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ABSTRACT

Detecting when eating occurs is an essential step toward automatic
dietary monitoring, medication adherence assessment, and diet-
related health interventions. Wearable technologies play a central
role in designing unobtrusive diet monitoring solutions by leverag-
ing machine learning algorithms that work on time-series sensor
data to detect eating moments. While much research has been done
on developing activity recognition and eating moment detection
algorithms, the performance of the detection algorithms drops sub-
stantially when the model is utilized by a new user. To facilitate the
development of personalized models, we propose PALS!, Proximity-
based Active Learning on Streaming data, a novel proximity-based
model for recognizing eating gestures to significantly decrease the
need for labeled data with new users. Our extensive analysis in
both controlled and uncontrolled settings indicates F-score of PALS
ranges from 22% to 39% for a budget that varies from 10 to 60 queries.
Furthermore, compared to the state-of-the-art approaches, off-line
PALS achieves up to 40% higher recall and 12% higher F-score in
detecting eating gestures.
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Software code for PALS is available online at https:/github.com/marjan-
nourollahi/PALS
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1 INTRODUCTION

Eating habits are highly correlated with human health [6]. Not only
what people eat, but also when and how often eating events occur
contributes to their health [9]. An automatic health monitoring
system helps with monitoring eating habits and accommodating
users with special health conditions such as diabetes [7] and those
with certain dietary plans [3]. Therefore, eating moment detection
is an important factor in automatic health monitoring.

Recent eating moment recognition approaches require multiple
on-body sensors or specialized devices [1, 2], which make them
impractical for everyday use. This research develops a machine
learning model that uses easy-to-wear and prevalent wearable de-
vices such as smartwatches for eating moment detection.

Cross-subject pattern variations while performing the same ac-
tivity causes pre-trained machine learning models not to achieve
desirable accuracy when used on the new subjects without collect-
ing large labeled training data. This problem becomes even more
challenging in real-life scenarios as the user’s pattern in performing
activities deviates significantly from the ones performed in the lab
settings. A potential approach is to collect ground truth labels in
real-life scenarios is to continuously record user’s activities using
body-worn cameras. However, deploying cameras in uncontrolled
settings impose privacy concerns. Therefore, it is critical to de-
velop strategies that allow for collecting ground truth labels outside
laboratory settings.

Active learning is an approach to query sensor data for ground
truth labels in end-user settings. It allows us to query a small subset
of sensor data based on an informativeness measurement [10] and
yet achieve an acceptable accuracy level. However, in mobile health
using streaming data, the sensors are sampled in real-time and a
decision about querying or skipping a data segment needs to be
made instantaneously. To address the problem of activity learning
with streaming sensor data, we propose PALS as a proximity-based
active learning approach for eating moment recognition. We in-
troduce PALS to improve the performance of the model with less
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labeled data while leveraging unlabeled data for model training.
Inspired by graph-based semi-supervised learning research [12, 13],
our approach utilizes unlabeled data to improve the quality of the
model. To the best of our knowledge, PALS is the first attempt to
develop a practical approach for eating moment detection using
an active learning framework for human-in-the-loop learning on
streaming sensor data.

2 PROBLEM STATEMENT

Let X denote a large set of collected sensor data. An observation
x; made by a wearable sensor at time i can be represented as a
D-dimensional feature vector, xj = {wj1, wiz, ..., wip}. Each feature
is computed from a given time window and a marginal probability
distribution over all possible feature values. The activity recogni-
tion task is composed of a label space A={a1, az, . . ., am} consisting
of the set of labels for activities of interest, and a conditional proba-
bility distribution P(A|x;) which is the probability of assigning a
label a; € A given an observed instance x;. Subsequently, the final
predicted label for observation x; is defined as

