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Abstract—We propose a novel active learning framework for activity recognition using wearable sensors. Our work is unique in that it
takes limitations of the oracle into account when selecting sensor data for annotation by the oracle. Our approach is inspired by
human-beings’ limited capacity to respond to prompts on their mobile device. This capacity constraint is manifested not only in the
number of queries that a person can respond to in a given time-frame but also in the time lag between the query issuance and the
oracle response. We introduce the notion of mindful active learning and propose a computational framework, called EMMA, to
maximize the active learning performance taking informativeness of sensor data, query budget, and human memory into account. We
formulate this optimization problem, propose an approach to model memory retention, discuss the complexity of the problem, and
propose a greedy heuristic to solve the optimization problem. Additionally, we design an approach to perform mindful active learning in
batch where multiple sensor observations are selected simultaneously for querying the oracle. We demonstrate the effectiveness of our
approach using three publicly available activity datasets and by simulating oracles with various memory strengths. We show that the
activity recognition accuracy ranges from 21% to 97% depending on memory strength, query budget, and difficulty of the machine
learning task. Our results also indicate that EMMA achieves an accuracy level that is, on average, 13.5% higher than the case when
only informativeness of the sensor data is considered for active learning. Moreover, we show that the performance of our approach is at
most 20% less than the experimental upper-bound and up to 80% higher than the experimental lower-bound. To evaluate the
performance of EMMA for batch active learning, we design two instantiations of EMMA to perform active learning in batch mode. We
show that these algorithms improve the algorithm training time at the cost of a reduced accuracy in performance. Another finding in our
work is that integrating clustering into the process of selecting sensor observations for batch active learning improves the activity
learning performance by 11.1% on average, mainly due to reducing the redundancy among the selected sensor observations. We
observe that mindful active learning is most beneficial when the query budget is small and/or the oracle’s memory is weak. This
observation emphasizes advantages of utilizing mindful active learning strategies in mobile health settings that involve interaction with
older adults and other populations with cognitive impairments.

Index Terms—Active learning, wearable computing, machine learning, activity recognition, memory retention, cognitive factors,
human-in-the-loop learning.
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1 INTRODUCTION

W ITH the advent of the Internet-of-Things (IoT)
paradigm, applications of sensor-based systems have

advanced significantly across many domains from health
monitoring and autonomous vehicles to smart building and
environmental monitoring [1], [2]. Mobile and wearable
devices are being increasingly utilized, along with machine
learning algorithms, to monitor physical and mental health,
and to improve human well-being through clinical inter-
ventions. Most of these applications are human-centered
in that they focus on monitoring human health [3] and
even interacting with humans to incorporate their feedback
for improved performance of the system. The monitoring
component often relies on computational algorithms that
can detect important health events. For example, wearable
sensors are extensively utilized to record human physio-
logical data and then, computational algorithms such as
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machine learning models are applied for data analysis and
to make predictions about events of interest [4], [5], [6].

To train accurate machine learning models for differ-
ent applications, such as activity recognition, an adequate
number of labeled sensor data is required. However, data
collections and related experiments are mainly done in labo-
ratory settings where the experiments are highly controlled.
Unfortunately, models that are trained based on sensor data
collected in controlled environments and laboratory settings
perform extremely poorly when utilized in uncontrolled
environments and outside clinics [7]. Therefore consider-
ation of real-world and uncontrolled settings has become
increasingly important. Specifically, in human-centered ap-
plications, various limitations of human-beings, which can
affect the performance of the trained models, need to be
taken into account.

For an activity recognition classifier to be accurate, one
needs to collect and label sensor data in end-user settings.
Therefore, active learning is a natural choice for labeling
the data where the end-user acts as the oracle agent and
we iteratively query the user for correct labels [8], [9].
Throughout this article, the terms ‘end-user’ and ‘oracle’ are
interchangeably used. In such a human-centered monitor
setting, it is critical to design active learning strategies that
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are mindful of the user’s cognitive and compliance capa-
bilities. We recognize that human-beings are limited in their
capacity to respond to, for example, prompts on their mobile
devices. This capacity constraint is usually manifested in the
number of queries that a person can, or will, respond to in
a given time-frame and in the difference between the time
that a query is made and when it has been responded to.
This issue is critical in wearable-based continuous health
monitoring where the amount of sampled data is orders
of magnitude more than what the end-user can possibly
annotate [10].

In this article, we introduce the notion of mindful active
learning and propose EMMA1 to maximize the active learn-
ing performance, taking informativeness of sensor data,
query budget, and human memory into account [11]. To
the best of our knowledge, our work is the first study that
combines informativeness of queried data with the oracle’s
memory strength in a unified framework for active learning.

Our contributions in this paper can be summarized as
follows: (i) we introduce mindful active learning as a general
approach for budget-aware and delay-tolerant active learn-
ing in human-in-the-loop mobile systems. Mindful active
learning takes into account the possibility that the oracle
may forget the past events, particularly when there is a
large time difference between the query and the activity
being performed, and at the same time being constrained
on the maximum number of queries that can be made; (ii)
to account to human memory in the active learning process,
we propose an approach to model memory retention based
on the Ebbinghaus forgetting curve [12]; (iii) we formulate
mindful active learning as an optimization problem and
propose an approach to solve this problem; and (iv) we
evaluate the performance of our algorithms for activity
recognition using several datasets involving wearable and
mobile sensors.

2 RELATED WORK

Active learning has been widely used for human-in-loop
learning tasks to iteratively interact with an expert user
to retrieve necessary information for improved learning
performance [13], [14], [15], [16], [17], [18], [19], [20], [21].
Vijayanarasimhan et al. studied the problem of active learn-
ing under constrained query budget for image and video
recognition [22]. Active learning has also been studied in the
context of activity recognition [23], [24]. For instance, Bao et
al. used accelerometer data annotated by end-users to detect
physical activities [25]. Active learning has been used for
many other human-centered prediction problems beyond
those that use wearable sensors and images [8], [26]. Mu-
rukannaiah et al. presented an active learning framework
on personalizing the place-aware application [27] where
the approach was based on collecting information from the
user on places that the data were recorded with querying
according to entropy only. Also, Active learning allows
us to collect a small number of labeled observations to
personalize machine learning algorithms when the system
is deployed in a new setting. This area of personalizing
machine learning models is also related to transfer learning

1. Software for EMMA (Entropy-Memory Maximization) is available at
https://github.com/zhesna/EMMA.

research. In recent years there has been a growing body
of literature in designing transfer learning techniques for
active recognition systems [28], [29], [30], [31].

Physical activity monitoring has various clinical applica-
tions such as gait analysis [32], fall detection [33], mobility
assessment, and activity recognition. Activity recognition,
which is the pilot application in this study, aims at determin-
ing types of physical activities that a person or a group of
people perform based on sensor and/or video observation
data.

