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ABSTRACT 
With the continuous development of technologies, our society is 
approaching the next stage of industrialization. The Fourth 
Industrial Revolution also referred to as Industry 4.0, redefines the 
manufacturing system as a smart and connected machinery system 
with fully autonomous operation capability. Several advanced 
cutting-edge technologies, such as cyber-physical systems (CPS), 
internet of things (IoT), and artificial intelligence, are believed as 
the essential components to realize Industry 4.0. In this paper, we 
focus on a comprehensive review of how artificial intelligence 
benefits Industry 4.0, including potential challenges and possible 
solutions. A panoramic introduction of neuromorphic computing is 
provided, which is one of the most promising and attractive 
research directions in artificial intelligence. Subsequently, we 
introduce the vista of the neuromorphic-powered Industry 4.0 
system and survey a few research activities on applications of 
artificial neural networks for IoT. 
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1 INTRODUCTION 
Three Industrial Revolutions occurred in human history. The First 
Industrial Revolution occurred in the 18th century accompanying 
the invention of a steam engine. The extensive utilization of steam 
engines successfully transited the production activities of human 
society from hand production to machine manufacturing. Next, the 
Second Industrial Revolution at the beginning of the 20th century 
further improved productivity through the massive employment of 
electrification and the production line. Lastly, the Third Industrial 
Revolution started in the late 1950s has propelled our society into 

the information age, which is built upon integrated circuits, digital 
computers, communication theory, and the internet.   

Since the Third Industrial Revolution, the computer-powered 
machines in modern factories have enhanced the manufacturing 
capability to an unprecedented level using their powerful 
manufacturing capability with an automatic production line. 
However, these machines still lack one of the essential features to 
further free people from tedious works, which is the capability of 
independent, smart, and autonomous manufacturing without any 
human intervention. The thrust of realizing this level of 
autonomous manufacturing is called the Fourth Industrial 
Revolution, also referred to as Industry 4.0 [1]. Industry 4.0 
requires a smart and autonomous manufacturing system, which is 
capable of performing tasks on its own and making necessary 
decisions independently [2]. Thereby, the machines in Industry 4.0 
demand smart sensors capturing real-time data from surroundings, 
the next level of communication efficiency enabling machines to 
collaborate for sophisticated tasks. More importantly, an 
unprecedently smart intelligence system controls these parts and 
conducts a fully autonomous operation. These unique requirements 
can be enabled by Cyber-Physical Systems (CPS) [3], Internet of 
Things (IoT) [4], and the next level of artificial intelligence. Cyber-
Physical Systems map the physical world into the cyber world 
using smart sensors. Then, machines can communicate and operate 
collaboratively through Internet of Things. Lastly, harmonious 
collaborations and autonomous manufacturing can be achieved 
through intelligent systems built upon cloud computing, cognitive 
computing, and artificial intelligence [1]. As the core of all 
connected manufacturing machines, a more powerful artificial 
intelligence system with lower power consumption and better self-
learning capability is expected in Industry 4.0. However, the 
advanced level of intelligence does not exist for current artificial 
intelligence systems, which is the biggest challenge for Industry 4.0.  

Despite deep learning demonstrates the remarkable capability of 
Artificial Neural Networks (ANN) in solving complicated 
cognition tasks, the computing platforms built upon von Neumann 
architecture (digital domain) limit the performance and efficiency 
of ANN [5]-[7]. On the contrary, human brains perform multiple 
intelligent tasks, such as pattern recognition, reasoning, control, 
and movement, with an extremely low power consumption of about 
20 W. The next generation of artificial intelligence should aim to 
rebuild a brain-like neuromorphic system, which takes full 
advantage of human brains to overcome the challenge of Industry 
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4.0. Specifically, the next generation of the neuromorphic system 
is necessary to include the following features:  

 Organ-like sensory system (for example, eyes and ears) to 
capture signals from the physical world and transform them 
into spiking signals for Cyber-Physical Systems and Internet 
of Things; 

 Human-like learning methodology that enables a 
neuromorphic system in Industry 4.0 to learn from 
surroundings and its experiences.  

These unique features can be achieved by reverse engineering of 
human brains with emerging technologies at all levels of the 
architecture, algorithm, circuit, and device.   

