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Abstract:

We consider the problem of variable selection in high-dimensional sta-
tistical models where the goal is to report a set of variables, out of many
predictors X1, ..., Xp, that are relevant to a response of interest. For lin-
ear high-dimensional model, where the number of parameters exceeds the
number of samples (p > n), we propose a procedure for variables selection
and prove that it controls the directional false discovery rate (FDR) below
a pre-assigned significance level ¢ € [0,1]. We further analyze the statis-
tical power of our framework and show that for designs with subgaussian
rows and a common precision matrix 2 € RPXP | if the minimum nonzero
parameter 6,,;, satisfies

V1Omin — a\/Q(max Qi) log (27}7) — 0,
i€ [p] qso
then this procedure achieves asymptotic power one.

Our framework is built upon the debiasing approach and assumes the
standard condition sp = o(y/n/(logp)?), where so indicates the number
of true positives among the p features. Notably, this framework achieves
exact directional FDR control without any assumption on the amplitude of
unknown regression parameters, and does not require any knowledge of the
distribution of covariates or the noise level. We test our method in synthetic
and real data experiments to assess its performance and to corroborate our
theoretical results.
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1. Introduction

Living in the era of data deluge, modern datasets are often very fine-grained,
including information on a large number of potential explanatory variables. For a
given response of interest, we know a priori that a large portion of these variables
are irrelevant and would like to select a set of predictors that influence the
response. For example, in genome-wide association studies (GWAS), we collect
single nucleotide polymorphism (SNP) information across a large number of loci
and then aim at finding loci that are related to the trait, while being resilient
to false associations.
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The focus of this paper is on high-dimensional regression models where the
number of parameters exceeds the sample size. Since such models are over-
parameterized, they are prone to overfitting. In addition, high-dimensionality
brings noise accumulation and spurious correlations between response and un-
related features, which may lead to wrong statistical inference and false predic-
tions. Model selection is therefore a crucial task in analyzing high-dimensional
models. For a successful model selection, we need to assure that most of the
selected predictors are indeed relevant. This not only leads to noise reduction
and enhances predictions but also offers reproducibility.

To be concrete in using the term “reproducibility”, we characterize it for
statistical inference problem by using the false discovery rate (FDR) criterion,
which is the expected fraction of discoveries that are false positives. The notion
of FDR has been proposed by the groundbreaking work [BH95] and nowadays
is the criterion of choice for statistical inference in large scale hypothesis testing
problem. In their work, Benjamini and Hochberg developed a procedure to con-
trol FDR under a pre-assigned significance level. It has been shown theoretically
that BH procedure controls FDR in some special cases such as independence or
positive dependence of tests [BH95, BY01]. Since initially proposed, there have
been various modifications of BH [BY01, SRC*15, FHG12, Wu08, XCML11]
and its applications in different domains [RYB03, GLN02].

Importantly, BH procedure (and its modifications) assumes that p-values are
given as input for all the hypothesis tests. The p-values are often calculated using
classical formula obtained by using large-sample theory which are theoretically
justified only for the classical setting of fixed dimension p and diverging sample
size n [VAV00]. For example, [LS™14] considers the setting where m i.i.d random
samples of (X1,...,X,) are given and p-values are estimated from the Student’s
t-test statistic. The authors propose a bootstrap calibration method to use with
the BH procedure and show that, under weak dependence among observations,
it can control the false discovery rate when the total number of observations
n = mp is bigger than p(log p)¢. However, for high-dimensional models obtaining
valid p-values is highly nontrivial. This is in part due to the fact that fitting
high-dimensional model often requires the use of nonlinear and non-explicit
estimation procedures and characterizing the distribution of such estimators
is extremely challenging. In the past couple years, there has been a surge of
interest in constructing frequentist p-values and confidence intervals for high-
dimensional models. A common approach is the fundamental idea of debiasing
which was proposed in a series of work [JM14b, ZZ14, JM14a, VAGBRD14,
JM13b, BCH14]. In this approach, starting from a regularized estimator one
first constructs a debiased estimator and then makes inference based on the
asymptotic normality of low-dimensional functionals of the debiased estimator.
This approach also provides asymptotically valid p-values for the null hypotheses
of the form Hy : 6y ; = 0, where 6 ; is a fixed single model parameter. However,
these p-values are correlated and the BH procedure is not guaranteed to control
FDR in this case. The modification of BH for general dependency, that scales
the significance level by 1/(logp) factor [BYO01], also turns out to be overly
conservative and leads to a low power. In [BCC*18], the authors review the
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methods for constructing p-values in the high dimensional setting, their behavior
and limitations, and describe a general set of assumptions under which these
p-values can be used for inference tasks, such as finding confidence intervals and
controlling FDR. In particular, [BCC' 18] extends the result of [LST14] to the
so-called “Many Approximation Means (MAM)” framework and provide a set of
conditions on the dependence among p-values such that the Benjamini-Hochberg
procedure has the FDR control property.

In this paper, we build upon the debiasing approach and propose a procedure
for model selection under the high-dimensional regime, which is guaranteed to
have FDR under a pre-assigned level « € [0, 1]. We call our procedure FCD (for
“FDR Control via Debiasing”) and prove that it controls even a stronger crite-
rion, namely directional FDR. We further analyze its statistical power (without
imposing any assumption on the amplitude of the regression parameters or the
noise level).

Controlling FDR in regression model has been a long standing problem. It
was just a couple years ago that [BC15] proposed the ingenious idea of knockoff
filter. In a nutshell, this approach constructs a set of “knockoff” variables that
are irrelevant to response (conditional on the original covariates) but whose
structure mirrors that of the original covariates. The knockoff variables then
behave as the controls for original covariates. This way, they bypass the need
of constructing p-values and directly select a model with the desired FDR. The
focus of [BC15] was on linear regression model with n > 2p. Later, [CFJL18]
extended the idea of knockoff filter to high-dimensional nonlinear models with
random designs, but assumes that the joint distribution of covariates is known.
Very recently, [FDLL17, BCS18] studied robustness of model-X knockoff to er-
rors in estimating the joint distribution of covariates. A salient feature of the
knockoff approach is that for n > 2p, it controls FDR in finite sample setting
without requiring any assumption on the covariates. However, the extension
model-X knockoffs [CFJL18] requires the knowledge of the joint distribution of
covariates. Moreover, the knockoff approach does not provide valid p-values for
the hypotheses regarding the model parameters. By contrast, the FCD method
that we present in this paper controls FDR as long as sqg = o(y/n/(logp)?),
without requiring the joint distribution of covariates. Furthermore, it comes
with the valid p-values for individual model parameters. However, the FDR
control is proved for the asymptotic regime where n — co. !

1.1. Problem Formulation

Suppose we have recorded n i.i.d observational units (y1,21),. .., (Yn, Tn), with
y; € R representing response variables and z; € RP indicating the vector of
explanatory variables on each sample, also referred to as features. We assume
the classical linear regression model where the observations obey the following

1A finite sample analysis of our method is possible but requires a more involved analysis
and is out of the scope of the present work.
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relation:
Yi = (0o, i) + wi, (1)

Here, 6y € RP? is the unknown vector of coefficients. The symbol (-, -) denotes
the standard inner product. Let y = (y1,...,y,)" and let X € R™*? denote the
feature matrix that have x],...,z] as rows. Then, writing the linear regression
model in matrix form, we obtain

y= X0y +w, (2)

We assume that conditional on the design X, the noise variables w; are
independent with

E(w;|X) =0, E@W}X)=0* E(wl*|X)<Co®, (3)

for some constants C' > 0, a > 2.

Welet S C {1,...,p} denote the set of truly relevant feature variables among
the many that have been recorded. This set corresponds to the support of 6,
ie.,

S =supp(fp) ={1<i<p: by; #0}. (4)

We let sp = |S| be the size of support or in other words the number of true
positives. R

In this paper, we propose a framework to select a set S of the feature vari-
ables, while controlling the directional false discovery rate (FDR) for the selected
variables. This criterion is intimately rated to type S errors (S stands for sign).
Type S error (a.k.a type III error) occurs when we say, with confidence, that a
comparison goes one way while it goes the other way [GT00]. For example, we
claim that 6; > 65, with confidence, while in fact 6; < 0. In other words, we
mistakenly make a claim on the sign (direction) of 61 —63. Gelman et. al. [GT00)
argue that type S error is a more relevant notion in many applications. Tukey
also conveys a similar message in [Tuk91] by arguing that the effects of A and
B, for any A and B, are always different (in some decimal precision) and hence
instead of questioning whether there is any difference in two effects, the valid
question should be about the direction in which effect of A differs from that of
B.

