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Abstract— Deep Neural Networks (DNNs), a brain-inspired 
learning methodology, requires tremendous data for training 
before performing inference tasks. The recent studies demonstrate 
a strong positive correlation between the inference accuracy and 
the size of the DNNs and datasets, which leads to an inevitable 
demand for large DNNs. However, conventional memory 
techniques are not adequate to deal with the drastic growth of 
dataset and neural network size. Recently, a resistive memristor 
has been widely considered as the next generation memory device 
owing to its high density and low power consumption. 
Nevertheless, its high switching resistance variations (cycle-to-
cycle) restrict its feasibility in deep learning. In this work, a novel 
memristor configuration with the enhanced heat dissipation 
feature is fabricated and evaluated to address this challenge. Our 
experimental results demonstrate our memristor reduces the 
resistance variation by ~ 30% and the inference accuracy increases 
correspondingly in a similar range. The accuracy increment is 
evaluated by our Deep Delay-feed-back (Deep-DFR) reservoir 
computing model. The design area, power consumption, and 
latency are reduced by ~48%, ~42%, and ~67%, respectively, 
compared to the conventional SRAM memory technique (6T). The 
performance of our memristor is improved at various degrees 
(~13%-73%) compared to the state-of-the-art memristors. 
 

Index Terms—Memristor, Reservoir Computing, Artificial 
Neural Networks, Deep delay-feed-back Reservoir Computing 

I. INTRODUCTION 
Deep Neural Networks (DNNs) inspired by the high-degree 

structure of neural networks in mammalian brains have 
accomplished remarkable success in many applications, such as 
image recognition , natural language processing , machine 
neural translation [1], etc. A pristine DNN with random 
synaptic weights has no remarkable capability until its weights 
are trained by tremendous data. The larger sizes of the datasets 
and the neural networks lead to a higher inference accuracy [2, 
3]. Thereby, the demand for excessively large datasets and 
neural networks is becoming inevitable.  As illustrated in Figure 
1, the size of datasets is almost linearly increasing over the 
years, while the neural networks double their size roughly every 
two years [3, 4]. Accompanying the growth of the scale of 
hypermeters, the capacity of the GPU memory has only 
increased by a factor of three [2]. Hence, there is an urgent need 
for novel and reliable devices with higher capacity and lower 

power consumption, fulfilling the tremendous data storage 
demand for deep learning.   

 
Figure 1: Increase trend of datasets and DNNs sizes [3] 

Nowadays, memristors are widely considered as one of the 
most promising candidates for next-generation memory 
because of its high density and low power consumption [6]. 
However, its wide distribution of resistance variation restricts 
its feasibility in deep learning as weight storing devices [5, 6], 
since the weight variation significantly reduces the inference 
accuracy [6-11]. Several methods involving circuit and 
algorithm optimizations have been proposed to mitigate this 
shortcoming. However, these methods entail inevitable 
drawbacks, like the large latency and circuit design overhead 
[12-14].  

In this work, we study the switching mechanism of the 
memristor and reveal the heat accumulated in the cell during the 
switching leads to a substantial metal atom diffusion effect. The 
metallic atoms diffusion at the tip ends of the conductive 
filaments (CFs) influences the gap size among of the filament 
in the off-regime when the filaments are ruptured [10]. As a 
result, the resistance variation increases significantly when heat 
is accumulated interiorly [11, 15, 16]. In order to mitigate the 
resistance variation, we designed and fabricated a novel 
configuration of a memristor with an additional heat dissipation 
layer integrated into the cell’s electrodes, which alleviates the 
heat-related switching variation by more than 30% (TABLE I). 
Unlike using low thermal conductivity material for subduing 
heat transfer between layers [17], our approach dissipates the 
accumulated heat both on the metal and insulator layers. The 
candidates of the heat dissipation layer need to satisfy several 
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requirements, such as high thermal conductivity, low cost, 
fabrication compatibility, electrochemistry stability at high 
temperature, etc. Several materials (Rh, Cr, Pt, Ti, Cu) have 
been tested for heat dissipation efficiency. It turned out that the 
Ti glue layer used for the adhesion of the inert electrode had to 
be supplanted by Cr with the most thermal conductivity to 
render the Joules heating effects less severe.  

