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ABSTRACT
Visualizing multivariate networks is challenging because of the
trade-offs necessary for effectively encoding network topology
and encoding the attributes associated with nodes and edges. A
large number of multivariate network visualization techniques
exist, yet there is little empirical guidance on their respective
strengths and weaknesses. In this paper, we describe a crowd-
sourced experiment, comparing node-link diagrams with on-
node encoding and adjacency matrices with juxtaposed tables.
We find that node-link diagrams are best suited for tasks that
require close integration between the network topology and
a few attributes. Adjacency matrices perform well for tasks
related to clusters and when many attributes need to be consid-
ered. We also reflect on our method of using validated designs
for empirically evaluating complex, interactive visualizations
in a crowdsourced setting. We highlight the importance of
training, compensation, and provenance tracking.
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CCS Concepts
•Human-centered computing→ Empirical studies in visu-
alization;

INTRODUCTION
Multivariate networks (MVNs) are networks comprised of
the network’s topology in the form of nodes and links, and
attributes about those nodes and links. Most real-life networks
are multivariate: a social network has node attributes such as
the age, name, and institutional affiliations of individuals; and
edge attributes such as the types and frequencies of interac-
tions. In many analysis cases, it is necessary to see both the
topology and attributes simultaneously [27]. A recent survey
by Nobre et al. [24] discusses 11 types of multivariate network
visualizations (MVNVs) and gives recommendations of when
to use which visualization technique. These recommendations,
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however, are mostly based on visualization best practices and
rely to only a small degree on empirical data, perpetuating
the notion of visualization as an “empire built on sand” [21].
How do we know whether a particular visual encoding or
an interaction technique is better than the many alternatives
available? The visualization literature largely relies on two
approaches: controlled experiments that measure correctness
and time on simplified tasks for well-defined stimuli [22] and
evaluations with experts, such as insight-based evaluation [32,
28] and case studies [34]. Carpendale [6] discusses the con-
flict between evaluating visualizations with real users and real
datasets, with high ecological validity, and controlled experi-
ments that require recruiting a large enough participant sample
to draw quantitative conclusions. Running controlled experi-
ments requires abstraction and simplification of real-life tasks
and careful variation of a small number of design factors [22].

In this paper, we attempt to answer questions about the mer-
its of two multivariate network visualization techniques by
pushing the limits of controlled experiments for complex, in-
teractive visualization techniques. We compare two MVNVs:
node-link diagrams (NL) with on-node encoding and adja-
cency matrices (AM) with a juxtaposed tabular visualization.
Testing these two conditions required the design and imple-
mentation of two functional prototypes. We designed and
implemented these techniques based on existing guidelines,
and followed a multi-stage testing and piloting process. We
also elicited feedback from experts on network visualization to
validate and refine the designs. The aim of these activities was
to ensure that the two conditions in the experiment resemble
visualizations that might be used in practice. We postulate
eight hypotheses and evaluate them with a set of 16 tasks,
which we derive from Nobre et al.’s task analysis [24]. We
also report on insights generated in an open-ended task.

Our contributions are twofold: We provide the first set of em-
pirical evidence on the performance of two important MVNV
visualization techniques for different tasks, and we develop
and reflect on an approach for controlled experiments using
complex, validated visualization techniques.

RELATED WORK
Here we provide an analysis of prior evaluations of network vi-
sualization techniques, followed by a discussion of the current
landscape of crowdsourced evaluations of interactive visualiza-
tion techniques. For prior work regarding MVNVs, we refer
to a recent survey [24] and to Kerren et al.’s book [19].



Network Evaluation Studies
There is a long history of work that has evaluated the merits of
different network representations [38]. However, most of this
work focuses on network topology and treats node and edge
attributes only cursorily, if at all. We limit our discussion to
larger studies that evaluate NLs and/or AMs.

