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ABSTRACT: 

As the volume of data used for chemical decision-making increases, so too grows its susceptibility to nefarious 

manipulation to alter outcomes. The vulnerability of conventional spectral classification to digital adversarial attack is 

explored using Raman spectroscopy as a representative example. Following supervised training by linear discriminant 

analysis (LDA), addition of patterned “noise” to an initial spectrum enabled reclassification to an alternative target 

spectrum. The “attacked” spectra visually retained key spectral features of the true, initial spectra, but were misclassified 

with high statistical confidence as the target. The digital attack demonstrated herein is intended to help serve as a testbed 

for evaluation of provenance strategies for ensuring the integrity of data-intensive decision-making. 
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1. INTRODUCTION:  

 
 Modern instrumentation has dramatically increased the amount of data available for decision making1,2. Those 

tasked with making decisions based on this wealth of knowledge routinely turn to methods and techniques that can 

handle the vast quantity of information, such as artificial neural networks, principle component analysis, linear 

discriminant analysis, support vector machines, and other dimension reduction methods2. As instrumentation continues 

to improve, the greater becomes our collective reliance on algorithmic data analysis approaches. These data analysis 

approaches are being used; and will be relied on in the future to make decisions in very important fields such as, drug 

testing, DNA matching, regulation of pharmaceutical manufacturing, voice/facial recognition, among many other 

fields3,4,5.  

  

 Given the societal importance of these fields, it is imperative that researchers have reliable and robust 

classification methods. However, intentional non-probabilistic digital perturbations have the ability to be used to 

misrepresent the actual statistical confidence of a decision or result in intentional misclassification. Researchers in the 

field of computer science and electrical engineering have demonstrated various avenues of attacking an artificial neural 

network designed to classify images, with most methods being imperceptible to the human eye6,7,8,9.  

 

 To date, adversarial attacks on chemical measurements have not been demonstrated. Such a perturbation could 

be applied to the background subtraction file and defy routine detection but have a profound impact on decisions based 

on that measurement. This type of attack would have profound consequences especially in the pharmaceutical industry 

where getting a drug to market holds a significant financial importance. Opportunities for subtlety increase as the 

dimensionality of the spectral data. 

 

 In the present work, we demonstrate a method for a digital adversarial spectroscopy attack. We hope that this 

work provides a test-bed for i) developing methods for detecting spectroscopic malfeasance and ii) enable novel 

nondeterministic classification strategies less vulnerable to adversarial attacks. In designing the adversarial attack, we 

determine the optimal perturbation through a genetic algorithm, and then apply the perturbation to induce 

misclassification in a reduced-dimensional space defined by linear discriminant analysis (LDA).  

  

  

2. MATHEMATICAL FRAMEWORK: 
2.1 Cost function in the reduced dimensional analysis.  



The main objective of the adversarial attack here is to produce a perturbation, , that is not detectable by visual 

inspection, yet produces a substantial deviation in the reduced-dimensionality space. For the initial sample spectrum xs, 

the perturbed spectrum is given by x' according to Eq. 1. 

 

 ' s= +x x    (1) 

 

LDA in optimizes the resolution between the defined classes. Each wavelength channel in the original spectral space 

results in a vector that contributes to the position of the spectrum in the reduced dimensional space. While the main 

spectral features combine to determine the general position within the LDA space, normally distributed noise produces a 

spread about that mean position.  

 

The method of attack could be thought of as patterning the noise levels in the original spectra to relocate the position of 

the spectra in the LDA space. Effectively, it is the addition of many low-amplitude perturbations that both induces 

misclassification and makes it visually difficult to detect. The deviations d from the initial sample spectrum xs to the 

“target” t is given by the following expression. 

 

 ( )s t= + −d x     (2) 

 

Applying the Euclidean distance formula to the deviations, one can compute the distance of the perturbed spectra to the 

target. The squared deviations are given by projection of d onto the reduced dimensional space through the matrix D, 

given by 
2

Dd . Where D is a matrix of eigenvectors corresponding to a reduced-dimensional space (e.g., LDA or 

PCA).  In the present study, two dimensions in LDA-space were considered in the analysis of spectra with 1340 

elements, such that D is a 2×1340 matrix in the present study. 

  

To apply the requirement that the attack be difficult to visually detect, another requirement must be built into the cost 

function. An additional cost function term was added such that original spectrum remained as unchanged as possible. 

Mathematically, this is done by minimizing the sum of squared deviations in the spectra space. The total cost function 

for the reduced dimensional analysis was given by the sum of the two terms, which collectively minimized the squared 

deviation to the target while minimizing the overall magnitude of the perturbation.   
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The scaling parameter  in Eq. (3) allows for empirical adjustment of the relative importance given to proximity to target 

relative to minimizing perturbation to the major spectral features. In the present study, a value of  =1 was used with unit 

weighting on each value of .   

