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Abstract - To augment training data for machine learning 

models in Ground Penetrating Radar (GPR) data analysis, 

this paper focuses on the generation of realistic GPR data 

using Generative Adversarial Networks (GAN). An 

innovative GAN architecture is proposed for generating GPR 

B-scans, which is, to the author’s knowledge, the first 

successful application of GAN to GPR data. As one of the 

major contributions, a novel loss function is formulated by 

merging frequency domain features with time domain 

features. To test the efficacy of generated B- scans, a real-time 

object classifier is proposed to measure the performance gain 

derived from augmented B-Scan images. The numerical 

experiment illustrated that, based on the augmented training 

data, the proposed GAN architecture demonstrated a 

significant increase (from 82% to 98%) in the accuracy of the 

object classifier.  

1. Introduction 

Model performance in machine learning is heavily 

dependent upon the availability of training data. Furthermore, in 

situ applications of machine learning require data to be indicative 

of the real-world environment the applications aims to infer in. 

For buried object detection, this would be a B-scan image that 

bears a close resemblance to B-scans collected in the field. 

However, these data are not widely available, and when available, 

the number of samples is few. In situations like this, data 

augmentation can produce many samples to enhance the 

classification of buried objects [1]. In the world of GPR, an open 

source software named gprMax is used to simulate the presence 

of underground objects [2]. This software is based on Finite 

Difference Time Domain (FDTD) [3], a numerical method to 

solve Maxwell’s equations that govern waves propagation within 

a specific medium. The problem with this type of simulated data 

is that it bears little resemblance to a B-scan that would be 

obtained in the real world. Furthermore, due to the complexity of 

FDTD, the time to complete a single simulation can take several 

hours. Thus, making the synthesis of a large set of images for 

training data, virtually impossible.  

To solve this problem, we propose a novel generative model 

architecture to synthesize realistic B-scans in real time. In 

addition, to benchmark the generative model, a classifier is 

produced that is capable of running in real time on an edge 

computing server. The objectives of this study are three-fold. The 

first is to establish a generative architecture for the generation of 

pseudo realistic B-scans. The second is to develop a real-time 

classifier, capable of being deployed on an edge computing sever. 

The final is to incorporate frequency information into time-

domain architectures.  

In this work, GANs will be investigated for GPR data 

augmentation for object identification. Both simulated and real 

GPR data will be considered as inputs to the generator of a GAN 

to generate realistic GPR data. Based on the feature analysis of 

GPR data, a novel objective function and the architecture of GAN 

are proposed. An algorithm for GAN training with different types 

of training data is developed. The impact of GAN-synthesized 

data on the performance of GPR image classification is evaluated. 

To the best knowledge of the authors, very few works have been 

done on studying GANs for GPR data analysis in a united frame- 

work combining data augmentation and data classification. A 

detailed diagram of the overall system structure is depicted in 

Figure 1. 

 

 
Figure 1. Proposed GAN architecture. 

2. Background 

GPR is one of the most widely used non-destructive 

techniques for subsurface imaging and detection of underground 

objects, such as landmines, utilities, and archaeological artifacts. 



In the GPR scanning process, an electromagnetic wave is 

propagated into the target subsurface medium through a 

transmitting antenna, and upon reflection of the underground 

object, returned to a receiving antenna. This process is carried out 

across the above-ground surface for multiple passes.  

2.1. B-scan Feature Processing  

   B-scans, along with other features, are commonly analyzed 

to detect or identify subsurface objects [1]. As an alternative to 

visual examination of B-scans by GPR technicians, machine 

learning techniques have been applied to analyze B-scans for 

object detection [1], [4]–[7]. By combining Hilbert transform and 

classic artificial neural network (ANN), the work in [4] used 

amplitude and time from GPR A-Scan to detect the shape, 

material and depth of a buried object. Extracting a signal 

envelope, peak detection of envelope and depth of buried empty 

tube from A-Scan through analytic signal technique [8]. Gilmore 

et.al [6] extracted features using the Hu’s seven invariant 

moments algorithm, and latter passed them through an ANN 

classifier [5] to detect targets, however many false negatives were 

observed. While these techniques have been modestly effective, 

their performance is limited by the insufficient amount of real-

world labeled GPR datasets for training the corresponding 

models or classifiers. To deal with the scarcity of GPR data, 

simulation-based methods have been proposed to increase the 

availability of training data, but these methods fail to represent 

the full spectrum of features found in real GPR data. Therefore, 

classifiers trained on simulated B-scan images tend to perform 

poorly on real world B-scan images. A successful remedy is the 

combination of simulated and collected real-world GPR data in 

training [1].  

