2020 IEEE International Conference on Cloud Engineering (IC2E)

Towards Non-Intrusive Software Introspection and Beyond

Apoorve Mohan*, Shripad Nadgowda®, Bhautik Pipaliya*, Sona Varma*,
Sahil Suneja*, Canturk Iscii, Gene Cooperman®, Peter Desnoyers*, Orran Krieger*, Ata Turk®

*Northeastern University, TBoston University, IBM T.J. Watson Research Center $State Street Corporation

Abstract—Continuous verification and security analysis of
software systems are of paramount importance to many orga-
nizations. The state-of-the-art for such operations implements
agent-based approaches to inspect the provisioned software stack
for security and compliance issues. However, this approach, which
runs agents on the systems being analyzed, is vulnerable to
some attacks, can incur substantial performance impact, and
can introduce significant complexity. In this paper, we present
the design and prototype implementation of a general-purpose
approach for Non-intrusive Software Introspection (NSI). By
adhering to NSI, organizations hosting in the cloud can as well
control the software introspection workflow with reduced trust
in the provider. Experimental analysis of real-world applica-
tions demonstrates that NSI presents a lightweight and scalable
approach, and has a negligible impact on the performance of
applications running on the instance being introspected.

Index Terms—Software Introspection, Storage Dissagregation,
IaaS Cloud

I. INTRODUCTION

Many organizations deploy security agents alongside the
provisioned software stack to verify sanity, i.e., to ensure that
the software stack is not compromised. These agents run just
like any other application on the system while implementing
their respective security functions. laaS-cloud providers even
offer deployable agent-based introspection solutions [1] and
image templates already “baked” with such security agents [2]
[3], which report to a provider-managed central monitoring
service. These agents periodically scan the file systems, mem-
ory, and running processes of the systems within their scope
in order to compare their findings against databases of known
vulnerabilities' or malware, and send reports to the system
administrator summarizing their findings.

Over the decades, these practices of implementing secu-
rity functions through local agents have become a standard
in data centers and clouds, but this approach has several
shortcomings (see Fig. 1). First, security agents themselves
may become vulnerable and lead to new attack vectors into
one’s system, as reported through a recent “DoubleAgent”
attack that turns one’s antivirus into malware or/and hijacks
the system [6]. Second, as an agent is required to be installed
separately on every system, the operation and maintenance of
these agents becomes challenging at cloud-scale. For example,
introspecting 10K bare-metal instances would require deploy-
ing and managing the same number of agents, and a virtualized

Non-profit organizations (e.g., Mitre Corporation [4], National Institute of
Standards and Technology [5], etc.) maintain and continuously update open-
source databases of vulnerable software and software configurations for public
use.

- - ST TTTTTTTTTTTTTTTTTTTTmTmmm oo e m IAAS CLOUD | = === ~ N
-Sensiti i Send Health
Workload Program @ || *heport)
e.g. Apache Hitp Server (((.))) e.g. Amazon Inspector [[}--------rc-----

Malicious

Introspect Software Stack
Program g Influence => F B Provider-Controlled
e.g. User-Mode Rootkit Analysis vy oV oy Monitoring System
Software Packages and Configurations .
o At-Scale
Introspection

Operating System

INTROSPECTED |
INSTANCE

Fig. 1: Visualizing agent-based introspection.

environment with 64 virtual machines per host would require
640K such agents. Third, while performing periodic security
inspection, these agents consume system resources (e.g., CPU
cycles, memory, network resources, etc.), which may impact
the performance of the primary workloads that the systems
are catering to. While the system may tolerate or avoid these
overheads, this may, in turn, lead to performance instabilities
or resource inefficiencies [7]. Finally, a provider-managed
introspection service is intrusive for privacy and security-
sensitive organizations such as federal agencies, financial
institutions, hospitals, etc. Despite the economic benefits of
operating in a public cloud, they refrain from using public
cloud offerings due to the lack of control and trust in the
provider. For such organizations to use public cloud offerings,
they would want to enjoy private datacenter-like properties
(e.g., control, privacy, security, etc.), even when operating in
a public laaS-cloud [8].

Several efforts have been made to overcome the shortcom-
ings of agent-based introspection [9] [10] [11] [12] [13] for
specific instance types. But unfortunately, none of these offers
a solution that is non-intrusive, general-purpose’> and tenant-
controllable at the same time. These efforts either intercept
I/O requests of an instance provisioned to a remote virtual
disk and recreate the filesystem state to perform introspection,
or they propose provider-managed solutions to snapshot virtual
machines at the host-layer and use the snapshot to perform in-
trospection. For example, Banikazemi et al. [9] propose intru-
sion detection techniques for instances provisioned to a SAN
target; however, this can lead to interference within the SAN
controller’s I/O path — this not only violates the requirements
for non-intrusive introspection but also requires specialized

’In the context of this paper the phrase “general-purpose” refers to
instance-type (i.e. virtual machine or bare-metal server) and operating-system
agnostic. Furthermore, a general-purpose introspection system should not
require specialized hardware (e.g., SAN) or support from the hypervisor (in
case the of virtual machines).

978-1-7281-1099-8/20/$31.00 ©2020 IEEE 173
DOI 10.1109/IC2E48712.2020.00025

Authorized licensed use limited to: Northeastern University. Downloaded on January 07,2021 at 09:24:38 UTC from IEEE Xplore. Restrictions apply.

hardware. In another proposal, Richter et al. [11] propose
recreating the disk state of virtual instances by intercepting
the I/0 between the hypervisor and the disk emulator, which
is not a general-purpose solution as it would not work for
bare-metal instances. Oliveira et al. comes closest to achieving
non-intrusive introspection by snapshotting running virtual
machines and exposing the snapshots as read-only pseudo-
devices for out-of-band introspection, however, not only is
this approach instance-specific; it still requires resources and
access to the host where the VMs are running. Furthermore,
these systems require the tenant to trust the cloud provider
fully.

In this paper, we explore the answers to the following
questions:

o Can we develop an agentless introspection technique that
works for both virtual machines and bare-metal servers?

o Can we develop a system that has limited complexity for
small-scale deployments, so it can be deployed in private
clouds and modest clusters?

o Can we reduce the overhead and complexity of security
introspection for cloud-scale systems?

e Can we support tenants that don’t want to trust the
provider (e.g., those that encrypt their storage)?

Disaggregated storage allows us to address these questions.
The most critical aspect of non-intrusive introspection is to
have continuous and non-intrusive access to the state of the
provisioned software stack. Disaggregating the persistent state
of a running instance to a distributed storage system (e.g.,
Ceph [14], Lustre [15]) provides a clean separation of the
provisioned software stack from the running instance. This
disaggregation also enables a simple and practical mechanism
for non-intrusive access to the state of the provisioned software
stack, which can be exploited by different introspection and
inspection APIs to overcome the shortcomings mentioned
above for agent-based approaches. Until recently, storage dis-
aggregation has been primarily limited to virtualized instances.
However, recent research has demonstrated the possibility
to use storage disaggregation for provisioning bare-metal
instances with negligible performance overheads [16] [17] [18]
[19] [20] [21] [22] [23].

