
Data-Driven Domain Discovery for Structured Datasets

Masayo Ota1 Heiko Müller1 Juliana Freire1 Divesh Srivastava2

1New York University 2AT&T Labs-Research
{masayo.ota,heiko.mueller,juliana.freire}@nyu.edu; divesh@research.att.com

ABSTRACT
The growing number of open datasets has created new op-
portunities to derive insights and address important societal
problems. These data, however, often come with little or no
metadata, in particular about the types of their attributes,
thus greatly limiting their utility. In this paper, we ad-
dress the problem of domain discovery : given a collection
of tables, we aim to identify sets of terms that represent
instances of a semantic concept or domain. Knowledge of
attribute domains not only enables a richer set of queries
over dataset collections, but it can also help in data inte-
gration. We propose a data-driven approach that leverages
value co-occurrence information across a large number of
dataset columns to derive robust context signatures and in-
fer domains. We discuss the results of a detailed experimen-
tal evaluation, using real urban dataset collections, which
show that our approach is robust and outperforms state-
of-the-art methods in the presence of incomplete columns,
heterogeneous or erroneous data, and scales to datasets with
several million distinct terms.

PVLDB Reference Format:
Masayo Ota, Heiko Müller, Juliana Freire, Divesh Srivastava.
Data-Driven Domain Discovery for Structured Datasets. PVLDB,
13(7): 953-965, 2020.
DOI: https://doi.org/10.14778/3384345.3384346

1. INTRODUCTION
The trend towards transparency has led to an explosion

in the number of open datasets available via data portals for
countries, states, and cities [23, 20, 19, 21, 22]. By integrat-
ing and analyzing these data, many new opportunities for
innovation, economic growth, and societal benefit are cre-
ated. The nyc open data collection published by the City
of New York (NYC) [21], for example, consists of over 1,900
datasets covering a wide range of areas, such as requests and
complaints to city services, performance indicators for pub-
lic schools, building permits, and parking violations. These
have been used by City agencies to make their processes

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 7
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3384345.3384346

more efficient, by policy makers to design data-driven poli-
cies, and by community leaders and residents in efforts to
improve their neighborhoods [18].

A key challenge in using open datasets is that they are
often published with little or no metadata. The datasets in
nyc open data are published as CSV or JSON files which
list only attribute names and values, with associated syn-
tactic types (e.g., string, numeric). In the absence of de-
tails about the semantic types (or domains) of attributes,
it is difficult to understand what the data actually entails,
to discover data that is suitable for a given application, or
infer connections across disparate datasets.

By inspecting columns individually, one is likely to obtain
incomplete information about a data collection. A given
column may contain only a subset of the possible values for
a domain or include values from multiple domains. Con-
sider the discovery of tables in a data lake that can be
unioned [17]. Techniques based solely on column contents
may lead to false negatives and miss columns whose values
have a small (or no) overlap. For example, the NYC Depart-
ment of Finance publishes several datasets that are horizon-
tally partitioned based on different boroughs. Because their
values for the borough column are disjoint, instance-based
methods would fail to identify these as unionable. On the
other hand, false positives may be derived for heterogeneous
columns or when the overlap consists of ambiguous terms
that belong to multiple domains, e.g., BLACK and WHITE are
values for color and ethnicity.

Domain Discovery: Challenges and Opportunities.
We explore the problem of domain discovery : how to au-
tomate the process of inferring semantic types present in a
dataset collection. Semantic types are crucial for many im-
portant information retrieval and integration tasks, includ-
ing the creation of mediated schemas for traditional data
integration applications [8] and the derivation of edges in
knowledge graphs that encode datasets relationships in a
data lake [7, 16]. In addition, semantic types provide a
summary of the collection contents.

We view domains as sets of terms where each term is
an instance of the concept represented by the domain. For
example, the terms {BRONX, BROOKLYN, MANHATTAN, QUEENS,
STATEN ISLAND} form a domain in nyc open data that rep-
resents the five boroughs of New York City.

Challenge: Handling Collection-Specific Domains. Open
data domains can be classified into two main categories:
(i) generic domains, which are common to a wide range of
datasets and application areas, e.g., addresses and person
names, and (ii) collection-specific domains, whose contents

dvv color
BEIGE
BLACK
BLUE
BROWN
GOLD
GRAY
GREEN
KHAKI
ORANGE
PINK
RED
WHITE

category1
ASIAN
BLACK
HISPANIC
WHITE

dvt color
BEIGE
BLACK
BLUE
BROWN
GRAY
GREEN
KHAKI
MAROON
OLIVE
PINK
RED
YELLOW

ethnicity
ASIAN
BLACK
HISPANIC
WHITE

color
BLUE
BROWN
GOLD
GREEN
MAROON
OLIVE
ORANGE
PINK
RED
WHITE
YELLOW

demographic
ASIAN
BLACK
HISPANIC
N/A
WHITE

category2
ASIAN
BLACK
ELL
EP
FEMALE
FORMER ELL
HISPANIC
MALE
NOT SWD
SWD
WHITE

boroname
BRONX
BROOKLYN
MANHATTAN
QUEENS
STATEN IS

dvt make
4WD
BLACK
BLUE
BMW
BUICK
CHEVY
GRAY
GREEN
HONDA
TOYOTA
WHITE
... (87 more)

borough name
BRONX
BROOKLYN
MANHATTAN
QUEENS

bor
BRONX
BROOKLYN
MANHATTAN
QUEENS
STATEN IS
UNKNOWN

borough
BRONX
BROOKLYN
MANHATTAN
QUEENS
STATEN IS

city1
MANHATTAN
QUEENS
STATEN IS

neighborhood1
AVERNE
ASTORIA
BAYSIDE
BRIARWOOD
CORONA
ELMHURST
UNKNOWN
... (41 more)

neighborhood2
ASTORIA
BAYSIDE
BELLEROSE
CORONA
ELMHURST
FAR ROCKAWAY
FLUSHING
... (42 more)

city2
ASTORIA
BAY RIDGE
BRONX
BROOKLYN
BUSHWICK
CHELSEA
CORONA
MANHATTAN
N/A
STATEN IS
... (121 more)

rental nbh
AVERNE
ASTORIA
BAYSIDE
JAMAICA
... (48 more)

Dboro = {BRONX, BROOKLYN, MANHATTAN, QUEENS, STATEN IS}
Dcolo = {BEIGE, BLACK, BLUE, BROWN, GOLD, GRAY, GREEN, KHAKI, MAROON, OLIVE, ORANGE, PINK, RED, WHITE, YELLOW}
Dethn = {ASIAN, BLACK, HISPANIC, WHITE}
Dqns = {AVERNE, ASTORIA, BAYSIDE, BELLEROSE, BRIARWOOD, CORONA, ELMHURST, FAR ROCKAWAY, FLUSHING, JAMAICA, ...}

Figure 1: Example columns from nyc open data containing terms from four different domains.

are specific to a given area (or application), e.g., boroughs
and school codes, which vary for different cities. Generic
domains can be handled through a number of strategies, in-
cluding the use of regular expressions, ontologies, and dictio-
naries (e.g., [3, 12, 36]). The same is not true for collection-
specific domains, for which it is hard to find well-established
tools or master data to assist in domain discovery. In fact,
we computed the overlap between the datasets in nyc open
data and both Yago [28] and word vectors trained with
GloVe (using Wikipedia 2014 and Gigaword 5, containing
a total of 6 billion tokens) [24]. We found that Yago covers
only 10% of the terms and GloVe covers only 8%.

Opportunity: Leveraging Large Collections. While the vol-
ume of data and number of distinct datasets present a chal-
lenge for domain discovery, they also create an opportunity:
the redundancy present in a large collection of tabular data
containing multiple columns belonging to the same seman-
tic type can be used to construct domains. However, to do
so, we need to overcome several obstacles, which we discuss
below using a concrete example.

Example. Figure 1 shows 17 columns extracted from nyc
open data, which contain a total of 259 terms. Each column
contains terms from at least one of four semantic types: bor-
oughs (Dboro), colors (Dcolo), ethnicity (Dethn), and neigh-
borhoods in the borough of Queens (Dqns).

Incomplete Columns. For a given large domain D, it is un-
likely for any column to contain all terms in D. Instead,
columns often contain different subsets of D. In the ex-
ample, columns dvv color, dvt color, and color all con-
tain a subset of Dcolo; borough name and city1 are subsets
of Dboro; and city2, neighborhood1, neighborhood2, and
rental nbh contain subsets of Dqns. To construct domains,
we need to combine information from multiple columns.

Heterogeneous Columns. A given column may contain terms
that belong to different domains. For example, city2 con-
tains terms from domains Dboro and Dqns as well as names
of neighborhoods in Manhattan and Brooklyn. Column
category2 contains terms from Dethn and terms that cat-
egorize students by their gender and English language pro-
ficiency. If not properly handled, heterogeneity can lead
to mistakes in inferred domains. Also note that column
names can be heterogeneous: columns containing informa-

tion about boroughs have names city, bor, boro name. Thus,
we cannot rely on the name of a column to infer its domain.

Ambiguous Terms. In the nyc open data collection, it is
common for terms to belong to more than one domain. For
example, calendar months APRIL, MAY, and JUNE are also
frequent person first names, and colors like BLACK, GREEN,
and WHITE also represent last names. In our example, BLACK
and WHITE belong to two domains: Dcolo and Dethn.