Motivated by this, we formally define directional FDR, denoted by FDRgi,.
For a selected set S of the features along with estimates sign; € {—1,+1} of the
sign of 0y ;, we define

i€ S : sign; # sign(fo,
FDRy, — E[FDPy].  FDPyy — {i sign; # sign(fo,;)}| )
max(|S],1)

where we adopt the convention sign(0) = 0. In words, FDRg;, is the expected
fraction of false discoveries among the selected ones, where a false discovery is
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measured with respect to type S and type I errors. For example, if s/ig§1j = +1,
while 6y ; = 0 (type I error) or 6y ; < 0 (type S error), it is considered as a false

discovery.
Recall that the classical FDR is defined as

{jeS: by, #0}|

FDR =E —
max(|S], 1)

: (6)

that defines the false discoveries only with respect to type I error. Therefore, a
comparison of definitions (5) and (6) reveals that

FDRy;, > FDR, (7)

for any selected set S. As a result, proving that a framework controls FDRg;,
automatically implies that it also controls FDR. R
Likewise, we define the statistical power of a selected set S as

[{j € S : sign; = sign(6y ;)}|

Power = E max([S].1) ) (8)

i.e., for a true discovery not only the corresponding variable should be in fact
non-zero but we should also declare its sign correctly.

The directional FDR has been also studied by [BC16] and it is shown that
the knockoff filter also controls this metric as well as the FDR.

1.2. Our Contributions and Outline of the Paper

Here, we provide a vignette of our contributions:

Controlling directional FDR In Section 2, we propose a method for select-
ing relevant variables using the debiasing approach. We use the acronym
FCD to call this method (standing for “FDR Control via Debiasing”). In
Section 3, we show that for design matrices with subgaussian rows, under
the standard condition sy = o(y/n/(logp)?), the FCD framework achieves
exact directional FDR control. (See Theorem 3.1 for a formal statement).

Characterizing the statistical power In Section 3.2, we characterize the
statistical power of the FCD method. In particular, for designs with sub-
gaussian rows and a common precision matrix 2 € RP*P we show that if
the minimum nonzero coefficient, 0,,;, satisfies

2
/1B min — O'\/2(ID&XQ“) log <p> — 00,

1€ [p] ['EN)

then FCD achieves asymptotic power one.
Recently, [FDLL17] has studied the power of model-X knockoff filter, pro-

vided that 6 yip /@ — oo and assuming a lower bound on the size of the
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model selected by the knockoff procedure. Namely, if \§ | > csp, for some
constant ¢ € (2(gso) !, 1). Under such assumptions, it is shown that the
model-X knockoff approach achieves asymptotic power one. Other than
being restrictive, these assumptions are hard to verify and a sufficient
given condition is that the size of {j : [0o;| > +/so(logp)/n} is at least
csp, for some constant ¢ € (2(¢gsp) !, 1). This condition on the amplitude
of nonzero coefficients is much stronger that the one we need for FCD to
achieve power one.

Numerical validation We validate our approach on both synthetic and real
data in Sections 5 and 6 and compare its performance with the model-X
knockoff. As the simulations suggest, FCD method compares favorably to
the model free knockoff in a wide range of setups. We also compare the
statistical power of FCD with the theoretical characterization and show
that they are in good agreement.

Techniques. In our analysis of FDR, we use ideas from the debiasing ap-
proach [JM14b, ZZ14, JM14a, VAGBRD14, JM13b] together with some results
from [Liul3] regarding the order statistic of sum of Gaussian random variables
(See Lemma 6.1, 6.2 therein.) It is worth mentioning that [Liul3] developed such
results to use in the analysis of a method they proposed for Gaussian graphical
model and its FDR. This context is very different from the problem studied
in this paper and as expected the test statistics are also very different. In our
FCD approach, we construct the test statistics by debiasing the Lasso solution.
These test statistics have a Gaussian part and a bias term. In applying the re-
sults from [Liul3], we need to do a careful analysis of the bias term, and also
the errors in noise level estimation. In addition, by a careful analysis of the test
statistic and the data dependent threshold used in our procedure, we are able
to analyze the statistical power of our approach.

1.3. Further Related Work

There exists a copious theoretical literature developed on high-dimensional re-
gression and the Lasso. Most existing studies have focused on prediction error
[GRO04], model selection properties [MB06, ZY06, Wai09, CP09], estimation con-
sistency [CT05, BRT09]. For exact support recovery, it was known early on that,
even in the classical setting of fixed p and diverging n, support of Lasso will be
different from S (support of true signal) unless the columns of X, with index in
S, are roughly orthogonal to the ones with index outside S [KF00]. This assump-
tion is formalized under the so-called ‘irrepresentability condition’. In a seminal
work, Zhao and Yu [ZY06] show that this condition also allows exact support
recovery in the high-dimensional setting (p > n). Independently, [MB06] stud-
ied model selection problem for random Gaussian designs, with applications
to learning Gaussian graphical models. These papers consider the setting of
so = O(n°), for some ¢ < 1. Further, under a normalization of design such that
its columns have norm at most /n, they require the minimum nonzero ampli-
tude of the signal 0, = min;eg 0y ; to satisfy 0, > cy/so/n. Later, [Wai09)]
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improved these results for the case of random Gaussian designs and showed
that for a broad range of covariance matrices, the Lasso can recover the support
of a signal for which 0;, > coy/(logp)/n. The model selection problem was
also studied under the weaker, generalized irrepresentability condition, for the
Gauss-Lasso estimator [JM13a].

As an alternative to irrepresentability condition, [Lou08] proves the exact
model selection under an incoherence assumption of max;; f]ij = O(1/sp). This
assumption is however stronger than irrepresentability condition [vdGBO09].

As discussed in the introduction, related to the model selection is the prob-
lem of hypothesis testing for high-dimensional regression. In [ZZ11, Biih12],
authors consider null hypotheses of form Hy; : 6p; = 0 and propose methods
that achieve a given power 1 — 3, if |6y ;| > cgo+/so(logp)/n. Later, [JM14b]
proposed a method for random Gaussian designs, with known covariance, under
the setting s/p — ¢ and n/p — 9, for constants £,0 € (0,1). The proposed
method achieves a given power 1 — 3, conditional on that |6y ;| > cgo/y/n. The
debiasing approach [ZZ14, JM14a, VAGBRD14] also has been proposed to test
Hy; in the high-dimensional setting, with so = o(y/n/(logp)). In [JM14al, it
is shown that the debiasing based framework for testing Hy ; achieves a given
power 1 — B, if Omin > cgoy/(logp)/n. Applicability of the debiasing approach
is extended to the setting of so = o(n/(logp)?), for random Gaussian designs,
using a ‘leave-one-out’ technique [JM18].

1.4. Notations

Here, we provide a summary of notations used throughout this paper. We use
[p] = {1,...,p} to refer to the first p integers. For a vector v, we denote its
coordinates by v; and let vg be the restriction of v to indices in set S. Further,
the term support of a vector indicates the nonzero coordinates of that vector,
i.e., supp(v) = {i € [p] : v; # 0}. We use I to denote the identity matrix and
for clarity we might also make its dimension explicit as in I;x4. For a matrix A,
we denote its maximum and minimum singular values by opmax(A4) and omin(A4),
respectively. For a random vector x, we denote its subgaussian norm by |||,
defined as:
1X Ny = sup g~ /2(E|X|7)V9,
q=>1

and for a random vector X € R™, its subgaussian norm is defined as || X ||y, =
sup egm-1 (X, u)||y,. We use ¢(z) = 6’22/2/\/ﬂ to refer to the Gaussian
density and ®(z) = f_zoo ¢(t)dt to denote the Gaussian cumulative distribution.
For two functions f(n) and g(n), with g(n) > 0, we write f(n) = o(g(n)) if g(n)
grows much faster than f(n), i.e., f/g — 0. We also write f(n) = O(g(n)), if
there exists a positive constant C' such that for all sufficiently large values of n,

|f(n)] < Clg(n)].
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2. FCD Procedure: False Discovery Control via Debiasing

In order to describe FCD framework, we first give an overview of debiasing
approach. To this end, we focus on the Lasso estimator [Tib96], given by

~

. 1
G : ) = avg uin { 5y~ X018 + X0l | )

In case the optimization has more than one optimizer we select one of them
arbitrarily. We will often drop the arguments y, X, as they are clear from the
context. There is a vast literature on the properties of the Lasso estimator in the
high-dimensional regime (n < p), mainly through the lens of point estimation
and prediction. A major quantity that plays a key role in the estimation error is
the co-called Compatibility constant of the design matrix X. Let ¥ = X' X/n be
the sample covariance matrix. In the high-dimensional setting, where n < p, 5
is always singular, and this makes the estimation of 6y challenging since for the
parameter family {6 = 6y +v}, with v in the null-space of X, we have X0 = X6,
and hence we get the same response vector. A common assumption to cope with
this problem is requiring ¥ to be nonsingular for a restricted set of directions.

Definition 2.1. For a symmetric matrix S € RPXP and a set S C [p], the
corresponding compatibility constant is defined as

1S1(, 56)
AR

The matrix & € RP* is said to satisfy the compatibility condition if qb(i, S) > ¢o.

¢*(3,5) = min {

© 0 ERP, ||fse|; < 3|6 }
9cRkp € R, 0s<]l1 < 3|0s]1

Despite the great properties of Lasso in terms of point estimation and pre-
diction, it is biased due to the ¢; penalty term. Indeed, bias is unavoidable in
high-dimensional setting (n < p) as one needs to produce a point estimate,
in p dimension, from the observed data in lower dimension, n. Furthermore,
characterizing the exact distribution of regularized estimator is in general not
tractable. To deal with these challenges, the debiasing approach aims at first
removing the bias of Lasso and producing an estimator that is amenable to
distributional characterization.

