot system 

NOMENCLATURE 
 

𝐴𝑆𝑅,𝑖(𝑡)         Accessible space of robot, i, at time, t 
𝑆𝑉𝑅,𝑖(𝑡)        Swept volume of robot, i, at time, t 
ASc (t)        Occupied space by printed chunk at time, t 

 
1 Contact author: zsha@uark.edu 

 
 
1. INTRODUCTION 

As additive manufacturing (AM) transitions from rapid 
prototyping to digital manufacturing over the past years, the 
current cost structure of the technologies is too expensive to be 
viable for mainstream manufacturing adoption. One critical 
factor of the cost structure for adoption is the scalability issue, in 
terms of both print size and printing speed.  Extensive research 
has been performed on increasing the size of the printer for 
printing larger parts, e.g., BAAM (big area additive 
manufacturing) system developed by Oak Ridge National Lab 
[1] and Sciacky EBAM 300 machine. Also, there are other 
researches on improving printing speed with multiple extruders. 
For example, Project Escher makes the use of multiple 3D print 
heads for massive jobs, where each print head acts like a separate 
printer but works in parallel on different areas of the same part 
[2]. It was demonstrated that the printing time can be 
significantly shortened with five extruders. Although the build 
volume is large, it is still limited to the size of the printer. 
Similarly, Jin et al. presented a concept of concurrent fused 
filament deposition, where multiple printing extruders are 
utilized simultaneously to print individual layer of a desired part 
[3]. They have developed an optimization model to minimize the 
printing makespan and developed a toolpath allocation and 
scheduling methodology for multiple extruders, where they 
allocate portion of each layer to individual extruders. They were 
able to reduce each layer printing time by as much as 60% using 
three extruders. While promising, the issue of scalability is not 
properly addressed as the demonstration has only been done 
using few extruders. Since the printing takes place in an enclosed 
box, this approach faces similar limitation of print size as Project 
Escher. Therefore, there is a limit on the maximum number of 
extruders that can be used in this system as well as the limit on 
the size of a part that can fit in the build volume. 
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While some of the aforementioned approaches made good 
progress on tackling the problem of print time and print size, the 
print quality might be impacted. A larger printer with large 
extruders can shorten the print time and accommodate larger part 
but the print quality will lower as a result of coarser resolution.  
In order to achieve a balance for this “impossible triangle” of 
print quality, print time, and print size, we have developed the 
Swarm 3D Printing and Assembly (SPA) platform, where a 
swarm of printhead-carrying mobile robots work simultaneously 
to print and assemble large objects [4]. One of the most important 
features of SPA, that distinguishes itself from traditional layer-
based 3D printing system is the chunk-based printing strategy – 
a 3D model of a desired part is divided into smaller chunks first 
and each of these chunks are assigned to individual printing 
robots. Each individual robot prints one chunk at a time, but 
many printing robots work in parallel, and layer by layer for each 
chunk as illustrated in the Figure 1. Therefore, a large number 
of printing robots can be employed to print a large part. Since the 
printing can be parallelized, i.e., multiple chunks can be printed 
simultaneously, the total print time can be significantly reduced.  

Figure 1: Chunk-based Cooperative 3D printing 

In our preliminary work, we have developed a chunk-
based slicer in order to slice STL objects so that two 3D printing 
robots can work on printing the part simultaneously to reduce the 
total print time [5]. To achieve cooperative 3D printing (C3DP), 
the part is split into chunks with a sloped interface between them 
and the mechanical properties of the chunk-based parts studied 
in our prior work [6] shows that the chunk-based 3D printed part 
has comparable tensile strength to traditional layer-based 3D 
printed part. To scale C3DP to multiple robots in [7], we 
developed a heuristic-based scaling strategy, Scalable Parallel 
Array of Robots for 3DP (SPAR3), which enables a large number 
of mobile 3D printers to work cooperatively to finish a printing 
job without colliding with each other, as illustrated in Figure 2. 
First, two robots start working on the alternate chunks in the 
center row as shown in Figure 2. These robots then move over 
to print the remaining chunks in the same row in order to fill the 
gaps between the initially printed chunks. Once complete, active 
robots retreat to work on the next row of chunks. Meanwhile, the 
two additional robots, waiting for the completion of the central 
row of chunks, become active and start printing second row of 