Approach Overview. To address these challenges, we
propose D4, a data-driven domain discovery approach for
collections of related tabular (structured) datasets. Given
collection of datasets, D4 outputs a set of domains discov-
ered from the collection in a holistic fashion, by taking all
the data into account. Similar to word embedding methods
such as word2vec [15], D4 gathers contextual information for
terms. But unlike these methods which aim to build context
for terms in unstructured text, we aim to capture context
for terms within columns in a set of tables. The intuition is
that terms from the same domain frequently occur together
in columns or at least with similar sets of terms.
D4 has three main components: signature generation, col-

umn expansion, and domain discovery. The first compo-
nent creates signatures that capture the context of terms
taking into account term co-occurrence information over all
columns in the collection. These signatures are made robust
to noise, heterogeneity, and ambiguity. We propose a series
of robustification strategies which trade off precision and re-
call for the discovered domains, and thus can be applied to
a range of tasks, depending on the specific requirements and
data characteristics. Robust signatures capture the context
of related terms while blending out noise. They are essential
to our approach in addressing the challenges of incomplete
columns (through column expansion) and term ambiguity
in heterogeneous and noisy data.

Column expansion addresses the challenge of incomplete
columns. A straightforward approach to expansion is to use
co-occurrence information, and iteratively expand a set of
terms T using terms that co-occur with the terms in T .
However, this can introduce noise and lead to cascading er-
rors. Consider for example the term N/A that occurs with
terms from Dethn, Dboro, and Dqns in columns demographic
and city2 in Figure 1. By adding all terms that co-occur

with N/A to these columns, the result will contain terms be-
longing to many distinct domains. D4 avoids this problem by
using robust signatures to expand columns: it adds a term
only if it has sufficient support from the robust signatures of
terms in the column. This leads to high accuracy in domain
discovery.

The domain discovery component works in two stages. In
the first stage, it derives from each column a set of domain
candidates, called local domains. Local domains are clus-
ters of terms in an (expanded) column that are likely to
belong to the same type. Clustering here is defined as a
graph partitioning problem. Nodes in the graph are terms
and edges represent references to terms in their respective
robust signatures. Performing local domain discovery using
graph partitioning based on robust signatures has the ben-
efit that we are unlikely to cluster terms that occur in the
same column but belong to different semantic types (i.e., in
heterogeneous columns). Clustering columns independently,
along with column-based robustification, helps D4 handle
ambiguous terms. In the second stage, we apply a data-
driven approach to narrow down the set of local domains
and create a smaller set of strong domains to be presented
to the user. We also propose an alternative procedure to
compute strong domains from local domains with a human-
in-the-loop (Section 5.3). In this setting, the user provides a
set of seed values, and an enhanced, more complete domain
is computed. This scenario is related to set expansion and
user-guided data discovery, which we discuss in Section 2. It
is important to note that for the human-in-the-loop setting,
we do not necessarily expect the user to have a-priori knowl-
edge of the domains in a given collection. Instead, we view
domain enhancement as part of an exploration phase where
the user inspects the set of local domains discovered by our
approach. The selection of seed values could, for example,
be guided by the terms in the local domains that a user in-
spects, or by some incomplete knowledge that the user has
about the domains in the collection.

The first data-driven approach proposed to discover se-
mantic types in collections of tables in an enterprise was
the C4 methodology [14]. C4 uses co-occurrence information
to build a concept hierarchy and selects from the hierar-
chy nodes that are likely to represent important concepts
(or semantic types). As we discuss in Section 2 and evalu-
ate in Section 5, the effectiveness of C4 is compromised in
the presence of ambiguous terms, incomplete, and hetero-
geneous columns. In addition, since C4 requires the compu-
tation of the similarity between every pair of terms to con-
struct clusters, its applicability to datasets like nyc open
data which consists of millions of terms is limited.

Our work is orthogonal to and can be combined with ap-
proaches that use external data sources, including knowledge
bases and ontologies. At the same time, domains that D4 dis-
covers can be used to build or enhance existing knowledge
bases or ontologies.

Contributions. Our main contributions in this paper can
be summarized as follows:

•We present an end-to-end, scalable solution for the problem
of domain discovery in collections that contain incomplete
and heterogeneous columns, and ambiguous terms.

•We introduce the notion of robust context signatures and
present different robustification algorithms that explore the
trade off between precision and recall for the derived do-
mains (Section 3).

•We propose a column-based clustering approach to iden-
tify domain candidates that addresses the challenge of in-
complete columns through column expansion, and of het-
erogeneous columns and ambiguous terms through the use
of robust signatures (Section 4).
•We perform a detailed experimental evaluation using four
large and diverse real-world data collections. and show that:
our approach for domain discovery is effective and scalable,
and outperforms existing domain discovery approaches for
collections where columns are heterogeneous, incomplete,
and include ambiguous terms; and our human-in-the-loop
domain enhancement strategy performs better than previ-
ous works on set expansion for domains obtained from het-
erogeneous columns, and has comparable performance for
domains obtained from homogeneous columns (Section 5).

2. RELATED WORK
Domain discovery for structured data is a largely unex-

plored topic. To the best of our knowledge, C4 [14] is the
only prior work that uses a data-driven approach to the
problem. C4 was designed to build concept hierarchies us-
ing collections of enterprise spreadsheets. It computes, for
each pair of terms, the Jaccard similarity between sets of
columns they occur in. This similarity captures a measure
for the co-occurrence of term pairs and naturally induces a
graph in which nodes are terms and each edge is weighted by
the corresponding Jaccard similarity. Related values can be
grouped by deleting edges whose weights are below a given
threshold and keeping the resulting connected components.
Varying this threshold leads to different sets of connected
components that form a tree of clusters. A cluster is cho-
sen as a concept (or domain) if there exists a column in
the dataset that has a high Jaccard similarity with that
cluster. Thus, an important assumption to reliably extract
meaningful concepts is that the original dataset contains ho-
mogeneous columns which largely cover the associated do-
main. However, this assumption fails to hold for data in
the wild. As we discuss in Section 5, for such collections,
C4 derives concepts that are incomplete or heterogeneous,
because they have high similarity with incomplete and het-
erogeneous columns. In addition, the presence of ambiguous
terms which are connected to terms across multiple domains,
lead to large, low-precision clusters.

Our human-in-the-loop approach to compute strong do-
mains is related to set expansion techniques that expand a
small set of seed terms to obtain a more complete set by
discovering terms that belong to the same concept. Some
approaches to this problem rely on search engines and cus-
tomized information extraction [31, 5]. SEAL [31] models
terms as nodes in a graph and applies random walk to find
terms that are close in the graph – terms that are closest
to the seeds are used in expansion. Lyretail [5] improves
upon SEAL by training page-specific information extractors.
Wang et al. [30] use the concept name to retrieve relevant
web tables in addition to a set of seed entities as inputs, and
proposes a holistic, probabilistic model to rank the entities
and tables. Other approaches exploit context features (e.g.,
Wikipedia lists, free-text patterns) and ontologies to com-
pute similarity between entities within text corpora [25, 26,
34]. In contrast, D4 is data driven: the only context it uses
is the co-occurrence of terms within columns in a dataset.
Nonetheless, the use of diverse sets of external resources
(e.g., Web tables, Web pages, knowledge graphs) is a topic

that we plan to explore in future work as a means to im-
prove both domain discovery and expansion. More closely
related to our approach is SEISA [11], which uses collections
of terms extracted from Web lists and query logs. SEISA

takes an iterative approach to expand a seed with relevant
terms. Relevance is measured as an aggregated similarity
function based on Jaccard similarity between the set of col-
lections the terms occur in. In contrast, our approach uses
the seed to identify a set of clusters that combined have high
F-score with respect to the seed. We include a comparison
with SEISA in our experiments in Section 5.3.

Our work is also related to the problem of user-guided
data discovery. For example, DataXformer [2] and Info-
Gather [33] take a target schema as input and find a set of
values for the attributes in the schema using web tables. In
contrast, we consider a setting where the input is a set of
seed values for a domain of interest, and derive additional
values in this domain. The Aurum system [7] addresses a dif-
ferent data discovery problem: it uses a knowledge graph to
represent relationships among datasets, and uses this graph
to help users find relevant data.
D4 was motivated in part by approaches that aim to con-

struct context for terms, in particular, word embeddings.
These techniques have enabled the creation of meaningful
context-aware representations of words [15]. They typically
rely on the training of a neural network to model the co-
occurrences of words in a text and to extract representations
of these words in the form of the vectors of constant dimen-
sion. Remarkably, these vectors capture semantic similarity
between words and can be used to answer queries such as
“a king is to a man as what is to a woman?”. Such methods
have been successfully used for different tasks over unstruc-
tured data. For example, word embeddings are used for
query expansion to improve retrieval performance [13, 35].
While word embeddings present a promising direction for
knowledge discovery, they also have limitations. Similar to
ontologies, pre-trained word embeddings often have limited
coverage for structured data as mentioned in Section 1. An
alternative is to train word embeddings directly on a struc-
tured data collection. However, existing training algorithms
have been devised for textual documents and it is not im-
mediately clear how these can be applied to tabular data.
Bordawekar and Shmueli [4] trained word embeddings on
tabular data based on row co-occurrences by treating each
row as a sentence. These embeddings can be used to cap-
ture semantic relationships within a row but ignore column
context, which is key to domain discovery. For domain dis-
covery, we need to capture co-occurrence information among
all terms in a column, not just the ones in the nearby rows.
Thus, whether word embeddings can be effectively used for
domain discovery is an open research question.