In this paper, we present the design and prototype imple-
mentation of a general-purpose approach for Non-intrusive
Software Introspection (NSI). NSI exploits the capability of-
fered by distributed storage to create a cheap copy-on-write
snapshot from a remote server and mounts the snapshot as
a read-only volume on the remote server to introspect the
latest state of the provisioned software stack. This approach
has several advantages over previous ones. Since it uses a
standard OS with support for arbitrary file systems, we can
mount any volume, requiring none of the special purpose
techniques developed in the hypervisor or SAN. Moreover,
as the OS of the introspecting server is isolated (not exposed
to the internet), it is simpler to ensure that the introspecting
system is not compromised. Furthermore, the introspection is
now decoupled from the tenant instance and is running on

174

a remote server, thus avoiding performance impact on the
workloads executing on the tenant’s instance. NSI also enables
tenants to create their own introspection servers to perform
introspection on volumes encrypted by tenant-controlled keys,
avoiding the need to trust to the provider; the only capability
this requires is to ensure that the tenant has a way of mounting
her own volumes.
Key contributions of this work include:

e We propose the design and prototype implementation
of NSI, a general-purpose approach for non-intrusive
software introspection. We also present a brief discussion
on other security analytics use cases that can be aided by
NSI. NSI consists of a set of microservices, reducing its
deployment complexity and enabling it to scale-out or
scale-up quickly. By opting for NSI’s modular design,
TaaS-providers can enable security-sensitive tenants to
control and verify components required to introspect their
provisioned software stack.

e A prototype implementation for NSI utilizing open-
source components is provided’. NSI’'s modular
microservice-based structure lends itself to replacing the
underlying components — enabling system administrators
to replace any underlying component to keep up with the
changing technology. The prototype implementation is
straightforward. We implemented introspection capability
into an existing bare-metal provisioning system. All
we needed was a way to snapshot and mount volumes.
Although our prototype implementation is based on a
bare-metal provisioning system, it works with virtual
machines as it is.

o Our prototype implementation shows that the complex-
ity of performing non-intrusive software introspection is
small; i.e., all needed functionality can be contained in a
simple set of services deployed in a VM. Deployment is
straightforward for an enterprise and public clouds, and it
can scale up or scale out quickly with small management
overhead. Our evaluation shows that one can dedicate a
modest amount of infrastructure to introspect on many
computers; e.g., in our analysis, one system with 32
cores, 64 GB memory, and 10 Gbps NIC can perform
basic software introspection every 5 minutes for up to
463 other computers. Based on the evaluation results,
we deduce that for a 10K server cluster (i.e., a typical
Borg cluster [24]), it would take 23 servers to perform
basic software introspection, which is a trivial amount of
infrastructure to set up and manage, rather than reserving
resources for and coordinating with introspection agents
running on all 10K servers.

o We also evaluate the performance impact of NSI’s proto-
type implementation on real-world applications running
on introspected instances and compare it with agent-based
approaches. While agent-based introspection can lead to
up to ~12% performance degradation NSI is observed to
be scalable with a negligible impact on the performance

3https://github.com/CCI-MOC/abmi

Authorized licensed use limited to: Northeastern University. Downloaded on January 07,2021 at 09:24:38 UTC from IEEE Xplore. Restrictions apply.

of the workloads. Our evaluation also demonstrates the
possibility of reserving resources with high confidence
for a particular introspection mechanism even across
different applications.

The remainder of this paper is organized as follows. We
present relevant background and the related work in Section II,
discuss the NSI architecture and prototype implementation
in Section III, present a runtime analysis for NSI and its
performance impact in Section IV, and conclude in Section V.

II. BACKGROUND AND MOTIVATION

In this section, we first list the requirements for employing
a general-purpose introspection system and then present some
existing work on introspection to explain/justify our need for a
new non-intrusive introspection solution. We then discuss the
advances in technology that enable us to perform agentless
introspection in the cloud.

A. Requirement for Non-intrusive Software Introspection

We first review the key desired features of a non-intrusive
software introspection, and how the requirements for support-
ing those features suggest the design of an agentless solution.
In this section, we will briefly discuss those requirements:

a) Separation of Introspector and Introspected: Integrity
of security introspectors is critical. To establish confidence
in their security assessment (about the introspected system),
security introspectors should be impervious to compromises.
In the case of an agent-based system, the agents (i.e., the
security introspectors) execute as just another application on
the system, potentially alongside any malicious software and
exposes themselves to compromise [6], doing more harm
than good. Moreover, the agents could also transitively get
influenced by the existing vulnerability in the system. For
instance, some trojan malware could override the ps utility on
your system to hide certain processes from reporting, and then
any monitor using that utility to detect suspicious processes
on your system will become ineffective [25]. Hence, it is
important that introspectors are separate from the introspected
system, i.e., the integrity of the entity performing the security
introspection should be verifiable independently from the
introspected system.

b) Managing Introspection at Cloud-Scale: Tt is essential
to keep the operational and maintenance cost associated with
security assessment in clouds to a minimum. In the existing
agent-based approach, a separate instance of security software
is required to be installed on every server. The complexity
of managing them is directly proportional to the scale of
introspected instances in the cloud. For example, introspecting
10K bare-metal instances would require to manage the same
number of agents, and the management complexity would
worsen even further if several virtual machines were run-
ning on each of the bare-metal instances. Common-routine
administrative tasks such as monitoring the health of agents,
collection of assessment reports, and rolling of agent updates
to all servers become challenging in this approach as the

175

scale grows. Furthermore, when operating at a cloud-scale,
the networking between introspected systems and the reporting
center becomes more complex as well. Therefore, there is a
need for a solution wherein the instances in the cloud can scale
independently, and the cost of implementing their security
introspection can be contained and managed efficiently.

¢) Non-intrusive Introspection: Periodic introspection
should not have an impact on the performance of the work-
loads running on the introspected systems. Agent-based so-
lutions require the co-location of the agent with the running
workloads. When the agent periodically executes, it contends
with the running workloads for resources, potentially causing
jitter in the system and impacting the performance of the
running workloads [26]. This impact can be mitigated by either
(i) reserving exclusive resources for the agent on each server,
or (ii) running introspection when the server is under-utilized.
However, both of these approaches have side-effects, since
either (i) the reserved exclusive resources for the agent will
remain idle when the agent is not running (leading to resource
inefficiency), or (ii) there may be large time windows between
introspections, and malicious agents can exploit this feature to
avoid introspection. It is preferable to employ an introspection
mechanism that does not have a performance impact on the
workloads running on the introspected systems.

B. Introspection Mechanisms

In this section, we present an overview of some of the
well-known introspection mechanisms. They can be broadly
classified into two categories:

a) Vulnerability Detection: Vulnerabilities are weak-
nesses that can be exploited by a malicious entity to per-
form unauthorized actions. Heartbleed (OpenSSL-based) [27],
Shellshock/Bashdoor (Unix Bash shell-based) [28], and
GHOST (Linux glibc-based) [29] are examples of the most
infamous software vulnerabilities seen over the last decade.
Various tools such as FlawFinder [30], RATS [31], ITS4 [32],
and Foster [33] have been developed to detect software vul-
nerabilities. These tools employ techniques such as pattern
matching, lexical analysis, data flow analysis, taint analysis,
model checking, fault injection, fuzzing testing, etc., to detect
vulnerabilities [34].

b) Malware Detection: Malware is an ill-intentioned
software designed to conceal its identity and cause damage
to the computer system that it runs on. Types of malware
include Viruses [35], Rootkits [36], Keyloggers [37], etc.
Tools such as chkrootkit (for detecting the presence of
Rootkits) [38], Linux Malware Detect (Linux system scanner
to detect threats in shared hosted environments) [39], and
ClamAV (an antivirus engine for detecting trojans, viruses,
etc.) [40] are examples of well-known malware detection tools.
Such tools employ techniques like anomaly-based detection,
specification-based detection, and signature-based detection to
identify the existence of malware in a system [41].

Since there exist different tools and mechanisms to intro-
spect for various software related security issues, we designed

Authorized licensed use limited to: Northeastern University. Downloaded on January 07,2021 at 09:24:38 UTC from IEEE Xplore. Restrictions apply.

NSI such that it is compatible with different existing intro-
spection mechanisms.* NSI's default introspection mechanism
performs vulnerability detection. When evaluating NSI, we
demonstrate its compatibility with rootkit analysis and virus
scan mechanisms. (See Section IV for details.)

