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ABSTRACT the information age, which is built upon integrated circuits, digital

With the continuous development of technologies, our society is
approaching the next stage of industrialization. The Fourth
Industrial Revolution also referred to as Industry 4.0, redefines the
manufacturing system as a smart and connected machinery system
with fully autonomous operation capability. Several advanced
cutting-edge technologies, such as cyber-physical systems (CPS),
internet of things (IoT), and artificial intelligence, are believed as
the essential components to realize Industry 4.0. In this paper, we
focus on a comprehensive review of how artificial intelligence
benefits Industry 4.0, including potential challenges and possible
solutions. A panoramic introduction of neuromorphic computing is
provided, which is one of the most promising and attractive
research directions in artificial intelligence. Subsequently, we
introduce the vista of the neuromorphic-powered Industry 4.0
system and survey a few research activities on applications of
artificial neural networks for [oT.
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1 INTRODUCTION

Three Industrial Revolutions occurred in human history. The First
Industrial Revolution occurred in the 18" century accompanying
the invention of a steam engine. The extensive utilization of steam
engines successfully transited the production activities of human
society from hand production to machine manufacturing. Next, the
Second Industrial Revolution at the beginning of the 20" century
further improved productivity through the massive employment of
electrification and the production line. Lastly, the Third Industrial
Revolution started in the late 1950s has propelled our society into
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computers, communication theory, and the internet.

Since the Third Industrial Revolution, the computer-powered
machines in modern factories have enhanced the manufacturing
capability to an unprecedented level using their powerful
manufacturing capability with an automatic production line.
However, these machines still lack one of the essential features to
further free people from tedious works, which is the capability of
independent, smart, and autonomous manufacturing without any
human intervention. The thrust of realizing this level of
autonomous manufacturing is called the Fourth Industrial
Revolution, also referred to as Industry 4.0 [1]. Industry 4.0
requires a smart and autonomous manufacturing system, which is
capable of performing tasks on its own and making necessary
decisions independently [2]. Thereby, the machines in Industry 4.0
demand smart sensors capturing real-time data from surroundings,
the next level of communication efficiency enabling machines to
collaborate for sophisticated tasks. More importantly, an
unprecedently smart intelligence system controls these parts and
conducts a fully autonomous operation. These unique requirements
can be enabled by Cyber-Physical Systems (CPS) [3], Internet of
Things (IoT) [4], and the next level of artificial intelligence. Cyber-
Physical Systems map the physical world into the cyber world
using smart sensors. Then, machines can communicate and operate
collaboratively through Internet of Things. Lastly, harmonious
collaborations and autonomous manufacturing can be achieved
through intelligent systems built upon cloud computing, cognitive
computing, and artificial intelligence [1]. As the core of all
connected manufacturing machines, a more powerful artificial
intelligence system with lower power consumption and better self-
learning capability is expected in Industry 4.0. However, the
advanced level of intelligence does not exist for current artificial
intelligence systems, which is the biggest challenge for Industry 4.0.

Despite deep learning demonstrates the remarkable capability of
Artificial Neural Networks (ANN) in solving complicated
cognition tasks, the computing platforms built upon von Neumann
architecture (digital domain) limit the performance and efficiency
of ANN [5]-[7]. On the contrary, human brains perform multiple
intelligent tasks, such as pattern recognition, reasoning, control,
and movement, with an extremely low power consumption of about
20 W. The next generation of artificial intelligence should aim to
rebuild a brain-like neuromorphic system, which takes full
advantage of human brains to overcome the challenge of Industry
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4.0. Specifically, the next generation of the neuromorphic system
is necessary to include the following features:

e Organ-like sensory system (for example, eyes and ears) to
capture signals from the physical world and transform them
into spiking signals for Cyber-Physical Systems and Internet
of Things;

e Human-like learning methodology that enables a
neuromorphic system in Industry 4.0 to learn from
surroundings and its experiences.

These unique features can be achieved by reverse engineering of
human brains with emerging technologies at all levels of the
architecture, algorithm, circuit, and device.