chunks on the opposite side of central row as shown in the 
Figure 2. Similar to the central row, robots print alternate chunks 
first and once complete, move over to print the remaining chunks 
filling the gaps between previously printed chunks. This process 
alternates and continues until the entire part is finished.  

 
Figure 2: SPAR3 strategy illustration 

While a print schedule based on this simple heuristic for a 
simple geometry with finite number of robots might give us good 
results, as the number of chunks increases, the heuristics might 
not provide the best solution as the large part of design space 
remain unexplored. For example, if we increase the number of 
chunks from 20 to 100, ignoring the constraints, the possible 
number of print schedule increases exponentially. This would 
result in 100! possible plans just for sequential printing. Adding 
parallel printing (multiple chunks being printed simultaneously), 
increases the number of potential plans even more. So, we need 
to ensure that these larger design space unexplored by the 
heuristic approach is traversed thoroughly. In order to do so, a 
new approach needs to be developed so that, we can search for 
print schedules for complex geometries, which often cannot be 
handled by human heuristics, that can maximize the use of the 
resources in hand. A computational framework that can be 
transformed in algorithms so as to automatically generate many 
different valid scheduling strategies is essential to the 
development of scalable C3DP. Therefore, the research 
objective of this paper is to establish a computational framework 
that can explore larger design space that would otherwise remain 
unexplored and generate valid scheduling strategies from that 
space. In order to do just that, in this paper, we develop a new 
algorithm to automatically generate printing schedules for a 
given number of robots and evaluate the validity of the generated 
schedules based on the geometric constraints produced by both 
printing robots and chunks. Once validated, we can make 
comparison between the printing schedules heuristically 
generated with the ones computationally generated, using the 
printing time evaluation metrics.  
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The remaining of the paper is organized as follows. Section 
2 presents the related work and the research gap that this paper 
aims to fill. Section 3 explains the general research approach and 
the computational framework, which includes the model for 
C3DP, geometric constraints and the time evaluation metrics. A 
case study is presented in Section 4 that demonstrate the utility 
and performance of the proposed framework. Finally, result of 
the case study and the discussion are presented in Section 5, 
followed by conclusion in Section 6.  
 
2. RELATED WORK AND RESEARCH GAP 

Although the SPA platform presents many benefits, as a new 
approach to digital manufacturing, it brings additional 
challenges in task scheduling (i.e., to optimally generate a 
printing sequence that minimizes the total time of printing, in our 
case) and task allocation (i.e., to assign chunks to individual 
robots). This makes it an integrated planning and scheduling 
(IPPS) problem. The addition of 3D printing  as a manufacturing 
process compounds the difficulty of IPPS problem further, 
making it a NP-hard problem to solve [8][9]. IPPS has widely 
been researched ever since Chryssoulouris et al. first presented 
the concept of integrating the process planning and scheduling 
problems [10][11]. Though many optimization methods 
(simultaneously optimize both planning and scheduling 
functions) have been presented over the years using different 
approaches such as meta heuristics approach (e.g., Genetic 
Algorithm [11][12][14]) and agent based approaches (e.g., 
Particle Swarm Optimization [9] and Ant Colony Optimization 
[15]), the problem definition is limited around the job shop 
scheduling problems, where multiple jobs needs to be scheduled 
in multiple workstations. Scheduling plans for robotic 
applications is not studied in most of the related research. 
Robotic application adds more complexity to the problem as it 
necessitates the generation of motion trajectories for multiple 
mobile robots. Petrovic et al. performed a pioneering study to 
optimize schedule plans using chaos theory with particle swarm 
optimization (cPSO) algorithm and used it to generate motion 
trajectories followed by mobile robots in IPPS problem[9]. 
Though the work presents and demonstrates the motion 
trajectories of mobile robots, scope of work does not include 
collision detection between the mobile robots, where 
spatiotemporal constraints needs to be developed and applied.  