f(xi) = arg max P(aj|xi) Y]
ajeA

Although, given the growing ubiquity of Internet-of-Things (IoT)
sensors, collecting a large pool of unlabeled sensor data is attainable,
labeling such a huge amount of data using human supervision
is time-consuming, burdensome, and expensive. Therefore, it is
important to devise an efficient approach for selecting informative
instances taking into account the constraint of a limited budget
to query an expert for ground truth labels. Furthermore, because
the sensors are sampled continuously as the user performs various
daily activities, the active learning algorithm needs to select sensor
data for query in real-time. The reason for such a constraint is that
expecting the user/expert to provide true labels for activities that
occurred in the past is subject to human memory and bias errors.
Therefore, it is desirable to decide if a query needs to be issued for
the currently occurring activity. In this section, we formally define
active learning as an optimization problem.

2.1 Limited Budget Training

To approach the problem of active learning given both budget and
real-time decision making constraints, we first relax the second
constraint by assuming that a human expert can label a pool of
sensor data collected in the past by either remembering the activities
or watching a video recording of the activities. This allows us to
develop a basic pool-based active learning algorithm that selects
most informative instances from a large pool of the collected sensor
data. In the next step, we show how the pool-based algorithm can
be modified for realizing real-time active learning scenarios where
a decision about querying the expert is made instantaneously. In
the following, we formulate each of the problems and present our
solution to solve those problems. Problem 1 formally defines the
limited budget active learning problem.

PrOBLEM 1 (LIMITED BUDGET TRAINING (LBT)). Assume an
active learning algorithm splits the instances in X into two disjoint
subsets | and U where the instances in | are used to query the oracle
to obtain their true labels and those in U remain unlabeled. The
Limited Budget Training (LBT) problem is to efficiently construct the
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small subset | and train a classifier such that the error of classifying
instances in X is minimized and the size of | is bounded by a given
query budget of A.

The LBT problem described in Problem 1 can be formulated as
follows.

Minimize g(lf(xo - yil) @)
|l|l=sl A (©)

luU =X (O]

InNU=0 O]

The objective function in (2) aims to minimize the amount of
misclassification error given the budget constraint in (3). The con-

straints in (4) and (5) are based on the definition where [ and U are
considered a perfect partitioning of set X.

As described in Problem 1, due to limited budget constraints,
designing an efficient method to cherry-pick instances to feed the
training process is essential. Here, Definition 1 formally defines the
instance selector function.

DEFINITION 1 (INSTANCE SELECTOR). An instance selector I is
a function I : X — {0, 1} such that

{1, ifx €l

0, otherwise

= ()
where x; refers to the instances selected for the query. Considering
that the active learning algorithm uses the instance selector 7, the
Problem 1 could be re-formulate as an Integer Linear Programming
problem as follows.

1X]

Minimize Z(l = I @)If(x) - il (7)
i=1
1X]
Z I()=A ®)
i=1

The objective function in (7) aims to minimize the amount of
misclassification error on unknown instances while (8) states the

budget constraint.

A major limitation of the LBT problem described above is that
it assumes perfect memory retention for the oracle. That is, the
oracle can remember past events reliably. In reality, however, mobile
health technologies monitor end users continuously and the user
may not remember past events. Therefore, it is more realistic to
design an active learning approach for streaming sensor data. In
the following, we reformulate Problem 1 taking into account that
the oracle provides labels for current activity. Problem 2 formally
defines the problem of training with a limited budget on a stream
of data.

PROBLEM 2 (LIMITED BUDGET TRAINING ON DATA STREAM (LBTS)).
Let X=[x1,x2, ..., Xt, ..., xT] be a sequence of sensor instances that
are being produced during time frame t= {1, ..., T}. An active learn-
ing algorithm on stream splits the instances in X into two disjoint
subsequences | and U where the instances in | are used to query the
oracle to obtain their true label and update the model as they become
available in real-time while U remain unlabeled. The Limited Budget
Training on Stream(LBTS) is to efficiently decide whether to query
the true label for the instance at time t and update the classifier as
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it becomes available in real-time such that the error of classifying
instances in U is minimized.