Domain discovery is an important challenge for open data
and data lakes [16]. Domain information is a useful piece of
metadata. It not only enables queries that search for related
tables (e.g., find all tables that mention NYC schools), but
it also has the potential to increase the coverage for union-
search queries [17]. While systems have been proposed to
manage and derive metadata for dataset collections [1, 9, 10,
27], they have not tackled the problem of domain discovery.

3. ROBUST CONTEXT SIGNATURES
In this section, we (i) introduce notations used throughout

the paper, (ii) define context signatures that form the basis

B1 WHITE 0.7500 ∆ = 0.1785
B2 ASIAN, HISPANIC 0.5714 ∆ = 0.1429
B3 GRAY 0.4286

BLUE, BROWN, GREEN, RED 0.3750
BEIGE, KHAKI 0.2857
PINK 0.2500 ∆ = 0.1071

B4 4WD, BMW, BUICK, CHEVEY, 0.1429
HONDA, TOYOTA, ... (92 more) ∆ = 0.0179

B5 GOLD, MAROON, N/A, 0.1250
OLIVE, ORANGE, YELLOW

Figure 2: Context signature for term BLACK using σji. The
horizontal lines denote the most significant differences in
similarity for consecutive elements in the context signature.

for domain discovery, and (iii) present algorithms for making
context signatures robust. Robust signatures serve as input
to the domain discovery algorithm (Section 4).

Preliminaries and Problem Definition. A dataset D
consists of a set of columns {C1, . . . , Cn}. Each column C ∈
D is a set of terms C ⊆ T from a universal domain T =
{t1, . . . , tk}. A semantic type (or domain) is a set of terms
that represents a well-defined concept. We assume w.l.o.g.
that each term in T occurs in at least one column, i.e.,
T =

⋃︁
C∈D C. The set of columns that a term occurs in is

denoted as cols(t) ⊆ D.

Definition 3.1 (Domain Discovery). Given dataset
D, domain discovery aims to find a set of domains S =
{S1, . . . , Sm} representing all semantic types in D.

In the following, we use normal font upper case, e.g.,
C, S ⊆ T , to denote sets of terms and calligraphic font,
e.g., C,S ⊆ P(T), to denote sets of term sets. We represent
vectors of elements as ·⃗, e.g., s⃗. The i-th position of s⃗ is
denoted by s⃗[i], and the number of elements in a vector or
a set is represented by | · |.

3.1 Context Signatures
We define the context of a term t as the co-occurrence

information between t and all other terms t′ ∈ T . We quan-
tify co-occurrence for a pair of terms t1, t2 using similarity
functions σ : T × T → R. We refer to the values σ(t1, t2) as
the (co-occurrence) similarity of t1 and t2. Note that our al-
gorithms are independent of the similarity function used. In
our experiments, we evaluated several measures and found
that the Jaccard similarity coefficient between the sets of
columns the terms occur in provides the overall best results,
and we use it for all experiments reported in this paper:

σji(t1, t2) =
|cols(t1)∩cols(t2)|
|cols(t1)∪cols(t2)|

.

Definition 3.2 (Context Signature). Given a sim-
ilarity function σ, the context signature for t is a vector s⃗(t)
of tuples (t′, σ(t, t′)) containing exactly one entry for each el-
ement t′ ∈ T \ {t} such that σ(t, t′) > 0. The elements in
s⃗(t) are sorted in decreasing order of σ.

In the following we use s⃗(t)|t′ and s⃗(t)|σ to denote the
vectors that only contain the list of terms and co-occurrence
similarities from a context signature, respectively.

Example. Figure 2 shows the context signature s⃗(BLACK). In
the interest of space, we show terms having equal similarity
with BLACK in a single line (column 2). Using the Jaccard
similarity values (column 3) we can see that the term BLACK

is most similar to WHITE, followed by ASIAN and HISPANIC,
which are exactly the three other terms in domain Dethn.
As this example illustrates, the context of terms can serve
as a building block to construct domains.

In an ideal dataset, a term t only occurs in columns where
all terms belong to the same domain. In most real world
datasets, however, due to heterogeneous columns, NULL
values, and erroneous data, it is common for a pair of terms
t1, t2 to occur in the same column even if both terms are
from different domains. We refer to terms in s⃗(t) that have
no domain in common with t as noise.

Example. The context signature for BLACK in our example
contains 115 terms. Many of these terms do not share a do-
main with BLACK. They are the result of BLACK (erroneously)
occurring in column dvt make. In nyc open data it is com-
mon for columns that contain the make of derelict vehicles
to also contain popular car colors.

An important challenge that we must thus overcome is
how to make D4 robust in the presence of noise. To do so,
we propose to prune context signatures such that each sig-
nature s⃗(t) retains only those entries that are likely to share
a domain with t. We refer to the result as a robust signature.
In what follows, we introduce different pruning strategies to
derive robust signatures.

3.2 Signature Blocks
A simple approach for defining the robust signature is to

select a threshold and include in the signature only terms
with similarity above the threshold. Choosing a threshold,
however, is difficult and a fixed threshold is unlikely to work
well for all terms. A high threshold may exclude relevant
terms, while a low threshold may add noise.

Example. In our experiments, we use three dataset collec-
tions that we obtained from nyc open data. We refer to
these datasets as education, finance, and services. De-
tails about these collections are given in Section 5 and a
summary of their contents is presented in Table 1. The
pairwise similarities for terms in Dboro range between 0.593
and 0.500 (in dataset finance). For terms in Dethn, pair-
wise similarities are between 0.957 and 0.880 (education),
and for terms in Dcolo, between 0.667 and 0.067 (services).
These examples show that using a single threshold for sig-
nature pruning is likely to result in robust signatures with
a significant number of missing or noisy elements.

To avoid having to define a single threshold, we propose
a pruning strategy that takes advantage of the structural
properties of context signatures. We observed that terms be-
longing to the same domain as t usually form subsequences
(intervals) within s⃗(t). Terms within each interval have sim-
ilarity with t that does not vary significantly. Individual
intervals, on the other hand, are divided by a difference in
similarity that is larger than the differences of similarities
within the interval. Using this observation, we divide the
context signature for each term t into intervals based on dif-
ferences in similarity between consecutive elements in s⃗(t).
We refer to the terms in these intervals as signature blocks.

To generate signature blocks, we start by identifying the
index position k, where 1 ≤ k < |s⃗(t)|, for which the value
s⃗(t)|σ[k]−s⃗(t)|σ[k+1] is maximal. Terms in

⋃︁
1≤i≤k s⃗(t)|t

′[i]
form the first block. We then repeat this procedure starting
at position k + 1 until k ≥ |s⃗(t)|. We use function drop-
index (pseudocode is omitted due to space restrictions) to
identify signature block boundaries. drop-index takes as
arguments a vector v⃗ of similarity weights (i.e., s⃗(t)|σ) and
a start index. It returns the index of the element to the
right of the largest difference between subsequent elements
(i.e., the steepest drop) in v⃗ past the given start index.

Definition 3.3 (Signature Blocks). Let k1, . . . , km
denote a list of indices for s⃗(t) with k1 = 1, ki < ki+1,
and km = |s⃗(t)| + 1. Indices ki, 2 ≤ i ≤ m are the result
of invoking drop-index with ki−1 as start index. We use

b⃗(t) = (B1, ..., Bm−1), with Bi =
⋃︁

ki≤j<ki+1
s⃗(t)|t′[j], to

denote the vector of signature blocks for t.

Example. Figure 2 shows the five blocks in the context sig-
nature for BLACK using σji. The first block contains WHITE

and the second block contains the remaining terms from
Dethn. The next block is a subset of Dcolo. Block B4 con-
tains a mix of terms resulting from columns category2 and
dvt make. Block B4 is the largest block with 98 terms. The
final block B5 contains less frequent terms from Dcolo and
the NULL value N/A.

3.3 Pruning Signature Blocks
After dividing a context signature into blocks, the next

step is to decide which blocks to include in the robust signa-
ture. Note that we use context signatures that are vectors of
weighted terms to first generate blocks (i.e., sets) of terms.
The robust signature for a term t is then the union of one

or more signature blocks in b⃗(t).
We have experimented with several strategies to identify

relevant signature blocks. Below, we present two strategies,
referred to as conservative and liberal, according to how
they prioritize precision and recall. We assess the effective-
ness of these strategies in Section 5.

Conservative. The conservative pruning approach re-

turns the first block b⃗(t)[1]. The reasoning behind this strat-
egy is that the first block contains the terms that t is most
similar to. In many cases, these terms together form a sin-
gle domain. Using conservative in D4 will normally result
in discovered domains with high precision since the risk of
including noisy data in the robust signature is reduced. The
strategy, however, comes at the cost of lowering the recall.

Example. Using the conservative approach, the robust sig-
nature for BLACK is {WHITE}, the robust signature for WHITE
is Dethn\{WHITE}, and the robust signatures for ASIAN and
HISPANIC contain the terms HISPANIC and ASIAN, respec-
tively. Using conservative robust signatures, our algorithm
discovers a domain that is equal to Dethn. On the other
hand, the robust signatures for BLACK and WHITE do not con-
tain any other colors, and the other terms in Dcolo do not
contain BLACK or WHITE in their conservative robust signa-
ture. Thus, our algorithm does not discover a domain with
all the terms in Dcolo using conservative signatures.