10T is the internetworking of physical devices embedded with
sensors, actuators, and network connectivity that enable these
objects to collect and exchange data. IoT devices will be able to
provide innovative services and solutions in the realms of such as
smart homes, smart cities, and smart factories. It is envisioned that
trillions of IoT devices such as sensors, cameras, and wearables will
be connected to the Internet, forming a massive [oT ecosystem [§]
[9]. Further, low power wireless technologies such as Bluetooth,
Wi-Fi, ZigBee, Cellular, and RFID enable IoT devices to connect
with each other over wireless links and operate in a self-organizing
manner [10]. Such wireless IoT devices and systems will be a key
ingredient for Industry 4.0. Figure 1 shows representative
applications of wireless IoT devices, possibly powered by energy
harvesting.
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Figure 1: Representative applications of wireless IoT devices.

Practical deployment of an IoT system still faces many challenges
such as data analytics, computation, transmission capabilities,
connectivity, end-to-end latency, security, and privacy [10], [11].
ANNSs can be used to address some of the key challenges of wired
IoT devices, in which large power consumption may not be critical,
while neuromorphic systems are a good choice for wireless IoT
devices powered by batteries or energy harvesting.

This paper is organized as follows. Section 2 reviews earlier works
on neuromorphic systems in the context of Industry 4.0 and Section
3 recent research activities on the application of ANN to IoT
devices and systems. Section 4 draws the conclusions.

2 NEUROMORPHIC SYSTEM POWERED
INDUSTRY 4.0

Unlike traditional manufacturing machines with isolated
information processing at each machine and lack of communication
with each other, the machines in Industry 4.0 should possess the
capability of sensing real-world data/signals and updating them to
the cloud side server for further processing and computing as
shown in Figure 2 (a).
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Figure 2: (a) Conventional Industry 4.0 system
(b) neuromorphic-powered Industry 4.0 system.

With the assistance of powerful computational resources on the
server-side, machines located across the factory can share
knowledge/information, access a global library of images, map and
object data centers, and accomplish the task collaboratively.
However, these servers consist of conventional von Neumann-
based chips with high power consumption and limited learning
capability. One of the most critical drawbacks of the von Neumann
architecture of digital computers is the speed and energic
bottleneck of data communication between the CPU and memory
[12]. Thereby, the typical computers invented in the Third Industry
Revolution are able to recognize 1,000 different objects but
consumes about 250 W [13]. On the contrary, a human brain
performs similar cognitive and complicated tasks, such as pattern
recognition, reasoning, control, and movement, with the power
consumption of only about 20 W [12], [14]. The differences in the
performance stem from the intrinsic difference in structures.
Human brains comprise of millions of neurons connecting by
trillions of synapses forming a network configuration. The latest
discoveries in neuroscience indicate remarkable capabilities of
human brains are attributed to three unique features: (1) neural
network structure; (2) spike-based signal representation; (3)
synaptic plasticity and associative memory learning [13], [15].
Firstly, the neural network structure has demonstrated its capability
of handling cognition tasks in deep learning [13], [15]. Secondly,
the low firing rate of spiking signals enables the brains to operate
with high energy efficiency. Thirdly, neurologists prove that
synaptic plasticity and associative memory learning are highly
relative to the memory mechanism, which enables the brains to
learn from the surroundings.



In this paper, we propose a new Industry 4.0 system built upon the
brain-like neuromorphic chips illustrated in Figure 2 (b). In this
system, the self-learning and low-power consumption
neuromorphic chips are deployed at both the client and center sides
[16]. This novel neuromorphic-powered Industry 4.0 system
replaces conventional von Neumann-based chips invented in the
Third Industrial Revolution with neuromorphic chips. Then each
machine at the so-called light-out factory will deploy self-learning
and adaptive neuromorphic chips that can seamlessly connect each
other through Internet of Things.

Moreover, a network-based neuron system does not just exist in the
brain, but also spreads throughout the entire human body, including
the sensory and motion systems [16]. The organ-like sensory
systems, such as eyes, capture the external signals, and encode
them into spiking sequences in low frequency, less than thousands
of Hertz [14]. The utmost low frequency of the signals in the neural
system significantly reduces energy consumption. Furthermore,
these organ sensors constantly receive signals from the external
world enabling the system a real-time processing capability, an
essential feature for creating an adaptive Industry 4.0 system.
Recently, ultra-low energy and real-time neuromorphic vision
system have been designed and in a commercialization track,
named as iniVation Dynamic Vision Sensor [17].