Similarly, multi-robot systems (MRS) is another active field 
that deals with task assignment and collision-free scheduling of 
multiple robots. Koes et al. presented a novel framework and a 
centralized anytime algorithm with error bounds to address 
multi-robot scheduling and task allocation problem as mixed 
integer linear programming (MILP) problem, which could 
outperform greedy heuristics, and market-based approaches 
which separates scheduling and task allocation [16]. In a related 
study, a connectivity graph along with Liaison method was used 
to generate sequence for multi-robot assembly by Mishra et al. 
[17]. Parallel execution of assembly sequences for multi-robot 
work cell was studied by Park et al. [18]. While they developed 
constraints to avoid infeasible assembly sequence, no constraints 
were developed in order to avoid robot-to-robot collision as only 

single gripping robot was used for demonstration. A novel 
algorithm, Terico, was developed to generate schedule fulfilling 
temporospatial constraints for multi-robot system by Gombolay 
et al. [19]. This algorithm could perform near-optimal task 
assignments and schedule up to 10 robots and 500 tasks in less 
than 20 seconds on average but lacks clarity on how the 
algorithm behave as the number of robots is greater than 10. Wan 
et al. proposed a newly developed planner for finding optimal 
assembly sequence to assemble objects and demonstrated the 
results by optimally scheduling Soma cube [20]. While the 
scheduling approach of this work could be applicable, the work 
is only applicable to single robots, which eliminates complexity 
associated with the collision between working robots.  

All of the literature discussed above, both in the field of 
IPPS and MRS, and other extant literatures provide different 
elegant solutions to multi-robot planning and scheduling 
problem and though at first glance it might seem like the 
problems addressed are similar to the problems facing the SPA 
platform, it is not the case. The literature in MRS are mostly 
focused on solving discrete problems, i.e., problems that can be 
solved by taking discrete number of steps, e.g., pick and place 
assembly, patterns formations, search and rescue, etc. While the 
literature in IPPS are mostly focused on job shop type of 
problems, where multiple machines (usually fixed) or 
workstations are available and multiple tasks needs to be 
completed. The problem of C3DP, on the other hand, is a unique 
blend of these two types of aforementioned problems. This 
complicates the problem, as not only do we have to worry about 
the planning and scheduling of chunks but also collisions 
between the mobile robots and their motion planning while doing 
so.  In addition to this, the integration of 3D printing makes the 
manufacturing process continuous, where material is 
continuously deposited temporospatially until a desired part is 
manufactured. There is no existing method that could take a 
design of a desired part computationally and implement 3D 
printing using multiple printing robots. Thus, there is a clear gap 
for generating viable and valid scheduling strategies for C3DP. 
Moreover, different chunking methods of C3DP will result in 
different temporospatial constraints that could be even more 
complicated than our previously proposed slope angle-based 
chunking. Thus, a general framework is needed to handle parallel 
task scheduling for continuous 3D printing process with complex 
temporospatial constraints.  
 
3. RESEARCH APPROACH 

 
3.1 The Computational Framework for C3DP 
Scheduling 

Prior to jumping at explaining the computational 
framework, it is paramount that we explain the entire printing 
process of C3DP. We approach the continuous problem of C3DP 
by first discretizing the entire process using a chunk-based 
approach. Doing so converts the continuous C3DP into multi-
stage discrete process as illustrated in Figure 3 such that there 
are inter-dependencies between multiple stages. 
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In order to achieve C3DP, first, a part is divided into small 
chunks. Once the chunk division is complete, a print schedule is 
generated for a given number of printing mobile robots. The 
scheduling is represented using a Directed Dependency Tree 
(DDT) where the nodes represent the chunks and the edges 
represent dependency between the nodes as shown in Figure 4 
[7]. A DDT can define both print schedule and the dependency 
relationships between the chunks at the same time. The order of 
layers from top to bottom represents the print order, and the 
number of chunks at each layer represents the number of print 
tasks that can be done in parallel.  