2.1. Debiasing Lasso

A debiased estimator 89 takes the general simple form of

~ o~

~ 1
09 =0+ ﬁMXT(y - X0). (10)

Here, M is a ‘decorrelating’ matrix. There are various proposals for constructing
M; see e.g. [Z2Z14, IM14a, VAGBRD14]. In this paper we use the construction
introduced by [JM14a]. Here, we assume that the noise w is Gaussian and then
discuss the non-Gaussian case in Section 2.2.
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To set the stage to describe construction of M, note that by plugging in for
y = X0y + w, we have

V@ 00) = /r(MS ~T)(0y — 0) + %MX%, (1)

where & = (XTX)/n is the empirical covariance of the feature vectors. The first
term is the bias and is controlled by |[MS. —I|o, with |-| denoting the entrywise
f+ norm. The sAecond term is the unbiased Gaussian noise whose covariance
works out at ME M. The decorrelating matrix M is constructed via a convex
optimization that aims at reducing bias and variance of the coordinates of A4
at the same time.

Construct M = (mq,ma,...,mp)T € RP*P by letting m; € RP be a solution
to the following convex program

minimize mTSm ,

N (12)
subject to IZm — eilloo < 1,

with e; € RP being the i’th standard unit vector. If any of the above problems
is not feasible, we let M = I,,. Note that M is constructed solely based on X.
The choice of running parameter p will be discussed in the sequel.

The following proposition proved in [JM14a] shows that the error of the debi-
ased estimator 69 can be decomposed as the sum of two ‘bias’ and ‘noise’ terms.
In addition, a high probability bound is established on the bias term [|A]| oo,
which leverages on the properties of the optimization (12) and the estimation
error of the Lasso estimator. Note that the compatibility condition for the de-
sign matrix X is required for Lasso to achieve optimal estimation rate in high
dimension [BvdG11, vdGB09]. In [JM14a], there is also a version of the following
proposition stated for deterministic results, with the compatibility constant ¢q
explicit in the bound (see Theorem 2.3 therein.) The next proposition concerns
the setting of random designs, which per se implies the compatibility condition.
Indeed, by employing a reduction principle established by [RZ11], if the popu-
lation covariance ¥ has minimum singular value ¢pin > 0 and provided a large
enough sample size, namely n > Csglog(p/so), the sample covariance ¥ satisfies
the compatibility condition with constant ¢g = \/Cmin/2, with high probability.

Proposition 2.2. Consider the linear model (2), with gaussian noise, w ~
N(0,0%I,,x,), and let 89 be the debiased estimator given by Eq. (10), with
= a+/(logp)/n. Then, we have the following decomposition:

V@t —60y) = Z+ A, Z|X ~N0,02MEMT), A=+/n(MS -1)(6 —8).
(13)

Consider random design matrices with i.i.d rows and let ¥ = E(x2]) be the
population level covariance. Suppose that omin(X) > ¢min > 0 and opax(X) <
Cmax, for some constants cCpmin, Cmax and max;e ] Y < 1. Further, assume

1/2

that X¥~%/2 has independent subgaussian rows with ||X~1/22 ||y, < k. Then,
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choosing A = co+/(logp)/n, there exists constant C = C(a, k), such that for
n > Csolog(p/so), we have

16acoo \ sologp e e
PqlA]lL, > <4e™ A" 4pT 14
{1l > (o) 208 cqeemp gy,

where ¢; and ¢ are constants depending on «, a, ¢g, Cmin, Cmax-

The next lemma controls the variance of the noise coordinates Z; in terms of
the diagonal entries of the precision matrix.

Lemma 2.3 ( [JM14a]). Let © = ¥~! be the precision matrix. Under the
assumption of Proposition 2.2, the following holds true for any fixed sequence
of integers i = i(n):

P (mISm; — Qi > €) < 2" (/O g, (15)

for k' = 2k%c_! and a constant ¢ = ¢(a) > 0.

min
2.2. Extension to Non-Gaussian Noise

In the decomposition (2.2), we have Z = MXTW/\/n and given that W ~
N(0,%), we have Z|X ~ N(0,02MSMT). In [JM14a), it is shown that by a
slight modification of optimization (12), Z admits the same conditional dis-
tribution even for non-Gaussian noise. For the reader’s convenience and to be
self-contained we briefly explain it here.

Note that for any fixed i € [p], we have

Ty,
m; T;W;

1 n
7= — L with &= I
s T

Conditional on X, the terms {; are zero mean and independent. Moreover,
2;21 E(£]2|X) = n. Therefore, if the Lindeberg’s condition holds, that is to say
for every € > 0, almost surely

Tim S EEI(g] > Vi)l X) =0,
j=1

then Z?ﬂ fj/\/ﬁ|Xi>N(O, 1). The construction of M can slightly be modified
to ensure the Lindeberg’s condition, namely optimization problem (12) should
be modified as follows:

minimize mTSm ,
subject to ISm — €illoe < 1t (16)
| XMoo <n? for arbitrary fixed 0 < 8 < 1/2 —a™ !,

where we recall the parameter a from Eq. (3). The following lemma, which is
from [JM14a], shows that by this modification, the marginals of Z; are asymp-
totically normal.
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Lemma 2.4 ([JM14a], Theorem 4.1). Under conditions (3) on the noise term,
and using optimization (12) to construct M, we have that Z;| X <4 N(0,1).

The above result can be easily generalized to fixed-dimensional marginals of
Z, by using the fact that a vector has a multivariate normal distribution if every
linear combination of its coordinates is normally distributed.

With this overview of debiasing approach we are ready to explain the FCD
procedure.

2.3. FCD Procedure
2.3.1. Construction of Test Statistics

In order to construct the test statistics, we first need to propose a consistent
estimate of noise variance, o2. There are already several proposals for this in
the literature. See e.g., [FLO1, FLO8, SBvdG10, Zhal0, SZ12, BC13, FGH12,
RTF16]. To be concrete, we use the scaled Lasso [SZ12] given by

~ o~y . 1 9 o _
0.0y =g, in (o X0+ 5+ M0f  a)

We state the following lemma that shows & is a consistent estimate of o. We
refer to [JM14a, Lemma 3.3] or [SZ12, Theorem 1] for its proof.

Lemma 2.5. Consider a sequence of design matrices X € R"*P_ with di-
mensions n — oo, p = p(n) — oo. For each n, let ¥ € RP*P such that
Omin(X) > Cmin > 0 and 0pax(X) < cmax < 00, for some constants ¢min, Cmax
and max;e[p X4 < 1. Further, assume that X ¥ ~1/2 has independent subgaus-
sian rows, with zero mean and subgaussian norm |2 ~1/2x; ||, < #. Let & be the
scaled Lasso estimate of the noise level, defined by (17), with A = 2,/(21og p)/n.
Then, assuming so = o(n/(logp)), the estimator & satisfies the following rela-
tion:

. o
lim sup P(‘—l‘ZE) =0.
" 00€ERP, [I60llo<so \' O

Here, PP is w.r.t the randomness of the noise w and the design X.
Define A = MSMT. For i € [p], we define test statistic T; as follows:
pd
T, = Vb . (18)

For a given threshold level ¢t > 0, we reject Hy; if |T;] > ¢ and we return
sign of T; as the estimate of sign of 6y ;. We also let R(t) = >-7_, I(|T;| > t) be
the total set of rejections at threshold ¢. Next, we discuss how to choose a data
dependent threshold ¢ to ensure that directional FDR and FDP are controlled
at a pre-assigned level q € [0,1].
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2.8.2. A Data Dependent Threshold for the Test Statistics

e Step 1: For the pre-assigned level ¢ € [0, 1], let ¢, = (2log p—2loglog p)'/2
and calculate

toinf{Ogtgtp: (19)

2p(1 — @(1))
ROV = q} '

If (19) does not exist then set to = +/2logp.
e Step 2: For i € [p], reject Hy; if |T;| > to.
e Step 3: We return sign; = sign(7;) as the estimate of sign(fp ;).

3. Main Results
3.1. Control of Directional False Discovery Rate

Suppose that the design matrix X has i.i.d rows with ¥ = E(z;2]) being the
population covariance. Let 2 = ¥~ be the precision matrix and recall the def-
inition A = MEXMT, where M is the decorrelating matrix used in construction
of the debiased estimator.
We also define the normalized matrices ° and A° as
Q?j — L AV — % (20)

For a given constant v > 0, define

P(ye0) = {() 11 <05 <100 2 collogp) 27} (@21)

for some constant ¢ > 0. The following theorem states a guarantee on the
directional false discovery rate of the FCD procedure introduced in the previous
section.

Theorem 3.1. Consider random design matrices with i.i.d rows and let X
E(x12]) be the population level covariance. Suppose that oumin(X) > cmin
0 and omax(X) < Cmax, for some constants Cmin, Cmax and max;e(p) 2ii

IAN VO

1. In addition, assume that X>~'/2 has independent subgaussian rows with
|72 ||y, = k. Also assume that:

(i) so = o(v/n/(logp)?).
(ii) There exist positive constants cg, v, such that |T'(v,co)| = o(p**?), for
some constant p € [0,1).