In mobile sensor-based systems, these observations in-
clude data recorded by various wearable sensors or sensors
embedded in smart devices, such as accelerometer and gy-
roscope sensors. For the purpose of recognizing human ac-
tivities based on sensor data, an adequate amount of labeled
training data is needed in order to achieve a high accuracy.
However, for most of the applications, the recorded sensor
samples are currently labeled in lab settings. When col-
lecting data in uncontrolled settings using mobile devices,
gathering the ground truth labels relies on user’s annotation
of their activity behaviors. As a result, cognitive factors of
the user are often overlooked when gathering the ground
truth annotations. Therefore, when sensor-based systems
are used in uncontrolled environments, this unconsidered
factor can highly and negatively affect the performance
of the recognition model. As a result, the performance of
activity recognition methods are directly dependent on how
the active learning algorithm is designed [34], [35].

Prior research does not take into account important
cognitive attributes of human beings, such as memory 2

strength for remembering the events, while designing ac-
tive learning solutions. Current research makes an implicit
assumption that either the oracle has a perfect memory that
can precisely remember all the events, or each query is
instantaneously responded to. None of these assumptions
are realistic in continuous health monitoring settings where
the end-user of the system also acts as our oracle. In this
article, we attempt to take the first steps at integrating
cognitive and compliance/adherence attributes of the oracle
with active learning. In particular, we account for (i) the
oracle capability to respond to active learning queries as
measured by the number of queries that are made; and (ii)
the oracle’s cognitive capacity to respond to the queries as
measured by memory retention, a function that combines
memory strength of the oracle agent with the amount of
delay in responding to the issued queries.

3 MINDFUL ACTIVE LEARNING FRAMEWORK

The proposed framework for mindful active learning is
shown in Fig. 1. Users employ wearable devices to collect
sensor data about activity behavior. The process of data
collection (i.e., sensing) is continuous and transparent to the
user. The gathered sensor data form an unlabeled dataset,
which also forms the input to our active learning algo-
rithm. The proposed active learning algorithm, referred to
as EMMA, also process the user’s memory strength and a
maximum available query budget, B, as input. The EMMA
algorithm selects an optimal set of sensor data based on

2. In this article, ‘memory’ refers to human memory.
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Fig. 1. Mindful Active Learning Framework. Xi represents the observations recorded by the sensors. The sensor observations along with the
available budget B and memory strength of the user are the inputs to the algorithm in EMMA, the proposed active learning method. The optimal set
of samples selected by EMMA, based on memory strength, time difference between occurrence of the activity and query time, and informativeness
of the sensor data are selected. The user is queried the samples at each iteration and the labeled samples are used to update the machine learning
model. This iterative approach continues until the available budget is exhausted.

memory strength, time difference between occurrence of the
activity and query time, and informativeness of the sensor
data. The user is then queried to label each selected data
point. After each data point is labeled by the user, it is added
to the training dataset and the activity recognition model is
retrained for improved performance. The process repeats
until the query budget is exhausted.

3.1 Problem Statement

Assume that we are given a collection of sensor measure-
ments recorded while wearable sensors are carried by the
user during daily activities. Without loss of generality, we
assume that the sensor measurements, referred to as sensor
observations henceforth, are represented in feature space.
These observations need to be used to train a classifier for
activity recognition. Because the sensor observations are
unlabeled, we use active learning to construct a labeled
training set by querying the end-user to annotate a sub-
set of the observations. Because of the time lag between
querying a sensor observation and performing the activity
associated with that observation, it is possible that the oracle
is incapable of remembering the correct label. We postulate
that the likelihood of such a mislabeling is a function of
the oracle’s memory strength and the time lag. Memory
strength determines how drastically the ability of human
to recall the events falls over time. Moreover, we assume
that the number of allowed queries is constrained to a given
value, referred to as budget, in order to minimize the burden
of the oracle. Therefore, we need to select a subset of sensor
observations, upper-bounded by a given budget, such that
the probability of obtaining correct and informative labels
is maximized. This problem can be formally defined as
follows.

Problem 1 (Mindful Active Learning). Let A = {A1,A2,...,
An} represent the set of activities that need to be recognized by

the wearable system. We refer to this set as the activity vocabulary.
Furthermore, let X = {X1,X2,..., Xm} be a set of m observations
made by the sensors at times T = {t1,t2,..., tm}. The task of active
learning is to query the user, with a predefined memory strength
of s, at time tq≥tm to label sensor observations in X and train
an activity recognition model using the labeled observations. The
active learning process is constrained by limiting the number of
queries to a given upper-bound budget, B.

3.2 Problem Formulation

The task of selecting a subset of observations to be labeled
by the oracle can be viewed as finding a set Z = {z1,z2,...,
zk} of k observations in X (i.e., Z ⊆ X and k≤B) such
that the misclassification error due to a model trained over
Z is minimized. The goal is to select the best subset of
unlabeled observations to form a candidate query set (Z)
that results in an accurate classifier. In order to maximize the
performance of the final classifier, we consider two criteria
including informativeness of the candidate observation and
the oracle’s ability to remember the correct label at time tq .
We use Ii and Mi to refer to informativeness and memory
measures for a given observation Xi captured at time ti.

This optimization problem can be formulated as

Maximize
m∑
i=1

aiE(Ii,Mi) (1)

Subject to:

Xi ∈ X (2)∑
i

ai ≤ B (3)

ai ∈ {0, 1} (4)
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where Xi denotes the sensor observation captured at time ti,
and B represents the budget. The binary decision variable
ai determines whether or not observation Xi is selected
for inclusion in Z . The objective function in (1) attempts
to maximize the total amount of expected gain (E) given
informativeness and memory for individual observations.

We propose to use uncertainty of the model with respect
to a given observation as a measure of informativeness of
that observation for inclusion in Z . We also propose to
measure memory by combining the memory strength of
the user with the expected error due to difference in time
between query issuance and activity occurrence.

To obtain the expected gain (E(Ii,Mi)), which involves
two random variables, one can aim to model the expected
gain experimentally based on vast amounts of data (i.e.,
both sensor and human memory). However, in the absence
of such data or prior research in this area, we assume that
informativeness of an observation and the reliability of its
prospective label are independent of each other. Therefore,
we model the expected gain as a multiplicative function
of these two variables. Intuitively, because Ii determines
how informative a sample Xi is and Mi determines how
likely it is to get the correct label for observation Xi, their
multiplication is a reasonable proxy to the overall expected
gain of the observation. Therefore, the expected gain is
computed as

E(Ii,Mi) = E(Ii)E(Mi) (5)

We note that (5) assumes an even contribution of the
informativeness and memory to the overall expected gain.
Investigating a more complex formulation of the expected
gain where the importance of each random variable is taken
into consideration is out of the scope of this paper.

To quantify the informativeness (Ii) of observation Xi,
we propose to use entropy, as shown in (6), to measure how
certain the model is about its predicted label for Xi.

E(Ii) = Ei = −
n∑

j=1

Pij logPij (6)

The term Ei in (6) refers to entropy for observation Xi,
and Pij represents the probability of Xi being classified as
activity Aj . Because the classifier is less certain to classify
observations that carry a higher entropy, such observations
will naturally be more informative if labeled and used for
classifier retraining. Therefore, Ei is a reasonable proxy
for E(Ii). To quantify memory, Mi, for observation Xi, we
define memory retention as follows.