Liberal. The liberal pruning strategy retains all blocks
up until one noisy block that is likely to contain terms that
are the result of noise in the dataset. We use the number
of terms in each block as the criteria to identify the noisy
block. The reasoning is that terms that occur due to noise
will normally have low similarity with t. These terms are
likely to be grouped into one large block (often towards the

end of b⃗(t) but not necessarily the last block). If we include
anything before the largest block in the robust signature
there is a high chance that we include most of the relevant
terms and eliminate the majority of the noise.

Example. B4 is the largest block in Figure 2. The resulting
liberal robust signature for BLACK is B1 ∪ B2 ∪ B3. This
signature is a mix of terms from Dethn and Dcolo. We are
more likely to discover domainsDethn andDcolo using liberal
signatures. The downside of the liberal approach is that

Algorithm 1 Column-specific Robust Signatures

1: function prune-centrist(t, C)
2: x⃗← [(∅, 0)]
3: for B ∈ liberal-blocks(b⃗(t)) do

4: x⃗.append((B,
|B∩C|

|B|))

5: end for
6: sort(x⃗)
7: drop ← drop-index((x⃗|ω), 1)
8: return

⋃︁
1≤i<drop x⃗|B[i]

9: end function

its lax pruning may lead to noise in the robust signature,
which can negatively impact precision. We discuss this in
more detail in Section 5.

3.4 Column-Specific Robust Signatures
Robust signatures generated by the conservative or lib-

eral approach are global in that they are the same for all
columns in a dataset. In the following, we present another
approach, which we call centrist, that generates local ro-
bust signatures for each column independently.

Centrist. The centrist approach aims to bridge the gap
between the conservative approach that discovers domains
of high precision but with lower recall and the liberal ap-
proach that has higher recall but lower precision.

Example. Block B2 in Figure 2 contains terms from Dethn,
while B3 contains terms from Dcolo. If we consider column
dvt color, none of the terms in B2 occurs in the column
but all of the terms in block B3 do. Thus, with respect to
column dvt color, B3 appears relevant while B2 does not.

The centrist pruning strategy is detailed in Algorithm 1.
Given a term t and column C, it starts by computing a
relevance score for each signature block with respect to C
(lines 3-5). Initially, the same block pruning strategy as the
liberal one (denoted by function liberal-blocks) is used.
That is, it only considers blocks before the largest block. To
eliminate blocks with insufficient relevance, centrist again
uses drop-index to find the steepest drop in the sorted list
of weights for x⃗ (lines 6-7). Similar to context signatures,
we use x⃗|B and x⃗|ω to denote the projection of x⃗ onto the
block elements and weights, respectively. Using drop-index
has the advantage that we do not need to define a single
threshold for all columns. The result is the union of blocks
for elements in x⃗ that come before the drop index.

Note that we initialize x⃗ with an empty set having rele-
vance score 0 (line 2). This is motivated by the observation
that, for some terms, all signature blocks have high rele-
vance for a given column. In these cases we want to avoid
pruning any of the signature blocks.

Example. For column ethnicity, blocks B1 and B2 in the
context signature for BLACK have relevance 1 and B3 has rele-
vance 0. B4 is not part of the result of liberal-blocks. Us-
ing the centrist approach, the robust signature for BLACK

with respect to ethnicity is B1∪B2. For column dvt color,
B3 has relevance 1 and B1, B2 have relevance 0. Thus, the
robust signature for BLACK with respect to dvt color is B3.

4. DOMAIN DISCOVERY
The D4 algorithm for domain discovery consists of three

steps. First, to address the challenge of incomplete columns,
it expands each column with terms that are likely to be-
long to the same domain as the terms in the column (Sec-

Algorithm 2 Column Expansion

1: function column-expand(C, τsup, δdec)

2: C+ ← C, τcol ← τsup

3: while τcol > 0 do
4: C′ ← {}
5: for t′ ∈

⋃︁
t∈C+ robsig(t, C+) \ C+ do

6: S ← {t|t ∈ C+ ∧ t′ ∈ robsig(t, C+)}
7: if

|S|
|C+|

> τsup ∧ |S∩C|
|C| > τcol then

8: C′ ← C′ ∪ {t′}
9: end if
10: end for
11: if |C′| > 0 then

12: C+ ← C+ ∪ C′, τcol ← τcol − δdec
13: else
14: return C+

15: end if
16: end while
17: return C+

18: end function

tion 4.1). Then, for each column it discovers local domains
(Section 4.2) which are clusters of terms that reference each
other in their robust signatures. The final step identifies
strong domains (Section 4.3), i.e., local domains that have
strong support from columns in the dataset.

Note that D4 is agnostic to the pruning strategy used for
signature blocks. We use robsig(t, C) to denote the robust
signature of t with respect to C. For conservative and lib-
eral, the robust signature for t is the same for all columns,
while for centrist, signatures are column specific.

4.1 Column Expansion
Incomplete columns yield incomplete domains. Consider

for example columns borough name and city1. For these
columns we can only discover a local domain that is a proper
subset of Dboro. To overcome this problem, we propose to
expand each column C ∈ D with terms t′ /∈ C that have
sufficient support from the robust signatures of terms t ∈ C.
Given that each robust signature contains terms that are
likely to belong to the same domain as t, if term t′ appears in
many robust signatures in C, it is likely part of a domain for
C and therefore can be added to C for the purpose of domain
discovery. Thus, column expansion reduces the number of
incomplete domains discovered.

We take an iterative approach to column expansion. The
idea is that adding a term to a column may provide addi-
tional support for other terms to be added as well. In round
one, we identify the expansion set C′ ⊆ T \C of terms that
have sufficient support from the terms in C. Round two uses
the expanded column C+ = C ∪ C′ to identify the expan-
sion set C′′ ⊆ T \ C+ and so on. Algorithm 2 outlines our
strategy for column expansion.

Iterative expansion carries the risk of concept drift.1 If we
erroneously add terms that do not belong to any domain in
C, we may increase support for other terms from domains
not in C. To avoid drift, for expansion, we only consider
terms that are supported by the original terms in C.

The function column-expand computes, in each round,
the support set S for terms t′ that are not in C+ but are
present in at least one robust signature for terms t ∈ C+

(line 6). We ensure that the support for t′ in C+ is greater
than τsup and that the support in C is greater than τcol (line
7). We decrease τcol after each iteration by a constant δdec.

1See https://en.wikipedia.org/wiki/Concept_drift.

https://en.wikipedia.org/wiki/Concept_drift

The algorithm terminates if (i) in any round we do not add
new terms to C, or (ii) if τcol ≤ 0.

Decreasing τcol instead of using a fixed threshold pro-
vides tighter bounds for the addition of new terms in earlier
rounds, but allows for terms with low support in C to be
added should they be supported by terms that were added
over multiple rounds of expansion. Consider a term t′ with
low support in C. If t′ has support in C+ above τsup after
the first round of expansion we cannot be certain whether
this is due to terms that were added to C+ erroneously to
the column or not. However, if t′ still has sufficient support
in C+ after multiple rounds of expansion, we gain more con-
fidence that t′ should be added to C+.

Example. Using conservative and parameters τsup = 0.25
and δdec = 0.05, seven columns are expanded: borough -

name and city 1 contain all terms in Dboro, GRAY is added to
color, and a total of 21 terms are added to columns city2,
neighborhood1, neighborhood2, and rental nbh. Using the
centrist approach with the same parameters expands nine
columns: color, dvt color, and dvv color contain all terms
in Dcolo, rental nbh contains all terms from Dqns, while the
other three columns from Dqns remain incomplete.

4.2 Domain Discovery for Columns
For each column C, the domain discovery algorithm op-

erates on the expanded column C+. D4 first partitions C+

into disjoint clusters {L1, L2, . . .} which we refer to as local
domains. For columns that are homogeneous and complete
(after expansion), we expect to generate a single cluster. For
columns that are heterogeneous or noisy, the result will con-
tain multiple clusters. We model the domain discovery prob-
lem as graph partitioning. We use undirected graphs where
the nodes are the terms in C+ and there is an edge between
two nodes t1, t2 ∈ C+ if at least one of them contains the
other in its robust signature, i.e., t1 ∈ robsig(t2, C

+)∨ t2 ∈
robsig(t1, C

+). The set of local domains is given by the set
of connected components in the undirected graph.

Given a partitioning {L1, L2, . . .}, we aim to discover sets
of semantically related terms based on their co-occurrence.
Therefore, we eliminate clusters that contain a single term.
In our experiments, we observed that NULL values, generic
terms, and outliers tend to form single-term clusters. Fur-
thermore, we remove all clusters where Li ∩ C = ∅. This
provides an additional quality check for column expansion:
if a cluster only contains terms that are not in the original
column C, it is likely that column expansion added terms
erroneously. The remaining clusters form the set of local
domains for C.

Example. In Figure 1, conservative local domain discov-
ery yields twelve clusters. Domains Dboro and Dethn are the
only complete domains that are discovered. Other local do-
mains are subsets of Dcolo and Dqns. For column dvv color,
we discover local domains {BLACK, WHITE} and {BEIGE, BLUE,
BROWN, GOLD, GRAY, GREEN, KHAKI, ORANGE, PINK, RED} due to
the discussed limitations of conservative signatures. The
centrist approach discovers nine different local domains
including Dboro Dethn, Dcolo and Dqns.