(iii) We have [{(i,7) : 93| > (1 = p)/(1 + p)} = O(p).
Then, for FCD procedure we get

limsup FDRg;, < g. (22)

(n,p)—oc0
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Further, for any € > 0,

lim IED(FDPdir <q+ 5) =1. (23)
(n,p)—o0

Remark 3.2. While directional FDR is the expected directional false discovery
proportion (FDPy;;), it is idealized for a variable selection procedure to control
FDPy;, in any given realization. In general, controlling FDRg;, does not control
the variations of FDPg;,. As noted by [Owe05], the variance of FDP can be large
if the test statistics are correlated, which is the case here. Let us emphasize that
by Eq. (23), our FCD controls FDPg;,, with high probability.

Examples. Here, we provide several examples of the precision matrices that
satisfy conditions (i¢)-(i7) of Theorem 3.1 to demonstrate its applicability.

Ezample 1: Our first example is the circulant covariance matrices, where 3;; =
nli=3l, for some constant 1 € (0,1). It is simple to see that the inverse of
such matrices has at most three nonzero coordinates per row. Therefore,
the conditions will be satisfied by choosing p = 1, and ¢ > 0,7 < oo,
arbitrary.

Ezxample 2: Suppose that Y is block diagonal with size of blocks to bounded
(as p — 00). Then, the precision matrix will also have a block diagonal
structure with blocks of bounded size. It is easy to check conditions, with
choosing p =1 and ¢ > 0,7 < oo, arbitrary.

Example 3: Consider the equi-correlated features, where ¥ = (1 — 7)I + 7117,
for some constant r € (0,1), where 1 € RP denotes the all-one vector.
Then, we have Q = (a — b)I +b11T, with

-9 1 —
gz PZAHL__, L ()
(p=2)r=(p-1)r?+1 (p=2)r=(p-1)r*+1
Note that |b| = O(1/p). Therefore, the conditions hold for arbitrary con-
stants ¢ > 0, 0 < p < 1.

Finally, consider two matrices Q1) and Q) with same diagonal entries
Qfll) = ng% for i € [p], such that Q) dominates Q) on off-diagonal en-
tries, i.e., QS) > Qg), for i # j € [p]. Then it is easy to see that if Q1) satisfies
Conditions (i)-(ii), so does Q).

3.2. Power Analysis
Recall that Sy = supp(fy) is the set of indices of the truly significant features.

Let S denote the set of significant parameters returned by our FCD procedure,
namely

S={1<j<p:|Tj|>to}. (25)
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The power of a selected model S is defined as

R I € g. s?g\n = sign(fo ;) }
P =E i |
ower(.S) max(|S], 1)

We are now ready to characterize the statistical power of the FCD procedure
for the linear model (2).

(26)

Theorem 3.3. Consider a sequence of random design matrices X € R"™*P
with dimension n — oo, p = p(n) — oo and ¥ = E(x1z]) € RP*P. Suppose that
Omin(X) > Cmin > 0 and omax(X) < CGnaz, for some constants ¢min, Cmax and
max;c(p) Ly < 1. Further, assume that X% ~!/2 has independent subgaussian
rows with ||271/2x24|,, = x. Suppose that sy = o(y/n/(logp)?) and for i € S =

supp(6p), we have |0p ;| > (o/v/n)\/294;10g(p/s0). Then, the following holds

true:

-~

.. . Power(S)
1 f——i—>1 2
o) 2 0

1—6<00,n>=;ZF(q3°,“W>, (28)

Py P oV
where, for a € [0,1] and v € R, the function F'(a,u) is defined as follows:
Fla,u)=1—-®@ (1 —a/2) —u). (29)
We refer to Section 7.2 for the proof of Theorem 3.3.

Corollary 3.4. It is easy to see that for any fixed o € [0, 1], function u
F(«,u) is monotone increasing. Therefore, as a result of Theorem 3.3, we have

-~

o Power(5)

1 f >1.

me (12, Y}~ 30
P oV

Corollary 3.5. Under the assumptions of Theorem 3.3, if
V1B — 0\/2 max($;;) log(2p/(gso)) — oo,

i€lp]

then Power(S) — 1, as n — oc.

Proof of Corollary 3.5 is given in Appendix A.4.

4. Improved Results for Gaussian Designs

In [JM18], the authors improved upon Proposition 2.2 for Gaussian designs by
providing a sharper bound for ||Al|, using a ‘leave-one-out’ technique. Specifi-
cally, for Gaussian designs with known population covariance, it is shown that
[Allse = 0p(y/%2 log p). The same bound holds when the population covariance
is unknown but can be estimated sufficiently well. e.g., if the inverse covariance
is sufficiently sparse. In this section, we aim at employing this result to relax
the sparsity assumption (Condition (i)) in Theorem 3.1.
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4.1. Known Covariance

Consider linear model (2) where the design X has independent Gaussian rows,
with zero mean and covariance . Also, denote by 2 = £~! be the inverse pop-
ulation covariance, a.k.a precision matrix. Here, we assume that ¥ is known and
consider the test statistic T}, given by (18) where 64 is the debiased estimator
with M = Q.

For an integer 1 < k < p, define 7(Q, k) as follows:2

Yok)= Yaa) e
7(%, k) Agﬁﬁtﬁ‘gkll( 4,4)" oo s

where || - ||« denotes the £, operator norm (maximum ¢; norm of the rows).
As proved in [JM18], we have the following bound in place:

(S, k) < min{HQHoo, \/Eamax(ﬂ)}.

The next theorem is analogues to Theorem 3.1 for Gaussian designs, under a
weaker assumption on the sparsity level sq.

Theorem 4.1. (Known covariance). Consider a sequence of Gaussian random
design matrices X € R"*P_ with dimension n — oo, p = p(n) — oco. Suppose
that X has i.i.d rows with zero mean and ¥ = E(x;z]) be the population
covariance. Suppose that omin(X) > ¢min > 0 and opmax(X) < Cmax, for some
constants Cmin, Cmax and max;epy Xy < 1. Further, assume that:

(i) so = o(n/(logp)?).
(17) Let Co = (32¢max/Cmin) + 1. We have 7(X, Coso) < 79, for some constant
70 > 0.
(#73) There exist positive constants cg, 7, such that |T'(vy,co)| = o(p***), for
some constant p € [0,1).

(iv) We have [{(i,) : || > (1= p)/(1+ p)} = O(p).
Then, for FCD procedure we get

lim sup FDRy;; < q. (31)
(n,p)—o0
Further, for any € > 0,
lim IP’(FDPdir <q+ 5) =1. (32)
(n,p)—o0

The proof of Theorem 4.1 proceeds along the same lines as proof of Theo-
rem 3.1 and uses the result of [JM18, Theorem 3.8]. We refer to section 7.3 for
its proof.

2In [JM18], the authors use the notation p(Q, k) to refer to the same quantity. We avoid
that notation as we have used the symbol p in Condition (iii) in Theorem 4.1.
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4.2. Unknown Covariance

For the case of unknown covariance, we follow the construction of the decor-
relating matrix M proposed in [VAGBRDI14]. This construction is based on
node-wise Lasso on matrix X. Formally, for ¢ € [p], let Z; be the i-th column of
X and represent it via sparse regression against all other columns:

A 3 . 1, . -
() = argmin{ = 17 — Xyl + Al }
~yERP n

where X ; is the submatrix obtained by removing the i-th column. Let

1 Y2 o T
~ —A2,1 1 N2
C= . . : -
_’3’p,1 _ﬁp,Q e 1
Also define
- 1
T? = diag(77,...,72), 77 =—(% — Xui¥i) 4. (33)
n

The decorating matrix M is then defined as
M=T2C. (34)

We consider the FDC procedure, where the test statistic 7; is given by (18) and
6 is the debiased estimator with the decorrelating matrix M (34).
Define the sparsity level sq for the precision matrix €2 as:

s = r_nax‘{j #1,Q;; # O}‘ .
i€[p]

In words, sq is the maximum sparsity of the rows of 2.

For the case of Gaussian designs with unknown covariance, we prove that the
directional FDR of the FCD procedure is controlled under a weaker assumption
on the sparsity of the parameters s, provided sq is small enough.

Theorem 4.2. (Unknown covariance). Consider a sequence of Gaussian random
design matrices X € R™"*? with dimension n — oo, p = p(n) — oo and X has
i.i.d rows with zero mean and covariance X. Assume that opin(X) > cmin >
0 and omax(X) < Cmax, for some constants cmin, Cmax and max;ecp Xy < 1.
Further, suppose that

(i) so = o(n/(logp)*) and min(sg, sq) = o(v/n/(logp)?).

and Conditions (i7), (i), (¢v) in Theorem 4.1 hold for ¥. Then, for FCD pro-
cedure we get

lim sup FDRg;; < g. (35)

(n,p)—o0

imsart-ejs ver. 2014/10/16 file: FDR_EJS_submit.tex date: March 20, 2019



A. Javanmard and H. Javadi/False Discovery Rate Control via Debiased Lasso 17
Further, for any € > 0,

lim P(FDPdir <q+ g) ~1. (36)

(n,p)—o0

The proof of Theorem 4.2 proceeds along the same lines as proof of Theo-
rem 3.1 and uses the result of [JM18, Theorem 3.13]. We refer to section 7.4 for
its proof.