 

2.2 Statistical assessment of classification.  

Statistical assessment provides a means for evaluating the confidence with which an initial or modified spectrum can be 

assigned as belonging to each of the finite set of possible classes.  

 

For compatibility with the limited training data (252 spectra, 84 per class) used in the Raman analysis, the data were 

assumed to be normally distributed about the mean at each wavelength. To test this assumption, the skewness and 

kurtosis at each wavelength were evaluated, the mean values of which were 0.30 and 3.28, in agreement with the 

expected values of 0 and 3 for normal distributions. The assumption of a normal distribution is also qualitatively 

consistent with the symmetrically distributed observed projections in LDA-space. To employ common statistical 

methods, the data were converted to the z parameter, which is given by ( )ni si ni niz x  = − . Where xs, is the sample 

spectrum for the class n at each wavelength, i.  

 
 It is helpful to first consider the confidence with which a single scalar value can be assigned to each of two 

classes in a two-class system, followed by extension to full spectral analysis and an arbitrary number of classes. 



Considering just a single measurement at the wavelength i, the ratio r of probabilities that ( )s i
x  belongs to either class 

1 or class 2 (P1 or P2, respectively) is given by the following expression. 
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Evaluation of the probability ratio in Eq. (4) is simplified considerably by recognizing that dz1i = dz2i because of the 

normalization inherent in the definition of the z-statistic. In Eq. (4), f is the normalized probability density function for 

the z statistic, given by ( ) ( )21
2

expf z z= − . In the absence of covariance, the total probability including all 

wavelengths is recovered from the product of probabilities for each wavelength.  
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Since P1 + P2 =1 for a spectrum that must fall into one of the two classes, substitution of ( )12 2 21r P P= −   yields the 

expression ( )
1

2 121P r
−

= + . Bearing in mind that r22 = 1, the expression for P2 can be equivalently written as 

( )
1

2 22 12P r r
−

= + . Extension from two to an arbitrary number of N-classes is straightforward. By analogy with the 2-

class system, the following expression describes the probability of a spectrum being assigned to a class n from a set of N 

possibilities. 
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In the case of analyses performed in a reduced dimensional space defined by multiplication by a dimension reduction 

matrix D, the expression for z is modified to ( )n s n nD= −  z x   , in which z, n, and n are evaluated in the 

reduced-dimensional space.  

 

2.3 Genetic algorithm for “blind” optimization of the perturbation.  

Optimization of the perturbation, , was performed using a genetic algorithm. Use of a genetic algorithm was chosen 

because the optimal perturbation was non-trivial to derive. The genetic algorithm employed uses two primary functions 

to minimize the cost function, Equation 3. Namely, these functions are mutation and splicing or cross-over. Mutation is 

performed by randomly selecting a position (in this case, 1 through 1340) and multiplying that positional value by a 

random number selected from a uniform distribution from -2 to 2 excluding zero (to prevent the perturbation from 

getting trapped in a local minimum) to generate a new spectrum from the parent spectrum. Splicing was performed by 

selecting two parent spectra and selecting a random position, all wavelengths beyond or before that position were 

exchanged with the other parent spectrum to generate a new spectrum. After each generation, the best two perturbations 

were selected to be the parents for a new generation of mutations and cross-overs. The genetic algorithm ran for 400 

generations with 2000 generated spectra per generation.   

 



 
 

3. EXPERIMENTAL METHODS: 
Raman spectra were acquired using a custom Raman microscope, built in-house and described in detail 

previously.10  In brief, a continuous wave diode laser (Toptica, 785nm wavelength) coupled into a Raman probe 

(InPhotonics, RPS785/24) was collimated by a 12.5 mm fused silica lens, and directed through an X-Y scan head 

composed of two galvanometer scanning mirrors. Two additional 25 mm diameter fused silica lenses formed a 4f 

configuration to deliver a collimated beam on the back of a 10x objective (Nikon). The Raman signal from the sample 

was collected through the same objective and descanned back through the same beam path into the Raman probe. A 

notch filter was built in the Raman probe to reject the laser signal. Raman spectra were acquired using an Acton SP-300i 

spectrometer with a 100x1340 CCD array, and controlled by a computer running WinSpec32 software.  

 

Pure clopidogrel bisulfate Form I and Form II were produced in-house at Dr. Reddy’s Laboratories. Both the 

Form I and Form II particles were spherical with similar particle size distributions (diameter: ~25 μm). The laser power 

measured at the sample place was ~30 mW. The exposure time was 0.5 s per spectral frame. To achieve higher signal to 

noise ratio for high quality training data for classification, 30 consecutive frames were averaged for each spectrum 

acquired over a spot size of ~2-3 m diameter within the field of view. A Savitzky-Golay filter was applied to smooth 

the spectra11, and a rolling ball filter was used to remove the fluorescence background12. Finally, the spectra were 

normalized to their integrated intensities, i.e., the area under the curves. The integrated intensity information of every 

spectrum was recorded so it can be retrieved when intensity information within each spectrum was needed for 

subsequent analysis.  
 

