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ABSTRACT

The Reservoir Computing, a neural computing framework suited
for temporal information processing, utilizes a dynamic reservoir
layer for high-dimensional encoding, enhancing the separability of
the network. In this paper, we exploit a Deep Learning (DL)-based
detection strategy for Multiple-input, Multiple-output Orthogonal
Frequency-Division Multiplexing (MIMO-OFDM) symbol detection.
To be specific, we introduce a Deep Echo State Network (DESN),
a unique hierarchical processing structure with multiple time in-
tervals, to enhance the memory capacity and accelerate the detec-
tion efficiency. The resulting hardware prototype with the hybrid
memristor-CMOS co-design provides the in-memory computing
and parallel processing capabilities, significantly reducing the hard-
ware and power overhead. With the standard 180nm CMOS process
and memristive synapses, the introduced DESN consumes merely
105mW of power consumption, exhibiting 16.7% power reduction
compared to shallow ESN designs even with more dynamic lay-
ers and associated neurons. Furthermore, numerical evaluations
demonstrate advantages of the DESN over state-of-the-art detec-
tion techniques in the literate for MIMO-OFDM systems even with
a very limited training set, yielding a 47.8% improvement against
conventional symbol detection techniques.

KEYWORDS

deep learning, reservoir computing, echo state network, memristor
crossbar, MIMO-OFDM, symbol detection

1 INTRODUCTION

Due to the "memory wall" phenomenon [1], deploying the general-
purpose computing system for the spatial-temporal information
processing has become inefficient in terms of the hardware im-
plementation cost and the power consumption. Artificial Neural
Networks (ANNSs), a brain-inspired system which is intended to
replicate the way that we humans learn, offer an alternative solution
to accelerate the computational efficiency with witnessed remark-
able progress [2]. ANNSs are generally represented by a network of
neuron-like processing units interconnected through synapse-like
weighted elements, having advantages of finding similar patterns.
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The reservoir computing, a unified computing framework di-
vided from the recurrent neural network (RNN), allows effective
processing and learning of temporal information [3]. The major
characteristic of the reservoir computing is that the connectivity of
input weights and internal weights remains fixed at all times, and
thus, training is not required. Similar as classical RNNs, the internal
state of the network evolves dynamically across time to process
sequential patterns over arbitrary time intervals. Since the training
operation only involves in the readout stage, the computational
cost of learning can be significantly reduced. Recent theoretical
analyses demonstrate that the reservoir computing model can pro-
vide excellent performance in speech recognition [4] and wireless
communication [5] tasks.

In modern wireless communication networks, an accurate char-
acterization of the underlying wireless channel is typically needed
at the receiver to detect the transmitted symbol [6]. However, the
nonlinear distortion caused by practical Radio Frequency (RF) com-
ponents in the transceiver chain and the interference introduced
by wireless multi-access strategies can significantly impact the per-
formance of channel estimation. ANNs, on the other hand, offer an
alternative technique for transmitted symbol detection by inverse
processing signals propagated through wireless channels. Based on
the framework of supervised learning, neural networks can learn to
reconstruct corrupted symbols from the aforementioned distortion,
interference, and noise at the receiver. Furthermore, due to the
nonlinear feature of communication signals, RNNs are expected to
be the most suitable architecture in wireless systems.

In this work, we exploit a deep learning (DL)-based symbol de-
tection technique for MIMO-OFDM systems by using a Deep Echo
State Network (DESN) with memristive synapses. Major contribu-
tions of our work are summarized as followings:

e By concatenating multiple dynamic reservoir layers in a hi-
erarchical processing structure, the introduced DESN offers
a high-dimensional random encoding over multiple time in-
tervals for sequential inputs, enhancing the separability and
memory capacity of the network;

e The DL-based detection strategy significantly reduces the
complexity of the receiver, accelerating the detection effi-
ciency and increasing the robustness;

o The hybrid memristor-CMOS co-design enables in-memory
computing and parallel processing capabilities, yielding 16.7%
power reduction over shallow ESN designs even with more
dynamic reservoir layers and associated neurons;

o Numerical evaluations on the high-speed transmitted sym-
bol detection demonstrates advantages of the DESN over
state-of-the-art techniques in the literate for MIMO-OFDM
systems even with a very limited training data.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on January 04,2021 at 19:58:34 UTC from IEEE Xplore. Restrictions apply.