C. Related Work

With the increase in the number, complexity, and code-base
size of deployed software systems, the number of threats that
can lead to security breaches increased as well [42], [43],
[44]. Thus, introspection has become a key requirement for
organizational IT deployments in cloud settings [1], [13], [45],
[46], [47], [48], [49], [50], [51] and large-scale introspection
systems have been developed to address these requirements.

Introspection systems can be classified into two types:
Agent-based and Agentless introspection systems. In agent-
based introspection systems, the introspection agent/software
runs on each server and the agent periodically executes the
desired introspection mechanisms (e.g., ClamAV [40], chk-
rootkit [38], Linux malware detect [39], etc.) on the server
to forward the introspection results to a centralized statistics
collection system. Amazon Inspector [1], IBM BigFix [52],
Symantec Endpoint Protection [53], and Tanium Threat Re-
sponse [54] are examples of agent-based introspection sys-
tems.

Agent-based introspection has a number of drawbacks such
as being amenable to intrusion and creating interference,
and these issues have been previously reported in connection
with production deployments [26]. For virtual machines and
containers, agentless introspection systems such as OpVis [13],
Anchore [55], Clair [56], AquaSec [57], and Twistlock [58]
have been proposed to overcome these drawbacks. These
solutions exploit the non-intrusive capabilities available in
virtualized/containerized systems that enable snapshotting of
the target file-systems/images. Specifically, the open-source
tool OpVis [13] snapshots virtualized instances at the host-
level and introspects the snapshots using filesystem tree in-
trospection techniques such as Columbus [59]. Anchore [55]
and Clair [56] use image-scanning capabilities to introspect
container images. AquaSec [57], and Twistlock [58] offer
proprietary agentless container introspection solutions.

There exist a few studies that focus on agentless intro-
spection of bare-metal servers that are provisioned to Storage
Area Network (SAN) targets. Banikazemi et.al. [9] proposes
intrusion detection techniques at the SAN target level. Un-
fortunately, the introspection they do at the SAN-level leads
to interference within the SAN controller’s I/O path [10].
IDStor [10] avoids this problem through a network-based
intrusion detection approach. It intercepts every iSCSI request
between the server and the SAN target, re-creates the filesys-
tem state identifying an inverse mapping between blocks and
the inodes of files (external to the SAN), and introspects the
re-created filesystem state. However, it cannot detect threats

4NSI is compatible with introspection mechanisms for which access to the
filesystem is sufficient to detect threats.

Non-Intrusive
T T T T T T T T T T T T . ~
+” instances provisioned from a -lntrospectlon N

virtual disk exposed as remote "read-only" s_napshot mounted
bootdrive (e.g. as iSCSI boot) to a server for introspection

[
1
1
|

Introspection
m Server

a@%@wa

> g aﬁ*& ﬁ&@ﬁ

Fig. 2: Non-intrusive introspection of instance S1 provisioned
to virtual disk D1.

caused by software that has not yet been accessed by the
server. Moreover, IDStor approach is not sustainable as it
requires developing special-purpose software to identify block-
inode inverse mapping for every filesystem type. Unlike these
approaches, the NSI design separates the image-control and in-
trospection services and thus avoids interference. Furthermore,
it can view the entire filesystem, and can detect vulnerabilities
located in the unused parts of the image. Finally, NSI is not
specific to SAN solutions, which require specialized hardware
to operate.

D. Enabling Technologies

a) Data center resource disaggregation: The advances
in data center networking capabilities (such as the common
use of 10-40 Gbps NIC’s on hosts, full bisection networks,
improved Ethernet latency, redundant network switches, higher
network bandwidth, link aggregation on bare-metal instances
to handle failures [20], [60], etc.) have led to an ongoing
paradigm shift towards data center resource disaggregation.
By fabricating the same system resource-types on standalone
blade servers that are interconnected via a network fabric,
high-capacity, low-overhead disaggregated services can be
offered [61]. Prominent examples includes, growing preference
to use a distributed remote storage over local-disk solutions for
storage for reasons of reliability, cost and scalability [21], [62],
[63], [64], ability to improve aggregate resource usage [65],
etc.

b) Unified system for instance provisioning and image
management: So far, such disaggregations were primarily
limited to virtualized systems and were not considered for
bare-metal instances. However, solutions such as M2 [17],
[66], Bolted [18], OpenStack-Ironic [67], etc., exploit the
above-mentioned technological advancements and offer rapid
bare-metal provisioning in a fashion similar to virtual-machine
provisioning. The bare-metal instances are provisioned from
remote disks stored on distributed storage. Due to the afore-
mentioned technological advances, they deliver comparable
performance to applications that run over locally mounted
disks [17], [68]. Furthermore, they offer image management
functionalities such as rapid snapshotting and cloning for the
bare-metal instance images. The advent of these systems has
exemplified the possibility of a general-purpose provisioning

Authorized licensed use limited to: Northeastern University. Downloaded on January 07,2021 at 09:24:38 UTC from IEEE Xplore. Restrictions apply.

Create (2) Mount—>

Clone X

E
B 0 Host Image
! v

/ PROVISIONING | /
! service Y, INTROSPECTION
Provision O SERVICE (3) Introspect
Instance IMAGE Clone
' v MANAGEMENT (4) Collect
) A SERVICE Introspection
' 1 Report
" - —Host Image
. |——: ,
souldZ =zl -
(1) Create
G =) Clone —— (

Running Instance

ORCHESTRATOR

Fig. 3: NSI workflow design

and image management system for both virtual and bare-metal
instances in the cloud.

III. NSI OVERVIEW

This section presents an overview of NSI’s design, compo-
nents, and workflow; and our prototype implementation. We
also briefly discuss some of the other use cases that can be
addressed using the proposed design.

A. Design Philosophy

The key goals of NSI are: (1) to enable non-intrusive soft-
ware introspection in the cloud; (2) the introspection solution
should be agnostic to cloud instance type (i.e., virtual machine
or bare-metal); and (3) cloud providers should be able to
support security-sensitive tenants. These goals have a number
of implications in NSI’s design. Fig. 2 present a high-level
overview of of the proposed non-intrusive introspection.

NSI relies on diskless provisioning of cloud instances to
access the state of the provisioned software stack. By doing
so, NSI is not required to execute an agent on the introspected
bare-metal instance or the host (in the case of virtual ma-
chines). Furthermore, using the feature-set offered by today’s
modern distributed storage systems, NSI can discreetly create
lightweight read-only clones of the current software stack,
which can be accessed remotely without interfering in the I/O
path of the remotely provisioned instance. The read-only clone
can be mounted remotely and be introspected non-intrusively
— irrespective of the instance-type. Modern distributed storage
implementations expose block device interfaces for operations
such as lightweight cloning, remote mounting, etc. By pro-
visioning instances in a diskless manner, tenants workloads
are decoupled from the software stack, opening the possibility
for discreetly snapshotting the current state of the software
stack and performing out-of-band introspection on the latest
snapshot. Thus, while performing periodic introspection, NSI
avoids any performance impact on the workloads executing on
an the introspected instance. NSI opts for a microservice-based
architecture for software introspection to enable independent

177

control and management of different components required for
software introspection. Tenants can either rely on the provider
to implement all these components or bring in their own
implementation of a particular component. Tenants can also set
up their own introspection servers to perform introspection on
volumes encrypted by tenant-controlled keys, avoiding having
to trust the provider; the only capability this requires is to
ensure that the tenant has a way of mounting her own volumes.