Using Linear Programming framework in (7), the problem of
limited budget training on data stream could be formulated as
follows.

T

Minimize 2(1 = I () Ife (xt) =yt ©9)
=1
T
Z I =A (10)
t=1

where f; is the classification function at time t. The objective
function in (9) aims to minimize the amount of misclassification

error given the budget constraint in (10).

3 PALS FRAMEWORK DESIGN

PALS framework focuses on two characteristics of everyday living
situations: (1) the ubiquity of data and the ability to obtain huge
amounts of unlabeled data with mobile devices and wearable sen-
sors; and (2) realistic assumption that the user/expert has a limited
capability or interest in providing ground truth labels for the mas-
sive amounts of data that are being collected in continuous health
monitoring applications. Therefore, the general goal of the PALS
framework is to leverage the unlabeled data to construct an efficient
model while choosing a small subset of instances of the unlabeled
data to query the user/expert for label/annotation. In the following,
we described our approach for leveraging unlabeled data through a
proximity graph model and selecting informative data instances in
preparation to query the expert.

3.1 Proximity-Based Modeling

Inspired by graph-based semi-supervised learning research, we pro-
pose to construct a proximity-based model to quantify similarity
among data instances. The intuition behind a proximity-based mod-
eling and label inference is smoothness assumption. The smoothness
assumption suggests that the instances that are close in the feature
space should have similar labels [12]. The process of constructing
a proximity-based model includes two phases. The first phase aims
to build a proximity graph using both labeled and unlabeled data.
Leveraging unlabeled data could potentially improve the model. As
suggested by prior research [12], in the absence of sufficient labeled
data, using both labeled and unlabeled data can lead to a more ac-
curate decision boundary for the learned model. The second phase
is label inference, which focuses on generating labels for unlabeled
instances through an iterative label propagation method.

DEFINITION 2 (PROXIMITY GRAPH). A proximity graph G(V,E)
is a weighted graph where each node in V represents an instance in
X =1UU. Each node in the graph maintains a vector of its feature
values and the probability distribution of its labels. An edge e;j € E
represents the amount of similarity between instances xj and x;.

We denote the similarity between x; and xj by 7(x;, x;) and
compute its value by their Euclidean distance:

n(i,J) = llxi — x| (1)

To avoid the confusion of far away instances, we build similar-
ity graph using k-NN schema which is one of the most popular
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approaches in similarity graph construction [8]. Therefore, we mea-

sure edge weights in the similarity graph using the following equa-

tion: n(ij) ifi€x(j)orj € x(i)

6 = { 0 otherwise (12)

where k(i) is the set of k-nearest-neighbors of instance x; based on
the defined similarity function.

In practice, we will show that using the k-NN schema improves

the performance of the trained model in detecting eating moments.

3.2 Instance Selector

To maximize the labeling accuracy while taking into account the
constraint in (3), we need an effective instance selector function to
select the most informative instances from X to add to the training
data used to learn a final model. To quantify the informativeness of
the instances, in this article, we use an entropy-based method, which
generates a score for a given instance based on Information Gain
(IG) from that instance. Recall that entropy indicates the certainty
of the model in classifying an instance. An entropy of zero means
pure certainty with one of the classes receiving a probability of
one. Therefore, low values of entropy suggest that the model is
confident about how to classify the input instance. The instance
selector I sorts the instances by their information gain and selects
the instance with the highest information gain to add to the labeled
pool L.

3.3 Off-line PALS

As described previously in Section 2, in the off-line version of PALS,
we assume that a pool of unlabeled sensor instances is available
to the oracle. The oracle is then able to label any of the instances
and to assign the correct activity label upon request. In this off-
line approach, we assume that the provided label is correct. This
assumption is based on the fact that either the oracle’s memory
is perfect that they can remember past events or there is a video
recording of the activities that the oracle can navigate to find the

correct label for a queried activity.
Off-line PALS \

Instance
Selector
oo\,
Add: (xg, y1), -0 (Xer yk)&l—// Query labels for (xy, ..., x;)

Figure 1: Overall architecture of PALS for off-line active
learning.