Definition 1 (Memory Retention). Memory retention, R, is
defined as the probability of a human subject with a memory
strength of s being able to remember an event correctly after a
given time, t, has elapsed.

We use the Ebbinghaus forgetting curve [12], [36], [37] to
quantify memory retention. To this end, memory retention
for observation Xi is given by

E(Mi) = Ri = e−∆ti/s (7)

where ∆ti denotes the difference in time between occur-
rence of the event represented by observation Xi and is-

suance of the query (i.e., tq). Furthermore, the term s repre-
sents memory strength, which is specific to each user. The
memory retention in (7) is naturally a measure for receiving
correct labels from the oracle. Therefore, the memory reten-
tion Ri can be used to quantify the memory for observation
Xi (i.e., E(Mi) = Ri).

Problem 2 (Entropy-Memory Maximization). By replacing
E(Ii) and E(Mi) in (5) with the entropy measure in (6) and
memory retention in (7), we can rewrite the objective function in
(1) as follows.

Maximize
m∑
i=1

n∑
j=1

aie
−∆ti/s(−Pij logPij) (8)

Subject to:

Xi ∈ X (9)∑
i

ai ≤ B (10)

ai ∈ {0, 1} (11)

We refer to this formulation of mindful active learning
as Entropy-Memory Maximization (EMMA). In the next
section, we discuss the complexity of EMMA analysis and
present a solution to this discrete constrained multi-variable
maximization problem.

3.3 Problem Complexity

In this section, we discuss the complexity of the entropy-
memory maximization discussed in Problem 2.

The complexity of the EMMA problem arises from its ex-
ponential input size. To provide some insight into the input
size of the EMMA problem, consider a naive approach (i.e.,
brute-force solution), in which we cycle through all subsets
of the unlabeled dataset with the number of elements less
than or equal to B. For each subset, we can generate all
possible orderings of the sensor observations within that
subset. For each ordering, we draw one observation from
the subset at a time, compute entropy and memory retention
values, query the oracle, and train a classifier with the
observations labeled so far. By repeating this process for
all subsets and all ordering of the observations within each
subset, we can finally choose the ordering and subset that
has the maximum value for the objective function in (8).
Although this brute-force approach is impractical for real-
world deployment, an analysis of the complexity of such an
approach provides insight into the relationship between the
complexity function and various problem parameters.

Theorem 1. The time complexity of the brute-force approach for
solving EMMA (as described in Problem 2) is exponential in the
query budget, B.

Proof. It is straightforward to see that the overall time com-
plexity of the brute-force solution is O(|S|) where |S| refers
to the total number of orderings of all subsets of unlabeled
set X with a subset size less than or equal to B. For each
subset of size b, there exist b! orderings of the observations
that reside within the subset. Therefore, |S| is given by
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|S| =
B∑

b=1

(
m

b

)
× b! =

B∑
b=1

m!

(m− b)!
(12)

where m denotes the size of the unlabeled set X . The
equation in (12) can be presented as

|S| =
B∑

b=1

(((m− b) + 1)× ((m− b) + 2)× ...×

((m− b) + (b− 1))× ((m− b) + b))

(13)

and therefore:

|S| =
B∑

b=1

b∏
k=1

(m− b + k) (14)

Because in real-world scenarios, the number of recorded
sensor observations is orders of magnitude higher than the
number of queries that the oracle can possibly respond to
(i.e., B � m), we can write

b∏
k=1

(m− b + k) ≈ mb (15)

Therefore, (12) can be rewritten as

|S| ≈ m + m2 + ... + mB (16)

Using geometric series we can conclude that

|S| ≈ m(B+1) − 1

m− 1
≈ mB (17)

Therefore, the time complexity of the naive approach is
O(mB).

3.4 Greedy Approach for EMMA
Because the solution space is exponential, here we design a
greedy heuristic algorithm, shown in Algorithm 1, to solve
the EMMA problem. Recall that the goal of the optimization
problem in EMMA is to select a subset of observations of
high-entropy such that their labels are likely to be remem-
bered by the oracle. So this greedy approach works in this
way that, it first evaluates the expected gain for all the sam-
ples based on their informativeness, memory strength of the
oracle and the amount of time that has passed from doing
the corresponding activity by the user and recording that
sample. Then, the algorithm finds and selects the sample
with the highest value of expected gain and queries the
oracle for its label. Then collects the label from the oracle
and adds the labeled sample to the training set it is building
which will be used for predictions. Based on the updated
training set, an updated model will calculate the new values
of entropy for the other unlabeled recorded samples. This
process will repeat until we have budget available.

This greedy algorithm iteratively chooses the best candi-
date observation from the set of unlabeled observations X
with the highest values of the expected gain in (5) assum-
ing that the informativeness and memory are measured as
given in (6) and (7), respectively. Note that after moving an
observation from X to Z , the model M is retrained using

Algorithm 1 Greedy algorithm for EMMA.
Input: X (unlabeled observations), B (budget)
Output: Z (labeled observations)
for b = 1 to B do

Compute E(Ii,Mi) for all Xi ∈ X using (5)–(7)
Find Xi ∈ X with highest value of E(Ii,Mi)
Remove Xi from X
Query oracle to annotate Xi, and add labeled Xi to Z
Retrain modelM using labeled items in Z

end for

the labeled data in Z . This procedure is repeated until the
entire budget is consumed.

Lemma 1. The time complexity of Algorithm 1 is linear in m,
the number of original unlabeled observations in X .

Proof. The ‘for’ loop iterates B times. During each iteration,
we need to (i) compute E(Ii,Mi) for the remaining elements
in X and (ii) find Xi ∈ X with the highest value of
E(Ii,Mi). Both of these operations require O(|X |) to com-
plete assuming a constant time complexity for computing
E(Ii,Mi) for a given Xi. Therefore, the time complexity of
Algorithm 1 is B × O(|X |). Because |X | is initially m and
decreases by one at each iteration, the total number of times
to compute E(Ii,Mi) is given by

B∑
b=1

(m− b− 1) = O(m.B) (18)

Therefore, the time complexity of Algorithm 1 is O(m.B)

It is straightforward to see that Algorithm 1 terminates.
Specifically, Algorithm 1 converges all the time because the
algorithm is based on a repeating process and each step
terminates all the time. For a closer look, the first step of
the repeating process, which involves computing E(Ii,Mi)
for all Xi, is a deterministic calculation of a finite set of
elements (i.e., ‘m’) using a given formula. The second step,
makes use of a one step algorithm which goes over the
whole sample set to find the one with the highest expected
gain, which obviously converges because the number of
input items in the set is limited to ‘m’. The third step is
a deterministic removal step. The most challenging step is
the forth step within the repeating loop, which relies on
the oracle to respond to the active learning queries. In this
work, we assume that the user is completely engaged in
the algorithm training process and responds to the queries
instantaneously. However, in real world, the oracle may not
respond to a query and the algorithm may keep waiting.
To overcome this situation, one solution may be to define a
expiration time for each query. As a result, if a user does
not respond to a query and a sufficient amount of time
is passed, the query expires and the algorithm moves on.
In this way, we assure convergence of the algorithm. The
fifth step of the ‘for’ loop in Algorithm 1 is focused on
training a classification model. The training process depends
on the underlying classification algorithms. However, each
classification algorithm is controlled by parameters to stop
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the training [38] and therefore, the classification training
terminates in a constant time given the problem parameters.