2 WIRELESS COMMUNICATION NETWORKS

In the contemporary society, communications between people or
devices are interconnected by wireless networks. Unquestionable,
the new level of performance and efficiency of 5G/beyond-5G com-
munication networks will empower new user experiences with
high throughput, ultra-reliable connection, ultra-low latency, and
massive capacity [7]. However, conducting transmitted symbol de-
tection, particularly for Multiple-input, Multiple-output Orthogonal
Frequency-division Multiplexing (MIMO-OFDM) systems under
heterogeneous environments and channel conditions, is one of
the major challenges in 5G/beyond-5G wireless networks. In a
MIMO-OFDM system, the received signal is the superposition of
all modulation symbols associated with its sub-carriers, in which
modulation symbols refer to the character selected from a prede-
fined finite alphabet table [8]. Most importantly, more information
through a modulation symbol can be conveyed as the size of the
alphabet table increases.

In the conventional approach for the receiving operation, a chan-
nel estimation is firstly conducted, followed by detecting corre-
sponding symbols within the coherence time based on its estimated
channel. However, an accurate channel estimation results in a colos-
sal resource consuming. Furthermore, there is a clear trade-off be-
tween the performance of the channel estimation and resources
used for data transmission; in particular, a more accurate channel
estimation often requires more resources to be allocated on this
process, making less available resources for data transmission. To
this end, it is crucial to study the symbol detection method with
limited or even without available channel knowledge, especially
for 5G/beyond-5G wireless networks.

Conventional symbol detection approaches for MIMO-OFDM
systems, including the Maximum Likelihood (ML) [9] and the Mini-
mum Mean Squared Error (MMSE) [10], often rely on modeling the
feature of transmission channels and solving the formulated prob-
lem based on a particular model. The data-driven approach powered
by the DL offers a solution to detection approaches without relying
on such model-based assumptions. In particular, by formulating
the symbol detection task as a classification problem, the DL-based
symbol detector can be used to perform a parameter tuning based
on the estimated Channel State Information (CSI) and received
symbols [11, 12]. The complexity analysis of such DL-based symbol
detector is carried out with considerations of RF impairments and
noise interference, demonstrating a lower Bit Error Rate (BER) with
less required resources [13].

3 DESIGN METHODOLOGY
3.1 Deep Echo State Network

Benefited by the supervised learning framework, the introduced
DESN, as demonstrated in Fig. 1, can learn to reconstruct corrupted
symbols from RF impairments, signal distortion, and noise interfer-
ence. In general, the DESN contains three major computing layers,
namely, the input layer, a hierarchy of stacked reservoir layers with
intermediate input/output (I/Os), and the output layer. Crucially,
the introduced DESN embeds the historical information into a dy-
namic state representation in each hidden reservoir layer, exploiting
the temporal information in a feed-forward structure to enable the
spatial-temporal processing characteristic.

During the computation, the analogue domain of real and imagi-
nary components, representing a set of complex time-domain sym-
bols of binary digits, are applied as the input signal, which can
be defined as u(t) = x(V (¢) € Ny, where Ny is the input dimen-
sion. The association between the input layer and the first hidden
reservoir layer is communicated through input weighted elements,
Wig) € [Ny X Ng], where Ng is the number of neurons in each
hidden reservoir layer. Through the hierarchical structure, each
hidden reservoir layer adopts the intermediate output, generated
from its previous layer, to update its internal state and compute the
corresponding output for its following layer. By denoting the total
number of hidden reservoir layers as Ny, the internal state of the
I-th hidden reservoir layer can be written as

sO@) = D) - w450 -1y W
+ye-n-wyh o

where f() is a nonlinear activation function; x(D (t) = y(l_l) (1)
represents the local input at the present time step, which equals to
the local output from the previous layer; Wi, € [Ny X Ng], Wyes €
[NR X NR], and Wgp € [Ny X NR] denote input weights, internal
weights within the reservoir, and feedback weights from the local
output to the reservoir, respectively; s(!) (t — 1) and y) (¢ - 1)
indicate the internal state of the I-th hidden reservoir layer and its
output at the previous time step. The present output state of the
I-th hidden reservoir layer can be then expressed as