Fig 1 shows the overall architecture of our off-line proximity-
based active learning approach. Initially, among all of the recorded
activities, there is no or a small set of labeled instances [ along with
a large pool of unlabeled instances U. Our algorithm constructs a
proximity-based graph on the entire dataset using both [ and U.

Semi-supervised Model

(g s

Oracle/ Expert

Remove
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Following the graph construction phase, the model aims to infer
the actual label of the instances in U in multiple iterations of the
label propagation procedure. In the next step, the instance selector
T searches through the unlabeled instances to find the most infor-
mative instance in U, to date, to request for a label. The process
concludes by adding the labeled instance to the model.

Algorithm 1 Algorithm for Off-line PALS

Input: labeled data [, unlabeled pool U, number of iterations k, budget
A

Output: Proximity-based model f

Initialize: § «— % Jitr — k

1: procedure OFFLINE PALS

2 f <« construct proximity-based model on [ U U
3 while itr > 0 do

4: L,, « inferred labels on U using model f

5: IGs <« IG(Ly)
6

7

8

9

Xsel < O instances with highest IGs

Iser < labels provided by oracle for Xse;

I 1V (Xser, Lser)

f « update model f with new instances in [
10: itr «itr—1

As illustrated in Fig 1, the process continues iteratively by ob-
taining new labeled instances and adding them to the labeled set I.
The model is then updated and the process of label inference and
instance selection is repeated. The algorithm finishes when all the
allowed queries are exhausted (i.e. |I| = A). Algorithm 1 shows the
off-line active learning approach in PALS.

3.4 Real-time PALS

To realize real-time active learning on streaming data, we develop
real-time PALS. Development of real-time PALS is motivated by
the fact that both non-stop video recording of user’s activities in
naturalistic settings and assuming perfect memory for the user to
accurately remember all activities performed in a given time-frame
in the past are unrealistic for activity recognition in free-living
situations. Therefore, to develop a personalized model in real-life
scenarios, we cannot solely rely on pool-based active learning. Yet,
we develop our real-time PALS algorithms based on the foundations
established in our off-line PALS.

The main challenge in real-time active learning is to decide
whether or not to query each sensor instance as it becomes avail-
able in real-time. In particular, because the model does not have
access to future instances, it needs to determine whether the cur-
rent instance is informative enough for which to request a label.
We define a threshold on the informativeness of a given instance
to make such determination in real-time. Such a threshold, if de-
fined appropriately, will allow us to make real-time active learning
decisions.

DEFINITION 3 (INFORMATIVENESS THRESHOLD). Let X5°" be
the entire stream X sorted in informativeness score given by IG. An
informativeness threshold A is a value such that IG((\’K"”ed) =2
where A is the query budget.

As shown in Fig 2, real-time PALS assumes that the user can
provide labels only for the current or very recent activities. In this
approach, each instance is evaluated only once. As a result of this
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Stream-based Model

User

X

Certainty
Evaluator

Query label for x,

Add x,
@
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Figure 2: Overall architecture of PALS for real-time active
learning on streaming sensor data.

entropy,, > A
no P,

Add (X, ye)

evaluation, the instance is either discarded from further analysis
or used to query the oracle. If the system receives a label from the
oracle, the next step is to update the model with the new instance to
obtain a more personalized model. This is accomplished by adding
the newly labeled instance to the labeled pool.

Algorithm 2 Algorithm for real-time PALS.