3.5 Greedy Approach for Batch-EMMA

In this section, we propose our active learning approach
for operation in batch mode. We refer to this approach
as batch-EMMA. In batch mode active learning, instead
of selecting one sample in each iteration of the EMMA
algorithm, multiple samples are selected [13], [15], [18], [22].
There are different approaches to select these samples and
based on this, we propose two versions for batch-EMMA.

The first version is referred to as EMMA-M in this article.
In EMMA-M, the algorithm chooses the best candidate
observations from the set of unlabeled observations X with
the highest values of the expected gain E(Ii,Mi) in (5) in
each iteration. After querying the end-user for the labels of
these selected observations, they will be moved from X to
Z , and the model M is retrained using the labeled data
in Z . This procedure is repeated until the entire budget is
consumed.

The second version of our batch active learning is
referred to as EMMA-C in this article. In EMMA-C, in
each iteration of active learning, first the unlabeled sensor
observations are clustered into multiple groups. Then the
best observation with the highest value of expected gain
E(Ii,Mi) is selected from each cluster and then the end-user
is queried to label the selected observations. The main goal
of EMMA-C is to reduce redundancy among the selected
observations, as its advantage over EMMA-M.

In order to explain the differences between EMMA-M
and EMMA-C algorithms, Fig. 2 is presented for a synthetic
dataset with two features, f1 and f2, where the plots show
the observations distributions in a 2D feature space. The
selected samples by each algorithm are shown in “red”.

As shown in Fig. 2, EMMA-M selects the high ranked
samples based on their expected gain, which may result
in selecting the ones that are close to each other in space.
However, EMMA-C first clusters the points. Therefore, the
samples that are more similar are grouped together. Then
from each cluster, EMMA-C selects the one with the highest
expected gain. As shown, EMMA-C will result in select-
ing the points that are further from each other and less
similar. Therefore, EMMA-C selects more diverse samples
compared to EMMA-M, resulting in less redundancy of
information in the selected set of samples.

4 VALIDATION

This section presents our validation approach for assessing
the performance of our mindful active learning algorithm,
comparing our approach to other methods, and evaluating
the performance of our active learning in batch mode.
Throughout this section, we use the term EMMA to refer
to the greedy algorithm presented in Section 3.4. We note
that the naive approach discussed in Section 3.3 has an
exponential time complexity, which makes it impractical
given the large amounts of data collected during continuous
health monitoring using wearable sensors.

4.1 Datasets
To assess the performance of EMMA, we used three real-
world, publicly-available, sensor-based datasets including
HART [39] containing sensor data collected from 30 human
subjects during six activities, DAS [40], [41], [42] containing
sensor data from 8 human subjects and 10 activities, and
AReM [43] featuring 6 activities by one human subject.
These datasets are available at the UCI machine learning
repository and are prepared for the goal of human activity
recognition.

The first dataset, HART, is gathered using a smartphone
[39] and 30 subjects have participated in this experiment
while performing 6 different activities including walking,
walking upstairs, walking downstairs, sitting, standing, ly-
ing. Overall, 561 features in time and frequency domains
were calculated for 7352 data points in the training set and
2948 data points in the test set.

The second dataset is referred to as DAS (the daily
and sports activities dataset) [40], [41], [42], recorded with
8 subjects, performing several daily and sport activities
using three different sensors mounted on five different units
recording 9120 data samples. We used the data from the 3-
axis accelerometer mounted on the right leg and considered
10 different classes of activities. These activities include
sitting, standing, lying on back, ascending stairs, descending
stairs, running on a treadmill with a speed of 8 km/h, exer-
cising on a stepper, cycling on an exercise bike in horizontal
position, rowing, and jumping. We extracted 10 commonly-
used features from the raw sensor data for further analysis.
These features include max, min, amplitude, median, mean,
peak to peak amplitude, variance, and RMS (Root Mean
Square) power.

The third dataset that we used is referred to as AReM
[43]. The data in this dataset were recorded with one subject
while performing 6 different activities. The activities include
bending, cycling, lying, sitting, standing and walking. The
data were recorded using three sensors placed on chest,
left ankle, and right ankle. The features extracted from the
sensor data include mean value and standard deviation for
each reciprocal RSS (Received Signal Strength) reading from
the sensors, resulting in 6 features with a total of 2880 sensor
observations or data samples.

A summary of the statistics for these three datasets is
shown in Table 1.

TABLE 1
Datasets Characteristics

# features # activities # subjects # sensors
HART 561 6 30 6
DAS 10 10 8 3

AReM 6 6 1 3

4.2 Choice of Classifier
Throughout our experiments, we used the SVM (Support
Vector Machine) as our underlying activity recognition clas-
sifier. This choice was made based on extensive experiments
on our datasets explained in Section 4.1 to select the classi-
fier that has the best performance on average over our data.
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Fig. 2. Comparing EMMA-M and EMMA-C algorithms for a sample dataset with two features. Red points present the samples selected by each
algorithm.

We considered four types of machine learning algorithms
including SVM with linear kernel, SVM with RBF kernel,
logistic regression, and decision tree. The average accuracy
values achieved when testing different classifiers over three
datasets are presented in Table 2.

TABLE 2
Classification accuracy achieved by four machine learning algorithms.

SVM Lin. SVM RBF LR DT
HART 0.90 0.81 0.86 0.85
DAS 0.94 0.85 0.94 0.92

AReM 0.73 0.67 0.70 0.69

As shown in Table 2, the SVM with linear kernel, SVM
with RBF kernel, logistic regression, and decision tree algo-
rithms achieved an overall accuracy of 92%, 83%, 90%, and
88%, respectively. The accuracy numbers were computed
over all subjects in each dataset. We chose linear SVM as
our activity recognition classifier. However, note that the
methodologies presented in this article are independent of
the choice of an activity recognition classifier.

4.3 Experimental Setup

For validation, the sensor data collected for each subject was
considered separately. The data associated with each subject
was split into two sets with 70% as the training set and 30%
as the test set. Moreover, the training set was divided into
two sets of labeled samples Z and unlabeled ones X . At the
beginning of each experiment we assumed that the labeled
set has two labeled samples from two different activities so
that an initial activity recognition model can be generated
for assigning entropy values to unlabeled set members.

Furthermore, we added another column to our datasets
simulating the time passed after the activity at the time of
querying. The time was presented as a fraction of a day
in Equation 7. This value was used to calculate Memory
Retention (R) as the probability of remembering the activity
by the subject at the query time.