The control system built upon the neural networks can make rapid
and adaptive responses to the changes in the environment. For
example, birds can constantly adjust the flying height and direction
to avoid obstacles. The capabilities of real-time response and
adaptivity of the neural network-based motion system are highly
suitable for complex manufacturing tasks in Industry 4.0. The
neural network-based robotics would help us to design next-
generation advanced robotics for autonomous manufacturing in
Industry 4.0 [16], [18-21].

2.1 Emerging Neuromorphic Architectures

Digital computers in the Third Industry Revolution are built upon
the von Neumann architecture. Whereas the von Neumann
architecture is designed for efficient Boolean calculations rather for
neuromorphic computing. Thereby, the architecture for the next
generation computers should aim to rebuild a network
configuration mimicking the neural network.
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Figure 3: Emerging neuromorphic computing architectures:
(1) Distributive Neuromorphic Computing Architecture
(2) Cluster Neuromorphic Computing Architecture
(3) Associative Neuromorphic Computing Architecture.

To address the challenge, three emerging neuromorphic
architectures called Distributive Neuromorphic Computing

Architecture (DNCA), Cluster Neuromorphic Computing
Architecture (CNCA), and Associative Neuromorphic Computing
Architecture (ANCA) are proposed in [12], [22]. Figure 3
illustrates those three emerging non-von Neumann neuromorphic
architectures.

In DNCA, the neurons and synapses are distributed and placed in a
network structure minimizing the distance between the computing
units (neurons) and the memory units (synapses). Thereby, the
computation of neural networks can be performed between adjacent
neurons and synapses minimizing the energy spent on signal
propagation. Compared to the digital representation, utilization of
threshold neurons and the spike-based training method further
reduce the power consumption. In order to realize the parallel
processing feature of the brain, CNCA divides the entire network
configuration of DNCA into multiple regions. Each region
processes a specific signal type, such as visual and auditory signals
captured by individual organ-like sensors. As a result, different
signals are processed at separate neural networks in parallel. Lastly,
ANCA correlates the outputs of CNCA together realizing a high-
level associative memory learning capability. The associative
memory learning enables the neuromorphic system to learn directly
from the surroundings as well as its own experience.

2.2 Associative Memory Learning

Nowadays, constantly increasing demand for large datasets is
the main bottleneck for a massive deployment of artificial neural
networks. The sizes of datasets have increased almost linearly over
the past decade [15]. Thus, large datasets and neural networks are
essential for higher inference accuracy [23]-[25]. Figure 4
demonstrates the increment of the scale of datasets and neural
networks over two decades [24], [26]. In contrast to the rapid
increase of neural networks and datasets, the capacity of the GPU
memory has increased only by a factor of three [23].
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Figure 4: Trend of datasets and DNNs sizes [24].

Building an enormous number of datasets is an extremely time-
consuming and tedious task. On the contrary, the human brain is
capable of interacting directly with the surroundings and learning
from the experience. The learning mechanism is referred to as
associative memory learning [14], which enables the neural system
to memorize the relationship between two concurrent events [14],



[27]. The associative memory leaning avoids large datasets and can
learn from real-world data in Industry 4.0. Furthermore, the self-
learning neuromorphic systems built upon associative memory
learning potentially have adaptivity and independent working
capability, which is the inherent learning mechanism of brains [28].

The investigations on associative memory reveal that two critical
features play important roles: synaptic connecting strength
modification and distributed data processing [14]. In neural
systems, different captured signals, e.g., image and sound, are
preprocessed at different regions of the brain. During the learning
process, the synaptic connection strength between the sensory and
response neurons increases [14].

A pioneering exploration of a brain-like associative memory
learning system was conducted by memorizing the relationship
between concurrent visual and auditory information [28], [29], in
which the associative memory learning is achieved by correlating

the probabilistic output scores of artificial neural networks together.

Compared to other related works such as in [30], [31], it is the first
approach to associate two large-scale neural networks together with
a solid biological foundation.