2.2. Generative Adversarial Networks and Applications 

A GAN is a form of generative model, in which two separate 

models are entangled in a zero-sum game. The generative portion 

of the network is denoted as the generator (G). The goal of the 

generator is to synthesize the most realistic posterior distribution. 

In opposition of the generator, the discriminator (D), decides if 

the posterior distribution is legitimate, or a counterfeit. This 

process is carried out in tandem during training and can lead to 

instability [9]. The input to the generator is a Gaussian noise 

vector N(0,1). A transformation is applied to this vector, thus 

producing a posterior with equal dimensionality as the target 

distribution. Furthermore, this process is carried out by 

interpolation of the input vector through one or more 

deconvolution operations. The discriminator decomposes this 

output distribution into a binary probability through a sigmoid 

activation. The basics of this min-max game have changed very 

little since first proposal. Generative Adversarial Networks have 

received wide attention in the machine learning field for their 

potential to learn high-dimensional, complex real data 

distribution [9], [10]. Specifically, they do not rely on any 

assumptions about the distribution and can generate real-like 

samples from latent space in a simple manner. This powerful 

property leads GANs to be used in many generative tasks to 

replicate the real-world rich content such as images, videos, 

speech, written language, and music [10].  

There has been some work done on employing GANs for 

data augmentation in image classification using deep learning 

[10]. Furthermore, GAN can also be interpreted to measure the 

discrepancy between the generated data distribution and the real 

data distribution and then learn to reduce it. The discriminator is 

used to implicitly measure the discrepancy. Despite the advantage 

and theoretical support of GAN, many shortcomings have been 

found due to the practical issues and inability to implement the 

assumption in theory including the infinite capacity of the 

discriminator. There have been many attempts to solve these 

issues by changing the objective function, the architecture, etc. 

Moreover, the most recent additions to the adversarial framework 

have improved on many weak points in the original architecture. 

Wasserstein Loss has been used in GAN models to improve the 

stability of the adversarial game [11]. Moreover, this architecture 

can be further improved with the use of a gradient penalty term 

[12]. 

2.3. Evaluation of Generative Models  

Many generative architectures use Mean Opinion Score 

(MOS) or other qualitative metrics for model evaluation [13]. 

This type of evaluation is readily available via Amazon Turkers 

or similar service that allows the general public to give an 

opinion. In our case, qualitative evaluation is unrealistic due to 

the requirement of domain expertise to detect the realistic nature 

of each synthesized GPR signal. Moreover, we would like to stray 

away from qualitative evaluation and use a more quantitative 

method. In this work, we validate the quality of generated output 

by an improvement factor in the recognizant ability of our object 

identification model. It is important to note the parallels between 

this technique and the commonly used Inception Score [14]. 

However, with the lack of widespread availability of benchmark 

classifiers applied to this domain, we use a different method. 

3. Methodology 

To acquire training data for the GAN model, we use 

gprMax, an open source software to simulate electromagnetic 

wave propagation. It solves Maxwell’s equations in 3D using the 

Finite Difference Time Domain (FDTD) method [2]. We generate 

cylinders with diverse dielectric properties in range of substrate 

mixtures. For purposes of sample diversity, we focus on a range 

of cylinder diameters in Peplinksi soil [15], with a range of sand 

to clay ratio for each image. To provide additional randomness, 

we apply a seed value that is randomly selected and applied to 

each iteration of training data generation. Therefore, each image 

produced by gprMax is unique. A total of 150 A-scan traces 

comprise the B-scan of a single simulation, as shown in Figure 2. 

 

Figure 2. A B-scan includes 150 A-scan traces. 



The architecture proposed is a deep convolutional structure. 

Previous work suggested that a convolution with the filter with 

dimension of (5,5) is superior to other options for the modeling 

of GPR data [16]. Therefore, we set the kernel size of all 

convolutions to 5 by 5. The generator is conditioned to upsample 

a noise vector into a class from a supervised label. This is 

accomplished by introducing a label embedding vector and 

concatenating it with the posterior of the generator [17]. From this 

output, we calculate Wasserstein loss with gradient penalty [12] 

against the true image. The discriminator is used to determine the 

validity of the generated output by directly comparing the two 

images. We calculate the Wasserstein distance between both real 

and fake images. In addition, the discriminator is trained to 

produce a predicted label for the generated image. For this output, 

we calculate categorical cross entropy between the predicted 

label and the true label. To improve the overall model quality, we 

apply a frequency domain loss function to G(z).  