Furthermore, an experimentally verified memristor model 
capturing the electrical characteristics has been built. This 
memristor model is incorporated in our deep delay-feed-back 
reservoir computing (Deep-DFR) model for evaluation. The 
Deep-DFR is established by the system-level simulation 
platforms comprising PyTorch and NeuroSIM [9]. The 
parameters of our memristors in NeuroSIM are extracted from 
the measurement data (Figure 4). Through our Deep-DFR 
model, the impact of reducing the switching variations of the 
memristor on a deep learning system is analyzed. The 
simulation results demonstrate that the accuracy has been 
increased by ~30% accompanying the reduction of the 
resistance variation of the memristor (TABLE I). In order to 
eliminate the interference from other parameters of memristors 
and reveal the cause-and-effect relationship between resistance 
variation (cycle-to-cycle) and inference accuracy, we keep 
other nonideal parameters of memristors constant in this work.  

The accuracy improvement, power consumption, design 
area, and latency reduction are evaluated with CIFAR-10 and 
CIFAR-100 datasets (Figure 9).  

Our contributions can be summarized as follows: 
 A novel memristive device configuration with higher 

immunity to degradation induced by thermal effects has 
been fabricated and evaluated. The experiment results 
demonstrate a ~30% reduction in switching variation 
(TABLE I); 

 The competent material for heat dissipation layer of our 
new memristor configuration is determined (TABLE I); 

 The accuracy improvement (~30%) on classification tasks 
is demonstrated through our Deep-DFR model, which 
deploys our memristor model;  

 The hardware performance improvement, e.g., power 
efficiency and design area reduction, is evaluated and 
analyzed through a co-simulation paradigm with PyTorch 
and the macro-circuit simulator NeuroSIM [9].  

This paper is organized as follows, Section II introduces our 
memristor fabrication and modeling methodology, Section III 
presents the hardware performance evaluation method using 
our memristor model, Section IV summarizes the conclusions.  

II. RELIABLE MEMRISTOR DESIGN AND MODELING 
As one of the most promising candidates of next-generation 

memory, memristive devices suffer a critical issue of low 
reliability, which diminishes its practicability for massive 
deployment [5, 6]. The low reliability of a memristor stems 
from the high variation on its on-state resistance (Ron) value 
[11]. Through the comprehensive study of the switching 
mechanism of a memristor [18, 19], we have discovered that the 
heat-related metal atom diffusion of conductive filaments (CFs) 

increases the resistive switching variation [20]. In order to 
address this issue, we designed and fabricated a novel 
configuration of a memristor, which can effectively mitigate the 
heat-related resistive switching variation.  

A memristor is typically fabricated using a metallic oxide 
layer as a solid electrolyte sandwiched between an oxidizable 
active anode electrode and an inert cathode electrode. As 
illustrated in Figure 2, there are four resistively switching 
phases of a memristor. Initially, the atomic structure of the 
metallic oxide layer is intact. At this stage, the bonding between 
oxygen ions and metal atoms of the metallic oxide is strong. 
However, under the high electric field established by the 
applied voltage to the cell’s electrodes, the oxygen ions in the 
metallic oxide could be dislodged from the constraint of the 
bonding force and migrate to one of the terminals of the 
memristor. Consequently, the removal of oxygen ions leaves 
the oxygen vacancies behind leading to a build-up of 
conductive filament connecting the two electrodes. In another 
mode, the atoms of the active electrode are ionized and under 
the applied electric field migrate to the inert electrode where 
they are stopped and electrically reduced. Over time the active 
electrode metal atoms pile up on each other leading to a 
formation of metallic filament connecting the two electrodes. 
When this happens, the cell is in an on-state characterized by an 
on-resistance Ron. Otherwise, the cell is in the off-state 
characterized by the off-resistance Roff. The ratio between Roff 
and Ron is large and exceeds in many cases 103. The switching 
process of the resistance from Roff to Ron is referred to as a set 
process. In contrast, the transition from Ron to Roff is called the 
reset process. 

 
Figure 2: (a) Four typical switching phases of a memristor; (b) Formation 
mechanism of conductive filaments. The variation of the on-state resistance of 
a memristor results from a competition between the constructive metal atom 
flux and destructive metal atoms diffusion flux [11, 18].  