IoT is the internetworking of physical devices embedded with 
sensors, actuators, and network connectivity that enable these 
objects to collect and exchange data. IoT devices will be able to 
provide innovative services and solutions in the realms of such as 
smart homes, smart cities, and smart factories. It is envisioned that 
trillions of IoT devices such as sensors, cameras, and wearables will 
be connected to the Internet, forming a massive IoT ecosystem [8] 
[9]. Further, low power wireless technologies such as Bluetooth, 
Wi-Fi, ZigBee, Cellular, and RFID enable IoT devices to connect 
with each other over wireless links and operate in a self-organizing 
manner [10]. Such wireless IoT devices and systems will be a key 
ingredient for Industry 4.0. Figure 1 shows representative 
applications of wireless IoT devices, possibly powered by energy 
harvesting. 

 

Figure 1: Representative applications of wireless IoT devices. 

Practical deployment of an IoT system still faces many challenges 
such as data analytics, computation, transmission capabilities, 
connectivity, end-to-end latency, security, and privacy [10], [11]. 
ANNs can be used to address some of the key challenges of wired 
IoT devices, in which large power consumption may not be critical, 
while neuromorphic systems are a good choice for wireless IoT 
devices powered by batteries or energy harvesting.  

This paper is organized as follows. Section 2 reviews earlier works 
on neuromorphic systems in the context of Industry 4.0 and Section 
3 recent research activities on the application of ANN to IoT 
devices and systems. Section 4 draws the conclusions. 

2 NEUROMORPHIC SYSTEM POWERED 
INDUSTRY 4.0 

Unlike traditional manufacturing machines with isolated 
information processing at each machine and lack of communication 
with each other, the machines in Industry 4.0 should possess the 
capability of sensing real-world data/signals and updating them to 
the cloud side server for further processing and computing as 
shown in Figure 2 (a).  

 

Figure 2: (a) Conventional Industry 4.0 system  
(b) neuromorphic-powered Industry 4.0 system. 

With the assistance of powerful computational resources on the 
server-side, machines located across the factory can share 
knowledge/information, access a global library of images, map and 
object data centers, and accomplish the task collaboratively. 
However, these servers consist of conventional von Neumann-
based chips with high power consumption and limited learning 
capability. One of the most critical drawbacks of the von Neumann 
architecture of digital computers is the speed and energic 
bottleneck of data communication between the CPU and memory 
[12]. Thereby, the typical computers invented in the Third Industry 
Revolution are able to recognize 1,000 different objects but 
consumes about 250 W [13]. On the contrary, a human brain 
performs similar cognitive and complicated tasks, such as pattern 
recognition, reasoning, control, and movement, with the power 
consumption of only about 20 W [12], [14]. The differences in the 
performance stem from the intrinsic difference in structures. 
Human brains comprise of millions of neurons connecting by 
trillions of synapses forming a network configuration. The latest 
discoveries in neuroscience indicate remarkable capabilities of 
human brains are attributed to three unique features: (1) neural 
network structure; (2) spike-based signal representation; (3) 
synaptic plasticity and associative memory learning [13], [15]. 
Firstly, the neural network structure has demonstrated its capability 
of handling cognition tasks in deep learning [13], [15]. Secondly, 
the low firing rate of spiking signals enables the brains to operate 
with high energy efficiency. Thirdly, neurologists prove that 
synaptic plasticity and associative memory learning are highly 
relative to the memory mechanism, which enables the brains to 
learn from the surroundings. 
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In this paper, we propose a new Industry 4.0 system built upon the 
brain-like neuromorphic chips illustrated in Figure 2 (b). In this 
system, the self-learning and low-power consumption 
neuromorphic chips are deployed at both the client and center sides 
[16]. This novel neuromorphic-powered Industry 4.0 system 
replaces conventional von Neumann-based chips invented in the 
Third Industrial Revolution with neuromorphic chips. Then each 
machine at the so-called light-out factory will deploy self-learning 
and adaptive neuromorphic chips that can seamlessly connect each 
other through Internet of Things. 

Moreover, a network-based neuron system does not just exist in the 
brain, but also spreads throughout the entire human body, including 
the sensory and motion systems [16]. The organ-like sensory 
systems, such as eyes, capture the external signals, and encode 
them into spiking sequences in low frequency, less than thousands 
of Hertz [14]. The utmost low frequency of the signals in the neural 
system significantly reduces energy consumption. Furthermore, 
these organ sensors constantly receive signals from the external 
world enabling the system a real-time processing capability, an 
essential feature for creating an adaptive Industry 4.0 system. 
Recently, ultra-low energy and real-time neuromorphic vision 
system have been designed and in a commercialization track, 
named as iniVation Dynamic Vision Sensor [17].  