We simulated oracles with various memory strengths.
The goal was to measure the likelihood of an incorrect label
provided by the oracle given the memory strength and the
time that had passed from capturing the queried sensor
observation. To simulate the oracle’s remembering of the

event associated with a queried sensor observation Xi based
on a given s value for the oracle, we first computed memory
retention Ri for Xi using Equation (7). We then assigned the
correct label with the probability R and incorrect label with
the probability (1 − R). An incorrect label is selected ran-
domly from the set of available activity labels. To alleviate
the effect of randomness in our simulation procedure, we
repeated each experiment 30 times and report the average
results.

4.4 Performance Metrics

We first focused on measuring the performance of the
EMMA algorithm. For this purpose, we used the algo-
rithm for creating the labeled training set as we change
the maximum available querying budget B, to observe
how the performance changes when the amount of the
available budget varies. Moreover, we simulated users with
various memory strengths to measure the changes in the
performance when the probability of having noisy labels
in the querying responses ranges from weak memories to
strong memories. All three datasets were used for these
experiments. The performance metrics used to evaluate the
EMMA algorithm include accuracy, precision, recall, and F1-
score [7].

4.5 Comparative Algorithms

The second step in our validation process was to com-
pare the performance of EMMA with other methods. For
comparative analysis, two more variations of EMMA, in
addition to the upper-bound and lower-bound cases, were
considered. We assessed the performance of EMMA against
the following active learning approaches:

• EMA (Entropy Maximization): this approach solves
the optimization problem only based on informative-
ness of the queried observations. It however con-
siders the memory of the user when responding to
queries with the goal of testing if considering only
entropy is sufficient when user is limited in memory
capacity. In this case, E(Ii)=Ei and E(Mi) = 1.

• MMA (Memory Maximization): this algorithm aims
to maximize the objective function for memory reten-
tion only. This means, the algorithm tends to choose
observations whose probability of remembering the
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label by the oracle is higher than others. In this case,
E(Ii)=1 and E(Mi)=Ri.

• Upper-bound (UB): this refers to the case where
no erroneous labels exist as a result of memory
deficiency. It means that, we assume that the oracle’s
memory is perfect, as a result of which the optimiza-
tion problem aims to maximize for entropy only.

• Lower-bound (LB): this refers to the case where the
oracle’s memory is low and the observations are cho-
sen randomly. Therefore, the informativeness of the
queried observation is not considered as a parameter.

For comparative analysis, EMMA and the four above-
mentioned algorithms were examined when varying bud-
get numbers and by users with different memory strength
values.

4.6 Batch Active Learning

The third step in our validation process was to observe
how our greedy algorithm for EMMA performs when used
in batch mode for active learning. In batch mode active
learning, instead of selecting one sample in each iteration
of the EMMA algorithm (referred to as EMMA-1 in this
section of our validation), multiple samples are selected. As
explained in Section 3.5, for this purpose, we propose two
versions for batch-EMMA as follows.

• EMMA-M: this refers to the case where in each
iteration of the active learning, multiple sensor obser-
vations (equal to batch-size) are selected to query the
user. To this end, we select the sensor observations
with the highest values of E(Ii,Mi).

• EMMA-C: this approach refers to the case where in
each iteration in EMMA we first perform a cluster-
ing of the unlabeled sensor observations and select
a number of the observations (equal to batch-size)
from these clusters. The clustering algorithm groups
the unlabeled sensor observations into several clus-
ters where the number of clusters indictated by the
batch-size. In the next step, one sample with the
highest value of E(Ii,Mi) within each cluster is
selected for querying the user. The advantage of this
method over the EMMA-M method is that it intends
to select the samples that are less similar to each
other by clustering them in advance. Therefore, it
is likely that the observations chosen from different
clusters are more informative in terms of the machine
learning task.

For this phase of our validation experiments, multiple
batch-size values were used with a fix available budget
value, when simulating two end-user, with weaker and
stronger memory strengths.

5 RESULTS AND DISCUSSIONS

In this section, we present results on the performance of
EMMA for active learning, comparative analysis, and the
performance of batch-EMMA active learning.

5.1 Performance of EMMA

As a first analysis, we evaluated the performance of EMMA
using different metrics (i.e., accuracy, precision, recall, F1-
score) and examined how these metrics change as various
parameters of the algorithm change. To this end, we con-
ducted multiple experiments by changing the algorithm pa-
rameters including query budget, B, and memory strength,
s. After EMMA constructed a labeled dataset, we trained
an activity recognition classifier using the labeled dataset
and utilized the trained model over the test set to measure
performance metrics for each of the three datasets discussed
previously. The details of the platform which is used for
running our analysis is as follows: Intel(R) Core(TM) i5-
3230M CPU @ 2.60GHz

Figure 3 shows the accuracy of the trained classifier on
the three datasets with query budget ranging from 5 to
200. The graphs show the accuracy values for five different
memory retention levels including R1 (10%–99%), R2 (20%–
99%), R3 (30%–99%), R4 (50%–99%), and R5 (70%–99%).
Note that, as R refers to the probability of remembering
a label for a given sensor observation, the R levels repre-
sent a range of possible memory retention values for all
observations in the dataset. Note that different samples
have different time stamps and thus, different time delays.
Also, note that, as the time window size to capture each
sensor observation from raw sensor readings varies across
the datasets, we used different memory strength values on
the three datasets to obtain the same memory retention
intervals to provide comparable results. Furthermore, as
stated before, we repeated each experiments 30 times and
their averaged results are presented.

As Figure 3 suggests, the activity recognition accuracy
improves for each memory retention value as the query
allowance (i.e., budget) increases. Furthermore, as the mem-
ory strength grows, the accuracy improves for each budget
value. The minimum accuracy, achieved with the least bud-
get and weakest memory is 44%, 29%, and 21% for HART,
DAS, and AReM datasets, respectively. The accuracy reaches
its maximum value of 85.3%, 97.5%, and 70% with greatest
budget and strongest memory for HART, DAS, and AReM
datasets, respectively.

An interesting observation from Figure 3 is the per-
formance decline in weak memory cases. It is generally
known that increasing the number of labeled observations
using active learning improves the classifier performance.
However, we can see that adding a large number of labeled
observations may reduce the accuracy if the memory reten-
tion is low due to a weak memory. An example of such
cases is shown in Figure 3a for retention levels R1, R2, and
R3. In all these cases, the activity recognition performance
improves up to a certain point (e.g., B=60) and it starts
dropping after that point, mainly because more incorrect
labels are added to the dataset resulting in a less accurate
model. For instance, the accuracy for R1, as the weakest
memory, starts from 44% for B=5, reaches up to 63% for
B=60, and again drops to 52.5% with B=200.

Another interesting observation is that the accuracy
saturates after a certain point with strong memories. This
can be observed, for example, in Figure 3a for memory
retention levels R4 and R5 where the accuracy plateaus
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Fig. 3. Accuracy of activity recognition model trained using EMMA on three datasets (HART, DAS, and AReM) as a function of query budget for five
different memory retention levels (R1–R5).

after acquiring 60 labeled observations and stays around
77% and 85% for higher budget values. The reason is that,
in this dataset, each added observation is very informative
and the classifier learns faster and needs a smaller number
of observations to achieve its maximum capability.