Input: current model f;, new instance x, threshold A, budget A
Output: f

1: procedure REAL-TIME PALS

2 p < make a prediction on x using model f

3 e « calculate entropy of p

4 if e > Aand A > 0 then

5 A —A-1

6 y « query oracle to provide a true label for x

7 f « update model f; with (x, y)

We need an algorithm to adjust the value of the informativeness
threshold to balance labeling over the instance space. The algorithm
needs to avoid both high and low values of A. High values of A will
translate into a highly conservative approach where a very small
number of questions are asked. Therefore, the algorithm can fail
in personalizing the model for the current user due to a lack of
sufficient input from the user. On the other hand, low values of A will
result in the algorithm exhausting the budget very quickly rather
than generating queries that are distributed in time. Therefore, we
need an adaptive algorithm to adjust A to create a balance between
prompting time and query budget.

3.5 Adaptive Threshold Setting

An adaptive algorithm for adjusting A needs to address concerns of
when and how to update A to achieve effective performance. Our
strategy is to update A after receiving a new instance to a value
that ensures a uniform distribution of queries over a given time
interval. Suppose N denotes the number of instances over a given
time interval. Also, assume that we have seen k instances so far.
To uniformly distribute queries over the time interval, we need
to adjust A taking into account the fact that % percentage of the
budget has been already exhausted. Here we describe how A can
be adjusted for a stream of data to ensure a uniform distribution of
queries over a given time interval of T.
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Let T denote a given expected execution time interval of the
active learning process. Also, let X; represent the data stream gen-
erated up to time ¢ and X;°"* be X; sorted in non-decreasing or-
der by informativeness score given by IG. Furthermore, let A; be
(t/T) x A. An informativeness threshold at time ¢ is denoted by A;
is a value such that IG((X,)Z‘Z”Ed) = A;. The threshold value A;
ensures a uniform distribution of queries over the time interval T.
This process for obtaining an adaptive A is shown in Algorithm 3.

Algorithm 3 Algorithm for adaptive adjustment of informative-
ness threshold, A

Input: current model m, new instance x, time ¢, time interval T, Entropy
of instances up to current time E, budget A
Output: A,

: procedure ADAPTIVEA

p < use model m to make predictions about x

e « calculate the entropy of p

E (E+e)sorted

index « (t/T) XA

At < Eindex

AN AN R N

4 RESULTS

This section presents experimental results for PALS on two public
datasets SW6S and SW3S [11]. Both datasets contain 3D accelerom-
eter data collected from a wristband worn on the dominant hand
while doing eating-related activities. SW3S was collected in a semi-
lab setting from 20 participants performing different activities in-
cluding eating, watching a movie trailer, chatting, taking a walk,
placing a phone call, brushing teeth, and combing hair. The second
dataset was collected in free-living settings with seven participants.
The participants performed various daily activities such as tak-
ing, commuting, reading, walking, working with a computer, and
eating. We extract 15 features such as median and mean capture
intensity of the signal, variance and zero crossing intend to capture
morphology of the signal from signal segments for each axis of
sensor data. We use the y? feature selection method to eliminate
irrelevant features. Since the majority of the samples in the datasets
are non-eating activities we use Synthetic Minority Over-sampling
Technique (SMOTE) [4] to up-sample the selected most informative
instances in each iteration of offline PALS. To avoid biased results
while testing the model on the unbalanced data, we report the f-
score value, which is a metric to measure the quality of the model
based on the balance between Precision and Recall.

4.1 Performance of Offline PALS

We compare our algorithm with two prior research in the area of
eating moment detection as well as state-of-the-art machine learn-
ing methods. (1) RFA, a Random Forest-based food intake gesture
recognition algorithm [11], and, (2) XGBoost, which is an optimized
and distributed implementation of Gradient Boosting. It provides a
parallel tree boosting method to effectively solve machine learning
problems in the industrial scale [5]. We assume that each algorithm
has access to 20% of in-lab data as its training set and we use the
remaining 80% of the data as a test set for validation. As shown in
Table 1, offline PALS outperforms other approaches; it achieves 41%
and 48% f-scores detecting eating moments for SW3S and SW6S
datasets, respectively, which is more improvement than XGBoost
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and RFA. Also, low recall for eating class refers to the classifier
having a high bias in classifying all instances as not-eating. This
again emphasizes the importance of selecting appropriate metrics
while working with skewed datasets. As presented in Table 1, of-
fline PALS achieves a 62% and 64% recall when running on SW3S
and SW6S datasets, respectively, which demonstrates significant
improvements over RFA and XGBoost.