Several studies compare NL and AM representations [14, 18,
7, 26, 30]. Ghoniem et al. [14] assessed the performance of
both approaches using seven topology-based tasks on graphs
of sizes between 20 and 100 nodes and densities from 20%
to 60% of all possible edges. Interactivity was limited to
selecting nodes and links. They found that NL outperformed
AM in small and sparse graphs, but for larger or more dense
graphs, AM produced more accurate results. The exception
is path-based tasks, where node-link diagrams outperformed
the adjacency matrix regardless of network size or density. In
a follow-up study, Keller et al. [18] evaluated six tasks on a
domain-specific, directed network, using both NL and AM
representations. They confirmed the results of Ghoniem et
al. for the investigated network types. Okoe et al. [26] also
reproduced the Ghoniem et al. study for larger networks (up to
330 nodes), but for much sparser graphs with densities of 1.6%
to 3.2% of edges. They used a more diverse set of tasks in a
large, crowdsourced study. Interactions included panning and
zooming, moving nodes in the NL condition, and highlighting
nodes and incident edges. Color was used to encode clusters
that were detected algorithmically. Their work confirms earlier
findings on each technique and reveals that adjacency matrices
perform better on cluster tasks.

Ren et al. [30] compared NL with two sorting variants of AMs
for networks of 20 and 50 nodes in a large, crowdsourced
study. They found that NL resulted in higher accuracy and
faster response time, but that this difference diminished as
participants became familiar with the visualizations.

Three studies evaluated approaches for visualizing two or more
edge attributes. Alper et al. [3] found that for tasks involving
the comparison of weighted graphs, AMs outperformed NLs.
Abuthawabeh et al. [1] ran a user study comparing AMs with
a technique that depicts multiple types of edges in separate,
parallel, node-link diagrams. They found that participants
identified the same graph structures with both visualizations.
Schoeffel et al. [33] encoded edge attributes as bars directly on
the edges in NLs. Their study on a small network (10 nodes,
10-15 edges, up to five attributes) revealed that this can be
useful for small graphs with no edge crossings.

The existing work on network evaluation studies thus far has
mostly focused on the topology of the network. No studies
currently consider node attributes beyond a simple, topology-
derived attribute, such as cluster membership or node degree,
which means we currently have no guidance based on empiri-
cal data about which network visualization technique to use
when both node attributes and network topology are relevant
to an analysis.

Evaluation of Interactive Visualization Systems
User studies are among the most common forms of evalua-
tion within the field of information visualization [22]. Lam et

al. [22] have categorized user studies that are aimed at eval-
uating user performance into two types: (1) understanding
the limits of visual perception and cognition for specific vi-
sual encodings, and (2) assessing how one visualization or
interaction technique compares to another. User studies can
be carried out either in a controlled lab setting or by using a
crowdsourcing platform. Although lab studies afford the most
control over participant selection, participant attention, train-
ing, and the testing environment, they also incur a high cost
of recruiting users, as well as an inherently limited participant
pool [13]. Crowdsourcing platforms offer a potential solution
to this problem by providing access to a much larger group
of participants. The existing user performance work on evalu-
ating interactive visualizations is characterized primarily by
validating a new approach comparing it with existing ones [4,
2], which is almost exclusively carried out in a lab setting with
a smaller number of participants. Even though crowdsourced
studies have been frequently used for performance evaluations
of the perceptual type (e.g., [35, 16, 15]), they are relatively
scarce for evaluating interactive visualization techniques (e.g.,
[26, 11]). This scarcity may stem from the perceived chal-
lenges of using a remote group of non-expert participants to
evaluate an interactive system — a topic we investigate in this
work. Additionally, very little work has compared two or more
existing complex, interactive techniques.

CHALLENGES
The visualization community has embraced a wide set of
quantitative and qualitative evaluation methodologies, ranging
from quantitative experiments conducted in a lab or on crowd-
sourcing platforms, to qualitative studies, to insight based
evaluation, to case studies [22]. In this paper, we conduct a
crowdsourced study with two complex, interactive visualiza-
tion techniques. Developing such techniques requires many
design decisions. How can we know that any effects we ob-
serve are not confounded by any of these design decisions?
Carpendale [6] describes three factors to consider: generaliz-
ability (can a study be applied to other people and situations),
precision (can a study be definite about the measurement and
can it account for the factors), and realism (is the context of
the study like the context in which it will be used). However,
current evaluation methodologies typically cannot satisfy all
three simultaneously. A common approach to designing a
quantitative study is to carefully modify selected factors or
variables, so that the effect of each factor can be isolated. This
approach leads to studies that are precise, but frequently not
realistic. The need to isolate factors and variables significantly
limits the progress we can make with one study and reduces re-
alism. In this paper, we take a different approach: we compare
two techniques that are distinct in many ways simultaneously.
Although this approach poses a threat to generalizability, we
mitigate this threat by employing a rigorous design process
following existing evidence and our own expertise, and by
validating our designs in a multi-staged qualitative process.
Being able to compare two complex techniques increases re-
alism since we can include factors that a real system would
have. By simultaneously designing both techniques, we can
better account for confounding variables than if we compared
two existing systems that were designed separately.