y 0 =50 - W, o)

where Wy,,; € [Ng X Ny] denotes output weights, and Ny rep-
resents the output dimension. Unlike a classic RNN, Wi, Wpes,
and Wy, in each hidden reservoir layer remain fixed at all times,
in which W, is sparsely connected. Such structure significantly
reduces the learning cost, and decomposes various levels of inter-
ference cancellation for the received OFDM signal.

By stacking multiple hidden reservoir layers into a hierarchical
processing structure, the state computation and the learning op-
eration are carried out through the pipeline. To reduce the design
complexity, the teacher forcing for each hidden reservoir layer is
the same. Correspondingly, the final output, y(NL) (t), generated
from the last hidden reservoir layer estimates the desired OFDM

symbol through output weighted elements, WO(IZIL) .

3.2 Learning Rule

In the training operation, weighted elements for W,..s are randomly
generated according to the echo state property [14], while only Wy,
is trained by minimizing the L2 norm distance. For each computing
cycle, the trajectory is computed by feeding the training input,
{x(t)};rzo, with the target symbol, {y(t)}tho, where T denotes the
length of training patterns. The set of internal states, {s(t)}tT:0
is then obtained by Eq. (1). Output weights are then updated by
minimizing the L2 norm distance between the target output and
the predicted output, which can be expressed as

T
min > {ly(1) = () - Wour)3 3)
oul =0
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Figure 1: Architecture of Deep Echo State Network (DESN).

Algorithm 1: DL-based MIMO-OFDM Symbol Detection
Strategy using DESN

Data: x(t), y(t)

Result: (1)

initialization

fort < 0to T do

for/ —0tol-1do
Generate the state matrix according to Eq. (1):

sO@) = fxD(ry- w4 s -1y wl

end
end
return s(t)
Calculate the output matrix according to Eq. (2):
y(t) = s(t) - Wour
Determine the loss between outputs:
loss = ||y (t) = s(t) - Wour) I3
Minimize the L2 norm distance according to Eq. (3)
loss_min = min ZOT loss
Update output weights according to Eq. (4):
Wour = V.St

The closed-form solution can be then determined as

Wour = Y- 5_+’ 4
where Y = [fo, -+, §r], and S* is the pseudo-inverse of matrix S =
[§g R 5% ]. Since the symbol detection task can be formulated as a

classification problem using the DL-based technique, the prediction
operation based on the historical information is not required, and
thus, the feedback computation with Wy, is eliminated in this
design to further reduce the computation and power overhead.
The general learning operation of the introduced DESN can be
summarized in Algorithm 1.

3.3 Memory Capacity

Due to the recurrent nature of the reservoir layer, the reservoir
state, s(t), reflects traces of the historical information, known as the
dynamic short-term memory. The memory capacity, represented
the amount of variance that the delayed input can be recovered
from optimally trained output units, is limited in a shallow ESN.
To be specific, as the data density and the complexity of the ap-
plication scale up, the learning capability of shallow ESN reduces.
Based on the short-term memory definition [15], the determination
coefficient with a single set of I/O can be expressed as

cov® (x(t — k), y(t))

d(k,Wout): O_Z(X(t))O-Z(y(t)) >

®)

where cou() denotes the co-variance, o() represent the variance,
and k is the delay coefficient. The short-term memory capacity of a
hierarchical network can be then written as

Mc Z%d(k, Wout). (6)

The general definition of short-term memory for stacked ESN
with multiple I/Os can be obtained by extending the concept to each
I/O pair. The introduced DESN with stacked hierarchy of dynamic
reservoir layers achieves multiple temporal representation for input
sequences, allowing such system to capture more features between
input and output patterns, and most importantly, enhancing the
richness of reservoir states and the memory capacity.