5. Numerical Experiments

We counsider linear model (2) where the design matrix X is generated by drawing
its rows independently from N(0,X). The covariance ¥ € RP*P has a circulant
structure with ¥;; = 5!"=7|, for some constant 1 € (0, 1). We then normalize the
columns of X to have unit norm. We generate the vector of coefficients 8y € R?
by choosing a subset of indices S C [p] at random, of size sy and setting 6 ;
from {£A} uniformly at random and 6y ; = 0, for ¢ ¢ Sp. The noise term W is
drawn from N(0,1,, ).

We perform three sets of simulations to compare the performance of FCD
procedure with model free knockoff and to examine the effects of sparsity level,
signal magnitude, and feature correlation. We also compare the empirical power
of FCD with the analytical lower bound provided in Corollary 3.4. In all simu-
lations, we set the target level FDR to ¢ = 0.1.

For FCD procedure, we use the implementation of the debiased method pro-
vided by http://web.stanford.edu/montanar/sslasso/, to construct the de-
biased estimator. For model free knockoff, we use the implantation provided by
http://web.stanford.edu/group/candes/knockoffs/.

Effect of Signal Amplitude: We choose n = 2000, p = 3000, & = 100,
n = 0.1 and vary the signal amplitude in the set A € {0.5,1,1.5,...,5.5,6}. For
the FCD procedure and the model free knockoff, we compute the directional
FDR and power by averaging across 100 realizations of noise and the generation
of coefficient vector 6y. The results are plotted in Figure 1. As we observe,
both methods control FDRg;, under the target level ¢ = 0.1. As expected, the
power of both procedures increases as the signal amplitude increases, with FCD
procedure having larger power than the knockoff method over the entire range
of signal amplitudes. The FCD procedure turn out to be more powerful than
knockoff procedure.

We also plot the analytical lower bound on the power of FCD procedure,
given in Corollary 3.4. As we see the lower bound is quite close to the actual
empirical power of FCD procedure in the setup tested.

Effect of feature correlation: We test the effect of feature correlations on
the performance of FCD procedure, comparing it with the model free knockoff.
We set n = 700, p = 1000, k = 50, A = 4.5. Recall that the rows of the design
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Fi1c 1. Testing FCD and model free knockoff methods with varying the coefficients amplitude
A. Here, n = 2000, p = 3000, k = 100, n = 0.1. The target level is ¢ = 10%. FDRy;, and
power are computed by averaging over 100 realizations of noise and coefficient vectors.
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Fic 2. Testing FCD and model free knockoff methods with varying the feature correlation
parameter n. Here, n = 700, p = 1000, k = 50, A = 4.5. The target level is ¢ = 10%. FDRg;,
and power are computed by averaging over 100 realizations of noise and design matrices.

matrix X are generated from a N(0, X) distribution, with X;; = nli=71, and then
the columns of X are normalized to have unit norm. We vary the parameter n
in the set {0.1,0.15,0.2,...,0.75,0.8}. For each value of 7, we compute FDRg;,
and power for both methods, by averaging over 100 realizations of noise and
design matrix X. The results are displayed in Figure 2.

As observed, both methods control FDRg;, over the range of correlations
tested. From the power plot, we see that the power of both methods decays as
the features correlations increase. This is expected because when the features
are highly correlated it is harder to distinguish between them and report the
truly significant ones. Indeed, for large values of 7, both methods select a few
variables. This way, FDRg;; is still controlled but the power is low. The proposed
FCD procedure has higher power than model free knockoff for n < 0.65.

Effect of Sparsity: Here, we set n = 2000, p = 3000, A = 4.5, n = 0.1 and
vary the sparsity level of the coefficients in the set k& € {10,15,20,...,130}. For
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Fic 3. Testing FCD and model free knockoff methods with varying the sparsity level k. Here,
n = 2000, p = 3000, A = 4.5, n = 0.1. The target level is ¢ = 10%. FDRg;, and power are
computed by averaging over 100 realizations of noise and coefficient vectors.

both methods, the power and FDR are computed by averaging over 100 trials of
noise and the generation of coefficient vector 6. Both methods control FDRg;,
over the entire range, with FCD achieving lower FDRg;, for small values of k. In
terms of power, both methods have close power, and the FCD has higher power
for small k.

6. Real Data Experiments

In this section we evaluate the proposed method to find the mutations in the
Human Immunodeficiency Virus Type 1 associated with drug resistance®. This
dataset is presented and analyzed in [RTW'06] and is obtained by analyzing
HIV-1 subtype B sequences from persons with histories of antiretroviral treat-
ment. The dataset contains the mutations in the protease and reverse tran-
scriptase (RT) positions of the HIV-1 subtype B sequences which correspond
to resistance to Protease Inhibitors (PI), to nucleoside reverse transcriptase in-
hibitors (NRTIs) and to non-nucleoside RT inhibitors (NNRTIs).

In order to deal with missing measurements and preprocessing the dataset
we mostly follow the steps taken in [BC15]. The design matrix X € {0,1}"*?
is formed by letting X;; = 1 if the ¢’th sample contains the j’th mutation and
X;; = 0 otherwise. Further, for a specific drug, the i’th entry of the response
vector y; denotes the logarithm of the increase in the resistance to that drug in
the 7’th patient. We let ¢ = 0.2 and we apply the FCD procedure described in
subsection 2.3 to detect the mutations in the HIV-1 associated with resistance
to each drug. In order to evaluate the performance of our method, we compare
it with the knockoff filter procedure [BC15] with the test statistics based on
lasso. The size of the dataset (n, p) for each drug is noted under the bar plot
corresponding to that drug. For all cases, except the data for resistance to TDF,
we have n > 2p.

3The dataset is available online at https://hivdb.stanford.edu/pages/published_
analysis/genophenoPNAS2006.
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We have used two different methods for generating the knockoff variables;
in knockoffl, the knockoff variables are generated by solving a semi-definite
program (SDP) and in knockoff2, equi-correlated knockoff variables are created
without solving an SDP at a lower computational cost*. Since this is a real
data experiment, there is no ground truth. However, we use the methodology in
[BC15] to assess our results. In order to do this, we evaluate the reproducibility
of the outcomes of these procedures by comparing them with treatment-selected
mutation (TSM) panels provided in [RFZ05]. These panels contain mutations
that are observed more frequently in virus samples from patients that have been
treated by each drug in compare with the patients who have never been treated
with that drug. Since these panels are created independently from the dataset
that we use, they can provide a good measure for validating the reproducibility
of the results obtained by each procedure.

A summary of the results can be seen in Figures 4, 5, 6. It can be seen that
the FCD method achieves the target FDR level of ¢ = 0.2 and the obtained
power in half of the cases (8 out of 16 drugs) is larger than the power achieved
by the knockoff filter. Overall, the achieved power is comparable with the power
of the knockoff filter method.

7. Proof of Main Theorems
7.1. Proof of Theorem 3.1

Define G(t) = 2(1—®(t)), with ®(¢) denoting the standard Gaussian cumulative
distribution. We start by two lemmas about the properties of G(t).

Lemma 7.1. For all ¢t > 0, we have

2

T < GO < 001, (37)

where ¢(t) = e‘t2/2/\/ 27 is the standard Gaussian density.

Lemma 7.1 is the standard trial bound on the Gaussian distribution and its
proof is omitted.

Lemma 7.2. For all ¢ > 0, ¢ < min(1,1/t) and § < min(1, 1/t?), the following
holds true:

G((1—8)t —¢)

< 2.
G <14 8(e+et+ 6+ dt%) (38)

Proof of Lemma 7.2 is given in Appendix A.1.
Using Proposition (2.2), we have
T — Vo,

1074 O
ovVAh;, o " ovA;

(39)

4More information regarding the procedure are available at https://web.stanford.edu/
groupcandes/knockoffs/software/knockoff/index.html.
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Fic 4. Summary of the results of applying the knockoff filter and FCD for detecting the
mutation positions in HIV-1 associated with resistance to type-PI drugs using the dataset
in [RTWt06]. In these experiments we have used ¢ = 0.2. In the plots, blue bars show the
number of detected positions by different methods that appear in the TSM panels. On top
of each bar the proportion of detected mutations that appear in the TSM panel (an estimate
for FDP) and the proportion of mutations in the TSM panel that are detected by different
methods (an estimate for power) are stated.

Resistance to x3TC Resistance to ABC Resistance to AZT

9 TSI
—Notin TSM st

2
£ 2
2 15
p
£
I i
H
s
Knockol Knockofl2 ol Knockoff Knockofl2 Knockoff Knockoft2 =3
(q=0.20, Dataset size: n=629, p=283) (9=0.20, Dataset size: n=623, p=283) (9=0.20, Dataset size: n=626, p=283)
2 Resistance to DT 2 Resistance to DDI 18 Resistance to TDF

£0P-0 18, Pover-050
FDP-022 Pover-088.