In the proposed computational framework, a random DDT 
is first generated, which contains the scheduling information 

such as chunk dependencies and number of sequence (i.e., the 
depth of a tree). Then, the path planning is done for the generated 
DDT. Prior to printing, geometric constraints validation will be 
performed. The geometric constraints validation will ensure that 
no collision takes place between the printing robots (R2R 
collision) and between the printing robots and printed parts (R2P 
collision). This entire process of C3DP and the computational 
framework of automatically scheduling are depicted in Figure 3.  
 
3.2 Random Generation of Print Sequence 

For random generation of C3DP schedules, a part is first 
divided into n chunks by a chunker. Once the chunking is 
complete, a sparse adjacency matrix of dimension 𝑛 × 𝑛 is 
generated with binary values of either 1 or 0 at random indices. 
Value of 1 represents a dependent relationship between two 
chunks and 0 represents absence of dependency between the 

chunks. For example, if a part is divided into 12 chunks 
(numbered 0-11), one of the generated dependency matrices (and 
the corresponding dependency tree) might look like the one 
shown in Figure 4. Both the adjacency matrix and the DDT 
present the same information but only represented differently. 
The chunks with no dependency in the matrix will be placed at 
the root node at the top of the dependency tree (chunk 0 and 
chunk 1). The chunks that depend on either one of those chunks 
(or both) will be placed below the root nodes (chunk 2 and 
chunk3). This method of adding chunks as nodes is continued 
until the end of rows in the adjacency matrix. In order to 
minimize the number invalid trees and impossible printing 
scenarios, following rules are created and will be implemented 

while generating the matrix: 
 

1) It is important that the generated matrix results in print 
schedule that has a structure that is layered and not cyclic. A 
cyclic dependency could result in a scenario where two 
chunks could have direct or indirect dependencies on each 
other. For example, in the dependency tree shown in Figure 
4, currently Node-2 has two dependencies, Chunk-0 and 
Chunk-1. Allowing cyclic dependency results in the 
scenario, where Chunk-1 could have dependency on Chunk-
2. This can result in stalemate situation where Chunk-2 
cannot be printed prior to Chunk-1 and Chunk-1 cannot be 
printed prior to Chunk-2. In order to check whether the 
created matrix has cyclic dependency, we take transpose of 

 
 

Figure 3: Flowchart depicting the different stages of C3DP after discretizing 
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the generated matrix and calculate Hadamard product (also 
known as entry wise product) of the two matrices. If the 
result of the Hadamard product is not a zero matrix, the 
generated matrix is ignored as it contains cyclic 
dependencies between the chunks. Otherwise, the generated 
matrix is passed on to the next stage.  

2)  Transitive reduction is used to eliminate double dependency 
between two chunks. For example, if Chunk-8 has 
dependent relation with Chunk-1 via Chunk-2, there is no 
need of edge between Chunk-8 and Chunk-1.  

  These specified criteria are ingrained into the algorithm that 
generates random C3DP schedules and thus the generated tree 
will not violate the rules. 