4 HARDWARE PROTOTYPING

4.1 Reservoir Layer with Memristive Synapses

A generic model of the reservoir layer is deployed on double-column
memristive crossbars, as depicted in Fig. 2. As discussed in the
previous section, the internal state of the reservoir layer at the
present time step can be written as in Eq. (1), while the output
state is expressed as in Eq. (2). In the mathematical point of view,
such operation can be achieved by the sum-of-product computa-
tion. By mapping the sequential input to voltage and weighted
elements to conductance, such sum-of-product computation can be
implemented by a memristive crossbar. The introduced memristive-
based reservoir layer contains two crossbars, in which the major
crossbar determines the internal state of the network while the
output crossbar computes the desired output. The major crossbar
can be further divided into two groups of memristive cells, repre-
senting the fully-connected W;;, and the sparsely-connected Wy¢s.
Since each weighted element can be either positive or negative,
a double-column crossbar is implemented to represent a single
weighted element; for instance, the conductance of a memristor
cell, Gjj, representing the weighted element of W;;, is expressed as
Gij = G;} - GI_J

During the operation, the input, x(t), represented by an ana-
logue voltage, is applied to the horizontal word-line of the crossbar.
Consequently, an intermediate current is generated at each vertical
bit-line by multiplying the input voltage and the conductance of
the corresponding memristor cell, which can be explicated as

n n
R NI W
i=1 i=1

where V; is the i-th input vector; n is the input dimension; I;T and
I; represent the positive and negative bit-line current, respectively;

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on January 04,2021 at 19:58:34 UTC from IEEE Xplore. Restrictions apply.



’/ ” ’/

Figure 2: Deploying the reservoir layer on double-column memristive crossbars. W;, (highlighted in blue) and W,,; (highlighted
in green) are fully-connected, while W,.s (highlighted in red) is sparsely-connected. "+" and "-" denote positive and negative

weighted elements, respectively.

G;} and G;; denote the positive and negative conductance, respec-
tively, of a menristor cell located between the i-th word-line and the
Jj-th bit-line. Similarly, the corresponding current signal within the
reservoir layer can be computed by adopting the feedback signal
from the previous internal state, and thus, the total bit-line current
generated from the reservoir layer (major crossbar) at the present
time step can be defined as

-va Gl + Z Vit —1) - G,

i= NU+1

‘ZWWG*'Z Vi(t—1) - Gy;.

i=Ny+1

®)

It can be observed that a subtraction operation is required for a
double-column crossbar design; to support such feature, a bilateral
linear current amplifier with the inlaid current-to-voltage converter
is implemented. Two separated states of the network, s™ and s,
in the format of analogue current, are accumulated in the bilateral
linear current amplifier. sg;,m, representing the difference between
st and s~ in the format of analogue voltage, is generated from
the bilateral linear current amplifier, which will be then projected
onto a higher dimensional space through the Mackey-Glass (MG)
activation function [16].

In neural network designs, the transition between synapses are
often carried out through a nonlinear activation function, projecting
inputs onto a higher dimensional space for prediction or classifica-
tion. Recent research has found that both sigmoid and hyperbolic
tangent functions, typical activation functions used in RNNs, are
suffered by the vanishing gradient problem [17]. Originating from
a biological perspective, the MG equation [18] defines a feedback
system in which dynamics depend on both present and previous
states, becoming the suitable candidate for RNN designs.

Similar as the reservoir layer (major crossbar), the output layer
is also implemented by a double-column crossbar. As such, the
output from the reservoir layer can be computed by multiplying
the transferred state of the network and output weighted elements,

which can be written as

Ny

> seum - (G = Gy)). )

i=NRr+1

yji=y;—y; =

With the hierarchy of stacked dynamic reservoir layers, the
output generated from the present layer will be then used as the
input for its following layer.

4.2 Modeling of Memristor

Due to the high access latency from/to memory units, the conven-
tional computing architecture can no longer offer timely response
[19]. Benefited from the memristive crossbar, the introduced DESN
closely models the recurrent computation of the reservoir layer
with in-memory computing and parallel processing capabilities,
reducing the access latency between processing elements and data
storage. In the hardware prototyping, each element in the cross-
bar is composed of the discrete Resistive Random-Access Memory
(ReRAM)-based memristor cell [20]. The resistance range of the
memristor cell is set to be 20kQ to 1IMQ, where the according con-
ductance G € [14S,504S]. Weighted elements are then updated
through the offline training strategy.