As illustrated in Figure 2 (a), the switching capability of 
memristors attributes to the construction and rupture of the 
conductive filaments. The shape and the size of the filaments 
could significantly influence the switching characteristic of a 
memristor. 
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Figure 3: Our fabricated memristor die: (a) The overview of our memristor die; (b) The zoom-in view of our memristor; (c) The five by five crossbar structure of 
our memristor; (d) The memristor located at the cross-point of the crossbar.  

TABLE I: COMPARISON OF THE MEMRISTOR RESISTANCE SWITCHING VARIATION 

During the set and reset switching processes, the 
considerable current flows through the CFs generally leads to a 
significant Joules heat dissipation. The temperature of the 
memristor cell is governed by the Joules heating and the rate of 
heat removal, which is determined by the thermal conductivity 
of the surrounding metallic oxide and the thermal 
conductivities of the electrodes. If the surrounding 
metallic oxide or the two electrodes cannot dissipate the heat 
fast enough, the temperature of the filament is bound to 
increase. Eventually, the high temperature of the CFs triggers a 
substantial metal diffusion. The metallic atoms of the filament, 
particularly at the tip of the cone-shaped CFs, diffuse out of the 
CFs consequently determining the size in the filament [10]. 
Macroscopically, the on-state  resistance variation increases 
significantly  [11, 15, 16, 21]. This phenomenon is even more 
severe during the rupturing process as the reset is dominated by 
a thermal dissolution effect [20]. When current flows through 
the memristive cell, Joule heat is deposited in the conductive 
filament. As a result, the temperature in the narrowest part 
(highest resistance) of the filament can reach 1000 ℃ [22, 23]. 
Such a high temperature triggers Cu atom diffusion from the 
constriction of filaments. 

In order to address this issue, we proposed and investigated 
a solution of adding an extra metallic layer for facilitating heat 
dissipation. The copper (Cu) is selected as an oxidizable active 
anode due to its medium activation energy-yielding ions readily 
[24] Cu  Cu++e-. The rhodium (Rh) is used for inert 
cathode since it is compatible with the back-end-of-line 
(BEOL) integration technique and potentially can be integrated 
on the top of the metal-oxide-semiconductor field-effect 
transistors (MOSFETs) for a three-dimensional structure [25]. 
Furthermore, the Rh-Cu material configuration demonstrates a 
negligible solid solubility between two elements, rendering Rh 
an ideal inert electrode for Cu ions (Cu+). In addition, the Rh is 
45 times less expensive than Pt with similar characteristics [20]. 

The oxygen-deficient tantalum oxide (TaOx) is used as the 
metallic oxide. In this work, the memristor Cu/TaOx/Pt is used 
as a benchmark device. Our memristive devices have been 
fabricated in a crossbar configuration on a thermally oxidized 
silicon wafer. The metal electrodes and solid electrolytes are 
deposited through e-beam evaporation. The TaOx layer was 
deposited by evaporating the Ta2O5 pellets with no oxygen 
injection at the evaporation chamber. A thin Ti layer was added 
between Pt and SiO2 to improve the adhesion of Pt to the 
substrate. All the layers (Cu, TaOx, Pt) are deposited by e-beam 
PVD in a Kurt Lesker PVD-250 chamber. The fabricated 
memristor die and the detailed geometry are illustrated in 
Figure 3. The range of the high resistance state (HRS) is ~1-900 
MΩ, yielding a ratio of Roff/Ron ≈ 103−107, which effectively 
avoids the negative effect caused by the sneak path. 

The reliability of the memristive devices with different inert 
cathodes is evaluated by the variation of their on-state 
resistance. The testing results are summarized in TABLE I. In 
TABLE I, the cycle-to-cycle variation is measured by percent 
deviation. The precise temperature control is not practical in 
real measurement setups. Thus, we distinguish different 
temperatures (high and low) by applying different compliance 
currents during the set operation; they are Icc = 5 uA and 50 uA 
respectively. The heat generated by the different currents, 
assuming constant current in the time interval t, is governed by: 

푤 = 퐼 푅 푡 (1) 
TABLE I demonstrates that the memristive device exhibit a 

higher spread of on-state resistance (Ron) values with higher 
temperatures (larger compliance current). For example, the on-
state resistances of the Rh/Ti configuration are at the range of 
225 Ω to 750 Ω for Icc = 50 uA. This instability phenomenon 
comes from the competition between the constructive Cu+ 
electro-migration flux and the destructive Cu diffusion flux, 
illustrated in Figure 2(b). Our measurements demonstrate an 