The control system built upon the neural networks can make rapid 
and adaptive responses to the changes in the environment. For 
example, birds can constantly adjust the flying height and direction 
to avoid obstacles. The capabilities of real-time response and 
adaptivity of the neural network-based motion system are highly 
suitable for complex manufacturing tasks in Industry 4.0.  The 
neural network-based robotics would help us to design next-
generation advanced robotics for autonomous manufacturing in 
Industry 4.0 [16], [18-21].  

2.1 Emerging Neuromorphic Architectures 
Digital computers in the Third Industry Revolution are built upon 
the von Neumann architecture. Whereas the von Neumann 
architecture is designed for efficient Boolean calculations rather for 
neuromorphic computing. Thereby, the architecture for the next 
generation computers should aim to rebuild a network 
configuration mimicking the neural network.  

 

Figure 3: Emerging neuromorphic computing architectures: 
(1) Distributive Neuromorphic Computing Architecture  

(2) Cluster Neuromorphic Computing Architecture  
(3) Associative Neuromorphic Computing Architecture. 

To address the challenge, three emerging neuromorphic 
architectures called Distributive Neuromorphic Computing 

Architecture (DNCA), Cluster Neuromorphic Computing 
Architecture (CNCA), and Associative Neuromorphic Computing 
Architecture (ANCA) are proposed in [12], [22]. Figure 3 
illustrates those three emerging non-von Neumann neuromorphic 
architectures.  

In DNCA, the neurons and synapses are distributed and placed in a 
network structure minimizing the distance between the computing 
units (neurons) and the memory units (synapses). Thereby, the 
computation of neural networks can be performed between adjacent 
neurons and synapses minimizing the energy spent on signal 
propagation. Compared to the digital representation, utilization of 
threshold neurons and the spike-based training method further 
reduce the power consumption. In order to realize the parallel 
processing feature of the brain, CNCA divides the entire network 
configuration of DNCA into multiple regions. Each region 
processes a specific signal type, such as visual and auditory signals 
captured by individual organ-like sensors. As a result, different 
signals are processed at separate neural networks in parallel. Lastly, 
ANCA correlates the outputs of CNCA together realizing a high-
level associative memory learning capability. The associative 
memory learning enables the neuromorphic system to learn directly 
from the surroundings as well as its own experience.   

2.2 Associative Memory Learning  
Nowadays, constantly increasing demand for large datasets is 

the main bottleneck for a massive deployment of artificial neural 
networks. The sizes of datasets have increased almost linearly over 
the past decade [15]. Thus, large datasets and neural networks are 
essential for higher inference accuracy [23]-[25]. Figure 4 
demonstrates the increment of the scale of datasets and neural 
networks over two decades [24], [26]. In contrast to the rapid 
increase of neural networks and datasets, the capacity of the GPU 
memory has increased only by a factor of three [23].  

 

Figure 4: Trend of datasets and DNNs sizes [24]. 

Building an enormous number of datasets is an extremely time-
consuming and tedious task. On the contrary, the human brain is 
capable of interacting directly with the surroundings and learning 
from the experience. The learning mechanism is referred to as 
associative memory learning [14], which enables the neural system 
to memorize the relationship between two concurrent events [14], 
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[27]. The associative memory leaning avoids large datasets and can 
learn from real-world data in Industry 4.0. Furthermore, the self-
learning neuromorphic systems built upon associative memory 
learning potentially have adaptivity and independent working 
capability, which is the inherent learning mechanism of brains [28].  

The investigations on associative memory reveal that two critical 
features play important roles: synaptic connecting strength 
modification and distributed data processing [14]. In neural 
systems, different captured signals, e.g., image and sound, are 
preprocessed at different regions of the brain. During the learning 
process, the synaptic connection strength between the sensory and 
response neurons increases [14].  

A pioneering exploration of a brain-like associative memory 
learning system was conducted by memorizing the relationship 
between concurrent visual and auditory information [28], [29], in 
which the associative memory learning is achieved by correlating 
the probabilistic output scores of artificial neural networks together. 
Compared to other related works such as in [30], [31], it is the first 
approach to associate two large-scale neural networks together with 
a solid biological foundation. 