B. Components and Workflow

NSI consists of four microservices. Fig. 3 presents the
workflow design for NSI between the four microservices are:
(a) Provisioning Service, (b) Image Management Service,
(c) Introspection Service, and (d) Orchestration Service.

a) Provisioning Service: This service provisions cloud
instances from the remote-mountable image disks made avail-
able by the Image Management Service. For newly provisioned
instances, the service calls the Image Management Service
to create a new host image, and then the cloud instance is
provisioned from that host image. A server can be released by
a tenant, and later the tenant can restart the server by pointing
it to the same image. We call this re-provisioning. If the
instance is being re-provisioned, the Provisioning Service uses
the existing image hosted at the Image Management Service
for re-provisioning.

b) Image Management Service: This service hosts the
remote-mounted images for cloud instances and provides APIs
to rapidly snapshot or clone a provisioned cloud instances®
image. The remote provisioning service heavily relies on the
image management service to perform its activities, but NSI
mainly uses the cloning capabilities of this service to clone
the host image of the instance to be introspected.

c) Introspection Service: This service first mounts a
clone (lightweight snapshot) created by the Image Manage-
ment Service for the instance to be introspected, mounts
the clone as a as a standard filesystem, and then scans the
mounted image to check for vulnerabilities. It maintains a
database of known vulnerabilities. This database is populated
and periodically updated by querying vulnerability databases
(open- or close-source based on availability). The introspection
service can run rootkit analysis and/or software vulnerability
analysis over the mounted volume. For security-sensitive ten-
ants, this service should also have a mechanism to manage
secrets (encryption keys) to be used when mounting encrypted
disks. We note that introspection operations that need memory
analysis are not immediately supported with this design.

d) Orchestration Service: This service controls the re-
mote introspection workflow among the different components.
It also offers an interface for tenantss to introspect the instance
they own. Tenants can submit requests to this interface for
introspecting the instance they control. This allows them to
control and change the introspection periodicity on demand,
and hence it allows them to control the cost of introspection
of their instance.

As shown in Fig. 3, when performing a remote introspec-
tion, the Orchestration Service: (1) creates a clone of the

Authorized licensed use limited to: Northeastern University. Downloaded on January 07,2021 at 09:24:38 UTC from IEEE Xplore. Restrictions apply.

provisioned instances‘ remote disk via the Image Management
Service; then (2) mounts the filesystem present on the clone;
and (3) invokes the Introspection Service to perform vulner-
ability analysis on the mounted image. Finally, (4) it collects
the vulnerability analysis results and reports the data back to
the tenant that initiated the introspection.

C. Extended Scope

NSI is an extensible system that can be used to support
the enforcement of various Security and Compliance Industry
Standards. This includes government regulatory standards like
FedRAMP [69], NIST [5], and other industry standards like
PCI-DSS [70], Center for Internet Security (CIS) [71]. These
are IT/Cloud standards required across Financial, Payment
Card industries. While we believe many of these requirements
can be implemented on top of NSI, in the scope of the paper,
we discuss two specific requirements that can be satisfied by
our system.

a) Configuration Analytic: Software misconfiguration
has been a major source of availability, performance, and
security problems. In a virtualized and multi-tenant cloud
environment, it is non-trivial to ensure correctness when con-
figuring and cross-configuring such components. Moreover,
configuration checks are also part of the different regulatory
compliance obligations [71] [5] [69]. There are existing agent-
based solutions [52] [72] to facilitate configuration manage-
ment for VMs and bare-metal systems, and there are also
agentless solutions [73] [74] [75] for containers. The unique
storage dis-aggregation framework in NSI allows us to bring
agentless configuration analytic capabilities for VMs and bare
metals to scans application and system configuration settings
to test them for compliance and best-practices adherence from
a security perspective.

b) Integrity Assurance: Another critical security capabil-
ity for the system is to identify the tampering of critical system
management artifacts. These artifacts include configuration
files, credentials, secrets-keys, or any other confidential data
from your system. This is again regulated under the Chap-
ter 11.5 of PCI-DSS standard. By periodically introspecting
the system state and comparing it to the previous state(s), we
can identify the file modifications in the system. These file
modifications are further semantically analyzed to determine
higher-level user action causing the change. For example, if we
identify /etc/passwd” and “/etc/shadow” files are modified,
by comparing the content change, we can determine user
add/remove action in the system. These changes are then
compared against whitelisted actions to realize if unauthorized
actions are triggered in the system. State-of-art integrity as-
surance solutions requires an active monitoring agents like
tnotify or auditd into system. Operating these agents in
context has proven to be detrimental to the application perfor-
mance. The agentless framework in NSI can be very efficiently
leveraged to provide the integrity compliance assurance for
VMs and bare metals.

178

D. Prototype Implementation

Since NSI follows a service-based approach, it allows
administrators to replace the solutions used for any of the
underlying services with the solutions that they prefer.

In our implementation, we employed M2 [17] as the Pro-
visioning Service, and M2 in conjunction with Ceph [76] as
the Image Management Service.

M2 is an open-source, multi-tenant, diskless provisioning
service. It provisions instances to a remote disk residing on
an image store backed up by a distributed file system, and
uses the Hardware Isolation Layer [77] tool to isolate the
provisioned servers. In our implementation, images of the
instances provisioned by M2 reside in Ceph. M2 employs
an iSCSI-based [78] network-booting [79] approach to pro-
vision instances. We used the Linux SCSI Target Framework
(TGT) [80] for iSCSI-based network booting.

Ceph is an open-source storage platform that implements
a highly reliable and scalable object storage on a distributed
cluster. M2 uses Ceph’s block storage interface for managing
and snapshotting instance disk images.

For the Introspection Service, we extended M2 to sup-
port software introspection. This implementation maintains a
database of software vulnerabilities populated using Canonical
Ubuntu Security Notices [81]°. Inherently, it uses IBM’s open-
source agentless crawler (IASC) [82] for scanning snapshots.
IASC crawls through the filesystem tree present on a snapshot
and generates frames corresponding to different OS and soft-
ware package details. TASC stores the generated frames in a
JavaScript Object Notation (JSON) [83] file. The vulnerability
detection component of the Introspection Service then reads
each frame and compares them against the blacklist present
in the pre-populated database. After comparing each frame
against the database, a list of vulnerabilities is generated
and returned to the Orchestration Service. We are working
on upstreaming the Introspection Service to M2. Note that
our introspection implementation can be extended with other
vulnerability detection services such as chkrootkit [38], OS-
CAP [84], or Linux Malware Detect (LMD) [39].

We also implemented our own Orchestration/Coordination
Service, which coordinates among the services for intro-
spection. It is implemented as a RESTful web-service [85].
Upon receiving an introspection request for a server, the
Orchestration Service first creates a snapshot of the server’s
disk image, then maps the snapshot as a block device using
Ceph’s block device interface, followed by mounting the
block device to a target directory. Now that the snapshot
has been mounted for introspection, the Orchestration Service
invokes the Introspection Service, passing the path to the
target directory as an argument. After the Introspection Service
returns the list of vulnerabilities, the Orchestration Service
returns that list as the response to an introspection request.

SIt is also possible to periodically query other open-source databases
maintained by various non-profit organizations such as Mitre Corporation’s
Common Vulnerabilities and Exposures [4], National Institute of Standards
and Technology’s National Vulnerability Database [5], etc., and update the
vulnerability database.

Authorized licensed use limited to: Northeastern University. Downloaded on January 07,2021 at 09:24:38 UTC from IEEE Xplore. Restrictions apply.

[Orchestration Service
[Introspection Service (Software Introspection)
[Image Management Service

32vCPUs
64GBRAM
(VM1)

4vCPUs
4GBRAM
(VM2)

2 4 6 8

Introspection Time (seconds)

10

Fig. 4: Dissection of time taken to process a single Software
Introspection request across different NSI services considering
two different VM configurations to host NSI.

Before returning the list of vulnerabilities, the Orchestration
Service also cleans up the state. i.e., it unmounts the mapped
block device, unmaps the disk image snapshot, and deletes the
snapshot.