The difference in accuracy among different datasets in
Figure 3 can be explained by the quality of the data and
the difficulty of the recognition task. For example, the DAS
dataset (i.e., Figure 3b) contains highly discriminative fea-
tures over different activities. As a result of this quality,
adding a few correctly labeled observations has a signifi-
cant impact on improving the classifier performance. For
instance, when considering R5, the change in accuracy when
B grows from 5 to 20 is 23% for HART and 30% for DAS.
In contrast, the AReM dataset (i.e., Figure 3c) contains less
discriminative features and the window size over which
the features are calculated is small, leading to needing a
lot more labeled sensor observations to learn new activities.
Therefore, the growth in the performance of the classifier in
Figure 3c is slow compared to other datasets. Specifically,
the amount of improvement in the accuracy is 17% for R5

when B increases from 5 to 20 in the AReM dataset, while
this improvement is 23% and 30% for the HART and DAS
datasets, respectively.

We also computed the performances of EMMA in terms
of precision, recall, and F1-score. The results are presented
in Table 3 to Table 5.

Table 3, Table 4, and Table 5 suggest that the performance
of EMMA in terms of precision, recall, and F1-score for
HART, DAS, and AReM datasets follow similar trends to
the accuracy measures discussed previously. In general, as
the memory and budget values increase, the performance
of EMMA improves. As can be seen from these tables, the
performance of EMMA with the HART dataset starts to
decrease with a budget value around 60, when the user’s
memory is weak, and the performance saturates when the
user’s memory is strong.

The precision, recall, and F1-score metrics for the HART
dataset achieve their minimum values of 0.46, 0.31 and
0.35, respectively, when the smallest budget and weakest
memory value are used. Similarly, the maximum values
of precision, recall, and F1-score, which are 0.88, 0.88 and
0.87, are achieved with the greatest budget and strongest

memory.
As for the DAS dataset, as shown in Table 4, the mini-

mum values for precision, recall, and F1-score are 0.29, 0.10
and 0.14 and the maximum of these values are 0.98, 0.98
and 0.98. Furthermore, the minimum values of precision,
recall, and F1-score for the AReM dataset are 0.21, 0.08
and 0.11, respectively, with smallest budget and weakest
memory. As shown in Table 5, the maximum values for
precision, recall, and F1-score for the AReM dataset are 0.64,
0.61 and 0.60, respectively. These values are obtained with
the largest budget and strongest memory.

5.2 Comparative Analysis
We compared the performance of EMMA with that of
several active learning approaches including EMA, MMA,
upper-bound (UB), and lower-bound (LB). See Section 4.5
for a description of these alternative approaches. For brevity,
we focus on accuracy as our main performance measure
here. Similar to our analysis in the previous section, we
examined the performance of each algorithm while the
budget value ranged from 0 to 200 and the memory strength
was set such that different memory retention levels, R1

(10%–99%), R2 (25%–99%), R3 (50%–99%), and R4 (70%–
99%) are obtained. The results of this analysis are shown in
Figure 4, Figure 5, and Figure 6 for HART, DAS, and AReM
datasets, respectively. The accuracy numbers in these graphs
represent average values computed over all the users in each
dataset.

Each subfigure in Figure 4–Figure 6 represents the ac-
curacy performance for a particular memory retention level
(i.e., R1, R2, R3, or R4), and the x-axis in each graph shows
the query budget.

The results show that the performance improvement
due to using EMMA over EMA and MMA is most notable
when the amount of budget is small and the memory is
weak (i.e., memory retention level of R1). This observation
emphasizes the importance of considering both uncertainty
and memory retention in health monitoring applications
where data collection is extremely costly and end-users are
likely to be cognitively impaired. It can be seen from the
results that EMMA achieves an average accuracy that is
13.5% higher than that of EMA and 14% higher than that
of MMA for cases of weaker memory and smaller budget.
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TABLE 3
Precision, recall, and F1-score of EMMA on HART dataset.

Budget
Precision Recall F1 score

R1 R2 R3 R4 R5 R1 R2 R3 R4 R5 R1 R2 R3 R4 R5

5 0.46 0.48 0.47 0.52 0.54 0.31 0.34 0.32 0.41 0.44 0.35 0.37 0.36 0.42 0.45
20 0.61 0.68 0.66 0.68 0.76 0.59 0.65 0.63 0.68 0.75 0.56 0.62 0.60 0.64 0.72
60 0.65 0.67 0.73 0.79 0.85 0.65 0.67 0.74 0.81 0.87 0.62 0.64 0.71 0.78 0.84
120 0.61 0.65 0.72 0.78 0.87 0.62 0.65 0.73 0.79 0.88 0.59 0.63 0.70 0.77 0.86
200 0.53 0.57 0.65 0.79 0.88 0.54 0.58 0.67 0.79 0.88 0.52 0.56 0.64 0.78 0.87

TABLE 4
Precision, recall, and F1-score of EMMA on DAS dataset.

Budget
Precision Recall F1 score

R1 R2 R3 R4 R5 R1 R2 R3 R4 R5 R1 R2 R3 R4 R5

5 0.29 0.31 0.32 0.34 0.39 0.10 0.12 0.12 0.14 0.21 0.14 0.17 0.17 0.19 0.25
20 0.48 0.51 0.55 0.60 0.69 0.33 0.39 0.43 0.50 0.61 0.38 0.42 0.46 0.52 0.62
60 0.49 0.55 0.64 0.79 0.87 0.44 0.49 0.59 0.78 0.87 0.43 0.49 0.59 0.76 0.85

120 0.56 0.71 0.80 0.93 0.95 0.51 0.69 0.79 0.94 0.96 0.50 0.67 0.77 0.93 0.95
200 0.65 0.80 0.84 0.96 0.98 0.618 0.79 0.82 0.97 0.98 0.60 0.78 0.81 0.96 0.98

TABLE 5
Precision, recall, and F1-score of EMMA on AReM dataset.

Budget
Precision Recall F1 score

R1 R2 R3 R4 R5 R1 R2 R3 R4 R5 R1 R2 R3 R4 R5

5 0.21 0.22 0.17 0.27 0.33 0.08 0.08 0.12 0.18 0.18 0.11 0.11 0.07 0.20 0.22
20 0.29 0.34 0.33 0.48 0.51 0.18 0.27 0.23 0.42 0.45 0.19 0.26 0.23 0.39 0.42
60 0.27 0.38 0.49 0.56 0.60 0.21 0.28 0.48 0.57 0.60 0.21 0.29 0.43 0.54 0.55
120 0.46 0.43 0.58 0.69 0.64 0.42 0.41 0.61 0.70 0.61 0.38 0.37 0.54 0.68 0.60
200 0.45 0.57 0.57 0.69 0.64 0.41 0.53 0.61 0.69 0.61 0.38 0.52 0.52 0.66 0.60
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Fig. 4. Activity recognition accuracy of various active learning algorithms
on HART dataset using four different memory retention levels, R1, R2,
R3, and R4.
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Fig. 5. Activity recognition accuracy of various active learning algorithms
on DAS dataset using four different memory retention levels, R1, R2, R3,
and R4.
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Fig. 6. Activity recognition accuracy of various active learning algorithms
on AReM dataset using four different memory retention levels, R1, R2,
R3, and R4.