4.3 Strong Domains
The total number of local domains discovered for a dataset

can be large. One reason is noise. For example, in one col-
umn from our experimental datasets, we discover a local do-
main Dboro but also one that contains the misspelled terms

BORNX, BROOKKYN, MANHTTAN, QEENS, and STATE ISLAND. An-
other reason are incomplete domains. Columns that contain
only a small subset of terms from a larger domain may not
be completed by column expansion. This is especially true
for heterogeneous columns where the overall support for ad-
ditional terms is low. As a result, we frequently discover
local domains that are similar to but not exactly the same
subsets of a larger domain.

In the final step of our domain discovery algorithm, we
prune local domains to retain those domains for which we
have high confidence that they represent (part of) a mean-
ingful semantic type. We use frequency to quantify the con-
fidence that we have in a discovered local domain. Simply
counting the number of columns that yield the exact same
domain, however, can produce misleading results due to sim-
ilar but non-identical incomplete local domains. Instead, we
introduce the notion of a strong domain to denote a local
domain that has support from a sufficiently large number
of other local domains. We use thresholds τdsim, τest, and
τstrong to define strong domains in a data-driven way. Let

ji(L1, L2) =
|L1∩L2|
|L1∪L2|

be the Jaccard similarity for a pair of

local domains L1, L2.

Definition 4.1 (Domain Support). Let C denote the
set of local domains for column C. Given a threshold τ ,
we say that a local domain L ∈ C has support from column
C′ ∈ D\{C} if there exists a local domain L′ ∈ C′ such that
ji(L,L′) > τ . The domain support sup(L, τ) is the number
of columns that support L for threshold τ .

A local domain L is supported by all other local domains
that are similar to L above τ . Note that if identical local
domains L1, L2, L3 are discovered in three different columns,
each of them has support from at least two local domains.
There may be additional support from similar local domains
discovered in other columns.

We next define what is meant by having support from a
sufficient number of other local domains. A simple solution
would be to use a value n and require each local domain
to have support from at least n other local domains. The
problem with this approach is that some semantic types are
more frequent in a data collection than others. For example,
Dboro occurs in over 300 columns in nyc open data, while
Dcolo occurs in less than 20 columns. For a local domain
that represents a less frequent type, we would want to use
a smaller value of n, while for local domains that represent
more common type, we would want n to be large.

To avoid having to choose different values for n for all local
domains, we define sufficient support based on an estimate
of the frequency of the semantic type that a local domain
represents. Given a local domain L, we use domain support
and threshold τest to identify columns that contain local
domains that likely represent the same semantic type as L.

Definition 4.2 (Type Frequency). Given local do-
main L ∈ C, we estimate the frequency for the semantic
type of L in D as the support sup(L, τest).

The idea is that (1) if a semantic type is contained in a col-
umn, we are likely to discover a local domain for that column
containing terms from the type, and (2) all local domains
that represent the type are likely to have some overlap.

To have confidence that L represents a meaningful type,
we require it to have support from a large fraction of columns
that contain local domains likely belonging to the same se-
mantic type. That is, we consider L to be a strong domain if

it has support τdsim, with τdsim > τest, from a large fraction
(τstrong) of columns that have been estimated to contain a
local domain of the same type as L.

Definition 4.3 (Strong Domain). A local domain L

is considered strong if sup(L,τdsim)
sup(L,τest)

> τstrong.

Example. From the ten local domains discovered using the
centrist approach, six are considered strong for thresholds
τdsim = 0.5, τstrong = 0.25, and τest = 0.1. The set of strong
domains contains Dboro, Dcolo, Dethn, and Dqns. The other
two strong domains are subsets of 52 terms each of Dqns.

4.4 Domain Discovery at Scale
Generating context signatures requires us to compute the

intersection cols(t1)∩ cols(t2) for every pair of terms t1 and
t2. For large datasets the number of terms can easily ex-
ceed several hundred millions. In such cases, the quadratic
complexity in the number of terms for context computa-
tion becomes a bottleneck. To enable D4 to scale to large
datasets, we make use of the following observation: most
datasets that we encountered in practice contain a large
number of terms that always occur together in the same
set of columns. We group such terms into sets and refer to
them as an equivalence class. This grouping makes sense
in our scenario since we consider domains as sets of terms
that frequently co-occur in columns. If every column that
contains term t1 also contains t2, and vice versa, we have
high confidence that t1 and t2 belong to the same domain.

Example. In Figure 1, the terms BLUE, BROWN, GREEN, and
RED all occur in the same set of columns {color, dvt color,
dvv color, dvt make}. For our algorithm it makes sense
to consider the set of terms that always occur in the same
columns as an atomic component for the domain discovery
process, and by doing so, we obtain a drastic reduction in
the number of term pairs that need to be considered.

Definition 4.4 (Equivalence Class (EQ)). Given a
set of terms E ⊆ T , we refer to E as an equivalence class
if (i) all terms in E occur in the same set of columns, i.e.,
∀t1,t2∈Ecols(t1) = cols(t2.), and (ii) no term t′ ∈ T \ E
exists such that cols(t′) = cols(t) for any t ∈ E.

The second condition in Def. 4.4 ensures that EQs are
maximal and disjoint. It follows that each term belongs to
exactly one EQ. We partition T into a set of EQs, denoted
by E = {E1, . . . , Em}. The total number of EQs in our
example dataset is 27. This number is almost ten times
less than the number of 257 distinct terms. In practice, the
reduction is even more significant. Table 1 shows statistics
for the datasets that we use in our experiments. In all cases,
the number of EQs is < 2% of the number of distinct terms.
The majority of EQs usually contains only a single term. In
particular, terms that occur in many columns are likely to
be in an EQ on their own. The reduction comes from a few
EQs that can contain hundreds of thousands of terms that
occur together in a small set of columns.

Implementation. Our implementation uses EQs instead
of terms as the atomic components. The main benefit is
that computing pairwise co-occurrence information becomes
feasible even for very large datasets when the set of EQs is
significantly smaller than the set of terms. We replace each
column C ∈ D with the set of EQs {E|E ∈ E ∧ E ⊆ C}.
Each term t ∈ C belongs to exactly one EQ, and if t ∈ C
and t ∈ E then E ⊆ C. We extend the definition of cols(·)
to EQs. The set of columns that an EQ E occurs in is equal

Table 1: Dataset statistics.
Category Tables Rows Cols Terms EQs
Education 201 3,208,141 1,401 350,231 5,370
Finance 176 12,447,106 1,594 5,713,755 21,187
Services 692 275,254,542 3,566 36,923,781 130,165
Utah Open 1,766 644,663,858 11,351 194,032,923 235,366

to the set of columns that each term in E occurs in, i.e.,
∀t∈Ecols(t) = cols(E). In Algorithms 1 and 2, when we
compute the size of a set of terms we now use the size of the
union of all EQs in the set. All other parts of the algorithms
remain the same.

Our implementation takes advantage of multithreading.
For signature blocks generation and strong domain discov-
ery, we use parallel threads to compute similarity between
EQs and local domains, respectively. For column expan-
sion and local domain discovery, we use multiple threads to
process individual columns in parallel.

5. EXPERIMENTS
We carried out a detailed experimental evaluation to: (1)

compare D4 with other state-of-the-art methods for domain
discovery and domain enhancement; (2) assess the effective-
ness of D4 in the presence of column incompleteness, het-
erogeneity, and ambiguous terms; and (3) evaluate different
components and configurations of D4.

Our first set of experiments evaluates the effectiveness of
D4 for the problem of domain discovery. We compare D4

against C4 [14]. To the best of our knowledge, C4 is the only
prior work that tackles the problem of domain discovery in
structured data in a holistic fashion. Our experimental and
evaluation protocol closely follows that of [14].

As discussed in Section 1, our approach to constructing
strong domains can be carried out with a human-in-the loop.
More precisely, the user provides a set of seed values for a
domain of interest, and an enhanced, more complete set of
terms for the domain is computed. Since the human-in-
the-loop setting is similar to the problem of set expansion,
in Section 5.3, we include a comparison with SEISA [11],
which has been shown to be more effective than previously-
proposed approaches for noisy data and does not rely on
external data sources.

The framework we propose can be configured in different
ways, e.g., different signature pruning strategies and thresh-
olds can be used. In the last set of experiments, we evaluate
our design decisions and study the strengths and weaknesses
of different D4 configurations.

5.1 Experimental Setting
Data. We use two repositories–nyc open data and State
of Utah Open data (utah open), downloaded using the
Socrata Open Data API [29] on Nov. 22nd 2016 and on Sep.
27th 2019, respectively. nyc open data consists of over
1, 100 tables from NYC agencies such as Department of Ed-
ucation and Department of Finance. Each table is labeled
using 13 different labels. Based on these labels, we obtained
three datasets: (a) education, (b) finance (using labels
economy and finance) and (c) services which includes all
tables that are not in (a) or (b). For our experiments, we
consider columns where the majority of distinct terms is text
since numerical values can be assigned to a separate domain.
Table 1 shows statistics for the four datasets.

Ground Truth Domains. The challenges present in open
data such as column incompleteness, heterogeneity, and er-

Table 2: The Results of Domain Discovery. The optimized thresholds for C4 are 0.7, 0.5, 0.7 and 0.4 for the datasets of
education, finance, services, and utah open respectively.