Knockoff2 FcD
(g=0.20, Dataset size: n=351, p=215)

Knockol1

Knockol1 Knockolf1

Knockoff2 FCD Knockoff2
(9=0.20, Dataset size: n=625, p=281) (g=0.20, Dataset size: n=628, p=283)

Fic 5. Same as Figure 4 for type-NRTI drugs.
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Resistance to EFV NVP
T

£0P-0.5 Power-060

#HIV-1 RT positions sel

Knocko1 Knocko1 Knocko1

Knockoft2 FoD
(4=0.20, Dataset size: =744, p=313)

Knockoff2
(q=0.20, Dataset size: n=732, p=312)

Knockoff2
(g=0.20, Dataset size: n=730, p=305)

F1c 6. Same as Figure 4 for type-NNRTI drugs.

where Z; ~ N(0,A%). By invoking [JM14a, Lemma 3.1], A;; are bounded from
below by an arbitrary fixed constant 0 < ¢ < 1, for large enough n. In addition,
since |AY — Q0| = 0,(1), for (i,7) € [(y,c0)° we have

A7 < C(logp) ™77, (40)

for some constant C' > 0. Further, by Condition (#i7) in the theorem statement,
we have

. 1—p
100 _
{61951 > 1204 = 0). (41)
Define S>¢ = {i € [p] : 0p,; > 0} and S<¢o = {i € [p] : 6p,; < 0}.

We first consider the case that g, given by (19), does not exist. In this case,
to = v/2log p and for any ¢ > 0 we have

P(ZH (sien, # sign(00.:)) = 1) < P( > (T = V2logp) = 1) (42)

iESSO

+P< 3 H(Tig—\/@) 21). (43)

iESZO
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We can bound the first term on the right hand side above as

]P’( 3 H(Ti>\/@)>1>

i€S<o

sP( > H(fZ+ B s \/2logp> > 1)
ag

iESSO g A“
= _0 | Al
<P 1(Z > 2\ /2logp— 120 ) >
< (Z >, V2logp— "R ) >
7,€SS()
< m?)](IP’(Z1>(1—E)\/2logp—6
1€(p

+P{J|All zas\/E}HP{ 71 Zs}
g

<26 ((1-2)V2logp—¢)
-1 25}.

+P{||A|l = oeve} + IP{
which goes to zero as n,p — oo, due to Proposition 2.2 along with Condition
(i), that sg = o(y/n/(log p)?), and using Lemma 2.5. Similarly, and by symmetry,
the second term goes to zero as n,p — oo and the claim follows.
We next focus on the event that to, given by (19) exists. By definition of tg
in this case, we have

Q)

pG(to)
Rtoyvi 1!

(Indeed, it is clear that the left-hand side is at most ¢g. Equality holds since tg
is the minimum ¢, with such property.)
Define Q(t) = G(t)/2 for all t € R. Let

Treso, (1T < 1) = QO} + s, (LT > 1) - Q1))

Ap = 0;15% D (44)
Then,
ZiESZO I(T; < —to) + ZiESSD I(T; > to)
FDPair(to) = R(to) V1
pG(to)Ap + 50Q(to) + 2(p — s0)Q(to)
< Rto) (45)
< POWIA+A) g, (46)

- R(to)

Hence, we need to prove that A, — 0, in probability. Note that
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Sies, LT > 1) — Q(1)}
tos {2200 | "
N Diess, (TG < —t) —Q(t)}
pC?()
Dicso (LT > 1) (t)}
=30, pG(0) \ 1)
Dicss, (LT < —t) (t)}
" ogtlsptp pG(t) ‘ (49)

Note that by symmetry it is sufficient to prove that the first term in (47) goes
to zero in probability. Consider a discretization 0 < 7 < 1 < ... < 7 = t;, such
that 7; — 751 = vp, for 1 < j <b—1and 7 — 7—1 < vp, where v, = 1/y/logp.
Hence, b ~ t,/vp. For any t € [1;_1, 7;], we have

Ziesso I(T; > 7)) Q(7;) < Ziesgo I(T; = t)

pQ(75) . Q(rj—1) — pQ(t)
_ Zies, (=751 Q1)
- pQ(Tj-1) Q(5)

Hence, it suffices to show that

Yies AT = 75) — Q(Tj)}‘
pQ(7;)

max -0 (50)

0<j<b

in probability.
In the following lemma, we provide sufficient conditions to obtain Eq. (50).

Lemma 7.3. Suppose that for any § > 0, the followings hold:

oi?ftpp{’ZiES;(éH((t? S 1’ > 5} — o(1) (51)
and
ty {’ZZES< (T; > t) 1’ > 5}dt = o(vy) (52)

where t, = (2logp — 2loglog p)'/? and v, = (logp)~*/2, then (50) hold true.

We refer to Appendix A.2 for the proof of Lemma 7.3.
By virtue of Lemma 7.3 we only need to prove Egs. (51) and (52). We start
by analyzing the following expression
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Sies {LT; 2 t) = P(T; 2 1)} 2
{‘ - PQ(t) } (53)
< Yijeso \P(Ti 26, T; =2 t) = P(T; = )P(T; > t)}
- PEQ(t)?
! P(T; > t,T; > t)
<= _— —
G .].GZSZO Q(t)?
1 P(T; > t,T; > t)
=R Doz " 54
T g] Q(t)2 (54)
with po = |S<o| and
~ Oz Ai
BV v (55)

The last inequality of (53) holds because 6y,; < 0 for ¢ € S<¢ and therefore
T, < T, (Recall definition of T;, given by Eq. (39).) Further, because S¢ =
{i € [p] : 60,; = 0} C S<o, we have py > p — sg. Since sg = o(v/n/(logp)?) by
Condition (i), we have pyg = Q(p).

We partition the set {(¢,7) : 4,5 € [p]} into two disjoint sets, namely T'(y, ¢o)
(highly correlated test statistics) and I'(vy, ¢p)¢ (weakly correlated test statistics).
(Recall the definition of set I'(vy, ¢g) given by (21).) We analyze the contribution
of each set separately.

7.1.1. Highly correlated test statistics (I'(y,co))

~ - 0

We first consider the set I'(7y, ¢p). Note that (Z;, Z;) ~ N <0, {Alo Al }) Using
ij

(39), we have

- - _ 5 A; ~ & A
P(TiZt,szt)§P<Zi>Ut,Zj>0t J )
(o

o A“ g g Ajj

SP(Zz > (l—El)t—ag,Z‘ > (1—61)t—€2>

+P{All, > Jeg\f}+ﬂm{ 1' >€1} (56)
2
e Uan}JFP{ _1’ >€1} (57)

where the last inequality follows from [Liul3, Lemma 6.2].
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Let ¥(p) = {(i,j) Li g€ [l A > (1—p)/(1 +p)}. Note that by (41) and
since [A” — QOIOO = 0,(1), we have |¥(p)| = O(p). We can write

1 P(T; >t,T;>t) 1 P(T; > t,T; > t)
w2 Qo Sml 2 QW
O (i,5)€T (v,c0) Ot (ig)ev(p)

Q(t)?

(1.6 €T (7.0 \ ¥ ()
(58)

We treat the terms on the right hand side separately. For the first term, since
A?; <1, by using (57), we have

1 P(T, > t,T; > t)
n 2 Q(1)?

(1,5)€¥(p)

2 (p)| {C((l_gl)t_@)—%xp (- (=)t =) /2)

= Q0
o)
< cp-l{ (A2 (e e
* o0e (IP’{|A||OO > oeyy/c} —HP’{ g - 1‘ > 51}) }

where in the second inequality we used the fact that |¥(p)| = O(p) and that
po = Q(p). Take e5 = sp(logp)/+/n. By using Lemmas 2.2, 2.5, and 7.2, we get

+P{||A]l > ogeav/c} +]P>{

1

1 P(T; > t,T; >t
— PT2tT;2t) <Cp ' (14l 4¢3 +e3t” +eit?) et’/2
Po Q(t)z
(4,5)€¥(p)
-1
] CH NN (59)

—HP’{ 0—1‘251}>
g

< C’p_l{(l te2 4 e2)et/? (60)

T et /26342 1 /2634

o))

(61)

1 —cin —c2
+ 0(1)? (6 +p —HP’{
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for some constant C' > 0.
To bound the second term on the right-hand side of Eq. (58), note that for
(i,5) € T(7,c0) \ ¥(p), we have A, < (1 — p)/(1 + p). Thus, using (57)

1] —

L P(T; > t,T; > 1)
= Z A
B3 gy errm\ e @)
IT(7, o) —2 2
< p%Q(t)Q{C (1 —e1)t —eq) “exp (—(1 +p)((1—e1)t—e2) /2)

+P{[|A]l >062\f}+IP’{

=)
g

{ (G (1 —e tEQ))Qexp ((1 —p) (1 —e1)t —e5)° /2)
1

S RN

+Q(t) (P{AH >052\f}+]?{

for any arbitrary constant ¢’ > 0.
Hence, using Lemmas 2.2, 2.5, and 7.2, we get

1 P(T, > t,T; > t)
] 2 Q1)
(i:) €T (7,00 \ W ()
<Pt (143 4 e 4 &2 + 2¢4) -0/

1
+Clg() <P{A” 082[}+P{—1‘>51})
< c’pp1{(1—1—5%4—5%)6(1"”2/24—6(1 p)t?/2 2t2—|—e(1 p)t?/2 2t4
+L e 4 p 24P :—1 > (63)
Qt)? o

uniformly for 0 <t < ¢,. and for any arbitrary constant ¢’ > 0.
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7.1.2. Weakly correlated test statistics (T'(vy, o))