Moreover, we note that, for all datasets, as a strong memory
is used, EMMA and EMA methods converge and achieve
accuracy values closer to the upper-bound. Additionally,
the performance of EMMA is at most 20% less than the
experimental upper-bound and up to 80% higher than the
experimental lower-bound, on average.

For the HART dataset, the performance of MMA con-
verges to those of EMMA and EMA. However, for the
other datasets the performance of MMA improves slower.
The reason is that MMA tends to select the observations
sequentially in time and ignores the informativeness of the
observations. Therefore, if the user repeats an activity for a
long time or the activity does not change (e.g., ‘sleeping’,
‘watching TV’), MMA continues to query for the same
activity over and over again, resulting in a model that is
incapable of recognizing a wide range of activities. Con-
sequently, the active learning process needs to query for
many new observations in order to learn new activities,
which is the case for the DAS and AReM datasets. Note, as
mentioned previously, AReM contains less discriminative
features compared to the two other datasets. This is the
reason why the performance of MMA is closer to the lower-
bound on AReM.

Figure 4 to Figure 6 can be used to compare the overall
performance of EMMA, EMA, and MMA. In Figure 4,
MMA, which selects samples based on their time order,
outperforms EMMA slightly for larger budgets, but it is
much worse than EMMA in Figure 6. This is because of fast
switching between unknown activities in the HART dataset,
helping MMA to learn new activities quickly (while the
AReM dataset switches much slower from one activity to
another). These observations suggests that the performance
of MMA is highly dependent on the dataset or, in fact, on
the order in which the physical activities occur.

Although EMMA outperforms EMA in Figure 4, these
two algorithms achieve a similar performance in Figure 6.
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Fig. 7. Run-time of greedy approach for EMMA vs. brute-force approach:
a) run-time of EMMA for three different datasets as a function of budget;
b) run-time of brute-force solution for HART dataset as a function of
budget.

This observation can be explained as follows. The activity
sequence changes frequently in the HART dataset (Figure 4).
These frequent activity transitions allow EMMA to query
activity data that are more likely to be labeled correctly
because such sensor observations exist closer to the query
time. Because EMA does not take into consideration mem-
ory retention, it queries sensor observations that might have
been captured far in the past and therefore are less likely to
be labeled correctly. Figure 5 represents the case in between
these two scenarios where EMMA has the most accurate and
stable performance compared to the competing algorithms.

5.3 Time Complexity Analysis

In this section we present our results on the run-time of the
greedy approach for EMMA as well as that of the brute-force
approach. First, for the greedy algorithm, we measured the
run-time for all three datasets when changing the budget
and then averaged the results over all the users and number
of iterations. The results are shown in Figure 7a. As it
can be observed from these graphs, the time complexity of
EMMA is linear in the the amount of query budget, which
is consistent with our theoretical analysis in Section 3.4.

In next step, to experiment the time complexity of the
brute-force solution, we made use of the HART dataset. It is
infeasible to run this method for big budget numbers, as it
will take very long to create all the ordered subsets for each
budget value. Therefore, we limited the budget number to
range from 1 to 5 only for this analysis. The results for run-
time are shown in Figure 7b, again averaged over all users
and iterations. As we showed in (12), the number of ordered
subsets increases exponentially and it can also be seen in
the run-time of the brute-force solution in this graph. This
again confirms the efficiency of EMMA over the brute-force
algorithm.

5.4 Performance of EMMA for Batch Active Learning

In this section, the performance of EMMA as an active
learning approach in batch-mode is presented. As discussed
previously, in batch-mode active learning, instead of select-
ing one sample in each iteration of the EMMA algorithm
(referred to as EMMA-1 in this section), multiple sensor
observations are selected (EMMA-M and EMMA-C). See
section Section 4.6 for a description of batch-mode EMMA
algorithms. In this manuscript, k-means clustering algo-
rithm was used for clustering the sensor observations in the
EMMA-C active learning approach [44].
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Fig. 8. Activity recognition accuracy and time of Batch-EMMA active
learning algorithms on HART dataset using two different memory reten-
tion levels, R1 (low) and R2 (high), with horizontal line showing accuracy
and time for EMMA-1 algorithm.
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Fig. 9. Activity recognition accuracy and time of Batch-EMMA active
learning algorithms on DAS dataset using two different memory reten-
tion levels, R1 (low) and R2 (high), with horizontal line showing accuracy
and time for EMMA-1 algorithm.

In order to evaluate the performance of the EMMA-M
and EMMA-C methods, we chose three different batch sizes
of 5, 10, and 20 with a fixed budget value of 60 for our exper-
iments. Furthermore, one small memory strength level and
one large memory strength value, representing weak and
strong memories, were considered. These memory retention
levels were R1 (15%–99%) and R2 (70%–99%).

Then the EMMA-M and EMMA-C methods were ap-
plied to the three datasets, and the accuracy achieved as well
as the run-time of each algorithm per subject and per iter-
ation are presented in Figure 8 to Figure 10. Moreover, the
accuracy and time for the EMMA-1 algorithm is presented
as a horizontal dashed line in each graph as a reference.

Considering Figure 8 to Figure 10, we see that EMMA-M
has a smaller run-time complexity compared to EMMA-C,
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Fig. 10. Activity recognition accuracy and time of Batch-EMMA active
learning algorithms on AReM dataset using two different memory reten-
tion levels, R1 (low) and R2 (high), with horizontal line showing accuracy
and time for EMMA-1 algorithm.

which is anticipated because EMMA-C uses clustering as
an extra step. By calculating the time difference between
the two algorithms for various batch size and R values and
averaging them, it can be seen that EMMA-C consumes 3.23
sec., 2.02 sec., and 4.40 sec. longer than EMMA-M for HART,
DAS and AReM datasets, respectively.

It can be also seen that both EMMA-M and EMMA-
C algorithms require less time to complete compared to
EMMA-1. This is rather expected because EMMA-1 selects
sensor observations one by one and requires a round of
machine learning algorithm training during each iteration
of the algorithm. The effect of adding each sensor obser-
vation to the training set is evaluated on the entropy of
the remaining sensor observations and consequently, their
expected gain, (E), one by one. However, in batch-mode
EMMA, the time for this process is reduced by evaluating
the effect of adding multiple sensor observations at a time
on the remaining observations expected gain, (E). However,
it should be noted that, since EMMA-C has an extra step
for clustering, it is possible that for a very large dataset,
where more and more clusters are needed, the clustering
time would dominate the run-time for sequential learning
in EMMA-1.