IV. EVALUATION

In this section, we evaluate NSI. We first present the
experimental setup. We then analyze NSI and its service’s
runtime under an increasing load. We then present the end-
to-end introspection times of different vulnerability analysis
mechanisms. Finally, we present the performance impact of in-
trospection via NSI on workloads running on the introspected
bare-metal servers.

A. Experimental Setup

To evaluate NSI, on-demand bare-metal instances from
the Massachusetts Open Cloud [86] were used. The bare-
metal instances used during the evaluation have two 8-
core Intel(R) Xeon(R) CPU E5-2650 v2 @2.60GHz (32 hy-
perthreaded cores), 64GB RAM and two dual-port 10 Giga-
bit Intel 82599 NIC’s. All of the bare-metal servers to be
introspected were running the RHEL 7.5 OS (provisioned from
a 50GB base image). The servers had no local disks attached
and the application data was stored on NFS drives mounted
on the bare-metal servers which was not being introspected.

A three-node 98 TB Ceph storage cluster with 27 OSD’s
and 10 Gbit external and internal NIC’s was used as the
Image Management Service. Each experiment presented from
here on is repeated five times, and the average of the five
values is plotted. For all the experimental results presented
in this section, none of the NSI components (responsible for
introspection) were running on the introspected bare-metal
instance. Therefore, the performances of applications running
on the introspected bare-metal instances are not affected —
irrespective of their compute intensities.

179

32vCPUs 4vCPUs
A A 64GB RAM O © 4GB RAM
(VM1) (VM2)
g B3 ——,—’o_
9 22 _,o-"__ 4
v T AT T _
g n _gmﬁ._g JORY
}_ 1 1 1 1 1 1
124 8 16 32
Concurrent Requests
(a) NSI’s runtime under increasing load.
g 100 RO . bR N
] 5h - o .]
E 0 ggg ‘ik 1 1
124 8 16 32

Concurrent Requests

(b) Runtime of Image Management Service under increasing load.

‘03). 18- o e - ’o_
0 - S - . i
£ 12 SpH T
c (&) _Q’g._ - =T .
i: 1 1 1 1 1 1
124 8 16 32
Concurrent Requests
(c) Runtime of Introspection Service under increasing load.
;3_; T Y T .—..;._..,0.._
K T .
o P = === A
g 0.5 ‘ﬂ‘ﬁ ‘g e g
l_ 1 1 1 1 1 1
124 8 16 32

Concurrent Requests

(d) Runtime of Orchestration Service under increasing load.

Fig. 5: Runtime analysis of NSI and its services.

B. Runtime Analysis of NSI and its Components

In this section, we present an analysis of NSI and its
components’ runtimes. For these analyses, two different VM
configurations are used to host the Provisioning Service,
Image Management Service client, Introspection Service, and
Orchestration Service. These VMs run CentOS 7.4. The first
configuration (VM1) had 32 vCPUs and 64 GB RAM allo-
cated, whereas the second configuration (VM2) had 4 vCPUs
and 4 GB RAM allocated. No workloads were running on

Authorized licensed use limited to: Northeastern University. Downloaded on January 07,2021 at 09:24:38 UTC from IEEE Xplore. Restrictions apply.

A A transmitted (tx)

0 © received (rx)

70
60
50
40
30
20
10

0

Cummulative Data (MB)

Time To Process Single Introspection Request (seconds)

Fig. 6: Network traffic between Ceph Client and Ceph Cluster
when processing single introspection request.

the bare-metal servers while they were being introspected.
Note that the reason to conduct this experiment with two
VM configurations is to provide insight to tenants operating
at different scales. For example a tenant operating at a small
scale should not worry about reserving many resources for
introspection; whereas a tenant opreating at a larger scale
should be able to estimate the the amount of resources required
to introspect its massive infrastructure.

Fig. 4 presents a runtime dissection of the introspection of
a single server across NSI services. As seen in the figure,
in total, NSI requires from 7 to 9 seconds to process a
single introspection request when deployed on VM1 and VM2,
respectively. In both configurations, the introspection time
is dominated by the Introspection and Image Management
Service times, with the Orchestration Service taking the least
amount of time.

Fig. 5 presents how the runtime of NSI and its services
behave as the number of concurrent introspection requests
issued to them is increased from 1 to 32. Fig. 5a shows
the total introspection time of NSI under different numbers
of concurrent introspection requests, whereas Figs. 5b, 5c,
and 5d show the time consumed by the Image Management,
Introspection, and Orchestration Services, respectively.

As seen in Fig. 5a, the time to process introspection requests
is almost flat initially but starts to increase when trying to
process more concurrent requests (8 in the case of VMI,
and 4 in the case of VM2). As the number of concurrent
requests increases, the runtime increase in the Image Man-
agement Service is more prominent. This increase is due to
the increased network communication overhead between the
Ceph client and the Ceph cluster. As seen in Fig. 5a, even for
VM2 with 32 concurrent requests, the introspection time is less
than 40 seconds, indicating that NSI can be deployed with
modest resource requirements in production systems with a
large number of servers that need to perform fast introspection.
Also, the runtime differences between VM1 and VM2 indicate
that NSI can benefit from vertical scaling — especially when the
number of expected concurrent requests increase. Fig. 6 shows
the cummulative network traffic between ceph client and ceph
cluster when processing single introspection request. It was

180

1 mysql 1 ep I lavamd
[kmeans 3 cg I apache
40
)
£
= 30
[}
St
o 20
O (9]
ao
0 12}
ev 10
= 0 -
Software Rootkit Virus Scan
Introspection Analysis Emulation

Introspection Techniques

Fig. 7: Software Introspection, Rootkit Analysis, and Virus
Scan times while running various workloads on the intro-
spected server.

observed that while processing a single introspection request,
~75 MBs and ~3MBs data was received (rx) and transmitted
(tx) respectively between the Ceph Client and Ceph Cluster.

Note that the communication between the Ceph client and
the backend (i.e. the Image Management Service) causes
the increase in end-to-end introspection time. The memory
bandwidth is much higher than the network bandwidth and
the blocks are fetched on-demand, thus memory bandwidth
is not increasing the end-to-end introspection time. The Ceph
client and backend are deployed with vanilla settings in our
modest setup. Parameters for enabling read-ahead, minimum
active clients, client-side caching, etc. were left unmodi-
fied/untouched. This can be one of the reasons why there was
an increase of 5 seconds as the number of concurrent requests
handled by the Image management Service increases from 16
to 32.

With the above results at hand, now let’s consider
an example for where we want to check for vulnerabilities in
the kernel and installed software packages for a typical Borg
cluster consisting of 10K bare-metal servers [24]. As shown
in Fig. 5a, it takes ~22 seconds to concurrently process 32
such requests with VM2, which indicates that a server with the
same CPU-cores and memory can process ~436 such requests
every 5 minutes. Therefore, to introspect 10K servers every
5 minutes for basic vulnerabilities, 23 such servers should
suffice. Furthermore, the network bandwidth usage to process
each request (i.e., Fig. 6) shows that a 10 Gbps NIC should
be sufficient for such an introspection server.

C. Different Introspection Mechanisms

Fig. 7 presents the Software Introspection, Rootkit Anal-
ysis, and Virus Scan introspection times with NSI while
running various workloads on the introspected server. The
basic Software Introspection scans for vulnerable OS and

Authorized licensed use limited to: Northeastern University. Downloaded on January 07,2021 at 09:24:38 UTC from IEEE Xplore. Restrictions apply.

|GO w/ introspection A A w/o introspection |

1750 oo
1500 | --eveeeememes e
1250 |-
1000 |- e
750 A
SO0 @ T
250 A Co T T
1 2 4 8 16 32

Number of MySQL Threads

Throughput
(transactions per second)

o

Fig. 8: Impact of periodic introspection on MySQL workload
performance with increasing compute intensity.

software packages on a server®. The Rootkit Analysis checks
for the presence of rootkits using the chkrootkit [38]
software tool. A rootkit is a software program that tries to
gain unauthorized access to the system without being detected,
The Virus Scan Emulation emulates the behavior of anti-virus
software, i.e., to scan the contents of the entire filesystem. The
content scan option of IBM’s Agentless System Crawler [82]
was used for this experiment.