The neuromorphic system built upon the associative memory
learning is capable of collecting data constantly from surroundings
using smart sensors and learning through its own experiences,
which is an essential feature of the autonomous manufacturing in
Industry 4.0.

2.3 Reservoir Computing

Another particular neural network that can potentially benefit
Industry 4.0 is Reservoir Computing (RC), which belongs to the
category of Recurrent Neural Networks (RNN). The outputs of an
RNN is not merely determined by its current states, but also the
previous states in the time domain. This unique characteristic
comes from its recurrent network structure. A similar self-
connected configuration also widely exists in the biological neural
networks [14]. Its performance metrics outperform traditional RNN
methods in nonlinear system identification, prediction, and
classification. Reservoir computing has been applied successfully
in multifaceted applications including character & speech
recognition [32] and generation & prediction of chaotic time series
[33].

While the major challenge of RNN is to train all weights within the
network, which excessively increases the demand for
computational resources. The RC addresses the problem. It adjusts
only the weights connecting output layers during the training
process, while the weights within the reservoir layer are fixed and
untrained. The self-connected neurons within the reservoir have a
fixed connecting topology and weights.

Figure 5 illustrates the neural network of RC. It reduces the
computational complexity of the learning process to achieve high
computational efficiency. The low demand for computational
resources is suitable specifically for mobile devices in Internet of
Things in Industry 4.0. Several silicon chips were designed for
Reservoir Computing [34]-[37]. The computational accuracy of the

RC system highly depends on the number of neurons within the
reservoir layer, and a large number of neurons increases the
hardware complexity of reservoir computing. Recently, it is
demonstrated that the computing architecture based on the delay
feedback loop in a reservoir is capable of exhibiting rich dynamic
behavior. It should be noted that the delay feedback loops are
highly hardware-friendly compared with the conventional reservoir
system. The reservoir computing system with delay feedback loops
is referred to as the time delay reservoir (TDR) computing [35]. In
TDR computing, the reservoir layer has only one nonlinear neuron
with a self-connected feedback loop.
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Figure 5: (a) Typical reservoir computing topology (b) the
deep reservoir computing topology.

Composability and hierarchy are key to building extreme-scale RC
systems and results in significant design complexity. Several works
adopt a novel deep RC system constructed by sequencing the
conventional reservoirs hierarchically, which further enhances the
prediction capability of the system [38]. In general, there is only
one reservoir as a primary neural network structure in a typical RC
system as illustrated in Figure 5 (a). In order to benefit from the
computational capability of deep neural networks of the traditional
RC system, we developed a deep RC neural network configuration
shown in Figure 5 (b), which hierarchically stacks the basic
reservoirs as a building block. The unique structure achieves higher
computational efficiency and accuracy simultaneously, which is the
essential requirement of low power devices at the mobile side in
Industry 4.0.

3  ARTIFICIAL NEURAL NETWORKS FOR
INTERNET OF THINGS

So far, ANNs have been used in several applications for [oT, and
the authors of [8] identify four major applications of ANNs for IoT
systems and devices. First, ANNs enable an IoT system to extract
patterns and relationships from the data sent by the lIoT devices.
The extracted information can be used for various applications such
as data compression and recovery. Second, loT devices adopting
ANN-based reinforcement learning algorithms are able to
dynamically select most suitable operating conditions, such as the
selection of the frequency band and the channel, based on the
wireless and users’ environments. Third, IoT devices with ANN-
based algorithms can identify and classify the data collected from



the IoT sensors, and the capability offers various applications such
as reduction of the data size to transmit and enhancement of data
security. Finally, with the aid of ANN-based algorithms, loT
devices are able to predict the user’s behavior, and so the devices
can prepare necessary operations in advance. Resultantly, it reduces
human supervision to operate IoT devices.

Although ANNs can enhance the capabilities of IoT systems and
devices to expand their applications, there are several challenges to
overcome [8], [39]. Some of the challenges, but not limited to, are
as follows. First, both energy and computational resources are
limited for IoT, which necessitates one to tradeoff between energy
and accuracy. Second, the collected data of an IoT system may have
different types due to such as different operating systems and
protocol standards employed. One should consider how to interpret
and classify the data correctly for ANN training. Third, the data
collected from the IoT devices will be big and all of them may not
be related to the task being executed. Hence, ANNs must be able to
select suitable data for the task. Fourth, ANNs should consider the
trust and security of the data being collected, processed, and
processed by IoT devices to share the data.