A related challenge is that in a crowdsourced study, we have
to use novices as proxies for experts. Complex and interactive
visualization techniques designed for experts are frequently
not immediately intuitive and require learning before they can
be useful. Obviously, it would be best to validate a system
with the user group it was designed for. In practice, however,
recruiting researchers knowledgeable about network analysis
is difficult, and becomes de facto impossible when a study
aims to increase precision by increasing the number of partici-
pants. In our study, we attempt to educate participants about a
visualization technique through an extensive training program
(by crowdsourcing standards). We argue that careful training
makes it possible to study interactive visualization techniques
that would otherwise be suitable only for experts.

VISUALIZATION AND INTERACTION DESIGN
Several approaches are available for encoding both the topol-
ogy and the attributes of a network [24]. For this study, we
chose two common encodings: a node-link diagram with on-
node/on-edge encoding (NL), and an adjacency matrix with
embedded edge encoding and a juxtaposed table for the node
attributes (AM). We chose these two techniques because (a)
they are the most common generic network visualization tech-
niques, and (b) several previous studies have compared NL
and AM for topology-centric tasks [14, 26, 25, 38, 30], which
allows us to use the findings of these studies to design our
techniques based on these empirical recommendations.

When designing the techniques, we made choices that we
justify in this section. We adopted the following design princi-
ples: (1) Use the most perceptually efficient encoding available
for data, given the affordances of the technique. (2) Follow
common practice in network visualization systems, such as
Cytoscape of Gephi. (3) Provide a set of common, technique-
specific interactions. In order to ensure our design decisions
for each visualization technique were appropriate for exper-
imentation, we used a multi-stage validation approach with
expert evaluations and three rounds of pilots. Both designs
can be viewed at https://vdl.sci.utah.edu/mvnv-study/, or by
running the supplementary code.

For the feedback from visualization experts, we followed the
heuristic evaluation method proposed by Wall et. al. [36] and
added a set of custom questions tailored to our design deci-
sions. We ran a pilot with one expert to evaluate our survey,
which led to design recommendations we implemented but
also to issues identified in our survey. The final survey had
69 questions that consisted of ratings on a 7-point Likert scale
(high marks are good) and free-text questions asking for de-
sign suggestions and criticism. We then asked 10 experts to
explore the two techniques with a set of four representative
tasks and then to fill out the survey. While responses were
helpful, we received only two responses within two weeks and
one more response after we had already conducted the main
study. The pilot and the two timely responses yielded multiple
suggestions for improvements, which we incorporated, or, if
not, discuss in this paper. Both the survey and the results
are included in the supplemental material. Overall, experts
rated the version of the tool they saw (before we implemented
their suggestions for improvements) critically. The average
rating for the heuristic evaluation question for the Node-Link

diagram was 3.85; the average rating for the custom questions
was 4.47. For the matrix, the average heuristic score was 5.69;
the custom questions were scored at an average of 5.03. We
attribute these low scores, particularly for the NL condition,
partially to the difficulty of framing the questions. We at-
tempted to get ratings for our design decisions, assuming the
two techniques and the dataset as given, i.e., the best designed
node-link diagram should get a perfect 7 on all questions. We
found, however, that the experts mostly judged the techniques
globally.

Node-Link Design
We studied node-link layouts with on-node encoding, as de-
fined by Nobre et al. [24], since this is a widely used encoding
and is supported by common network visualization tools. A
key decision was to use traditional network layouts, includ-
ing node positioning, exclusively for visualizing topological
structure. We considered alternative layouts, such as position-
ing nodes by attribute values, as a set of separate techniques
beyond the scope of our study. We experimented with many
different layout algorithms and parameterizations. We calcu-
lated layouts using Cytoscape’s implementation of the Prefuse
force-directed layout, which we optimized manually.