In Fig. 7, the three introspection mechanisms were applied
while the servers were running six different applications: the
MySQL [87] database server; the K-means clustering and
LavaMD n-body simulation applications from the Rodinia
benchmark suite [88]; the Apache web server [89]; and the
Embarrassingly Parallel (EP) and Conjugate Gradient (CG) ap-
plications from the NASA Advanced Supercomputing Parallel
Benchmark (NPB) suite [90] (class C). In this experiment, the
applications were configured to use all of the 32 hyperthreaded
cores available on the bare-metal server. The Sysbench [91]
and ApacheBench [92] benchmarking tools were used to gen-
erate workloads for the MySQL database server and Apache
web server, respectively. Both benchmarks were running on
the introspected bare-metal instances during the experiments.
NSI was running on a VM2 configuration.

As expected, the time taken to introspect a server with
different introspection mechanisms varied a lot, since the dif-
ferent introspection mechanisms were performing significantly
different analyses on the filesystem. As seen in Fig. 7, the time
taken to introspect a server was similar across applications.
The slight introspection time variance observed was due to
the differences in installed software and filesystem content
across different applications. Note that as the perturbations
across different applications are minor, we can estimate the
resources we need for the introspection with high confidence;
if it varied by a lot for different workloads, such estimate
would have been difficult.

ONSI’s Introspection Service (presented in Section III-D) was used for
detecting vulnerable OS and software packages

181

1 mysal 1 ep [lavamd
[kmeans 1 cg I apache
100
95
% 90
=
o 85
o
80
75
Software Rootkit Virus Scan
Introspection Analysis Emulation

Introspection Techniques

Fig. 9: Impact of agent-based introspection on performance
of applications running on the bare-metal server being intro-
spected.

[mysaql [ep [lavamd
[kmeans [cg I apache
100
95
S 90
S 85
o
80
75
Software Rootkit Virus Scan
Introspection Analysis Emulation

Introspection Techniques

Fig. 10: Impact of agentless introspection on performance
of applications running on the bare-metal server being intro-
spected.

D. Impact of NSI on Application Performance

We studied the impact of periodic agentless introspection on
a single application when running with different application
intensities and on different applications. In both cases, the
server was introspected three times during the lifetime of each
application and at an interval of one minute. Introspection of
each application started after the bootstrap of that application,
and application runtimes averaged around three minutes. VM2
configuration was used to host NSI services, and the applica-
tions and benchmarking tools used were the same as those
presented in Section [V-C.

Fig. 8 presents the MySQL database server’s OnLine
Transaction Processing (OLTP) throughput (Transactions-Per-
Second (TPS)) for two cases (with and without introspection)
as the number of MySQL server threads were varied from
1 through 32. The first case (circles with dashed red line)
presents the recorded TPS when the bare-metal server was

Authorized licensed use limited to: Northeastern University. Downloaded on January 07,2021 at 09:24:38 UTC from IEEE Xplore. Restrictions apply.

not introspected and the second case (triangles with dashed
blue line) shows the TPS when the bare-metal server was
periodically introspected. As seen in the figure, the two lines
match perfectly and there is no visible degradation in the OLTP
throughput due to introspection.

Figs. 9 and 10 respectively present the impact of agent-
based and agentless introspection on application performance.
For both figures, the reported performance percentages are
normalized against the application performance observed when
there is no introspection. For Fig. 9, introspection mechanisms
presented in Section IV-C are installed as agents on the bare-
metal servers and they are again configured to periodically
introspect the servers three times during the lifetime of each
application and at one-minute intervals.

As seen in Fig. 9, agent-based introspection causes up to
12% performance degradation. On the other hand, as seen in
Fig. 10 agentless introspection has negligible impact on the
application performance.

V. CONCLUSION

In this work, we proposed a general-purpose approach
for non-intrusive software introspection, NSI, and presented
its design and prototype implementation. NSI assumes that
cloud instances are provisioned to remote virtual drives. By
introspecting snapshots of these boot drives, NSI (i) mitigates
the issue of trusting a potentially compromised agent during
vulnerability analysis, (ii) eases the management of intro-
spection by performing introspection through a centralized
service instead of at each node, and (iii) provides a noninvasive
introspection mechanism for bare-metal servers that does not
impact their performance.

Our experimentation shows that NSI has negligible intro-
spection overhead on the application performance, whereas
agent-based systems can lead up to 12% performance degra-
dation in application performance. Through NSI’s prototype
implementation and experimentation we demonstrate (a) how
trivial it is to add non-intrusive introspection capability to an
existing diskless provisioning infrastructure, (b) resources we
need to dedicate for a general-purpose non-intrusive intro-
spection are modest, (c) ease of scaling-up and scaling-out in
enterprise and cloud-scale deployments, and (d) how tenant’s
can minimize trust in the provider for introspection.

VI. ACKNOWLEDGMENT

We gratefully acknowledge Mihir Borkar and Aditya Mohan
Sharma for their contributions in development and documen-
tation of NSI, and Naved Ansari and Radoslav Nikiforov
Milanov for their assistance in reserving and setting up the
evaluation environments. We would also like to thank the
industry partners of the Mass Open Cloud (MOC), including
Red Hat, Two Sigma, and Intel. Partial support for this work
was provided by National Science Foundation Grant OAC-
1740218.

REFERENCES

[1] Amazon, “Amazon Inspector,” https://aws.amazon.com/inspector/.

182

(2]
(31

(4]
(5]
[6]

[71

(8

[l

[9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

A. E. C. Cloud, “Amazon web services,” Retrieved November, vol. 9, p.
2011, 2011.

D. Aguado, T. Andersen, A. Avetisyan, J. Budnik, M. Criveti,
A. Doroiman, A. Hoppe, G. Menegaz, A. Morales, A. Moti et al., A
practical approach to cloud laaS with IBM SoftLayer: Presentations
guide. 1BM Redbooks, 2016.

“Common Vulnerability Exposures,” https://cve.mitre.org/.

“National Vulnerability Database,” https://nvd.nist.gov/.

“The clever "’DOUBLEAGENT’ attack turns an-
tivirus into malware,” https://www.wired.com/2017/03/
clever-doubleagent-attack-turns-antivirus-malware/.

W. Yan and N. Ansari, “Why anti-virus products slow down your
machine?” in Computer Communications and Networks, 2009. ICCCN

2009. Proceedings of 18th Internatonal Conference on. IEEE, 2009,
pp. 1-6.

“Creating a Classified Processing Enclave in
the Public Cloud [TARPA,” https://www.iarpa.gov/

index.php/working-with-iarpa/requests- for-information/
creating-a-classified-processing-enclave-in-the-public-cloud, 2017.

M. Banikazemi, D. Poff, and B. Abali, “Storage-based intrusion de-
tection for storage area networks (sans),” in Mass Storage Systems
and Technologies, 2005. Proceedings. 22nd IEEE/13th NASA Goddard
Conference on. 1EEE, 2005, pp. 118-127.

M. Allalouf, M. Ben-Yehuda, J. Satran, and I. Segall, “Block storage
listener for detecting file-level intrusions,” in Mass Storage Systems and
Technologies (MSST), 2010 IEEE 26th Symposium on. 1EEE, 2010,
pp. 1-12.