The neuromorphic system built upon the associative memory 
learning is capable of collecting data constantly from surroundings 
using smart sensors and learning through its own experiences, 
which is an essential feature of the autonomous manufacturing in 
Industry 4.0.   

2.3 Reservoir Computing  
Another particular neural network that can potentially benefit 
Industry 4.0 is Reservoir Computing (RC), which belongs to the 
category of Recurrent Neural Networks (RNN). The outputs of an 
RNN is not merely determined by its current states, but also the 
previous states in the time domain. This unique characteristic 
comes from its recurrent network structure. A similar self-
connected configuration also widely exists in the biological neural 
networks [14]. Its performance metrics outperform traditional RNN 
methods in nonlinear system identification, prediction, and 
classification. Reservoir computing has been applied successfully 
in multifaceted applications including character & speech 
recognition [32] and generation & prediction of chaotic time series 
[33]. 

While the major challenge of RNN is to train all weights within the 
network, which excessively increases the demand for 
computational resources. The RC addresses the problem. It adjusts 
only the weights connecting output layers during the training 
process, while the weights within the reservoir layer are fixed and 
untrained. The self-connected neurons within the reservoir have a 
fixed connecting topology and weights.  

Figure 5 illustrates the neural network of RC. It reduces the 
computational complexity of the learning process to achieve high 
computational efficiency. The low demand for computational 
resources is suitable specifically for mobile devices in Internet of 
Things in Industry 4.0. Several silicon chips were designed for 
Reservoir Computing [34]-[37]. The computational accuracy of the 

RC system highly depends on the number of neurons within the 
reservoir layer, and a large number of neurons increases the 
hardware complexity of reservoir computing. Recently, it is 
demonstrated that the computing architecture based on the delay 
feedback loop in a reservoir is capable of exhibiting rich dynamic 
behavior. It should be noted that the delay feedback loops are 
highly hardware-friendly compared with the conventional reservoir 
system. The reservoir computing system with delay feedback loops 
is referred to as the time delay reservoir (TDR) computing [35]. In 
TDR computing, the reservoir layer has only one nonlinear neuron 
with a self-connected feedback loop.  

 

Figure 5: (a) Typical reservoir computing topology (b) the 
deep reservoir computing topology. 

Composability and hierarchy are key to building extreme-scale RC 
systems and results in significant design complexity. Several works 
adopt a novel deep RC system constructed by sequencing the 
conventional reservoirs hierarchically, which further enhances the 
prediction capability of the system [38]. In general, there is only 
one reservoir as a primary neural network structure in a typical RC 
system as illustrated in Figure 5 (a). In order to benefit from the 
computational capability of deep neural networks of the traditional 
RC system, we developed a deep RC neural network configuration 
shown in Figure 5 (b), which hierarchically stacks the basic 
reservoirs as a building block. The unique structure achieves higher 
computational efficiency and accuracy simultaneously, which is the 
essential requirement of low power devices at the mobile side in 
Industry 4.0. 

3 ARTIFICIAL NEURAL NETWORKS FOR 
INTERNET OF THINGS 

So far, ANNs have been used in several applications for IoT, and 
the authors of [8] identify four major applications of ANNs for IoT 
systems and devices. First, ANNs enable an IoT system to extract 
patterns and relationships from the data sent by the IoT devices. 
The extracted information can be used for various applications such 
as data compression and recovery. Second, IoT devices adopting 
ANN-based reinforcement learning algorithms are able to 
dynamically select most suitable operating conditions, such as the 
selection of the frequency band and the channel, based on the 
wireless and users’ environments. Third, IoT devices with ANN-
based algorithms can identify and classify the data collected from 



 
 

the IoT sensors, and the capability offers various applications such 
as reduction of the data size to transmit and enhancement of data 
security. Finally, with the aid of ANN-based algorithms, IoT 
devices are able to predict the user’s behavior, and so the devices 
can prepare necessary operations in advance. Resultantly, it reduces 
human supervision to operate IoT devices. 

Although ANNs can enhance the capabilities of IoT systems and 
devices to expand their applications, there are several challenges to 
overcome [8], [39]. Some of the challenges, but not limited to, are 
as follows. First, both energy and computational resources are 
limited for IoT, which necessitates one to tradeoff between energy 
and accuracy. Second, the collected data of an IoT system may have 
different types due to such as different operating systems and 
protocol standards employed. One should consider how to interpret 
and classify the data correctly for ANN training. Third, the data 
collected from the IoT devices will be big and all of them may not 
be related to the task being executed. Hence, ANNs must be able to 
select suitable data for the task. Fourth, ANNs should consider the 
trust and security of the data being collected, processed, and 
processed by IoT devices to share the data. 