We designed two versions of node-attribute encodings,
shown in Figure 1, which we used depending on the num-
ber of attributes being encoded at once. Both versions always
show all node labels. For conditions involving one numerical
and/or one categorical attribute, we encoded the numerical
attribute with the size of a circle and the categorical attribute
as color, as shown in Figure 1a. Both of these choices are the
highest ranked available visual channel for the respective data
type [23, p. 95]. This design has the advantage that both a
numerical and a categorical attribute can be visualized simul-
taneously with little interference, and global judgments of the
individual attributes are easy. For conditions involving more
than two attributes, we used nested bar charts for numerical
values and colored glyphs for categorical values, as shown in
Figure 1b. These encodings again use the most expressive vi-
sual channels available and support the comparison of multiple
values within a node well. For this encoding, global judgments
are more difficult due to the smaller mark size and the many
marks present. As the nodes have to be bigger to accommodate
multiple glyphs, the network topology is less apparent than in
the simpler configuration. We include a legend showing the
meaning of all visual encodings in a given configuration.

We visualize edge attributes using color and/or edge thick-
ness for categorical and quantitative data respectively. Fig-
ure 1b shows two edge types with different edge weights. We
use straight lines for edges for conditions with only a single
type, but use separate, curved edges when edges of multiple
types are present. There is conflicting evidence about the
merits of curved edges [37, 17].

We limited interactions to a small set that we considered
essential for the techniques. For both techniques, we provided
a label-based search, highlighting of individual nodes, tool-
tips, and highlighting of neighbors of nodes. To highlight
neighbors of a selected node, we faded all non-neighbors
out, as shown in Figure 1b. We found the fade-out necessary
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(a) On-node encoding with color and size. (b) On-node encoding with nested bars and glyphs.

Figure 1: Node-link designs. (a) We use node size and color for conditions with one categorical and/or one quantitative attribute.
(b) We use bar charts and colored glyphs for more than two attributes. Figure (b) also shows edge types (color) and edge weights
(thickness), in addition to neighborhood highlighting: only neighbors of the selected node EVis19 are rendered opaquely.

in the node-link diagram due to the high amount of visual
clutter caused by crossing edges and colorful nodes. Previous
work found that without neighbor highlighting, users quickly
became frustrated [14, 26]. We also provided the ability to
drag nodes, which is essential to disambiguate edge crossings.

Adjacency Matrix
Adjacency matrices are the second major class of network
visualization. Network topology is encoded in the matrix,
where filled-in cells indicate the presence of an edge. Matrices
rely on seriation or sorting algorithms to reveal topological
patterns of interest, although neighborhoods are also easily
identified by scanning a row or column. A key benefit of
matrices is their ability to visualize dense networks, since
every possible edge is already represented on the screen.

Edge attributes are commonly encoded using bright-
ness/saturation or color for quantitative and categorical data
types. We use a gray color scale to encode numerical values.
Multiple edges are more difficult to encode, since the space
available for edges in a cell is small. Alper et al. [3] discuss
various encodings and argue for nested rectangles of different
color, where the brightness encodes a numerical attribute for
two edge types with weights, an approach we adopt.

A simple but efficient way of encoding node attributes in
adjacency matrices is using juxtaposed tables. We juxtapose
a tabular visualization [29, 12] with the matrix, and keep
the rows consistent between the matrix and the table [20, 31,
5], as shown in Figure 2. As a result, we can use highly
efficient encodings for the attributes. We employ aligned
bars for quantitative attributes, which use position and size
redundantly, and spatial region and color for categorical data.
As for the NL, we provide interactions such as highlighting,
tool-tips, and node search. On cell/edge selection or hovers,
we highlight the row and column at this intersection, and the
equivalent row/column on the other side of the diagonal. We
also highlight neighbors; however, in this case we use simple
(green) color highlighting (see Figure 2, as the matrix does
not suffer from cluttering. As a (more powerful) alternative to
moving nodes, we introduce sorting. The matrix can be sorted