Table 1: Performance of offline PALS vs. other approaches.

Dataset Methods Recall F-score
Offline PALS 0.62 0.41

SW3S XGBOOST 0.25 0.35
RFA 0.22 0.34
Offline PALS 0.64 0.48

SW6S XGBOOST 0.32 0.40
RFA 0.10 0.18

4.2 Performance of Real-Time PALS

We conducted two experiments highlighting the effect of query
budget and decision threshold estimation on the performance of
the real-time PALS algorithm.

4.2.1 Query Budget. We assess the effect of query budget, A, on
the performance of real-time PALS approach in classifying eating
moments by examining twelve different values of query budget per
hour for different subjects in in-the-wild setting on SW3U dataset.

Fig 3 shows the f-score value averaged over all the subjects at
the end of training cycles. Limited query budget to query the user
in real-time, the model cannot adapt itself from the lab-setting to
real-world setting (less than 1% f-score for 5 queries per hour). First,
the distribution of eating vs. non-eating activities is very different
from a lab setting to a real-world setting. Second, in the real-world
setting, real-world settings and without people tend to perform
eating activities with higher variations than the lab setting. This
result again highlights the importance of designing adaptive models
for real-world settings. However, increasing the value of the budget
creates a more personalized classifier for each participant with a
higher performance measure. Increasing the query budget to 10
queries, the average f-score of detecting eating-moments increases
by around 23.1%, 29.8%, and 39% having the query budget of 10,
20, and 60, respectively. There is always a trade-off between the
query budget and user convenience. While by increasing the query
budget, we increase the performance of the model, we may also
increase user inconvenience.

4.2.2  Comparison of Thresholding Methods. To verify the effec-
tiveness of our approach in updating the decision threshold, A, we
designed two different methods. In the first method, the value of
the A is learned from the in-lab training data which is derived based
on the ratio of budget to the size of the dataset. Since this value
extracted from the in-lab data and remains unchanged during the
real-time training, we refer to the decision threshold obtained in
this approach as static A. The second method uses the knowledge
of the best possible value for the threshold in a time interval to
select the most informative instances based on the entropy of the
classification decision. This experiment provides an experimental
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Figure 3: Performance of the learned model in terms of f-
score as a function of query budget on SW3U dataset.
upper-bound for the adaptive lambda because it has unlimited ac-
cess to the future data and can extract the most accurate value of A
that the adaptive lambda algorithm attempts to estimate. We refer
to the decision threshold obtained by this approach as best A.

We compared the performance of the eating moment detection
models trained on real-time data of the SW3U dataset using best A,
adaptive A, and static A. The x-axis refers to different subjects and the
y-axis shows the binary f-score. The query budget is set to 60 queries
per hour. As Fig 4 shows, the adaptive lambda algorithm achieves
performance values close to best A while using a static value for A
performs poorly across different subjects. Specifically, adaptive A on
average achieves 7% less f-score compared to best A and 12% better
f-score compared to static A. Also, to evaluate the extreme cases,
adaptive A achieves to 13% less f-score compared to best A for subject
number 5 while it works better for other subjects. Furthermore,
adaptive A works, in worst case, slightly better than static A with
1.6% better f-score for subject number 6 while it outperforms static
A for other subjects specifically subject 7 with 28% higher f-score.
To summarize the results of this experiment, best A, adaptive A, and
static A on average can provide 47%, 39%, and 28% average f-score
for all subjects of SW3U dataset.
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Figure 4: Comparison of best A, adaptive A, and static A for de-
cision threshold in terms of f-score on SW3U dataset.