We next consider I'(vy,¢)¢ N S<p. Using [Liul3, Lemma 6.1] (for d = 2 in its
statement) and Eq. (56), we have

P(T; >, 15 >t) ‘

0cier, Q(t)?
1 s 0, A o, A )
B Og;lgtp Q(t)zp (Zz ~ Ut o Aii,ZJ ” (Tt o Ajj> 1‘
1 ~ -
< Og?gptp WP (ZZ > (1 — El)t — 62,Zj > (1 — 61)t — 82)) — 1’
+ g (PUI81. 2 oeave} +2{|2 1) 20 })
QU1 — &)t — >)
< o (U -
P (Zz > (1 — El)t — &9, Zj > (1 — El)t — 52))
sup -1
0<t<t, QU1 —e1)t — &2)?
Q((1 —e1)t —e2) _
oD, ( 0) ) 1 (65)
. _
+ gy (PUALL 2 ovah +P{|2 -1] 21 })

< (14ef+e5+eity +e5t2)Clogp) ™7 + C (€5 + €5 + €1ty + €5t2)

7@(2 2 (e‘cm +p™® —HP’{ g— 1’ > 51}> ) (66)
P

for some constant C' > 0, where vy, = min(v, 1/2). In the last inequality above,
we applied Lemma 7.1 (Note that Q(t) = G(t)/2 by definition). Therefore, by
employing bound (66) for all (¢, ) € T'(y,¢)¢, we get

+

3 P(T, > t,T; > t)
e e
(i,j)EF(W,Co)C Q( )
<C(f+e3+eity+e5t2) (14 (logp) " 77) + Clogp) "

1 _ _ Cy T (v, co)°
+— e +p CQ+P{1‘25}>+1, 67
Q(tp>2< > : R (67)

uniformly for 0 < ¢t < t,, and for some positive constants C, ¢y, cz. Note that
this inequality is obtained by applying .

k]
S|
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Combining (53), (58) with bounds (61), (63) and (67), we obtain that

{‘Zles@{ﬂ (Ti =) - P(T; = 1) 2}
pQ(t)
<O+ 3+ +e32) (14 (logp) ™ 7 4 ple!/2 4 prt im0 2)

1 —C1n C: o
—_— 1 2 L P |- —1] >
e GRS FALERYY
2
+c/pp—1€(1—p)t2/2+Cp—1et2/2+c(logp)—l—’yl _~_%_1’ (68)
0

uniformly for 0 <t < ¢, some positive constants C, c1, ¢z and for any constant
d > 0.

We are now ready to prove the conditions of Lemma 7.3, namely Egs. (51)
and (52). Fix arbitrary constant § > 0. By Chebyshev’s inequality, we write

{[Eeinz0 ). )

< 1E{‘Zies<o{H<Ti > 1)~ P(T; > )} 2}
IS pQ(t)
< (% [C (51 + 52 + €1t4 + 52t2) (1 + (logp)flfﬁh +p716t2/2 +pﬂfle(lfp)t2/2)

1 ~
—an T2+ P - -1 >
e G R
2
Jrc/pp16(1p)t2/2+cp1€t2/2+c(logp)l’YlJer1:|’ (69)
0

where the second step follows from (68), uniformly for 0 < ¢ <t, and for some
constant C' > 0 and an arbitrarily small constant ¢’ > 0. Hence, by substituting
for ¢, = (2logp — 2loglog p)'/2, we obtain

(P>}

1 L _ _
<= {40 (e7 + &3 +el(logp)® + e logp) (1 + (logp) ™'~ + (logp) ' + (logp) ')

62
+p° (e cl"+p_”2+IP’{’;—1‘ >51}>

2
+C (logp) ' +¢ (logp) """ 4+ Clogp) ™ + % - 1} : (70)
0

sup P
0<t<t,

Recall that g2 = so(logp)/v/n. We take 1 = /so(logp)/n. By [JM14a, Lemma
3.3], we have that for this choice of 1, P{|6 /0 — 1| > £1} — 0 and hence Eq.(51)
holds.

Likewise, (52) holds because continuing from (69) and by applying reverse
Fatou Lemma, we can write
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t {‘ZzGS«) ‘ }

tp
/ [C(sl+€2+61t4+52t2 ( (logp) ™™™ +p~2 e’/ 4 pplei=p)t? /2)
0

o)) -

+clpp—1e(1—p)t2/2 —&-Cp_letz/Q _’_C(logp)—l—»ﬂ} dt

—i—tf,etp( Tan 4 pT °2+P{

< C (3t + 3ty + 25+ £383) (1 + (logp) ™1™ +p~let’/2 4 p”_le(l_p)tz/2>

f2a)) m

+ c'p”_115,,<e(1_p)ti/2 + C’p_ltpeti/2 + Ct,y(logp)~tm
< 2C (3(1ogp)*? + (10 p)*/2) (1+ (log p) ™~ + (togp) " + (logp) ')

pz(logp)_l/2 ( Cl"-i—p_cz—f—]P’{ 0—1‘ >€1}> (73)
+ c(logp) =277 + C(log p)~*/% + C(log p) ~1/>
= 0((1ogp)71/2) = o(vp) . (74)

In the last step we used the probabilistic bound on |g/0 — 1|, given in [SZ12,

Theorem 2.1], with e; = /so(log p)/n, and assumption sy = o (y/n/(logp)?).

This shows that Eq. (52) holds and hence completes the proof.

+ et ( Tanppe +IP’{

7.2. Proof of Theorem 3.3

The threshold ¢y retuned by the FCD procedure is data-dependent. To analyze
the power, we first upper bound ¢y by a data-independent threshold t,.
Lemma 7.4. Under the assumptions of Theorem 3.3, we have
450
to <ty, ti= 1—=—(1-0(1 .
o< (122 o)

Proof of Lemma 7.4 is given in Appendix A.3.
Since tg < t, by Lemma 7.4, if we replace ¢y by t., we obtain a lower bound
on the power. For fixed arbitrarily small constants cg, d, €, define

G = G(5, c0,) = { max| i = Ul < co, 17/0 ~ 1 <6, |l < ¢}

Define Sy = {i € [p] : 6o > 0} and S_ = {i € [p] : 6p; < 0}. Therefore,
S =5, US_. We have

imsart-ejs ver. 2014/10/16 file: FDR_EJS_submit.tex date: March 20, 2019



A. Javanmard and H. Javadi/False Discovery Rate Control via Debiased Lasso 31

Power — E [{j € S : sign; = sign(6o ;) }|
max(]S],1)
1 1
— S — g
. .Z P(T; > t,) + ” > P(T < —t)
€Sy i€Sy
1 NG 1 N
= — P ¢ ty — P Lo —t,
5 2 PG ) 5 ;S: Grae=—")
1 o~ \/ﬁeo PESAY
= — Pl =Z; 2 >ty 75
S0 Z (8 + 6'\ Aii - ) ( )
’L€S+
1 ~ 0o + A
+= S P(2Zi+ Viboit Bi oy (76)
s0 55 o ov A

Define 7; = (v/nbo,; + A;)/(0v/Ai;). On event G, we have

, - _ \/TTLQOJ‘ — & o \/ﬁeo,i +e€

<ot =
nzznz—a\/m7 Uzgnz—am'
Using Equation (76), we have
1 o
Power > — ;s: P <[Zi > ;t*} .H(g)) (77)
1 _5 .
e ezsj P ([Z < ) H(Q)) —P(g°)
1
I ({Z,- +n7 > (14 5)@} H(g)) (78)
50 l€S+
1 N ¢
+ 5—0; P ([Z +n <-(1 +5)t*} H(g)) - P(g9)
= LS P(Zita > (1+0)8) RO (79)
50 i€S+
£ L S B(Zi ot < (14 0)1) B(G) ~ PG
0 i€ES_

Recall that s = o(y/n/(logp)?) as per Condition (i), and by using Propo-
sition 2.2 and lemma 2.5, event G holds with high probability and indeed it is
easy to see that for O, > (0/v/n)/2log(p/so), we have

lim sup P(G)

———=0.
n— 00 1- 5(90777')
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Therefore,
lim inf _ Power
n—oo 1 — f(6p,n) —
unrggfm L;P(Zi +n; > (1+0)t.) (80)
+ Y P (Zi+nt < —(1+0)t) |- (81)
ies_

Since the above bound holds for all e, §, ¢y > 0, we get

lim inf 7Power
nohse 1= B(fo, )
1 V/nbo i )

> liminf —————— Pl Z + = >ty 82

n— 00 80(]. —B(@O,n)) Lezs; ( g Q“ ( )

0o,;
=]
i€s_

:lif%iﬂfm{;(”(*‘ }))

= limin ; i qso \/7‘902
=it 2 T ( (83)

i€S p

The last step holds by using the definition of function F(-,-), given by Equa-
tion (29), and the fact that Z;|X ~ N(0,1).