ANNs are applied for IoT for various purposes. The authors of [40] 
investigated the good, the bad, and the ugly use of machine learning 
including ANNs for cybersecurity. They presented numerous good 
uses, such as the improvement of intrusion detection mechanisms 
and decision accuracy. They also covered the vulnerabilities of 
machine learning (bad use) from the perspectives of security, 
including how machine learning systems can be compromised, 
misled, and subverted at all stages of the machine learning life-
cycle including data collection, pre-processing training, validation, 
and implementation. Finally, the most concerning and a growing 
trend is the utilization of machine learning in the execution of 
cyberattacks and intrusions (ugly use). 

The authors in [41] improve the communication quality by 
mapping IoT networks, primarily a wireless sensor network, to 
ANNs. They mapped the operations of an ANN onto the 
communication of an IoT network for simultaneous data processing 
and data transfer. To minimize the total transmit power and the 
expected transmit time for the IoT, an ANN is trained to 
approximate the objective functions, and then the IoT network is 
mapped to the ANN. The IoT application shows that ANN is an 
effective tool for network mapping in an IoT.  

The authors in [42] simulated eight machine learning algorithms on 
a supercomputer, including ANN and Deep Learning ANN 
(DLANN) for classification of human activities, robot navigation, 
body postures, and movements. Simulation results indicate that 
DLANN has the best classification accuracy among all the 
simulated algorithms. An improved classification accuracy could 
be achieved by increasing the epochs, hidden layers, and neurons. 
In DLANNs, classification accuracy also depends significantly on 
its parameter tuning. DLANN has a complex structure, resulting in 
the longest execution time among all the eight algorithms simulated.  

The authors in [43] used the Laguerre neural network-based 
approximate dynamic programming scheme to improve the 

tracking efficiency in an IoT network. The proposed scheme is 
employed in a temperature tracking control system and compared 
with a multiple layer perceptron (MLP)-based neural network 
method through the simulation results. The results show that the 
proposed scheme is more robust and more efficient than the 
traditional approximate dynamic programming learning method 
implemented by the MLP-based neural network method.  

The authors in [44] developed a streaming hardware accelerator for 
convolutional neural networks (CNNs) to improve the accuracy of 
image detection in an IoT network. The work focuses on the 
optimization of the data-movement flow to minimize data access 
and achieve high energy efficiency for computation. A new 
methodology is also proposed to decompose large kernel-sized 
computation to many parallel small kernel-sized computations. 
Together with the integrated pooling function, the proposed 
accelerator architecture can support a one-stop CNN acceleration 
with both arbitrarily sized convolution and reconfigurable pooling.  

The authors in [45] used ANNs for moving target surveillance. 
They mainly investigated three typical target trajectories such that 
line, square, and circle. Two types of sensor movement algorithms 
based on target learning were proposed and compared. One 
approach is based on a genetic fuzzy tree and the other one based 
on the neural network. Both algorithms can balance energy 
consumption and tracking performance. Simulation results show 
that the genetic fuzzy tree algorithm outperforms the neural 
network algorithm in tracking error, but it demands more 
computational cost than that of neural network one. 

In summary, a few recent research activities on applications of 
ANNs for IoT systems and devices are reviewed. ANNs are 
undoubtedly an important tool for solving a variety of problems in 
IoT such as communication quality, classification of activities, 
tracking efficiency, intelligent data analytics, and smart operation. 

4 CONCLUSION 
The demanding requirements on autonomous and low power 
operation of the next stage industrialization revolution of Industry 
4.0 present great challenges to artificial intelligence. These 
challenges cannot be addressed through the current data-driven 
deep learning and traditional von Neumann architecture computers. 
Thus, we introduce a new path of achieving artificial intelligence 
that is Neuromorphic Computing. Neuromorphic Computing is a 
promising cutting-edge approach to implement artificial 
intelligence by rebuilding the brain. Its low energy budget and self-
learning capability of the neuromorphic system will open a new 
horizon in the era of Industry 4.0. Three critical emerging research 
directions of neuromorphic computing are introduced in this 
survey, which are emerging architectures, associative memory 
learning, and reservoir computing. 
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