It has been well known that the sneak path leakage is one of the
major challenges in a memristor crossbar, representing an inevitably
current flow through any unselected memristor cells, and thus, de-
grading the accuracy of the network [21]. Furthermore, memristors
are known to have large device-to-device and cycle-to-cycle varia-
tions as the system is scaled up [22]. In this experiment, for properly
predicting the system performance and inference accuracy, only
the binary weight, represented by the high-resistance-state (HRS)
and the low-resistance-state (LRS) of the memristor cell with a large

resistance ratio (IL{gg ~ 50), is implemented.

4.3 Linearity of Sum-of-Product Computation

With the consideration of precise modeling, both positive and nega-
tive weighted elements are used to form a double-column crossbar;
to accurately read out the information, a bilateral linear current
amplifier is implemented, as shown in Fig. 3. During the operation,
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Figure 3: Design scheme of bilateral linear current amplifier
with inlaid current-to-voltage converter.
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Figure 4: Characteristics of bilateral linear current amplifier
with inlaid current-to-voltage conversion.

the transistor M; accumulates the total current from the positive in-
put, I} , and the reference current generated through the transistor
Ms, as such, Iyf; = Il.+n + Ipr3. This current is then duplicated across
the associated current mirror, Ms - Mg, and thus, Ipg = Ine = Ip1-
As the negative input current, Ii’n, injects into the transistor My,
the associated current mirror forces M, to duplicate the current
at My, as such, Iy;; = Ipp. By balancing the current of Ips; and
Iprpo, the current through the transistor My can be expressed as
Ipmoe = Iitz - Ii_n’ such that Iy = Ip9 + Ii_n +Ipmq = Iitz + Ipr4 = Ingr.
The high-gain operational amplifier keeps tracking the variation of
V* and V~, and dynamically regulate the driving voltage of My. The
output current mirror, My - My, duplicates the current difference
to the output and consistently converts the current into a voltage
through the loading transistor M.

In general, the optimal goal of implementing the bilateral linear
current amplifier is to minimize the output voltage variation under
various input current. To demonstrate such functionality, input
currents, Il.tl and I collected from the bit-line of the crossbar, was
applied. As plotted in Fig. 4, it can be observed that the linear
correlation between input currents and the output voltage can be
obtained. It is reasonable to conclude that the introduced bilateral
linear current amplifier is capable of providing a stable and accurate

current subtraction and current-to-voltage conversion.

Reservoir

Neuron M bilateral linear current amplifier ||
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[linput layer
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Il output layer

107 10° 10’ 102
Power Consumption (mW)

Figure 5: Average power distribution of a single dynamic
reservoir layer and a single neuron.

Table 1: Comparison of introduced Memristive-based Reser-
voir Layer with State-of-the-art ESN Designs.

| [23] | [24] | ThisWork
Architecture in-memory | in-memory | in-memory
Implementation FPGA MATLAB CMOS
CMOS Process 45nm N/A 180nm
# of Layers 1 1 2
# of Neurons 30 1000 128
Memory memristor | memristor | memristor
Activation Function tanh tanh MG
Supply Voltage 0.55V N/A 1.8V
Power Consumption | 125.36mW N/A 104.51mW

4.4 Performance Metric

In the hardware prototype, analogue circuits were implemented
with the standard 180nm CMOS process, and electronic synapses
were built with discrete memristor cells. In this experiment, total
of 128 neurons were implemented for the major crossbar, and 2
neurons were used for the input and output layers. The circuit model
was simulated in both time-domain and frequency-domain through
the Cadence Virtuoso platform to demonstrate its capability against
noise. In a transient response, the signal-to-noise ratio (SNR) of the
input was set to be 20dB, 10dB, and 5dB; compared to the scenario
without noise, the average output error rate is found to be 2.49%,
4.09%, and 9%, respectively. In a frequency response, the circuit
model is more robust against noise when the operating frequency
is higher than 50kHz.