interactively by node label, a seriation algorithm [10], by the
neighborhood of a node, or by any attribute.
Discussion
It was our goal to develop two techniques that we can compare
fairly by carefully designing each technique to use the best
possible visual encodings and interactions. We would then
be able to measure the inherent benefits and drawbacks of the
techniques. Even though we believe that the visual encodings
are largely equivalent, our expert evaluators argued that the
interactions are not. In particular, interactive sorting in the ad-
jacency matrix does not have an equally powerful counterpart
in the node-link diagram. However, we argue that the set of
interaction techniques we provide is consistent with what is
commonly expected of the respective visualization techniques,
and sorting/seriation is essential but also natural in matrix lay-
outs. One expert suggested we also include sorting for nodes,
resulting in attribute-driven positioning of the nodes. Even
though this operation is reasonably equivalent to sorting in
the adjacency matrix, it leads to significant clutter and overlap
in the node-link diagram. Another suggestion from an expert
was to provide a query and filter system, for example, using
scented widgets in the legend. We decided against enabling
filters and queries, as we would mostly be testing that query
and filter system, not the inherent qualities of the alternative
network visualization approaches.
STUDY DESIGN
We aim to investigate the strengths and weaknesses of AMs
and NLs for a diverse set of tasks on multivariate networks.
Our study used a between-subjects design in which each partic-
ipant was randomly assigned to either the AM or NL condition.
Procedure
In each condition, participants were assigned 16 tasks, with
the first 15 presented in random order, and a final free explo-
ration task presented at the end of the study. We recruited
participants on Prolific, a crowdsourcing platform with a re-
search focus. Based on completion times of pilot experiments,
each participant was paid $12.50 USD, for an estimated du-
ration of 40 minutes, resulting in an hourly rate of about $15
USD. All participants viewed and agreed to an IRB-approved



Figure 2: Adjacency matrix design. Two types of edge attributes are encoded using nested rectangles (red and blue). The color
saturation encodes edge weights. Attributes are visualized in the juxtaposed table. The matrix is sorted by clusters, and the selected
node’s neighbors are highlighted in green. This figure also shows the study interface with the task instructions and the answer
field, the search interface, and the legend.
consent form. To be eligible for the study, participants had
to use a laptop or desktop device with a resolution of at least
1400x850 pixels available screen space in the browser. Our
procedure consisted of five phases: Passive Training, Ac-
tive Training, Trials, Study, and Demographics and Feed-
back. The full study for both conditions can be viewed at
https://vdl.sci.utah.edu/mvnv-study/. Passive training was
a video introduction to the dataset, as well as an explanation of
the technique (NL or AM) with which the participant would be
interacting. Participants had to watch the video before being
allowed to continue. The training also introduced analysis
strategies that are useful for tracing paths or identifying clus-
ters. Active Training was achieved with a guided tour of the
actual visualization and interaction mechanisms. Participants
had to use interactions to be allowed to proceed. During Tri-
als, participants had to correctly answer two tasks to proceed
with the study. These tasks were meant to further train the
user on the technique and to verify participants were attentive.
During the Study itself, tasks were presented in random order
to minimize learning effects across participants. Answers were
given as a set of selected nodes, through a controlled or free
text form, or as a combination of both. Each task was followed
by a survey asking for confidence, perceived difficulty, and
comments. The study interface is shown in Figure 2. A final
form collected Demographics and Feedback on the study
and the training.

Measures
Throughout the study, we collected a set of qualitative and
quantitative measures. We captured the start and end time
for each phase, as well as time browsed away from the study
window, which allowed us to assess the average time spent on
training and trials, as well as filter out participants who rushed
through the study. During the Trials phase, we captured all
submitted answers, including incorrect ones. During the Study
phase, we collected time spent on each task, the submitted
answer, the confidence in the submitted answer, and the per-

ceived difficulty of the task; the latter two on a 7-point Likert
scale. Through the free-response questions, we collected qual-
itative feedback for each task. The final Demographics and
Feedback form includes free-response questions where users
provided feedback on the training material and on the overall
study. We collected rich provenance data of users interactions,
including searching for node, dragging a node, (un)selecting a
node, clearing selected nodes, sorting operations, and hovering
on a node (which shows a tool-tip).