By calculating the time difference between the two batch
algorithms and EMMA-1 for various batch sizes and R
values, we obtained the following results. EMMA-M and
EMMA-C require 12.6 sec. and 15.9 sec. less time than
EMMA-1 on the HART dataset. EMMA-M and EMMA-C
consume 2.2 sec. and 2.1 sec. less time compared to EMMA-
1 on the DAS dataset; and they need 9.7 sec. and 5.3 sec. less
time compared to EMMA-1 on the AReM dataset. We note
that the differences between the time results for the three
datasets are due to the complexity of each problem within
the associated dataset, which is determined by factors such
as number of features and number of sensor observations
among others.

Figure 8 to Figure 10 suggest that the achieved classifi-
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cation accuracy of EMMA-M is less than EMMA-C. This is
an expected outcome because EMMA-C tries to select more
diverse and less similar observations among all unlabeled
data to be added to the labeled training set. Therefore, in
each iteration of the algorithm less redundant and newer
observations are added to the training set, resulting in an
increase in the classification performance.

We also computed the difference between the accuracy of
the two algorithms for various batch sizes and R values. The
overall results are as follows. EMMA-C achieved 2.6%, 8.8%
and 22.0% higher accuracy than EMMA-M, on average,
on the HART, DAS, and AReM datasets, respectively. The
differences in the accuracy results across the three datasets
suggest that the AReM dataset has more similar data sam-
ples compared to two other datasets, and therefore EMMA-
C achieves a higher accuracy on AReM. Furthermore, it
indicates that the DAS dataset has more redundant samples
compared to HART.

Both EMMA-M and EMMA-C achieve less accurate re-
sults than EMMA-1 on average. The accuracy of EMMA-
M is generally less than that of EMMA-1 because EMMA-
1 evaluates the effect of adding each observation on the
expected gain for the remaining observations one-by-one
and, therefore, is more accurate. By calculating the the
difference between the achieved accuracy of EMMA-1 and
that of EMMA-M for various batch sizes and R values, it
can be seen that EMMA-1 obtains 4.4%, 15.8% and 25.4%
higher accuracy compared to EMMA-M on the HART, DAS
and AReM datasets, respectively.

However, the performance of EMMA-C is usually close
to that of EMMA-1. The reason is that EMMA-C considers
the similarity of important samples and by considering
redundancy, tries to select the important and at the same
time less similar samples for adding to the training set.
Therefore, based on the nature of the dataset and how
similar its significant samples are, the achieved accuracy
of the trained model can be improved. By calculating the
difference between the achieved accuracy of the EMMA-
1 and EMMA-C algorithms for various batch sizes and
R values and averaging them for all datasets, it can be
seen that EMMA-1 achieves 1.4%, 7.7%, and 3.3% higher
accuracy compared to EMMA-C on the HART, DAS, and
AReM datasets, respectively.

By comparing the accuracy for the three datasets, we
observe that using EMMA-M over EMMA-1 results in a
higher performance decline in the AReM dataset compared
to the HART or DAS datasets. However, when utilizing
the EMMA-C algorithm, this difference in accuracy decline
has been reduced. Therefore, it is concluded that AReM
has more similar and redundant samples and, therefore,
EMMA-C can help with its accuracy more compared to
HART or AReM.

Moreover, it can be seen that as the batch size increases,
both time and accuracy results decrease with the EMMA-M
algorithm. The decrease in the running time of the algorithm
is due to the fact that adding more sensor observations at
each iteration of the algorithm leads to a smaller number
of algorithm retraining tasks. The accuracy loss can also
be explained by the fact that adding a group of sensor ob-
servations, rather than adding them one-by-one, eliminates
the chance for learning from all labeled data. For EMMA-C,

the algorithm is more time-efficient compared to EMMA-1
based on our experiments. However, there is a chance that,
with a larger dataset and number of clusters, the algorithm
time increases compared to EMMA-1 and for each dataset.
The optimal number of clusters that leads to maximum
accuracy differs based on its nature.

Overall, batch-EMMA algorithms are more effective and
recommended when working with larger dataset. In such
cases, utilizing EMMA-1 may be time-consuming. Further-
more, for larger datasets, the efficiency of batch-EMMA
algorithms in terms of time-efficiency, compared to EMMA-
1, will be more considerable. Moreover, the choice between
EMMA-M and EMMA-C is application-based since EMMA-
M is a more time-efficient approach while EMMA-C is
mainly focused on accuracy performance.

6 FUTURE WORK

In this paper, we focused on pool-based active learning. Our
ongoing work involves developing mindful active learning
strategies that make query decisions on-the-fly as wearable
sensor data become available in real-time.

In our experiments we assumed that the time delay
is equal to the difference between query time and sam-
pling time (i.e., when the sensor is sampled by the micro-
controller). However, it is possible that the user may not
respond to the query immediately. If the user prefers to
proactively initiate the labeling process, the active learning
process needs to recompute the queried observations by
adding the time difference between query time and anno-
tation time to reflect the time delay in our formulation. Fur-
thermore, if there are multiple sessions in a day that the user
intend to annotate the sensor data, this model can be used
for each session separately. We also plan to investigate active
learning solutions that take into account the possibility of
delayed responses through context-sensitive active learning.

In this work, we simulated the memory strength of the
end-user for validation purposes. Our future work also
focuses on conducting user studies that involve cognitive
assessment of the user where we will assess the oracle’s
memory retention quantitatively.

7 CONCLUSIONS

Prior research on active learning takes informativeness of
data and query budget into account when selecting the
data for query. In this paper, we showed that cognitive
constraints of the oracle are of significant importance that
can greatly compromise active learning performance. We
posed an optimization problem to combine data uncertainty
with memory retention for use in ubiquitous and mobile
computing applications. We derived a greedy approxima-
tion algorithm to solve the proposed mindful active learning
problem. Our extensive analyses on three publicly available
datasets showed that EMMA achieves up to 97% accuracy
for activity recognition using wearable sensors. We also
showed that integrating memory retention improves the
active learning performance by 16%.

Our results indicate that the performance of EMMA
improves when the oracle’s memory is stronger or the query
budget is higher. However, we noticed that increasing the
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budget does not improve the accuracy when highly accurate
labels are available due to strong memory retention. We
also noted that the active learning performance can decrease
with increased budget if the oracle’s memory is weak.

Moreover, by comparing the performance of EMMA
with multiple competing algorithms as its variations, we
showed that including both informativeness of samples and
memory effects on noisy and incorrect labels, results in
EMMA being less dependent on the dataset compared to
other algorithms. This indicates that the results obtained
by EMMA are more consistent across different datasets
and machine learning tasks. Finally, the gap between the
performance of EMMA and other algorithms is most notable
with small budgets and weak memories.

Moreover, by comparing the performance of EMMA
with its batch versions, we showed that batch-EMMA re-
sults in needing less time to perform the active learning
computation at a reduced accuracy performance. However
the nature of a dataset is also a factor in the batch-EMMA
algorithm performance. We also observed that batch-EMMA
is more effective with larger datasets.
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