Figure 4: Adjacency matrix representing the directed dependency tree 

3.3 Geometric Constraints 
The generated DDT regulates both the printing sequence and the 
dependency relationships between the chunks. However, the 
generated DDT might not be valid due to potential physical 
constraints, i.e., the DDT might represent a printing sequence 
that results in collision between either printing robots (R2R 
collision) or the printed parts and the printing robots (R2P 
collision). For example, the print sequence might have two 
chunks adjacent to each other, being printed simultaneously, 
which would result in collision between the printing robots. Such 
scenarios need to be avoided prior to implementing the print 
schedule. Therefore, a set of constraints must be formulated 
which a printing strategy can be evaluated against to reject the 
print strategies that could result in collision, and only accept the 
collision-free print strategies. These constraints can then serve as 
a sufficient condition for the validation of a printing strategy, i.e., 
if a printing strategy doesn’t violate any of the constraints, the 
printing strategy is valid and would result in collision-free C3DP. 
So, any valid printing strategy must satisfy the following: 

1) A robot, i, does not collide with already printed chunks. This 
constraint can be mathematically represented using the 
concept of accessible space of robot (ASR,i), which is 3D 
space occupied by the printing robot, i, and occupied space 
of printed chunks (ASc), which is 3D space that is occupied 
by the chunks that are already printed. The mathematical 
formulation of this constraints is presented in Equation (1). 

𝐴𝑆𝑅,𝑖(𝑡)  ∩  𝐴𝑆𝑐(𝑡)  =  ∅ , 𝑖 = 1,2,3 … , 𝑛          (1) 

2) A robot, i, does not collide with any other robot, j, at any 
time during the entire printing process. This can be 
mathematically represented using the concept of swept 
volume, which is the entire 3D space covered by the printing 
robot as it prints an assigned chunk. The differentiation 
between the accessible space and the swept volume of a 
robot is presented in Figure 5. The mathematical 
formulation of this constraints is presented in equation (2). 

𝑆𝑉𝑅,𝑖(𝑡)  ∩  𝑆𝑉𝑅,𝑗(𝑡)  =  ∅,            (2)  

𝑖 = 1,2,3 … , 𝑛;  𝑗 = 1,2,3 … , 𝑛;  𝑗 ≠  𝑖,   
 
The discretization of C3DP makes it possible to check the 
geometric constraints at different time resolution. The check for 
potential R2R collision is done in the following manner: 
• The default check is done at chunk level, i.e., the collision 

between the two printing robots is checked while they 
work on their respective chunks. Though this check rejects 
all the invalid print schedule, it also could potentially reject 
some valid schedules. This happens when the swept 
volumes of robots overlap with each other, but the robots 
might not occupy same exact location at same time. For 
example, if two robots are working on adjacent chunks, 
their swept volume will overlap but they might not arrive 
at the overlapping location at the same time.  

• In order to reduce the possibility of false negatives 
mentioned above (overlapping of swept volume but no 
collision), the check can be done at layer-level, i.e., the 
collision between two printing robots is checked while they 
work on individual level of their respective chunks. Similar 
to the check at chunk level, this rejects all the invalid, but 
some valid schedules could be rejected as well.  

• To further ensure that false negative has not taken place, 
we can run check at line-level or G-code level, where a 
check for collision is done at each G-code line. Though 
accurate, this is computationally taxing as it requires more 
frequent checks whereas, the chunk-level check requires 
least frequent checks.  

Thus, first chunk-level check is conducted, if the results are 
valid, we move on to the next print sequence. Otherwise, layer-
level check can be conducted. Similarly, if valid, we can move 
on to the next layer. Otherwise, line-level check can be 
conducted. If this produces invalid result, the schedule is 
discarded as an invalid print schedule. Thus, any generated print 
strategies can be validated using the geometric constraints 
presented in Equations (1) and (2) to ensure that the collision 
does not take place between the printing robots as well as 
between the printed parts and printing robots.  
 
3.4 Time Evaluation using DDT 
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In our previous work [7], we presented the idea of using 
DDT to calculate the total print time of a printing schedule. The 
number of rows in the trees (i.e., the tree depth) represents the 
total number of print sequence, i.e., the number of printing steps 
whereas, the column or the width of the tree represents the 
number of robots used for parallel printing. For instance, the 
DDT presented in Figure 4, depicts a print schedule with four 
printing sequence and utilizes maximum of four robots (but only 
two are needed in two initial sequence). In order to calculate the 
print time, a recursive function is presented in Equation (3). 