W. Richter, “Agentless cloud-wide monitoring of virtual disk state,” in
Proceedings of the 2014 workshop on PhD forum. ACM, 2014, pp.
15-16.

H. Zhou, H. Ba, J. Ren, Y. Wang, Y. Li, Y. Chen, and Z. Wang,
“Agentless and uniform introspection for various security services in
iaas cloud,” in Information Science and Control Engineering (ICISCE),
2017 4th International Conference on. 1EEE, 2017, pp. 140-144.

F. Oliveira, S. Suneja, S. Nadgowda, P. Nagpurkar, and C. Isci, “Opvis:
extensible, cross-platform operational visibility and analytics for cloud,”
in Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference:
Industrial Track. ACM, 2017, pp. 43-49.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th Symposium on Operating Systems Design and
Implementation, (OSDI), USA, 2006, pp. 307-320.

“About the lustre file system.” [Online]. Available: http:/lustre.org/
about/

A. Turk, R. S. Gudimetla, E. U. Kaynar, J. Hennessey, S. Tikale,
P. Desnoyers, and O. Krieger, “An experiment on bare-metal bigdata
provisioning,” in 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16). Denver, CO: USENIX Association,
Jun. 2016. [Online]. Available: https://www.usenix.org/conference/
hotcloud 1 6/workshop-program/presentation/turk

A. Mohan, A. Turk, R. S. Gudimetla, S. Tikale, J. Hennesey, U. Kaynar,
G. Cooperman, P. Desnoyers, and O. Krieger, “M2: Malleable metal as a
service,” in 2018 IEEE International Conference on Cloud Engineering
(IC2E), April 2018, pp. 61-71.

A. Mosayyebzadeh, A. Mohan, S. Tikale, M. Abdi, N. Schear,
T. Hudson, C. Munson, L. Rudolph, G. Cooperman, P. Desnoyers,
and O. Krieger, “Supporting security sensitive tenants in a bare-metal
cloud,” in 2019 USENIX Annual Technical Conference (USENIX
ATC 19). Renton, WA: USENIX Association, Jul. 2019, pp.
587-602. [Online]. Available: https://www.usenix.org/conference/atc19/
presentation/mosayyebzadeh

K. Katrinis, D. Syrivelis, D. Pnevmatikatos, G. Zervas, D. Theodor-
opoulos, 1. Koutsopoulos, K. Hasharoni, D. Raho, C. Pinto, F. Espina
et al., “Rack-scale disaggregated cloud data centers: The dredbox project
vision,” in Proceedings of the 2016 Conference on Design, Automation
& Test in Europe. EDA Consortium, 2016, pp. 690-695.

P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han,
R. Agarwal, S. Ratnasamy, and S. Shenker, “Network requirements for
resource disaggregation,” in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). Savannah, GA:
USENIX Association, 2016, pp. 249-264. [Online]. Available: https:
/Iwww.usenix.org/conference/osdil6/technical-sessions/presentation/gao

Authorized licensed use limited to: Northeastern University. Downloaded on January 07,2021 at 09:24:38 UTC from IEEE Xplore. Restrictions apply.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]
[31]

[32]

[33]

[34]

[35]
[36]
[37]
[38]
[39]

[40]
[41]
[42]

[43]

[44]

[45]

[46]

S. Legtchenko, H. Williams, K. Razavi, A. Donnelly, R. Black,
A. Douglas, N. Cheriere, D. Fryer, K. Mast, A. D. Brown,
A. Klimovic, A. Slowey, and A. Rowstron, “Understanding rack-scale
disaggregated storage,” in 9th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage 17). Santa Clara, CA:
USENIX Association, 2017. [Online]. Available: https://www.usenix.
org/conference/hotstorage17/program/presentation/legtchenko

A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and S. Kumar,
“Flash storage disaggregation,” in Proceedings of the Eleventh
European Conference on Computer Systems, ser. EuroSys "16. New
York, NY, USA: ACM, 2016, pp. 29:1-29:15. [Online]. Available:
http://doi.acm.org/10.1145/2901318.2901337

H. M. M. Ali, A. Q. Lawey, T. E. El-Gorashi, and J. M. Elmirghani,
“Energy efficient disaggregated servers for future data centers,” in 2015
20th European Conference on Networks and Optical Communications-
(NOC). IEEE, 2015, pp. 1-6.

A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune,
and J. Wilkes, “Large-scale cluster management at Google with Borg,”
in Proceedings of the European Conference on Computer Systems
(EuroSys), Bordeaux, France, 2015.

S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Vmm-
based hidden process detection and identification using lycosid,” in Pro-
ceedings of the fourth ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments. ACM, 2008, pp. 91-100.
“Amazon. summary of the october 22,2012 aws service event in the
us-east region.” https://aws.amazon.com/message/680342.

Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer,
N. Weaver, D. Adrian, V. Paxson, M. Bailey et al., “The matter
of heartbleed,” in Proceedings of the 2014 conference on internet
measurement conference. ACM, 2014, pp. 475-488.

T. Fox-Brewster, “What is the shellshock bug? is it worse than heart-
bleed,” The Guardian, 2014.

R. H. Inc., “GHOST: glibc vulnerability (CVE-2015-0235),” https:
/laccess.redhat.com/articles/1332213.

D. A. Wheeler, “Flawfinder,” 2011.

C. C. Security, “Rough Auditing Tool for Security,” https://security.web.
cern.ch/security/recommendations/en/codetools/rats.shtml.

J. Viega, J.-T. Bloch, Y. Kohno, and G. McGraw, “Its4: A static vulner-
ability scanner for ¢ and c++ code,” in Computer Security Applications,
2000. ACSAC’00. 16th Annual Conference. 1EEE, 2000, pp. 257-267.
J. S. Foster and A. S. Aiken, “Type qualifiers: lightweight specifications
to improve software quality,” Ph.D. dissertation, Citeseer, 2002.

W. Jimenez, A. Mammar, and A. Cavalli, “Software vulnerabilities,
prevention and detection methods: A reviewl,” Security in Model-Driven
Architecture, p. 6, 2009.

P. Szor, The art of computer virus research and defense.
Education, 2005.

M. Davis, S. Bodmer, and A. LeMasters, Hacking Exposed Malware
and Rootkits. McGraw-Hill, Inc., 2009.

A. Emigh, “The crimeware landscape: Malware, phishing, identity theft
and beyond,” Journal of Digital Forensic Practice, vol. 1, no. 3, pp.
245-260, 2006.

“checkrootkit,” http://www.chkrootkit.org/.

“Linux Malware Detect,” https://www.rfxn.com/projects/
linux-malware-detect/.

“Clam AntiVirus,” https://www.clamav.net.

N. Idika and A. P. Mathur, “A survey of malware detection techniques,”
Purdue University, vol. 48, 2007.

Y. Shin and L. Williams, “Is complexity really the enemy of software
security?” in Proceedings of the 4th ACM workshop on Quality of
protection. ACM, 2008, pp. 47-50.

T. Mccabe, “More complex= less secure,” McCabe Software, Inc, p. 12,
2014,

D. Williams, Koller, and B. Lum, “Say goodbye
to virtualization for a safer «cloud,” in /0th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 18).
Boston, MA: USENIX Association, 2018. [Online]. Available:
https://www.usenix.org/conference/hotcloud18/presentation/williams

R. Koller, C. Isci, S. Suneja, and E. De Lara, “Unified monitoring and
analytics in the cloud,” in 7th {USENIX} Workshop on Hot Topics in
Cloud Computing (HotCloud 15), 2015.

H. wook Baek, A. Srivastava, and J. Van der Merwe, “Cloudvmi: Virtual
machine introspection as a cloud service,” in Cloud Engineering (IC2E),
2014 IEEE International Conference on. 1EEE, 2014, pp. 153-158.

Pearson

R.