The power distribution of a single dynamic reservoir layer and
neuron is illustrated in Fig. 5. The total power of the reservoir layer
reaches 104.51mW, in which the input state of the network con-
sumes 0.81mW of the total power, the internal state of the network
absorbs 97.6mW of the total power, and the rest are occupied by
the output state of the network. For each neuron, the MG analogue
circuit model [25] absorbs 16% of the total power, and the rest are
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Figure 6: Testing bit error rate with respect to various sym-
bol detection strategies.

occupied by the bilateral linear current amplifier. The resulting
hybrid CMOS-memristor co-design of the dynamic reservoir layer
is then compared to state-of-the-art ESN designs, exhibiting 16.7%
power reduction over shallow ESN designs even with more dynamic
layers and associated neurons, as summarized in Table 1.

5 MIMO-OFDM SYMBOL DETECTION
5.1 Experimental Setup

To demonstrate the performance, the introduced DESN is used as
the symbol detector in the receiving chain of MIMO-OFDM systems.
The analog waveform of received MIMO-OFDM signals are directly
fed into the DESN. Through the learning operation, readout weights
of the DESN are optimized to generate the desired output, which
is the transmitted MIMO-OFDM signals. In this experiment, the
MIMO-OFDM signal used for the training is generated according to
the 5G new radio (NR) specification that follows the standard 3GPP
TS 38.212 version 15.2.0 [26], where the channel is generated accord-
ing to the Winner II channel model [27]. The modulation method
is configured as 16-Quadrature Amplitude Modulation (16-QAM).
To be specific, pilots of the communication system, which are uti-
lized for channel estimation, are evenly used as in the training set,
offering a compatible way to replace the state-of-the-art receiving
process to DL-based strategies. Details of the system specification
are set as followings: the number of transmitting and receiving
antennas is set to be 4, the number of sub-carriers in the OFDM sys-
tem is set to be 1024, and the number of neurons for each reservoir
layer is set to be 128.

5.2 Result Discussion

The testing BER of the introduced DESN is shown in Fig. 6 and Fig.
7 with the comparison to the classic detection approach and state-
of-the-art DL-based strategies. The Linear Minimum Mean Squared
Error (LMMSE) is a classic model-based approach using the linear
processing method for symbol detection. Such approach requires
the knowledge of the noise variance of the channel. However, the
LMMSE approach relies on accurate channel information, which is
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Figure 7: Testing bit error rate versus signal-to-noise ratio
with respect to various symbol detection strategies.

challenging to be obtained in the low SNR regime. Comparing to
the reported average BER of 11.02 X 1072 in the LMMSE approach,
the average BER of the introduced DESN-based detection approach
is 5.76 x 10~2, which is 47.73% more accurate. The testing BER of
the introduced DESN is also compared to the Multilayer Perception
(MLP) model with three hidden layers and 1024 associated neurons.
Due to the limited training set, the MLP approach has an average
BER of 50.12 X 1072, Thereby, it is convincing that the introduced
DESN outperforms state-of-the-art symbol detection strategies for
all SNR regimes.

Furthermore, the introduced DESN with a hierarchy of stacked
dynamic reservoir layers demonstrates a lower average BER com-
pared to the shallow ESN design, which contains only one reservoir
layer. Intuitively, such improvement can be interpreted as latter
reservoir layers further increase the detection based on the pro-
cessed observation from the previous reservoir layer.

6 CONCLUSIONS

In this paper, we exploit a DL-based symbol detection strategy
for MIMO-OFDM systems. By concatenating multiple dynamic
reservoir layers in a hierarchical processing structure, the intro-
duced DESN enhances the separability and memory capacity of
the network, capturing more features between input and output
patterns. The resulting hybrid memristor-CMOS co-design enables
in-memory computing and parallel processing capabilities, acceler-
ating the computation efficiency and reducing the power overhead.
Through the symbol detection task on MIMO-OFDM systems, the
introduced DESN demonstrates an average BER of 5.76 x 1072,
yielding a 47.8% improvement against classic symbol detection
techniques even with a very limited training set.
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