 
𝑇(𝐷, 𝑐𝑖) = max{[𝑇(𝐷, 𝑐𝑚)|𝑐𝑚 ∈  𝑐𝑖 . 𝑑𝑒𝑝𝑠], 0} + 𝑡(𝑐𝑖)          (3) 

𝑖 = 1,2,3 … . 𝑛, and 𝑚 = 1,2,3, … … 𝑁𝑖  
 

where, 𝑁𝑖 is the number of dependency chunks of  𝑐𝑖. In Equation 
(3), 𝑇(𝐷, 𝑐𝑖) is the time it takes to print chunk, 𝑐𝑖, in a given DDT, 
𝐷, which is the sum of the time it takes to print the single chunk 
𝑐𝑖, i.e., 𝑡(𝑐𝑖) and the time it takes to print all of its dependencies, 
𝑐𝑚, i.e., 𝑇(𝐷, 𝑐𝑚). This equation can be generalized to calculate 
the total print time of a DDT as shown in Equation (4), where, 
𝑇𝑡𝑜𝑡𝑎𝑙  is the total time needed to print the entire sequence of 𝐷, 
with 𝑛 chunks. This is equal to the sum of the time it takes to 
print the last chunk, n, and time it takes to print all of its 
dependencies, m.  

 
𝑇𝑡𝑜𝑡𝑎𝑙 = max({𝑇(𝐷, 𝑐𝑚) | 𝑚 ∈  [0, 𝑛 − 1]})  (4) 

 
4. CASE STUDY 

To demonstrate how the computational framework works, 
we present a simple illustrative case study. There are two 
primary reasons for using a simple model to demonstrate the 
computational framework: 1) the use of simple model allows 
audience to focus on the actual computational framework rather 
than getting distracted by the complexity of the model (and its 
chunking) and jargons associated with the additional complexity. 
2) The use of simple model allows audience to visualize the 
sloped-interface chunking strategy in an intuitive manner.  The 
chunking of simple geometry results in regular geometric shapes 
which makes it much easier to understand and visualize how the 
geometric constraints translate to actual physical constraint. 

The part considered for this case study is a rectangular block 
for demonstration purpose. The dimensions of block are 
100cm × 80cm × 1.5cm and has a total volume of 12,000 𝑐𝑚3. 
The block is printed using PLA. The rectangular block and the 
resulting chunks (chunked using sloped-interface chunking 
method) obtained after chunking is presented in Figure 5. Four 
robots are used for this case study. In addition, the following 
assumptions are made:  
1) The chunks created have equal volume and can only have 

one of the shapes shown in Figure 5. If different chunking 
strategy is chosen for chunking, the shape of the chunks 
could be different. Since the volume is equal, and the 
printing parameters are the same for all the printers, the time 
to print each chunk is assumed to be equal for simplifying 
the evaluation of print time. Assuming the material is 

deposited at the rate of 16 𝑚𝑚3

𝑠⁄  using a 0.4 𝑚𝑚 nozzle, 
the estimated time to print a chunk is 10.42 hours. 

2) Once a chunk is printed, printing robot moves to the location 
of next chunk immediately. The travel time between the 
chunks is ignored in the calculation.  
 
The output of chunker (i.e., the chunking algorithm) consists 

of eight coordinate points, four coordinates for four corners of 
the base and the other four coordinates for the top corners of the 
chunks. In addition to this, chunk number is also outputted. The 
eight coordinates are used for checking constraints and the chunk 
number is used for generating adjacency matrix as well as a 
DDT. The following steps were taken to implement the 
computational framework in this case study: 

Figure 5: Rectangular block showing the chunks line, exploded view 
of the chunks that combine to make a rectangular block and top view 

of exploded chunks with chunk number marked 

1) Generation of print schedule for rectangular block 
The result of chunking is shown in Figure 5. The algorithm 

then generates adjacency matrix that meets all the predefined 
criteria specified in Section 3.2. This generated matrix 
represents a print schedule. The next step is to check the validity 
of the print schedule using the geometric constraints presented 
in Section 3.2.  