 

Device Size 
(nm) 

Thermal 
Conductivity  

Ron  
(Icc = 5 uA) 

Target 
Value1 Variation2 Ron 

(Icc = 50 uA) 
Target 
Value Variation 

Cu/TaOx/Rh/Cr 150/25/50/20 Rh:150  
Cr: 94 2.5 ± 0.1 KΩ 2.4 KΩ ~4 % 500 ± 5 Ω 500 Ω ~1 % 

Cu/TaOx/Rh/Ti 150/25/50/20 Rh:150  
Ti: 20 2.3 ± 0.12 KΩ 2.4 KΩ ~5 % 225 – 750 Ω 500 Ω ~35 % 

Cu/TaOx/Pt/Cr 150/25/50/20 Pt: 72 
Cr: 94 2.1 ± 0.1 KΩ 2.1 KΩ ~4.7 % 331 – 1000 Ω 400 Ω ~33.4 % 

Cu/TaOx/Pt/Ti 150/25/50/20 Pt: 72 
Cr: 20 2.1 ± 0.9 KΩ 2.1 KΩ ~42.8 % 230 – 1000 Ω 400 Ω ~61.5 % 

1 The target value of the resistance is estimated by the Eq. (6)  
2 The variation is cycle-to-cycle variation that is measured by percent deviation.  
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effective metal dissipation layer (Cr) could effectively suppress 
the heat-related metal atom diffusion phenomenon, resulting in 
a significant reduction of switching variation (by ~30%).  

The measurement is performed by applying a positive 
voltage to the electrode of the device and the voltage is swept 
at a constant voltage ramp rate (0.2V/s). Initially the value of 
current remains small until the set voltage of the memristor is 
reached. The current switching is caused by the conductive 
filaments (CFs) formation when the applied voltage exceeds the 
set voltage of the memristor. The measurement usually 
performed more than 100 times. The variation is measured by 
the percent deviation from average, which shows the average 
percentage that a data point differs from the mean value.  

The endurance of the devices depends on the compliance 
current (Icc). For the Icc is at the range of 10 μA and 5mA, the 
device can be switched more than 150 times. For smaller 
compliance current, like 1 μA, the endurance of our memristor 
device can be more than 1000 times switching. During the 
measurement, no incorrect switching of the unselect and 
adjacent memristor cells was detected which potentially caused 
by the sneak path issue. The high ratio of off-state and on-state 
resistances of our memristor device (more than 103) effectively 
avoids the negative impact of sneak path issue. 

 
Figure 4: The testing setup of our memristor 

Furthermore, to analyze the effect of resistance variation 
reduction of our memristor on deep learning at a system level, 
a corresponding Verilog-A memristor model is built upon the 
filament growing method [26]. In the set process, the w, and x 
are growing under the stimulus voltage by the following 
equations:  

퐼 = 퐼  (휋푤 /4)푒푥푝 (−푥/푥 )푠푖푛ℎ (푉 /푉 ), (2) 

퐼 =
휋푤 푉

4휌(푥 − 푥) , (3) 

where 푥  is the initial value of gap distance, 푥  and 푉  are the 
characteristic length and voltage in hopping. 푉  and 푉  are 
the voltage over the gap region and conductive filament region, 
respectively. W denotes the Joules heat dissipated in the 
filament. In the reset process, the w, and x are growing under 
the stimulus voltage by the following equations:  

푑푥 푑푡⁄ = 푎푓 푒푥푝 (−(퐸 − 훼 푍푒퐸)/푘 푇), (4) 

푑푤 푑푡⁄ =  ∆푤 +
∆푤
2푤 푓푒푥 푝 −

퐸 − 훼 푍푒퐸
푘 푇 . (5) 

 
Figure 5: V-I switching characteristics of our memristor (Cu/TaOx/Rh/Cr): The 
gray lines represent the measurement data, the blue line shows one typical 
measurement data, and the red line depicts our memristor. Note: the compliance 
current is 1uA in this case.  