The generator takes the inputs of a random noise vector and 

a label for the desired class. The label is then passed through an 

embedding layer which allows for multiplication with the noise 

tensor. This is the vital step for the introduction of class 

conditioning and leaves us with a single input for the remaining 

layers. Next, the combined input is passed through a dense layer 

which gives us the dimensionality to be able to reshape the tensor 

into the 3-Dimensional shape of an image. From this point, we 

begin the upsampling process. We derive the upsampling method 

from [18], which indicates that many upsampling layers are 

favorable. In addition, we pass the upsampled vector though a 

convolution layer. This allows us to retain only the important 

information that we upsampled. Each time the input passes 

through an upsampling layer it doubles in size. The output is then 

activated with ReLU [19] and then passed through a batch 

normalization layer for regularization. We continue this process 

until the generator input is the same size as our target image. 

Finally, a Tanh [20] activation is applied to restrict the output to 

the range (-1, 1). The important part of the generator is that we 

want to learn the transformation of a noise vector into an image. 

We use a Gaussian noise vector because it contains the least 

amount of prior knowledge [21]. Therefore, the primary learning 

objective is not what the generator learns from the noise vector, 

but how we can exploit the functional approximation property of 

neural networks to transform the noise vector into an image.  

The discriminator accepts a tensor in the shape of a real 

image (256, 256, 1). During training, it receives both real and fake 

images and directly compares the two. This feedback is used to 

condition the generator to make better images. We use 

LeakyReLU [22] activation to reduce mode collapse, because the 

gradient after this activation is never 0. The downsampling 

pattern is a reversed version of the upsampling pattern in the 

generator. This adds additional balance to the training process 

which produces additional stability. Furthermore, we flatten the 

tensor before it enters the final dense layer. This can be thought 

of as a summary of the information learned in the previous layers. 

Note, there is not a non-linearity applied to the output of the final 

layer. This is used for direct comparison with the real image. 

 

 

We train a separate auxiliary classifier to predict the object 

in the image. This is a basic classifier that uses cross entropy to 

create a separation boundary between classes. The architecture 

consists of two convolution layers that lead into a fully connected 

layer. The output of the final fully connected layer is activated 

with SoftMax to generate a categorical probability distribution. 

The loss function is traditional categorical cross entropy. We 

apply this loss to both the Time B-scan and Frequency B-scan to 

maximize the probability of a correct class prediction. Table 1 

depicts the basic classifier architecture. The basic classifier has 

two convolution layers, both activated with Leaky ReLU [22]. 

We use this opposed to traditional ReLU to mimic the 

architecture of the discriminator. In the initial tests we sought to 

use the discriminator as the classifier. However, this leads to 

extreme over fitting in the discriminator and poor performance 

for the classification task. Moreover, this also had a negative 

effect in the adversarial game, with the generator being able to 

constantly fool the discriminator. An important note in using a 

separate classifier is that this simple architecture can be a stand 

in for more complex object detection models such as Faster-

RCNN [23] or Mask-RCNN [24]. This was an additional reason 

for not using the discriminator as the object detection model. To 

enable the use of the Time B-scan and Frequency B-scan, the 

architecture has a slight modification as depicted in Table 2. The 

additional fully connected layer allows us to calculate a separate 

loss for the Frequency B-scan which is useful in training. 

 
Table 1. Single classifier architecture. 

 
 

Table 2. Combined classifier architecture 

 
 

The auxiliary classifier is trained in three scenarios. The 

first, data containing only images from gprMax are adopted. We 

use this performance as a baseline to compare our other 

experiments. The second, we use the full gprMax generated 

dataset with additional GAN generated images. Finally, we add a 

concurrent frequency domain optimization function to the 

generator, then train the object detection model to identify 

cylinder material from the b-scan with the assistance of 

information from the frequency representation. 

 

 

 



4. Experimental Results and Discussion 

In this section, we study the results of supervised GAN 

Experiments. These are the set of experiments that contain class 

conditioning. This is only possible with the use of GprMax that 

allows us to simulate the material of the underground object and 

retain a definitive label. This is necessary in the classification task 

and also a major drawback of collected B-scans. In the field, B-

scans that are collected do not have a ground truth class label due 

to the subjective nature of real B-scan evaluation. In this 

experiment, we can generate realistic type data that does have a 

definitive class label. Therefore, we are able to map a set of image 

features to the label. 