Figure 6:( a) Accessible Space of robot (reduced to z-stage) (b) Swept 
Volume of robot while print a chunk. Position of robot shown at 

different chunk corner coordinate 
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2) Validation check of generated schedules using geometric 
constraints 
In order to check the geometric constraints, the swept 

volumes (SV) of the active robots are defined as shown in the  
Figure 6. The algorithm checks for overlap between the 

swept volumes of the printing robots (for R2R collision check). 
The second type of check is conducted between the printing 
robot and the already printed part (R2P collision check). First, 
the accessible space (𝐴𝑆𝑅) of the robot is defined. In this case 
study, a reduced constraint was used to define 𝐴𝑆𝑅 . This 
constraint is generated by considering only the z-stage of the 
print robot, shown in  

Figure 6(a)2. After that, the occupied space (𝐴𝑆𝐶) by the 
chunk is defined using the eight coordinates outputted by the 
chunker. The 𝐴𝑆𝐶  for each individual chunk is defined using a 
list of its individual corner coordinates. 

The algorithm goes through the sequence and does all the 
constraint checks. For example, if there are multiple chunks 
being printed in a sequence, it checks for R2R collision using 
swept volume of the involved robots. If there is no collision, the 
chunks coordinates are stored in a printed chunk list so that they 
can be used for R2P collision check during subsequent 
sequences. If the print schedule does not violate either of the 
geometric constraints, the DDT is considered valid, otherwise 
discarded as invalid.  

 
3) Time evaluation of the valid print schedules 

For this case study, 1000 DDTs were randomly generated 
first, and the computational framework returns us with 60 valid 
trees. Rest of the 940 trees were either invalid or duplicates of 
valid trees. Upon the completion of generation and constraints 
check, the valid print schedules were evaluated using time 
metrics presented in Section 3.4. Each chunk takes about 
10.42  ℎ𝑜𝑢𝑟𝑠 to print, which is the maximum time it takes to 
complete each sequence.  
  
5. RESULTS AND DISCUSSION 

Once the valid trees were evaluated, all of the 60 trees were 
ranked based on the total time it takes to print the entire print 
sequence. The validity of the generated valid trees is also double-
checked by hand to ensure that the algorithm works as intended. 
The top five print time generated using the algorithm along with 
the one created using heuristic approach are presented in the 
Table 1. 
 
 
 
 
 
 
 
 

 
2 The assumption is made in order to make it more applicable to robotic 

arm/ Scara arm 3D printers. 

Table 1.0 Top five print schedule generated using the algorithm in 
addition to the one generated using the heuristic approach (labelled 
“H”) and their total print time 

Label Print Sequence Time 
(hrs) 

1 {0,0,1,1,2,3,4,5,6,7,8,9,2,3,6,6,8,9,10,10} 114.62 
2 {0,0,1,1,2,3,4,4,5,6,7,8,3,2,4,5,6,7,8,9} 104.2 
3 {0,0,1,1,2,2,3,4,6,5,7,8,3,2,4,5,6,7,8,9} 104.2 
4 {0,0,1,1,2,2,5,3,6,6,8,7,3,4,5,6,6,7,8,9} 104.2 
5 {0,0,1,1,2,2,4,3,7,6,8,7,2,3,5,6,4,7,8,9} 104.2 
H {0,0,1,1,2,2,3,3,4,4,5,5, 2,2,3,3,4,4,5,5} 62.52 

 
The print sequence in Table 1 is presented in list format, 

where each element represents the sequence number and not the 
chunk number. The first element of the list represents the 
sequence for Chunk-0, second element represents the sequence 
of Chunk-1 and third element represents the sequence number of 
Chunk 3 and so on, giving us total of 20 elements. For example, 
for print sequence labelled 1, first two elements are both 0, which 
means Chunk-0 and Chunk-1 are printed together during the first 
print sequence (labelled 0). The third and fourth elements are 
both 1, which means Chunk-2 and Chunk-3 are printed during 
the second print sequence (labelled 1). The fifth element is 2, 
which means Chunk-4 is printed during the third print sequence 
(labelled 2). This process goes on until the end of the list. 