Dataset Domain
Domain

Size
C4 w/ THR = 0 C4 w/ OPT. THR D4

Num of
Clusters

F-score
Num of
Clusters

F-Score
Num of
Clusters

F-Score

nyc open data
education

School Name (SNAME) 2865

2943

0.718

409

0.718

328

0.819
District Borough Number (DBN) 2673 0.882 0.718 0.728

School Number (SNUM) 2845 0.637 0.637 0.703
Student Grade (GRADE) 5 1.0 1.0 1.0

Ethnicity (ETHN) 4 1.0 1.0 1.0

nyc open data
finance

Bronx Neighborhoods (BX) 97

8493

0.566

627

0.566

422

0.635
Brooklyn Neighborhoods (BK) 103 0.742 0.742 0.839

Manhattan Neighborhoods (MH) 91 0.710 0.710 0.710
Queens Neighborhoods (QN) 137 0.341 0.341 0.654

Staten Island Neighborhoods (SI) 44 0.603 0.603 0.581
Boroughs in NYC (BORO) 5 1.0 1.0 1.0

Building Permit Type (PERMIT) 22 0.483 0.483 0.722
Rental Building Class (RENTAL) 17 1.0 1.0 0.903

nyc open data
services

City Agency (AGENCY) 74

36453

0.797

1065

0.797

935

0.846
City Agency Abbreviation (ABBR) 190 0.361 0.361 0.591

Car Plate Type (PLATE) 87 0.863 0.863 0.955
US States (US) 50 0.939 0.939 0.980

Other States (OTHER) 17 0.034 0.034 0.395
Month (MONTH) 12 0.737 0.737 1.0
Color (COLOR) 20 0.417 0.0 0.947

utah open

County (COUNTY) 29

92503

1.0

3559

1.0

2477

1.0
Incident Type (INCIDENT) 208 0.604 0.604 0.732
Hospital Name (HOSPITAL) 137 0.330 0.299 0.503

Medication Name (MED) 282 1.0 1.0 0.932
Fund Name (FUND) 676 0.941 0.941 0.981

roneous data make it difficult to obtain ground truth do-
mains (GTDs). This poses an obstacle for evaluation and
comparison of different domain discovery methods. To tackle
this challenge, we adopted the following procedure from [14]
to approximate ground truth domains in our data:

• Select domains of interest. For each domain, a set of seed
terms is created. We obtain the seed terms fromWeb sources
such as the Wikipedia and the web site for nyc open data.
For instance, we scraped a list of neighborhoods in Manhat-
tan from Wikipedia [32].

• Expand the seed set with terms from the data. The seed
terms are unlikely to contain all the terms in this domain
that are present in the data (e.g., the seed may include FLAT-
IRON DISTRICT but not FLATIRON, both of which occur in
nyc open data columns containing Manhattan neighbor-
hoods). Thus, to expand the seed set, we obtain a set of
columns that have a large overlap with the seed. For each
column we manually inspect the terms outside of the in-
tersection and decide whether they should be added to the
ground truth domain (GTD) or not.

For our experiments we selected 25 representative GTDs of
different sizes from the four datasets. These GTDs are cho-
sen so that corresponding columns are sufficiently diverse.
In particular, we aimed to include homogeneous, heteroge-
neous, complete and incomplete columns, as well as, columns
containing ambiguous terms (see Table 2). Note that the
signatures of each term is derived using all the columns in
each of the four table collections.

Baselines and Configurations. We use centrist signa-
ture pruning as the default setting. For column expansion,
we use parameters τsup = 0.25 and δdec = 0.05. To obtain
strong domains, we set thresholds τdsim = 0.5, τest = 0.1
and τstrong = 0.25 so that D4 produces a reasonable number
of clusters to present to the user and to compare with C4.

Recall that C4 requires a Jaccard similarity threshold to
select concepts from the candidate clusters. Selecting this
threshold is challenging: while a high threshold leads to
higher quality, it may lead to low recall; in contrast, a low
threshold results in a large number of clusters. To benefit

C4 with respect to recall, we set this threshold to zero, and
consider the super-set of clusters it produces when we select
the best cluster for each domain. Note that, even under
this idealized scenario, C4 outperforms D4 only for 4 domains
(see Table 2). In practice, however, using a threshold of 0 is
difficult since the number of resulting clusters would be too
large for a user to inspect, e.g., between 2,943 and 92,503
for the datasets we consider.

We also identify the best threshold for C4 across several
different values of height constraint [14]. While in practice,
in the absence of gold data, it is not possible to select such
thresholds, we followed this procedure to ensure that we ob-
tained the best possible configuration for C4. In particular,
for height restrictions 1, 3, 5, and 7, we consider similarity
thresholds 0.1, 0.2, . . . , 0.9, and select the best one in terms
of the average F-score. This procedure is performed for each
dataset independently. Note that we stop at height restric-
tion 7 since there is no change in the resulting clusters after
5. To obtain the best results, we search over all clusters us-
ing the thresholds we find (without the height constraint).
The optimal thresholds are 0.7, 0.5, 0.7, and 0.4 for edu-
cation, finance, services, and utah open, respectively.

We run both D4 and C4 using equivalence classes (EQs):
without EQs, the computation does not complete in a rea-
sonable time. Note that using EQs does not affect results of
D4 and C4 since we used Jaccard as the similarity measure.

5.2 Domain Discovery
Comparing D4 and C4. We compared D4 and C4 for do-
main discovery, and evaluated the resulting clusters using
the setup of [14]: for each GTD and each cluster that over-
laps with the GTD, we compute precision, recall and F-score;
then, for each GTD, we select the cluster with the highest
F-score. The results are summarized in Table 2. D4 com-
pares favorably with C4, attaining higher or equal F-scores
for 22 out of the 25 GTDs. In some GTDs, such as Queens
Neighborhoods, Color, Month, Building Permit Type, City
Agency Abbreviation and Hospital Name, F-scores of D4 are
significantly higher.

Column incompleteness and heterogeneity are the main
reasons of the poor performance of C4 on Queens Neighbor-
hoods. In general, all neighborhood GTDs have the problem
of incomplete columns, i.e., there is no column that con-
tains all GTD terms. There is, however, a set of common
neighborhoods for each borough that are contained in sev-
eral columns. This is why D4 and C4 discover clusters with
high precision but lower recall for neighborhood GTDs. D4 is
able to achieve higher recall for four of the five boroughs due
to column expansion. On the other hand, there are several
heterogeneous columns that contain Queens neighborhoods,
boroughs and other cities. This results in some of the terms
being similar not only to other Queens neighborhoods but
also to cities. For instance, BEECHHURST has its highest sim-
ilarity to any other Queens neighborhood at 0.57. Due to
heterogeneity, BEECHHURST is also similar to several other
cities such as NASHVILLE and UNION CITY at similarity of
0.57 or higher. Thus, candidate clusters of C4 at threshold
≤ 0.55 will include Queens neighborhoods and cities leading
to higher recall but lower precision and F-score.
Other examples where D4 outperforms C4 are the GTDs

Color and Month. Here, the difference can be explained by
the presence of ambiguous terms. Many Color terms (e.g.,
GREEN, BROWN) also appear in Last Name columns. Terms
BLACK and WHITE also occur frequently in Ethnicity columns
(which appear in all the three datasets). The same is true
for Month terms such as MAY and AUGUST that also appear in
First Name and Last Name columns. The Jaccard similarity
between ambiguous and other terms in their domains is usu-
ally lower due to the large number of different columns they
occur in for their different types. C4 only discovers small
subsets of domains with ambiguous terms for higher thresh-
olds but combines terms from different domains for lower
thresholds. For example, any cluster in C4 that includes
BLACK, WHITE, and GREEN also includes ASIAN and HISPANIC

as well as last names like LOPEZ and SMITH. On the other
hand, D4 handles this case correctly, e.g., BLACK and WHITE

are included not only in the cluster for Color but also in the
clusters for Ethnicity and Last Name.2 Column expansion
is a major contributor to the superior performance of D4 for
other domains such as Building Permit type, City Agency
Abbreviation, and Hospital Name that have similar prob-
lems of column incompleteness as discussed above.
On the other hand, D4 attains a lower F-score than C4 for

Rental Building Class, Staten Island Neighborhoods, and
Medication Name. There are 101 columns for the GTD of
Rental Building Class: 80% of these columns contain the
majority of terms, while the remaining columns contain only
small portion (i.e., 4 out of the 17 terms). The two sets of
columns overlap only with one term (D4-ELEVATOR) in ex-
actly two columns. D4 only discovers a cluster for the larger
subset of terms in the GTD. On the other hand, clusters pro-
duced by C4 cover the whole GTD. This is due to the fact
that C4 creates an edge to connect the two subsets at Jac-
card similarity of 0.0 (the very last threshold that is used to
obtain connected components). Typically, clusters that are
connected by such an edge are very large and contain a lot
of noise. However, because terms in this GTD do not co-occur
with terms outside of the GTD, the resulting cluster turns out
to be accurate. Similarly for Staten Island Neighborhoods

2Recall that generic domains such as Last Name are not our
focus in this work. Therefore, the results for these domains
are omitted.

Figure 3: Precision and recall of clusters and F-score as
a function of the number of clusters combined for the GTD

of Staten Island Neighborhoods. The F-score of D4 from
Section 5.2 is represented by a dotted line.

and Medication Name, some terms of these GTDs only oc-
cur in one column. This leads to the same issues as with
Rental Building Class. Since D4 is data-driven and based on
co-occurrences of terms, this is inevitable and, therefore, a
limitation of our approach.