Figure 5 illustrates the V-I characteristic curve comparison 
of our memristor model and the measurement data of our 
memristors. As depicted in Figure 5, the resistance of the 
memristor model switches from ~1 MΩ to ~940 MΩ at Vset 
~0.8V, which matches the measurement data. The sudden 
current cut-off at ± 1 μA in Figure 5 comes from the compliance 
current setting. The inconsistency of on-state resistance in 
Figure 5 and Table 1 comes from the different compliance 
current [6]. The relationship between Ron (low resistance state) 
and compliment current can be estimated by the equation: 

푅 =
퐾
퐼 , (6) 

where n and K are fitting parameters and Icc is the compliance 
current [20]. Equation (6) indicates the negative correlation 
between the compliance current and Ron.  

III. PERFORMANCE EVALUATION OF THE MEMRISTOR ON 
DEEP DELAY FEEDBACK RESERVOIR COMPUTING  

The emerging Deep-DFR demonstrates a strong capability of 
processing spatiotemporal data due to its recurrent loop and 
multiple layer structure [27, 28]. This specific structure allows 
the system to have more remarkable performance compared to 
other conventional reservoir computing system. Deep-DFR 
models demonstrate more than 50% better performance than the 
typical leaky echo state network (ESN) model [29]. 
Furthermore, the Delay Feedback Reservoir (DFR) has a 
simplified structure, which merely consists of one nonlinear 
neuron in the reservoir [30, 31]. On the contrary, the traditional 
reservoir system requires numerous nonlinear neurons that 
demand more hardware resources increasing the hardware 
design challenge.  
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Figure 6: The diagram of our hardware-software co-simulation paradigm with NeuroSIM and PyTorch. 

In this work, our Deep-DFR model (Figure 6) is used for 
evaluating the impact of resistance variation reduction (cycle-
to-cycle) of our memristor on inference accuracy. In order to 
focus on studying the cause-and-effect between the resistance 
variation and the inference accuracy, other nonideal parameters 
of memristors that may influence the inference accuracy, e.g. 
device-to-device variation, are excluded (keeping constant) in 
this work. At last, The hardware performance improvement, 
e.g., power efficiency, latency, and design area, is evaluated 
through a co-simulation paradigm with PyTorch and NeuroSIM 
[9].  
In this section, the crossbar configuration of the memristor as a 
memory array is introduced. Next, our Deep-DFR model is 
introduced in detail. At last, the hybrid simulation paradigm is 
presented, combining our experimentally verified memristor 
model and the Python-based Deep-DFR model. 

A. Weight Storage in Memristor Crossbar  
Memristors typically are fabricated in a crossbar structure 

massively. As illustrated in Figure 7, the nanowires built with 
the inert cathodes and oxidizable active anodes are placed at the 
top and bottom of the crossbar, respectively. The metallic oxide 
layer is located at the cross points of the top and bottom 
nanowires. This crossbar structure is similar to the conventional 
memory array. As illustrated in Figure 7(b), each memory cell 
of the memory array connects to a wordline and a bitline.  

For example, the DRAM (Dynamic Random-access Memory) 
uses a capacitor for each memory cell, and the SRAM (Static 
Random-access Memory) generally has six transistors as one 
memory cell. The stored information is represented by the 
voltage states at the terminals of capacitor or transistor. For 
memristor, the values are encoded in the resistance of a 
memristor and the nanowires serve as the bitline and wordline 
for accessing the memristive memory cells. Figure 7 depicts the 
writing and reading phases of a memristive memory cell. In the 
writing phase, a voltage pulse, larger than set voltage, is applied 
to the nanowire of the crossbar structure and modifies the 

resistance value of the memristor. In the reading stage, the 
applied voltage is much smaller than the set voltage in order to 
preserve the resistance of the cell unaltered. The resistance 
value of the selected memristor equals the applied voltage 
divided by the measured current at the end of the nanowire. The 
weight matrices are mapped to the passive memristor crossbar 
with the memory cell selection devices, such as transistor or 
diode. The decoder of the system uses the wordline and bitline 
to access to every single memory cell. As illustrated in Figure 
7 (a), the operations of weight sum and update in NeuroSIM are 
row-by-row-based write and reading [9]. The row selection is 
activated through the WL decoder. Then the BLs are 
precharged to each cell access. The memory data are captured 
by the sense amplifier (S/A). After that, the adder and register 
are used to sum the weight values in a row-by-row style. By 
replacing the SRAM core memory with the memristors, the 
architecture is not significantly modified (Figure 7). But the 
size of the memory cell reduces due to the intrinsic nanoscale 
of memristors. The weighted sum operation in the memristor-
based synaptic core is also a row-by-row style expect the use of 
multiplexers (Mux) [9].  