ANN:Ss are applied for IoT for various purposes. The authors of [40]
investigated the good, the bad, and the ugly use of machine learning
including ANNs for cybersecurity. They presented numerous good
uses, such as the improvement of intrusion detection mechanisms
and decision accuracy. They also covered the vulnerabilities of
machine learning (bad use) from the perspectives of security,
including how machine learning systems can be compromised,
misled, and subverted at all stages of the machine learning life-
cycle including data collection, pre-processing training, validation,
and implementation. Finally, the most concerning and a growing
trend is the utilization of machine learning in the execution of
cyberattacks and intrusions (ugly use).

The authors in [41] improve the communication quality by
mapping loT networks, primarily a wireless sensor network, to
ANNs. They mapped the operations of an ANN onto the
communication of an IoT network for simultaneous data processing
and data transfer. To minimize the total transmit power and the
expected transmit time for the IoT, an ANN is trained to
approximate the objective functions, and then the IoT network is
mapped to the ANN. The IoT application shows that ANN is an
effective tool for network mapping in an IoT.

The authors in [42] simulated eight machine learning algorithms on
a supercomputer, including ANN and Deep Learning ANN
(DLANN) for classification of human activities, robot navigation,
body postures, and movements. Simulation results indicate that
DLANN has the best classification accuracy among all the
simulated algorithms. An improved classification accuracy could
be achieved by increasing the epochs, hidden layers, and neurons.
In DLANN:S, classification accuracy also depends significantly on
its parameter tuning. DLANN has a complex structure, resulting in

the longest execution time among all the eight algorithms simulated.

The authors in [43] used the Laguerre neural network-based
approximate dynamic programming scheme to improve the

tracking efficiency in an IoT network. The proposed scheme is
employed in a temperature tracking control system and compared
with a multiple layer perceptron (MLP)-based neural network
method through the simulation results. The results show that the
proposed scheme is more robust and more efficient than the
traditional approximate dynamic programming learning method
implemented by the MLP-based neural network method.

The authors in [44] developed a streaming hardware accelerator for
convolutional neural networks (CNNs) to improve the accuracy of
image detection in an IoT network. The work focuses on the
optimization of the data-movement flow to minimize data access
and achieve high energy efficiency for computation. A new
methodology is also proposed to decompose large kernel-sized
computation to many parallel small kernel-sized computations.
Together with the integrated pooling function, the proposed
accelerator architecture can support a one-stop CNN acceleration
with both arbitrarily sized convolution and reconfigurable pooling.

The authors in [45] used ANNs for moving target surveillance.
They mainly investigated three typical target trajectories such that
line, square, and circle. Two types of sensor movement algorithms
based on target learning were proposed and compared. One
approach is based on a genetic fuzzy tree and the other one based
on the neural network. Both algorithms can balance energy
consumption and tracking performance. Simulation results show
that the genetic fuzzy tree algorithm outperforms the neural
network algorithm in tracking error, but it demands more
computational cost than that of neural network one.

In summary, a few recent research activities on applications of
ANNs for IoT systems and devices are reviewed. ANNs are
undoubtedly an important tool for solving a variety of problems in
IoT such as communication quality, classification of activities,
tracking efficiency, intelligent data analytics, and smart operation.

4 CONCLUSION

The demanding requirements on autonomous and low power
operation of the next stage industrialization revolution of Industry
4.0 present great challenges to artificial intelligence. These
challenges cannot be addressed through the current data-driven
deep learning and traditional von Neumann architecture computers.
Thus, we introduce a new path of achieving artificial intelligence
that is Neuromorphic Computing. Neuromorphic Computing is a
promising cutting-edge approach to implement artificial
intelligence by rebuilding the brain. Its low energy budget and self-
learning capability of the neuromorphic system will open a new
horizon in the era of Industry 4.0. Three critical emerging research
directions of neuromorphic computing are introduced in this
survey, which are emerging architectures, associative memory
learning, and reservoir computing.
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