7.3. Proof of Theorem 4.1
The proof follows the proof of Theorem 3.1. Note that for the results of theorem
to hold, it suffices that the conditions of Lemma 7.3 to be satisfied. The result

in [JM18, Theorem 3.8], implies that under the conditions of Theorem 4.1, for
some constants C, ¢, and n > max(25 log p, c¢sg log(p/so)), we have

P <||AOO > Croy /2 log p> < 2pe Cminn/(1650) 4 4o =n/1000 1 gpy=1 — (84)
n

Using this, under the assumptions of Theorem 4.1, letting €5 = (log p)70+/S0/7,
and following the same steps as in the proof of Theorem 3.1, we will reach the
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following equation which is similar to Eq. (70)

Zi I(T: > 1)
sup | S0 ) 2 o

0<t<t, pQ(t)

1 L ~ ~
<% {40 (e + &3 +e1(logp)® + e5logp) (1 + (logp) ™'~ + (logp) ' + (logp) ')

S
g

2
+C(logn) ™+ ¢ (log) ™ + Cllogn) ™ 4 Ly 1. (85)
0
By taking €1 = /so(logp)/n in Eq. (70) and replacing 2 = (logp)7o+/S0/n,
we deduce that Eq. (51) holds. Similarly, using Eq. (84), we reach
/tp ]P){ ’ ZiESSO H(TZ > t)
0 pG(t)

< 2C (3(10gp)*” + 3 10gp)*?) (14 (logp) 7 + (logp) " + (logp) * "))

)
g

+ c(logp)~ /27 4 C(logp) /% + C(logp) /> (86)
which is similar to Eq. (71). Again, by taking &1 = /so(logp)/n and g2 =

(logp)19+/S0/n we deduce that Eq. (52) holds too. Hence, the desired results
hold under the conditions of the Theorem.

T2 (2pe—cminn/(1680) +pe‘”/1000 y8ply ]P’{

-1

> 3 far

+p2(logp)_l/2 (2pe—0mmn/(16$0) +pe—n/1000 =+ 8p—1 +P{

7.4. Proof of Theorem 4.2

The proof is similar to the proof of Theorem 4.1. Here, using the result in [JM18,
Theorem 3.13], under the conditions of Theorem 4.2, for some constants C, ¢,
and n > sg log p, we have

s . lo O n/(16s
P (||A||Oo > Croy/ T;)longrCamm(so,sQ)jﬁp) < 2pe~ Cminn/(16s0)  (g7)

+pe” " +8p L. (88)

Here, by taking 2 = (log p)19+/s0/n + min(so, sq) logp/v/n, we will reach the
following equation which is similar to Egs. (70), (85)

Z'es H(Ti > t)
0 = 1‘ > 5}
ogs}slgptp {’ pQ(t) -

1 L ~ ~
<5 {40 (e + &3 +e1(logp)® + e3logp) (1 + (logp) ™'~ + (logp) ™' + (logp) ')

)
g

2
+C (logp) "+ (logp)~ 77 + Cllogp) ™" + % B 1} '
0

+p2 (2pemeinn/(1650) +pefcn +8p71 +]P){
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By taking €1 = /so(logp)/n in Eq. (70) and replacing €3 = (logp)mo+/S0/n +
min(sg, sq) logp/+/n, we deduce that Eq. (51) holds. Similarly, using Eq. (87),
we reach
/tp ]P){ ’ ZiESSO ]I(TZ > t)
0 pG(t)

<20 (6f(logp)5/2 +6§(logp)3/2) (1 + (logp) 1" + (logp) ™" + (1ogp)_“_”))

g - 1’ 2 61})
o
+c(logp)~*77 4 C(logp)/* + C(logp) /7.

which is similar to Eqgs. (71), (86). Again, by taking €1 = /so(logp)/n, e =
(log p)10+/ S0/n+min(sg, sq) log p/+/n we deduce that Eq. (52) holds too. Hence,
the desired results hold under the conditions of the Theorem.

-1

> 5}dt

+p2(1ogp)_l/2 (Qpe_cminn/(lﬁso) pe gyt IF’{
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Appendix A: Proof of Technical Lemmas
A.1. Proof of Lemma 7.2

For t > 0, we write

G(A-8t—c) . Jogpod@)de (e + 0t)p((1 — 8)t —¢)

(89)

where we used that ¢(t) is a decreasing function. We next separate the cases of
te(0,1) and ¢t > 1.
For 0 < t < 1, we use the following bound

P(t) < (VA +12 —t)o(t) < G(t), (90)

where the last step is due to Birnbaum [BT42].
Moreover, for all ¢ > 0,

‘W = exp {t(at te)— %((1 — 8+ 5)2}

< exp {t(ét + 5)} <e?, (91)

because by our assumption §%¢ < 1 and et < 1.
By employing Egs. (90) and (91) into Eq. (89), we obtain

G((1-0)t—e)

0 <1+e2(e+6t) <1+e*(e+9). (92)

For t > 1, using Lemma 7.1, we have that G(t) > ¢(¢)/t and hence by using
Eq. (91) into Eq. (89), we get

G((1-=¥0)t—¢e)

a0 <1+ et(e +6t). (93)

The result follows by combining the bound (92) and (93).

A.2. Proof of Lemma 7.3

We write
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Pl Z’““{H(fc;:i =22
. Z HZLES<O{H(Z;T;) - Q(Tj)}‘ . 5}

< — ’ {‘Zles“’ T 2 1) 1‘>6}dt
+j_z::1PHZﬁs<U{H ZQZJT)]) Q(n)}’ . 5}

Therefore, it suffices to show that

{‘ZzES<o (Tiz?) 1‘Z§}dt0(vp)7

and

{’Z@e& (Tizt) 1‘ > 5}dt=o(1),

which are the conditions of the lemma.

A.3. Proof of Lemma 7.4

We first show that t, < /2log(p/s¢). Assuming otherwise, we have G(t.) <
G(+/2log(p/so)) because G(t) is decreasing. By definition of ¢,, and Lemma 7.1
this results in

q;" (1—o(1)) = G(t.) < G(v/21og(p/s0))

2 e log(p/s0)

\/2log /so

o i

(94)

which is a contradiction.

Now, given that ¢, < /2log(p/so) < v/2logp, if the claim is not true, by
definition of ¢y, we should have

2p(1 — @(t.))

Riovi 4 (96)

We next show that R(t.) > so(1 — o(1)).
Define

G=G(0,¢co,6) = {maX|An‘ — Q| <o, [6/0 =1 <6, [[Alloo < 8}
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Define S(t,) = {i € [p] : |Ti| > t.}. Using Proposition (2.2), for fixed i € 3,

we have
*) , (97)

with Z; ~ N(0,1). Define n; = (v/nbo; + A;)/(0v/Ay;). On event G, we have

Vnlfoi| — e
il > niw = ———
J\/Qii +C()

Continuing from Equation (97), we have

P(i ¢ S(t.)) = P(IT3] < t.)
_ IP( Vnboi o A;

Y 4 D e
g Aii g g An

8
o

¢ 50 = (12000l < 20 ) < ([ 12+l < D] -10)) + P(@)

<P ([771* - %t* < |Zz|:| «]I(Q)) +P(G°).
Given that 0 ; > (o/v/n)+/294;1og(p/so) and t,. < y/2log(p/so), we can choose

d, o, € and g small enough such that on event G = G(4, co, €),

~

o
ni,* - *t* 2 t* 5
g

and therefore

P(i ¢ S(t.)) <P ([n S |Zz-|} ~H<g>) L P(G°)
<P((t. < |Z)) - 10)) + P(G°)
< G(t.) +P(G°)
< (qSO) +P(gc) (98)

Since P(G¢) — 0 and so = o(y/n/(logp)?), we can choose a deterministic se-
quence L, — oo, arbitrarily slow, as n — oo, such that L,P(G¢) — 0 and
L, (so/p) — 0. Letting A,, = (¢so/p) + P(G°), we have L, A,, — 0.

By applying Markov inequality, we obtain

~ 1 5
c > < c
B(IS N1 S(t.)°] > soLndn) < ———B(|So N 5(t.)°)
SoAn o i
S LA "I (99)

where the last inequality follows from (98). Therefore, with high probability,
[So NS(ts)¢| < soLnAp, which implies that

R(t.) = S(t)] > 18] = 1SN S(t)°] = so(1 = LnAy), (100)
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as claimed.
Now using Equation (100) in Equation (96), we arrive at

qso
1—®(t,) > o (1-L,A,).

Therefore, for t,, given by
- 450
t,=®"1(1-=22(1-2L,A,) ),
( 2p ( ))

we reach a contradiction which proves our claim tg < t, is correct. The proof is
complete by noting that L, A, = o(1) by choice of sequence L,.

A.4. Proof of Corollary 3.5

Define

Using Corollary 3.4, it suffices to show that F (a,, up,) = 1—®(® 11—, /2) —
u,) — 1. Equivalently, we show that ®~1(1 — «,/2) — u,, — —oc.
By Lemma 7.1, we have

G(v/210g(2/ay)) < 26( 2?10?2(3/04;)) <2¢(y/2log(2/an)) = a, . (101)
og(2/an

o @ W = \/Hgmin

Since G is a decreasing function, by applying G~! on both sides, we get

(1 - a/2) = G Han) < V/2log(2/an)

Using the above bound, we have
Uy — BN — 0, /2) > up — \/210g(2/ ) (102)

By the assumption on 6y,i,, we have that the left-hand side of (102) goes to oo,
which completes the proof.
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