 
Figure 7: Configuration comparison between the memristive crossbar and the 
memory array with SRAM memory cells in NeuroSIM [9]: (a) the traditional 
memory array with SRAM (6T); (b) the structure of the memristive crossbar.   
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B. Deep Reservoir Neural Network  
Nowadays, hardware-friendly DFR demonstrates an 

impressive capability of processing temporal information [27, 
28]. In this work, several convolutional layers are added for 
constructing a deep DFR structure. Figure 6 illustrates the 
details of our Deep-DFR structure. The six convolutional layers 
serve as feature extractor, which is followed with a delay-feed-
back layer extracts the one-dimensional time series 
characteristics. Two fully connected layers are used for 
reducing the output dimensional serving as a classifier.  The 
number of time delay reservoir layers matches the output of the 
convolutional layer. Initially, the weights in the reservoir 
(푾 ) layer is assigned as zeros. During the training process, 
the updating equation of the reservoir state is expressed as:  

푅푒푠(푡) = 훼 × 푅푒푠(푡 − 1) + 푓 (푯 (푡)) , (7) 

where t is the time step, Res(t) is the reservoir state, 훼 is the 
decay factor, 푓  is the nonlinear activation function, and 
푯  is the hidden layer. This equation reveals that the current 
state of the reservoir is not only determined by the current input 
but also highly related to the last time step.  
 

 
To evaluate our memristor performance, e.g., design area, 

accuracy, power consumption, a hardware-software co-
simulation is established with PyTorch and NeuroSIM [9], as 
illustrated in Figure 6. The model is built as follows steps: 

Firstly, our Deep-DFR model is built of six convolutional 
layers for extracting features, followed by a Delay Feedback 
Reservoir Layer, and two full-connected layers. There are no 

weights within the delay feedback loop [30]. The Deep-DFR 
model is trained on the PyTorch platform with CIFAR-10 and 
CIFAR-100 datasets. During the training progress, the weights 
and neural network configuration are monitored and stored. 

Secondly, our experimentally verified memristor model is 
incorporated into the micro-architecture simulator NeuroSIM 
[9] including the set voltage, on-state resistance, off-state 
resistance. The resistance variation with different levels (TABLE 
I) is incorporated in the memristor model in NeuroSIM. To 
reveal intently the cause-and-effect relationship between 
resistance variation (cycle-to-cycle) and inference accuracy, 
other nonideal parameters of memristors are not included for 
eliminating the interference from them.  

Thirdly, the Python API deploys the saved weights and 
configurations of the Deep-DFR to the NeuroSIM for hardware 
performance inference. The deployment method evaluates the 
performance of the neural network system on an offline training 
environment which demands a local computation. Compared to 
Online Learning, Offline Learning training keeps the trained 
neural network at the client-side and perform all prediction 
computation locally [32], due to the limited energy and space 
budget at the client-side.  

At last, the performance improvements of our memristor on 
energy, design area, execution latency, and accuracy are 
estimated through the co-simulation paradigm. The pseudocode 
of our hardware-software co-simulation paradigm is introduced 
in Algorithm 1.  

C. Performance Evaluation  
Using our co-simulation paradigm introduced in the previous 

subsection, the performance improvement of our memristor on 
deep learning at the system level is evaluated and estimated. 
The inference accuracy degrades significantly while the 
resistance variation of the memristor increase [6, 10, 11]. Figure 
8 presents a correlation analysis between the variation of the 
weights and the inference accuracy of our Deep-DFR model. 
The Deep-DFR models are trained with the CIFAR-10 and 
CIFAR-100 datasets in 150 epochs. The model structure details 
are depicted in Figure 6. The simulation results demonstrate a 
strong negative correlation between the testing accuracy and the 
variation of the weights. For example, in Figure 8 (a), the testing 
accuracy significantly reduces while the variation of the weight 
increases, specifically in the range from 0.2 to 0.6. After the 
weight variations reach the range larger than 0.6, the testing 
accuracies tend to be stable and are at low levels (lower than 
13%). The testing accuracies with different memristive devices, 
associating with their variations, are marked in the testing 
accuracy curve. Our memristive device (Cu/TaOx/Rh/Cr) 
reaches the highest testing accuracy (~90%) due to its lower 
variation compared to other devices. The simulation results 
using the CIFAR-100 dataset (Figure 8 (b)) illustrates a similar 
degradation trend of the testing accuracy. The difference is the 
testing accuracy on CIFAR-100 reduces faster than CIFAR-10 
and reaches its stable range on 0.4 weight variation.  