5.3 User-Aided Domain Enhancement
In this section, we consider a setting in which the user

provides a set of seed terms for a particular domain that
she wishes to explore. For example, a user may know a few
abbreviations for NYC agencies such as FDNY, NYCHA, and
NYPD and is interested in the full set of agency abbreviations.
For a given set of seed terms, the goal is to identify a set of
local domains that together represent a domain of interest
with respect to the seed.

Our approach in this setting is motivated by the observa-
tion that for many GTDs, the set of local domains contains
several clusters with high precision but lower recall. By
combining these high-precision clusters, we are able to gen-
erate domains with higher recall and F-score for the GTD.
Consider the example shown in Figure 3. Here we compute
precision and recall for each local domain in finance for the
GTD of Staten Island Neighborhoods. We then sort the local
domains by decreasing precision and take the union of the
first i entries in the sorted list. The plot shows precision,
recall, and F-score of the resulting union as a function of the
number of combined clusters. For the first 16 clusters pre-
cision stays at 1.0 while recall and F-score ascend rapidly.
For i > 16, precision and F-score decline sharply while recall
only increases gradually. These results suggest that by com-
bining local domains we can achieve a much higher F-score
than the best single cluster (shown as a dotted line).

In practice, the GTD is unknown and we consider user-
provided seeds as a surrogate instead. The seed terms may
be provided by a user based on her partial knowledge of a
domain, be derived by D4, or be obtained from an external
source. Given a seed set, we proceed as before: (1) compute
precision for each local domain using the seed as ground
truth, (2) sort local domains by decreasing precision, (3)
combine the first i entries in the sorted list. The result is
the union of local domains that achieves the highest F-score
with respect to the seed.

In our experiment, we use random samples of varying size
from a GTD as seed terms. For statistical significance, sam-
pling is repeated 100 times. The results are presented in
Figure 4(a), which shows average F-scores with respect to
the full GTD as a function of sample size. The results show
that we are able to achieve F-scores which are higher than
the ones from Section 5.2 using seeds of only 10%–30% of

Figure 4: Average F-scores of SEISA and D4 for various
sample sizes: (a) 10%, 20%, . . . of GTDs; (b) Sets with 5, 10
and 15 seeds. The best F-scores of D4 from Section 5.2 are
shown as a dotted line.

ground truth terms. Due to the space limitations we only
present the results for two GTDs. Results for most of the
other relatively large GTDs (e.g., > 20 terms) are similar.
Note that our approach in this setting is particularly useful
for larger domains, since for small domains it can be easy to
find the terms through manual inspection.

Comparing D4 and SEISA. The idea of using seeds to com-
pute a more complete set of terms corresponding to a par-
ticular semantic type has been explored in prior work on set
expansion [31, 5, 30, 25, 26, 11]. While set expansion is not
the main focus of D4, we include a comparison with the dy-
namic thresholding algorithm from SEISA [11] in Figure 4(a).
The results suggest that, by using robust signatures, ex-
pansion can lead to more accurate results in the presence
of heterogeneity, missing values, and ambiguous terms. In
general, SEISA is more sensitive to heterogeneity. For GTDs
like Staten Island Neighborhoods which appears in hetero-
geneous columns, the majority of the expanded sets derived
by SEISA are very large resulting in low precision (F-score
between 0 and 0.2). For GTDs like District Borough Number
which appears mainly in homogeneous columns, SEISA pro-
duces results that are stable regardless of seed sizes. Overall,
D4 outperforms or achieves comparable results to SEISA.

Small sized seeds. Our experiments show that using only
10-30% of ground-truth terms is sufficient to obtain a seed
that leads to an optimal performance of D4. This is a re-
alistic assumption for smaller domains (e.g., Staten Island
Neighborhoods) or domains for which the seed can be ob-
tained from an external source. However, when the user only
provides a small seed (e.g., 5–15 terms), intermediate results
of D4 can be used to derive a larger sample from the input
seed. Using D4, this can be done as follows. We remove local
domains that are subsets of the seed and sort the remaining
domains by F-score with respect to the seed in descending
order. Next, we create a collection L of domains by travers-
ing the sorted list. The first local domain is always included
in L. Each subsequent domain is included if and only if it
covers terms in the seed that are not covered by the domains
in L. The expanded seed is the union of all the local do-
mains in L. We use random samples of 5, 10, and 15 terms
from a GTD as a seed, and repeat sampling 10 times. The
results in Figure 4(b) show that D4 attains F-scores that are
comparable to the ones obtained with medium-sized seeds,
and higher than the ones from Section 5.2, using seeds with
only 5-10 ground-truth terms.

Figure 5: F-scores of D4 with no signature pruning, pruning
with fixed threshold (=0.5), conservative, liberal, and
centrist.

5.4 Evaluation of Different D4 Components
We evaluated the different components and configurations

of D4 to assess their contribution to the overall approach.
We use the default settings (see Section 5.1) and alter one
parameter while fixing everything else to study the effects
of the variations on the F-scores in domain discovery.

5.4.1 Signature Pruning
We propose three strategies for signature pruning (Sec-

tions 3.3 and 3.4) which are based on signature blocks gen-
erated from context signatures using steepest drops in simi-
larity. We compare conservative, centrist, and liberal
with two alternatives: (1) no signature pruning, i.e., we use
the whole context signature as the robust signature, and
(2) pruning elements of the context signature using a fixed
threshold (> 0.5). Figure 5 shows the F-scores for the GTDs

from the three datasets. conservative and centrist per-
form well among the five methods. conservative aims for
high precision and results in a lower recall, while centrist
attains high precision while maintaining high recall.

For no signature pruning and liberal, the ranking of the
F-scores fluctuates considerably. Even for small GTDs, like
Ethnicity and Borough, both methods perform poorly due
to increased noise in the signatures resulting in low preci-
sion and F-score. F-scores for signature pruning with a fixed
threshold are comparable to the F-scores obtained with cen-
trist. For GTD Color, however, using a fixed threshold re-
sults in low recall and thus low F-score. Terms with low
similarity due to ambiguity lead the threshold method to
ignore relevant terms whose similarity score is below the
threshold. Therefore, we use centrist pruning as default
as it avoids signatures that are too restrictive or noisy.

5.4.2 Column Expansion
To study the impact of column expansion, for a given GTD,

we identify columns that either contain more than 50% of
terms in the GTD or for which more than 50% of terms belong
to the GTD. We sparsify each column by removing x fraction
of terms that belong to the GTD, e.g., if a column contains the
all 5 boroughs and x = 0.4, we remove two randomly-chosen
boroughs from the column to make the column incomplete.
We perform domain discovery on the resulting dataset.

We compare the following column expansion options: (1)
no expansion, (2) single expansion with τsup = 0.25, and (3)
iterative expansion with τsup = 0.25 and δdec = 0.05. Note
that we use τsup = 0.25 since it leads to better results than
a higher threshold (e.g., τsup = 0.5) in our experiments. We
experimented with different values for x (0, 0.2, 0.3, and 0.4)
and for each x we repeat the random experiment 5 times.
The resulting average F-scores are shown in Figure 6. We
observe that as we increase the sparsity, F-scores without
expansion drop significantly. On the other hand, F-scores

Figure 6: F-scores of D4 with no expansion, single expan-
sion and iterative expansion on the sparsified datasets for
the GTDs Borough and City Agency Abbreviation and Av-
erage F-scores of all the GTDs.

Figure 7: F-scores of D4 varying domain support threshold.

for both iterative and single expansion are not affected very
much by the sparsified datasets.

5.4.3 Varying Parameters for Strong Domains
To obtain strong domains from local domains, we use

three thresholds, τdsim, τest, and τstrong (Section 4.3). We
use τest = 0.1. Our experiments show that varying this pa-
rameter does not affect results significantly. However, set-
ting it too low may lead to overestimation of type frequency.

Domain Support Threshold. We first study the effect of
local domain support threshold τdsim at 0.25, 0.5 (default
setting) and 0.75. The results are presented in Figure 7.
F-scores with τdsim = 0.75 are lower than those for the
other thresholds in four out of 20 GTDs. Only School Names
show a significant difference in F-score. Lower F-scores for
higher thresholds are not unexpected since a set of strong
domains with a higher threshold is a subset of a set of strong
domains with a lower threshold. However, there is little
difference between 0.25 and 0.5, so we can choose the value
that produces a reasonable number of meaningful clusters.

Strong Domain Threshold. We next study the effects of
varying the strong domain threshold τstrong for values 0.1,
0.25 (default setting) and 0.5 (detailed results omitted due
to space limitations). Similar to domain support threshold,
when using τstrong = 0.5, the F-score is lower for three GTDs,
most notably for Color with a drop of about 0.8 and School
Names (about 0.2 lower). This threshold of 0.5 may be too
restrictive and we can pick a threshold between 0.1 and 0.25.
These results suggest that our approach is robust to these

thresholds and that it is easy to select effective values.

5.4.4 Performance and Scalablility
We use the full nyc open data containing over 42 million

terms and 212, 766 EQs to evaluate runtime performance of
different D4 components. Starting with a random sample of
10% of EQs, we randomly increase the sample size in steps
of 10% until we reach the full dataset. Experiments were
run on HPC cluster nodes with IntelTMIvyBridge (3.00GHz)
CPUs having 20 Cores. For our experiments we request
10 or 20 cores and 48GB memory. All numbers shown are
averaged over five runs.