[47]

(48]

[49]

[50]

[61]

[62]

[63

[64]

[65]

[66]

[67]

[68]

[69]
[70]

[71]

F. Yao and R. H. Campbell, “Cryptvmi: Encrypted virtual machine
introspection in the cloud,” in Cloud Computing (CLOUD), 2014 IEEE
7th International Conference on. 1EEE, 2014, pp. 977-978.

L. Jia, M. Zhu, and B. Tu, “T-vmi: Trusted virtual machine introspec-
tion in cloud environments,” in Cluster, Cloud and Grid Computing
(CCGRID), 2017 17th IEEE/ACM International Symposium on. 1EEE,
2017, pp. 478-487.

S. Nadgowda, C. Isci, and M. Bal, “DEjAvu: Bringing black-
box security analytics to cloud,” in Proceedings of the 19th
International Middleware Conference Industry, ser. Middleware *18.
New York, NY, USA: ACM, 2018, pp. 17-24. [Online]. Available:
http://doi.acm.org/10.1145/3284028.3284031

S. Nadgowda and C. Isci, “Drishti: Disaggregated and interoperable
security analytics framework for cloud,” in Proceedings of the
ACM Symposium on Cloud Computing, ser. SoCC ’18. New
York, NY, USA: ACM, 2018, pp. 528-528. [Online]. Available:
http://doi.acm.org/10.1145/3267809.3275470

S. Suneja, R. Koller, C. Isci, E. de Lara, A. Hashemi, A. Bhattacharyya,
and C. Amza, “Safe inspection of live virtual machines,” in ACM
SIGPLAN Notices, vol. 52, no. 7. ACM, 2017, pp. 97-111.

IBM, “IBM bigFix: A collaborative endpoint management and security
platform,” .

S. Corp., “Symantec Endpoint Protection,” https://www.symantec.com/
smb/endpoint-protection.

Tanium, “Platform for endpoint management and security.”

“Open source tools for container security and compliance.” https:/
anchore.com.

“Automatic container vulnerability and security scanning for appc and
docker,” https://coreos.com/clair/docs/latest/.

“Container security - docker, kubernetes, openshift, mesos.” https://
Wwww.aquasec.com/.

“Docker security and container security platform.” https://twistlock.com.
S. Nadgowda, S. Duri, C. Isci, and V. Mann, “Columbus: Filesystem
tree introspection for software discovery,” in Cloud Engineering (IC2E),
2017 IEEE International Conference on. 1EEE, 2017, pp. 67-74.

P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: measurement, analysis, and implications,” in ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4. ACM,
2011, pp. 350-361.

A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “Towards
a next generation data center architecture: scalability and commoditiza-
tion,” in Proceedings of the ACM workshop on Programmable routers
for extensible services of tomorrow. ACM, 2008, pp. 57-62.

A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and S. Kumar,
“Flash storage disaggregation,” in Proceedings of the Eleventh European
Conference on Computer Systems. ACM, 2016, p. 29.

E. K. Lee and C. A. Thekkath, “Petal: Distributed virtual disks,” in ACM
SIGPLAN Notices, vol. 31, no. 9. ACM, 1996, pp. 8§4-92.

A. Warfield, R. Ross, K. Fraser, C. Limpach, and S. Hand, “Parallax:
Managing storage for a million machines.” in HotOS, 2005.

Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “Legoos: A disseminated,
distributed OS for hardware resource disaggregation,” in I3th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). Carlsbad, CA: USENIX Association, Oct. 2018, pp.
69-87. [Online]. Available: https://www.usenix.org/conference/osdil8/
presentation/shan

A. Turk, R. S. Gudimetla, E. U. Kaynar, J. Hennessey, S. Tikale,
P. Desnoyers, and O. Krieger, “An Experiment on Bare-Metal BigData
Provisioning,” in 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16), Denver, CO, 2016.

“OpenStack Bare Metal Provisioning Program,” https://wiki.openstack.
org/wiki/Ironic.

D. Clerc, L. Garcés-Erice, and S. Rooney, “Os streaming deployment,”
in Performance Computing and Communications Conference (IPCCC),
2010 IEEE 29th International. 1EEE, 2010, pp. 169-179.

“Federal risk and authorization management program.” [Online].
Available: https://www.fedramp.gov

“Payment card industry security standards council.” [Online]. Available:
https://www.pcisecuritystandards.org
“Center for internet security.” [Online].
cisecurity.org

“Hcl appscan,” https://www.hcltechsw.com/wps/portal/products/appscan.

Available: https://www.

Authorized licensed use limited to: Northeastern University. Downloaded on January 07,2021 at 09:24:38 UTC from IEEE Xplore. Restrictions apply.

[73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

O. Tuncer, N. Bila, S. Duri, C. Isci, and A. K. Coskun, “Confex: Towards
automating software configuration analytics in the cloud,” in 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W). 1EEE, 2018, pp. 30-33.

S. Baset, S. Suneja, N. Bila, O. Tuncer, and C. Isci, “Usable declarative
configuration specification and validation for applications, systems, and
cloud,” in Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference: Industrial Track. ACM, 2017, pp. 29-35.

T. Chiba, R. Nakazawa, H. Horii, S. Suneja, and S. Seelam, “Con-
fadvisor: A performance-centric configuration tuning framework for
containers on kubernetes,” in 2019 IEEE International Conference on
Cloud Engineering (IC2E). 1EEE, 2019, pp. 168-178.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation. USENIX Association, 2006, pp. 307-320.

J. Hennessey, S. Tikale, A. Turk, E. U. Kaynar, C. Hill, P. Desnoyers,
and O. Krieger, “Hil: designing an exokernel for the data center,” in
Proceedings of the Seventh ACM Symposium on Cloud Computing.
ACM, 2016, pp. 155-168.

K. Z. Meth and J. Satran, “Design of the iscsi protocol,” in Mass
Storage Systems and Technologies, 2003.(MSST 2003). Proceedings.
20th IEEE/11th NASA Goddard Conference on. 1EEE, 2003, pp. 116—
122.

H. P. Anvin and M. Connor, “X86 network booting: Integrating gpxe
and pxelinux,” in Linux Symposium. Citeseer, 2008, p. 9.

T. Fujita and M. Christie, “tgt: Framework for storage target drivers,”
in Proceedings of the Linux Symposium, vol. 1. Citeseer, 2006, pp.

184

[81]
(82]

[83]
[84]
[85]
[86]
[87]

[88]

[89]
[90]

[91]

[92]

303-312.
“Ubuntu Security Notices,” https://usn.ubuntu.com/.
“Agentless System Crawler,” https://github.com/cloudviz/

agentless-system-crawler.

T. Bray, “The javascript object notation (json) data interchange format,”
Tech. Rep., 2017.

“Open Security Content Automation Protocol,” https://www.open-scap.
org/tools/openscap-base/.

R. Battle and E. Benson, “Bridging the semantic web and web 2.0 with
representational state transfer (rest).” Web Semantics: Science, Services
and Agents on the World Wide Web, vol. 6, no. 1, pp. 61-69, 2008.
“Mass Open Cloud,” https://massopen.cloud/.

“mysql relational database managament system,” https://www.mysql.
com/.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on. Teee, 2009, pp. 44-54.

“Apache HTTP Server Project,” https://httpd.apache.org/.

D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The nas parallel benchmarks,” The International
Journal of Supercomputing Applications, vol. 5, no. 3, pp. 63-73, 1991.
A. Kopytov, “Sysbench: a system performance benchmark,” URL:
http://sysbench. sourceforge. net, 2004.

“ab - Apache HTTP server benchmarking tool,” https://httpd.apache.org/
docs/2.4/programs/ab.html.

Authorized licensed use limited to: Northeastern University. Downloaded on January 07,2021 at 09:24:38 UTC from IEEE Xplore. Restrictions apply.