 
Figure 3. B-scan examples of the three different target classes. 

 

Figure 3 shows B-scan examples of the different target 

classes. The GAN model was able to learn distinct features of 

each class and then generate images of this type when given a 

label. An important note on continuation of this work is that 

ideally one would want to be able to combine the unsupervised 

with the supervised to generate a real B-scan with a known class. 

This is theoretically possible; however, it is beyond the scope of 

this work. The following sections are the performance of the 

proposed classifier in each test scenario. The main objective is to 

demonstrate improvement in two aspects. We would like to see 

performance improvement with data augmentation via GAN 

generated images and further improvement when combining the 

time and frequency B-scans. 

4.1. Time Domain 

Table 3 presents the results of the baseline performance. It 

is important to point out that these results are still in the upper 

half in regard to the performance metrics. However, as it will be 

demonstrated, there is still room for improvement. Class “PVC” 

is by far the worst performing material class. This is due to the 

lack of reflectivity in PVC cylinders. In Figure 3, it can be seen 

that the B-scan of “PVC” is visually, the least prominent 

hyperbola followed closely by that of “Concrete”. From the 

results, this visibility difference translates to the classifier 

performance. “Metallic”, being the most visually prominent, is 

easily identified by the detection model. The lower portion of 

Table 3 shows the performance achieved by training the classifier 

with augmented data. Overall, there is a performance increase 

when adding augmented training data. Most importantly, this is 

seen in the weak areas of the classifier. In the accuracy of “PVC” 

there is significant improvement that closes the gap between 

“PVC” and “Metallic”. This means that when more samples are 

present in the training data an overall increase in classifier 

performance will be realized. The next section discusses a 

classifier only trained on the frequency domain information of B-

scans. This experiment was to determine if the frequency 

representation leads to better performance in a particular class. 

 
Table 3. Baseline object detection performance. 

 

4.2. Frequency Domain 

Table 4 contains the numerical performance results. The 

classification of class “PVC” outperformed that of metallic in 

accuracy when using a frequency B-scan. The significance in this 

is that if frequency information is given to the classifier that the 

weakest class in the baseline is able to be detected at a better rate 

than the strongest performing baseline class. Notice that precision 

in the frequency domain is high in all of the classes. Recall is an 

additional area in which class “PVC” performs well. Although, 

performance is not quite as good as the time domain classifier 

trained with augmented data. Next, let us look at how 

augmentation can improve performance in the frequency domain. 

The bottom half of Table 4 contains the metrics after 

augmentation. Overall, there is improvement in all metrics.  

 
Table 4. Object detection performance with frequency domain 

information. 

 

4.3. Combined 

In the combined approach, we are using both time domain 

and frequency domain features of B-scans. This essentially is 

doubling the number of features used for classification. As 

reviewed in previous sections, frequency representations allowed 

improvement for the weak areas of object material classification. 

A combined approach will yield an improved classifier for all 

materials. 

 



Table 5. Object detection performance with combined domain 

information. 

 
 

Table 5 depicts the classification scores achieved before the 

use of augmented data. Compared to the baseline, this approach 

realizes a significant increase in all evaluation metrics. Notice 

that class “PVC” is still the class having the worst performance 

in accuracy. However, an improvement from the baseline can still 

be observed. This indicates that using a combined approach did 

improve the results of a weak class in accuracy. This is also true 

for the other metrics in relation to class “PVC”. The class 

“Concrete” did not see an improvement from the baseline when 

adding features from the frequency domain. This is unusual due 

to the increased performance in all metrics from the frequency 

domain experiments. However, it is important to note that class 

“Concrete” already achieved max values in accuracy and 

precision in the baseline test. Therefore, the improvement did not 

occur in precision only. The two other classes, “Metallic” and 

“PVC”, saw performance improvement in every metric with the 

combined approach. Thus, a combined approach is superior to the 

approach using only time domain or frequency domain features.  

5. Conclusion 

This paper explored generative models for GPR. With 

labeled training data, a conditional generative architecture were 

applied for GPR data augmentation. Furthermore, it was shown 

that a real-time classifier can be trained to detect the material of 

underground objects, and that this model can be improved with 

the incorporation of frequency domain features in classification. 

Moreover, with the addition of GAN synthesized data, we can 

train a classifier that detects objects with very high classification 

scores.  
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