The simulation results with CIFAR-10 and CIFAR-100 both 
demonstrate the accuracies of the Deep-DFR models 
constituted of our memristor (1% variation) outperform the 

Algorithm 1: Performance Estimation 

Initialize: The configuration of the Deep-DFR and the 
corresponding weights 푾 ,  with small random numbers 
Initialize: 퐖  of the reservoir as all zeros 
Initialize: Memory cell configuration 
Initialize: Peripheral circuits configuration  
1 For epoch = 1, M do   
2    While batch in dataset do 
4             풚 ← six convolutional layers to batch (input) 
3             풉 _ = 푾 × 풚 + 푏푖푎푠   
4             푾 =  훼 × 푾 + 푛표푛푙푖푛푒푎푟(풉 _ )   
5             풉 _ = 푾 × 푾 + 푏푖푎푠     
6              풚  =  푓 (풉 _ ) 
7              풚 ← full-connected layer as classifier to 풚  
8             풚 = 푠표푓푡푚푎푥  (풚 ) 
7             푙표푠푠 = 푐푟표푠푠_푒푛푡푟표푝푦 (풚,풚)  
8            Minimize(loss) 
9      End While 
10 End For 
11 Store weights and neural network configuration  
12 Calculate Area of Peripheral circuits based on their configuration 
13 Calculate total area = memristor memory array area + Σ area of 
the peripheral circuits 
14 Recall Stored weights  
15 For number of the weight index = 1, N do   
16    Calculate latency of Peripheral circuits with RC as load 
parameters  
17    Total latency = Σ (latency) of peripheral circuits in each 
operation 
18    Total energy = array dynamic/static energy + Σ (dynamic 
energy) of peripheral circuits in each operation 
19 End For 
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other state-of-the-art memristors, and other material 
configurations we explored (listed in TABLE I). 

The main advantage of storing weights of the neural 
networks in memristors is to enhance hardware performance. In 
this work, we compared our memristor with SRAM and other 
state-of-the-art memristor reported, which are implemented 
with other materials, such as Ag:SiGe [33] and AlOx/HfO2 
[34].  

 
Figure 8: The reduction in the accuracy accompanying the increase of the 
weight variation: (a) CIFAR-10 and (b) CIFAR-100.  The neural network model 
is our Deep-DFR. The blue cycles indicate the simulation results and the red 
line represents the fitted curve. The memristive device of Ag:SiGe and 
AlOx/HfO2 are from [33] and [34] respectively. 

The hardware performance enhancement with different 
memory techniques in the design area, power consumption, and 
computing latency are inferred and compared using NeuroSIM 
[9]. The settings of the model are summarized in Table II. The 
SRAM is implemented in the typical six-transistor cell (6T) 
with 32 nm technology. The weights are stored in memristors 
in digital format since the analog memristive synapse degrades 
the learning accuracy [9]. The weights are stored in 4-bit 
precision. The feature size of the memristor is assigned at 40 
nm because the current industry technology of integrating 

memristors and the transistors is at the range of 40 nm to 28 nm 
[9]. The configuration detail of NeuroSIM is illustrated in 
Figure 7, which includes the essential modules for estimating 
the writing/reading performance parameters of accessing the 
memory array, such as decoder, encoder, adder, register, and so 
on. The simulation calculates all the latency, design area, and 
power consumption from different function modules, including 
the main memory module (SRAM and memristors) and the 
periphery circuits. The breakdown results of each module are 
listed in TABLE III, which uses CIFAR-10 dataset.  