Figure 8: Runtime performance of D4 for increasing dataset
sizes using 10 and 20 parallel threads.

Figure 8 shows running times for different D4 components.
The running times for signature blocks generation increase
with the data size in non-linear fashion due to the quadratic
time complexity of computing pairwise similarity between
EQs. However, by doubling the number of parallel threads
from 10 to 20, we can decrease running times by 40− 45%.
For column expansion, the number of iterations and the
pruning method have a large impact on running times. For
conservative, running times are within seconds in all set-
tings we tested. For centrist and liberal, running time
increases with data size and the number of iterations. The
centrist pruning method has the additional need to com-
pute similarity between each signature block and the columns
for all EQs in a column. Running time for local domain dis-
covery is primarily dependent on the size of the (expanded)
columns. Both the column expansion step and the local
domain discovery step behave similar to signature blocks
generation for increasing data size and different numbers of
threads. Running time for strong domain discovery is neg-
ligible compared to the overall running time for D4.

6. CONCLUSIONS
We proposed D4, a data-driven approach to domain dis-

covery. Our framework and algorithms address several chal-
lenges that are common in open data collections. We (1)
introduced the notion of robust context signatures that lie
at the core of D4 and contribute to its effectiveness at dis-
covering domains in the presence of heterogeneous columns
and erroneous data; (2) proposed column-specific signatures
as a means to handle ambiguous terms; (3) showed that,
by expanding columns we can address the problem of in-
complete columns; and (4) by using equivalence classes, D4

can handle datasets that contain millions of distinct values.
Our experimental evaluation which used real, open datasets,
showed that D4 outperforms the state-of-the-art methods for
domain discovery and domain enhancement (Section 5.2 and
5.3). We also analyzed how the different components and
design decisions affect the precision and recall for the discov-
ered domains, and argued that centrist signature pruning
with iterative column expansion provides the best perfor-
mance and at the same time is robust. In the absence of
an accepted benchmark, our experimental evaluation using
large and diverse collections provides compelling evidence of
the effectiveness of the approach we propose. Showing theo-
retical properties is an interesting research problem that can
be explored in future work. Our code and data are avail-
able [6]. We hope that the data can serve as a starting point
for a community-based effort to build a benchmark for the
problem of domain discovery.
Acknowledgements. This work was partially supported
by the DARPA D3M program, NSF award OAC-1640864,
and the NYU Moore Sloan Data Science Environment.

7. REFERENCES
[1] Z. Abedjan, L. Golab, and F. Naumann. Profiling

Relational Data: A Survey. VLDB Journal,
24(4):557–581, 2015.

[2] Z. Abedjan, J. Morcos, I. F. Ilyas, M. Ouzzani,
P. Papotti, and M. Stonebraker. DataXFormer: A
Robust Transformation Discovery System. In ICDE,
pages 1134–1145, 2016.

[3] A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao.
Inference of Regular Expressions for Text Extraction
from Examples. TKDE, 28(5):1217–1230, 2016.

[4] R. Bordawekar and O. Shmueli. Using Word
Embedding to Enable Semantic Queries in Relational
Databases. In DEEM, pages 5:1–5:4, 2017.

[5] Z. Chen, M. Cafarella, and H. V. Jagadish. Long-tail
Vocabulary Dictionary Extraction from the Web. In
WSDM, pages 625–634, 2016.

[6] Data-Driven Domain Discovery (D4). https:
//github.com/VIDA-NYU/domain-discovery-d4.

[7] R. C. Fernandez, Z. Abedjan, F. Koko, G. Yuan,
S. Madden, and M. Stonebraker. Aurum: A Data
Discovery System. In ICDE, pages 1001–1012, 2018.

[8] B. Golshan, A. Y. Halevy, G. A. Mihaila, and W. Tan.
Data Integration: After the Teenage Years. In PODS,
pages 101–106, 2017.

[9] R. Hai, S. Geisler, and C. Quix. Constance: An
Intelligent Data Lake System. In SIGMOD, pages
2097–2100, 2016.

[10] A. Halevy, F. Korn, N. F. Noy, C. Olston,
N. Polyzotis, S. Roy, and S. E. Whang. Goods:
Organizing Google’s Datasets. In SIGMOD, pages
795–806, 2016.

[11] Y. He and D. Xin. SEISA: Set Expansion by Iterative
Similarity Aggregation. In WWW, pages 427–436,
2011.

[12] A. Ilyas, J. M. F. da Trindade, R. Castro Fernandez,
and S. Madden. Extracting Syntactical Patterns from
Databases. In ICDE, pages 41–52, 2018.

[13] S. Kuzi, A. Shtok, and O. Kurland. Query Expansion
Using Word Embeddings. In CIKM, pages 1929–1932.
ACM, 2016.

[14] K. Li, Y. He, and K. Ganjam. Discovering Enterprise
Concepts Using Spreadsheet Tables. In KDD, pages
1873–1882. ACM, 2017.

[15] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean.
Efficient Estimation of Word Representations in
Vector Space. CoRR, abs/1301.3781, 2013.

[16] F. Nargesian, E. Zhu, R. Miller, K. Pu, and
P. Arocena. Data Lake Management: Challenges and
Opportunities. PVLDB, 12(12):1986–1989, 2019.

[17] F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller.
Table Union Search on Open Data. VLDB Journal,
11(7):813–825, 2018.

[18] Open Data for All – 2017 Progress Report. https:
//moda-nyc.github.io/2017-Open-Data-Report,
2017.

[19] Australian Government Open Data.
https://data.gov.au/.

[20] EU Open Data Portal. https://data.europa.eu.

[21] New York City Open Data.
https://opendata.cityofnewyork.us.

[22] Prefeitura de São Paulo: Dados Abertos.
http://dados.prefeitura.sp.gov.br.

[23] U.S. Government’s Open Data.
https://www.data.gov.

[24] J. Pennington, R. Socher, and C. D. Manning. GloVe:
Global Vectors for Word Representation. In EMNLP,
pages 1532–1543, 2014.

[25] X. Rong, Z. Chen, Q. Mei, and E. Adar. EgoSet:
Exploiting Word Ego-Networks and User-Generated
Ontology for Multifaceted Set Expansion. In WSDM,
pages 645–654, 2016.

[26] J. Shen, Z. Wu, D. Lei, J. Shang, X. Ren, and J. Han.
SetExpan: Corpus-Based Set Expansion via Context
Feature Selection and Rank Ensemble. In ECML
PKDD, pages 288–304. Springer, 2017.

[27] T. J. Skluzacek, R. Kumar, R. Chard, G. Harrison,
P. Beckman, K. Chard, and I. Foster. Skluma: An
Extensible Metadata Extraction Pipeline for
Disorganized Data. In eScience, pages 256–266, 2018.

[28] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago:
A Core of Semantic Knowledge. In WWW, pages
697–706, 2007.

[29] Tyler Technologies. Socrata Open Data API.
http://api.us.socrata.com/api/catalog/v1.

[30] C. Wang, K. Chakrabarti, Y. He, K. Ganjam,
Z. Chen, and P. A. Bernstein. Concept Expansion
Using Web Tables. In WWW, pages 1198–1208, 2015.

[31] R. C. Wang and W. W. Cohen. Iterative Set
Expansion of Named Entities Using the Web. In
ICDM, pages 1091–1096, 2008.

[32] Wikipedia. List of Manhattan neighborhoods.
https://en.wikipedia.org/wiki/List_of_

Manhattan_neighborhoods.

[33] M. Yakout, K. Ganjam, K. Chakrabarti, and
S. Chaudhuri. Infogather: Entity Augmentation and
Attribute Discovery by Holistic Matching With Web
Tables. In SIGMOD, pages 97–108, 2012.

[34] P. Yu, Z. Huang, R. Rahimi, and J. Allan.
Corpus-Based Set Expansion with Lexical Features
and Distributed Representations. In SIGIR, pages
1153–1156, 2019.

[35] H. Zamani and W. B. Croft. Estimating Embedding
Vectors for Queries. In ICTIR, pages 123–132, 2016.

[36] Y. Zhang, A. Ogletree, J. Greenberg, and C. Rowell.
Controlled Vocabularies for Scientific Data: Users and
Desired Functionalities. In ASIS&T, pages 1–8, 2015.

https://github.com/VIDA-NYU/domain-discovery-d4
https://github.com/VIDA-NYU/domain-discovery-d4
https://moda-nyc.github.io/2017-Open-Data-Report
https://moda-nyc.github.io/2017-Open-Data-Report
https://data.gov.au/
https://data.europa.eu
https://opendata.cityofnewyork.us
http://dados.prefeitura.sp.gov.br
https://www.data.gov
http://api.us.socrata.com/api/catalog/v1
https://en.wikipedia.org/wiki/List_of_Manhattan_neighborhoods
https://en.wikipedia.org/wiki/List_of_Manhattan_neighborhoods

	Introduction
	Related Work
	Robust Context Signatures
	Context Signatures
	Signature Blocks
	Pruning Signature Blocks
	Column-Specific Robust Signatures

	Domain Discovery
	Column Expansion
	Domain Discovery for Columns
	Strong Domains
	Domain Discovery at Scale

	Experiments
	Experimental Setting
	Domain Discovery
	User-Aided Domain Enhancement
	Evaluation of Different D4 Components
	Signature Pruning
	Column Expansion
	Varying Parameters for Strong Domains
	Performance and Scalablility

	Conclusions
	References