5 CONCLUSIONS

Most approaches to detect eating moment require multiple on-body
sensors or specialized devices such as neck-collars for swallow
detection that are impractical for everyday usage. This research
developed a practical solution for eating moment detection using
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wearable sensors. We designed a non-intrusive detection system
with machine learning algorithms personalized for the end-user.

Because people perform the same activity differently, relying on
a model trained based on in-lab data leads to a significant perfor-
mance drop for the new users. We proposed a novel proximity-based
model to recognize eating gestures. We showed that our approach
significantly decreases the need for labeled data with new users
leveraging active learning under a limited query budget. Our ex-
tensive analysis of data collected from real subjects showed that
PALS achieves up to 40% higher recall and 12% higher F-score in
detecting eating events. Furthermore, we showed the effectiveness
of our adaptive thresholding method and how the online PALS
algorithm could be adapted in real-world settings with a limited
query budget.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Founda-
tion, under grants CNS-1750679 and CNS-1932346. Any opinions,
findings, conclusions, or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views
of the funding organizations.

REFERENCES

[1] Abdelkareem Bedri, Richard Li, Malcolm Haynes, Raj Prateek Kosaraju, Ishaan
Grover, Temiloluwa Prioleau, Min Yan Beh, Mayank Goel, Thad Starner, and
Gregory Abowd. 2017. EarBit: using wearable sensors to detect eating episodes
in unconstrained environments. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 1, 3 (2017), 37.

[2] Abdelkareem Bedri, Apoorva Verlekar, Edison Thomaz, Valerie Avva, and Thad
Starner. 2015. Detecting mastication: A wearable approach. In Proceedings of the
2015 ACM on International Conference on Multimodal Interaction. ACM, 247-250.

[3] Samir Chatterjee and Alan Price. 2009. Healthy living with persuasive tech-
nologies: framework, issues, and challenges. Journal of the American Medical
Informatics Association 16, 2 (2009), 171-178.

[4] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321-357.

[5] Tiangi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. ACM, 785-794.

[6] Katherine M Flegal, Margaret D Carroll, Cynthia L Ogden, and Clifford L Johnson.
2002. Prevalence and trends in obesity among US adults, 1999-2000. Jama 288,
14 (2002), 1723-1727.

[7] Abdelsalam Helal, Diane J Cook, and Mark Schmalz. 2009. Smart home-based
health platform for behavioral monitoring and alteration of diabetes patients.
Journal of diabetes science and technology 3, 1 (2009), 141-148.

[8] Markus Maier, Matthias Hein, and Ulrike Von Luxburg. 2007. Cluster identi-
fication in nearest-neighbor graphs. In Algorithmic Learning Theory. Springer,
196-210.

[9] Theresa A Nicklas, Tom Baranowski, Karen W Cullen, and Gerald Berenson. 2001.

Eating patterns, dietary quality and obesity. Journal of the American College of

Nutrition 20, 6 (2001), 599-608.

Burr Settles. 2012. Active learning. Synthesis Lectures on Artificial Intelligence

and Machine Learning 6, 1 (2012), 1-114.

Edison Thomaz, Irfan Essa, and Gregory D Abowd. 2015. A practical approach

for recognizing eating moments with wrist-mounted inertial sensing. In Proceed-

ings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous

Computing. ACM, 1029-1040.

Xiaojin Zhu. 2006. Semi-supervised learning literature survey. Computer Science,

University of Wisconsin-Madison 2, 3 (2006), 4.

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. 2003. Semi-supervised

learning using gaussian fields and harmonic functions. In Proceedings of the 20th

International conference on Machine learning (ICML-03). 912-919.

[10

[11

[12

(13



	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Limited Budget Training

	3 PALS Framework Design
	3.1 Proximity-Based Modeling
	3.2 Instance Selector
	3.3 Off-line PALS
	3.4 Real-time PALS
	3.5 Adaptive Threshold Setting

	4 Results
	4.1 Performance of Offline PALS
	4.2 Performance of Real-Time PALS

	5 Conclusions
	Acknowledgments
	References