4. RESULTS AND DISCUSSION: 
The mean spectra, average of 84 measurements, for three classes are shown in Figure 2. The spectra corresponding to 

the background is classified as class 3 (bottom spectra, blue). The spectra belonging to the two polymorphs of 

clopidogrel bisulfate are classified as class 1 and class 2 (black top and red middle respectively). The recorded spectra 

for class 3 (background) signal has one major feature of note, that being a large rolling peak around channel number 950. 

Class 1 and class 2 while similar, show notable differences and can be distinguished by relative peak intensities of the 

major feature at 363 & 385, several peaks in class 1 that do not occur in class 2, and peak shifts between the first two 

classes. Linear discriminant analysis provided adequate separation and reduced the dimensionality of the data from 1340 

channels to just two channels, which were plotted.  

 

 

Figure 2. Projection of experimental Raman spectra in LDA-space, with the corresponding mean spectra for each class. 

Mean spectra is an average of 84 measurements.  

 



 

Using this data set of 252 spectra, a demonstration of an attack in the reduced-dimensional LDA space was performed 

and shown in Figure 3. Figure 3A shows the reduced dimensional space with the 3 classes well separated. The 

perturbation in figure 3 was designed to misclassify a spectra belonging to class 1 as class 2. The optimal perturbation 

from the genetic algorithm moved the selected spectra from class 1 to the mean of the target class (class 2). The 

perturbation was multiplied by a scaling factor from 0 to 1 to produce the green x’s on Figure 3A. The Equation 8 was 

used to determine the probability of the perturbed spectra belonging to a particular class which is shown in Figure 3B 

and denoted by the purple x’s in 3A. When the optimal perturbation was rescaled to ~60% the probability of the 

perturbed spectra belonging to the target class was greater than 95%. Figure 4C highlights how difficult this attack is to 

detect upon visual inspection. The two spectra, although they classify differently in LDA space, show high visual 

similarity. Figure 4D shows the actual perturbation used to misclassify the selected spectra as the target class. These 

results show that the approach resulted in an attack pattern that is visually difficult to detect in spectral space, while 

squarely moving the spectra to the target class in the reduced dimensional space. 

 

These trends are repeated in considerations of perturbations to induce misclassification from class 1 to 3 (not shown) and 

in class 3 to 2 in Figure 4. 

Figure 3. The optimal perturbation for moving class 1 to class 2 was scaled from 0 to 1 as shown in A. The green x’s in A are 

the scaled perturbations. B) shows the zoom in of the region where the classification based on probability changed from class 

1 to class 2. C) Shows the initial spectra vs. the perturbed spectra. The two spectra are offset for clarity. D) The perturbation 

used to induce misclassification.  
  

A) B) 

C) D) 



This attack approach could be particularly successful if integrated into background-subtracted spectral analyses. Where 

the attack perturbation file is to the digital file corresponding to the background correction. It has the potential to 

dramatically alter outcomes based on chemical spectroscopic analyses in a manner that is challenging to detect 

forensically as shown in the Figure 3 and 4. Comparison of the magnitudes of the perturbations relative to the initial 

spectrum suggest that perturbations on the order of 12% are sufficient to unequivocally alter the spectral classification. 

Such relatively subtle changes spread over the entire spectrum would generally be challenging to discriminate from 

random noise in a background subtraction architecture.  

 

These results highlight the growing challenges in ensuring statistical validity in regulatory, business, and legal decisions 

derived from data-intensive measurements. As demonstrated herein, subtle adversarial attacks on spectral information 

can completely change decision outcomes. Subtle digital alteration of files used in the routine operation of background 

subtraction can result in an adversarial attack in which the attack successfully misclassifies the outcome based on 

spectral analysis. As the volume of data integrated for decision-making increases, decisions based on chemical analysis 

is poised to be increasingly vulnerable to manipulation through adversarial perturbations.  

 

Figure 4. The optimal perturbation for moving class 3 to class 2 was scaled from 0 to 1 as shown in A. The green x’s in A are 

the scaled perturbations. B) shows the zoom in of the region where the classification based on probability changed from class 

1 to class 2. C) Shows the initial spectra vs. the perturbed spectra. The two spectra are offset for clarity. D) The perturbation 

used to induce misclassification.  
  



5. CONCLUSIONS: 

 
We present a method for performing digital attacks on chemical spectra, in this case Raman spectra of clopidogrel 

bisulfate, in which addition of a digital perturbation can result in high-confidence mis-classification. Because the 

additive perturbations were low amplitude (~12% of the initial amplitude) and spread out over the entire spectra, retain 

visual similarity of the initial spectra, but classify with high confidence to the target spectral class in a reduced 

dimensional space, LDA-space for this example.  
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