The top five generated print schedule are presented in DDT 
format in Figure 8 and the print sequence developed using 
heuristic approach is presented in Figure 7 

Figure 7: The dependency tree associated with the print sequence 
developed using heuristic approach 
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The total print time for the print schedules generated using 
the algorithm is much longer (~1.67 times longer) compared to 
the one for heuristically created. This is clear when we take a 
look at the tree presented in Figure 7 and Figure 8. While the 
heuristically generated print schedule utilizes most of the 
available printing robots (two while printing the initial chunks in 
center row and four afterwards), the automatically generated 
only utilizes two or three at a time leaving spare printers without 
use. In subsequent version of the algorithm development, we 
could introduce some sort of incentive in the algorithm for 
utilizing more robots to shorten the print time. Though the total 
print time of heuristic approach was faster for this case, we’d like 
to highlight that this study is the stepping stone towards the 
bigger picture – to develop a computational framework that can 
take the input from chunking algorithm to automatically generate 
print schedules for objects with very complex geometries. In 
those situations, human heuristics would easily fail due to the 
cognitive limitations of human brain. In this study, we present a 
case study with simple geometry for the illustrative purpose of 
demonstrating the entire process and the framework.  

In order to see how the distribution of total print time looks 
like for the generated valid print schedules, we plotted the total 
print time of every generated print schedules against the label 
number of the generated valid schedules. The plot is presented in 
Figure 9. In order to compare the total print time between the 
print schedules generated using the algorithm with the heuristic 

approach, a reference line (i.e., the print time form the heuristic 
approach) is plotted in the graph.  

 

 
Figure 9: The plot showing the total print time for each valid 

generated tree and the total print time for schedule generated using 
heuristic approach 

6. CONCLUSION 
In this paper, a printing schedule of cooperative 3D printing 

(C3DP) for a given number of chunks was algorithmically 
created with specified number of robots. The generated schedule 
is validated using the newly developed geometric constraints for 
cooperative 3D printing. These geometric constraints check for 
collision between the robots (R2R) while they are working in 
parallel as well as for collision between the printing robots and 
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Figure 8: The dependency tree associated with the print sequence represented in Table 1.0 
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the printed parts (R2P). If a generated schedule does not satisfy 
the geometric constraints, they are rejected as invalid. The list of 
valid trees is then evaluated in order to calculate the total print 
time for each tree, using the time metrics developed. The valid 
print schedule with shortest print time is chosen for printing. The 
key contributions of this study are: 
• Development of print sequence generator that can 

automatically generate a print schedule for specified number 
of chunks and available number of robots using output of 
chunker.  

• Identification and mathematical formulation of geometric 
constraints that can check the validity of the generated print 
 schedules. 

• Development of evaluation time metric using directed 
dependency tree (DDT) to determine the total print time for 
each valid print schedule.  

• Development of computational framework that 
amalgamates print sequence generator, geometric constraint 
check and time evaluation metric that can automatically 
generate, validate and, evaluate print schedule for given 
chunking strategy.  
While we successfully developed algorithm to generate 

print schedule for given number of chunks, the generated 
schedules take much longer to complete printing compared to the 
heuristic approach. The logical step is to integrate an 
optimization framework to obtain collision-free print schedule 
that take shorter make span than the heuristics. In addition to this, 
all the robots were not utilized while printing so, we can 
implement incentives to promote higher utilization of available 
robots in subsequent version of the algorithm. 
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