Table II: SIMULATION SETTING OF NEUROSIM MODEL 

Device SRAM Memristors 
Frequency 1 GHZ 1 GHZ 

Temperature 301 K 301 K 
Subarray size 64 × 64 64 × 64 
Read Voltage 1.1 V 0.5 V 

Read Pulse Width N/A 10 ns 
Structure 6T  1R 

Technology 32 nm 40 nm 
 

TABLE III: SIMULATION RESULT BREAKDOWN OF CHIP PERFORMANCE 

Device [34] [35] SRAM VT 
Memristor 

Chip Area (mm2) 98.05 138.83 166.17 85.97 

IC Area on chip 
(mm2) 

2.90 3.50 4.24 2.70 

ADC Area on chip 
(mm2) 

14.03 14.03 42.68 14.03 

 Periphery circuits 
(mm2) 

47.50 84.66 52.89 39.05 

Chip total Read 
Latency (us) 

423.34 
1082.3

3 
803.38 264.97 

Chip total Read 
Dynamic Energy (uJ) 

44.153
3 

55.48 70.88 41.51 

Chip total Leakage 
Energy (nJ) 

223.37 699.91  966.03 108.90 

Chip total Leakage 
Power (uW) 

791.09 791.09 3074.87 791.09 

Chip buffer Read 
Latency (us) 

12.36 12.36 12.36 12.36 

Chip buffer read 
Dynamic Energy (uJ) 

4.16 4.16 5.87 4.16 

Chip IC Read 
Latency (us)  

36.22 49.40 28.40 32.77 

Chip IC Read 
Dynamic Energy (uJ) 

 24.39 34.38 25.94 21.92 

ADC Read Latency 
(us) 

39.93 39.34 81.66 42.25 

Periphery circuits 
read Latency (us) 

214.10 873.62 93.78 53.48 

ADC Read Dynamic 
Energy (uJ) 

3.77  3.39  13.12 4.01 

Periphery circuits 
read Dynamic Energy 

(uJ) 
30.60 42.30 35.01 27.71 
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Figure 9 demonstrates that our memristor reduces chip area, 
power consumption and latency reduce by ~48%, ~42%, and 
~67% with respect to SRAM, respectively. Furthermore, the 
performance is improved at various degrees compared to other 
state-of-the-art memristors [33, 34]. The improvements show 
similar levels with the datasets of CIFAR-10 and CIFAR-100 
in Figure 9 (a) and Figure 9 (b). This phenomenon probably 
stems from the same neural network model (Deep-DFR) and a 
similar value range of data (CIFAR-10 and CIFAR-100), which 
leads to a similar number and values of the weights.  

The area difference of memristors in Figure 9 mainly comes 
from the periphery circuits. The larger area of periphery circuits 
of memristors of Ag:SiGe and AlOx/HfO2 [33, 34] stem from 
their small on-state resistance [33-35]. The small on-state 
resistance requires the larger size (W/L) of transistors in 
peripheral circuits, e.g., Mux or switch matrixes, to avoid the 
significant current drop and impedance mismatch [35]. 
Accordingly, the latency of periphery circuits also increases due 
to the large size of the transistors, which needs a longer time for 
charging and discharging.  

As a non-volatile device, the memristors store the data in 
their resistances. Unlike SRAM, the non-volatile memory cores 
do not need a power supply to retain the data in memory cells 
thus their leakage power is much smaller than a typical SRAM. 
The energy reduction of other state-of-the-art memristors 
(Ag:SiGe and AlOx/HfO2 [33, 34]) is much less than our 
memristors because of their smaller on-state resistance (Ron). 
The small on-state resistance leads the array static energy 
(consumed by cells) dominates rather than the dynamic energy 
in the system. The static energy consumes more energy in the 
system, which leads our memristor is much energy efficient 
compared to  Ag:SiGe and AlOx/HfO2 [33, 34].  

 
Figure 9: Performance evaluation on the different memory techniques: (a) 
CIFAR-10 and (b) CIFAR-100. The memristive device of Ag:SiGe and 
AlOx/HfO2 are from [33] and [34] respectively 

IV. CONCLUSION  
In this work, a novel memristor configuration with the 

enhanced heat dissipation feature is designed and fabricated. 
The measurement data demonstrate our memristor has higher 
immunity to degradation induced by the thermal effect. The on 

and off resistance variations are reduced correspondingly, 
leading to an increase of the testing accuracy within the same 
range. Our Deep-DFR model is used for evaluating our 
memristor as the weight storing devices. The datasets CIFAR-
10 and CIFAR-100 are used for training the Deep-DFR model. 
The design area, power consumption, and latency of the system 
using our memristor are reduced by ~48%, ~42%, and ~67% 
compared to conventional SRAM memory technique. At last, 
these hardware parameters are also improved at various degrees 
(~13%-73%)  compared to other state-of-the-art memristors 
[33, 34].   
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