When calculating correctness, we used non-binary rules that
map to a 0–1 scale. For example, we gave 0.5 points for an
answer that contains the second-largest node, if the task asked
for the largest. We provide details on our scoring method for
each task in the supplementary material. When calculating
time to completion, we subtracted time spent away from a
tab. Although this approach does not ensure a participant paid
attention in all cases, it does reduce outliers.

Data
As our dataset, we used a Twitter network of interactions
during the EuroVis 2019 conference (collected by J. Guerra-
Gomez, used with permission). We chose a Twitter network
because we expected participants to be familiar with social
networks. The network has 75 nodes, 143 edges, an average
degree of 3.81, and a density of 0.16. We also created a smaller
version of this network, which contains 25 nodes, 56 edges,
an average degree of 4.48, and a density of 0.3. Following
Ghoniem et al. [14], we define density as d =

√
e/n2 where

e is the number of edges and n the number of nodes. For the
nodes, we had the attributes names, # followers, # following
(friends), # tweets, # likes, account age in days, node type
(person or institution, categorical), and continent of origin
(categorical). For edges, we used a categorical attribute/edge
type (retweeted or mentioned), and a numerical attribute for
each type that contained the number of each action (retweet
or mentioned). We modified the source data in several ways:

https://vdl.sci.utah.edu/mvnv-study/


Task Name Task Prompt

T01 Node Search on Attr. Find the North American with the most tweets.
T02 Node Search on Attr. w/ Distractors Find the European person or institution with the least likes.
T03 Node Search on Top. w/ Multiple Attrs. Which person has many interactions in this network, several followers, but few tweets and likes in general?
T04 Neighbor Search on Attr. Find all of Lane’s European neighbors.
T05 Neighbor Search on Attr. w/ Distractors. Find all of giCentre’s North American neighbors.
T06 Neighbor Search on Edge Attr. Who had the most mention interactions with Jeffrey?
T07 Neighbor Overview on Edge Attr. Does Alex have more mention interactions with North American or European accounts? Who does he have

the most mentions interactions with?
T08 Attr. of Common Neighbors. Among all people who have interacted with both Jeffrey and Robert, who has the most followers?
T09 Edge Attr. What is the most common form of interaction between Evis19 and Jon? How often has this happened?
T10 Node Attr. Comparison. Select all of Noeska’s neighbors who are people and have more friends than followers.
T11 Node Attr. Comparison (Small). Select the people who have interacted with Thomas and have more friends than followers.
T12 Cluster and Attr. Estimation Select all the people who are in a cluster with Alex and estimate their average number of followers.
T13 Attr. along Shortest Path What is the institution on a shortest path between Lane and Rob? What is its continent of origin?
T14 Attr. along Shortest Path (Small). What is the institution on a shortest path between Jason and Jon? What is its continent of origin?
T15 Attr. on Multiple Paths Of the North Americans who are two interactions away from Sereno, who has been on twitter the longest?
T16 Free Explore Explore the network freely and report on your findings. Is there anything surprising or interesting?

Table 1: List of tasks and instructions as given to participants. Refer to the supplementary material for details.
we simplified names to shorten them and clipped outliers (for
example, an extreme number of followers) so that numerical
values are easily comparable on a single linear scale. We
also manually added account type and continent of origin.
Although retweets and mentions are directed on Twitter, we
simplified the network by treating them as undirected.

For network size, we chose the largest network that could rea-
sonably be represented as a node-link or adjacency matrix on a
standard-size display without zoom or panning, while still ren-
dering multiple attributes. For example, a node-link diagram
with on-node encoding can display only a limited number of
nodes before occlusion and overlap render the technique inad-
equate [24]. By choosing a network that reaches these limits,
we aim to draw conclusions about networks that are close to
the “hardest” case that can be visualized with these techniques.
Larger networks either require different approaches or must be
filtered first. For tasks where we believed network size could
have a technique-dependent effect on task performance, we
included an equivalent task on a small network and a large one.
For density, we consciously chose a sparse network, because
we know from prior work that adjacency matrices outperform
node-link diagrams in dense networks for most tasks [14]. If
we can show that AM outperforms NL in sparse multivariate
networks, we can generalize that they also outperform them in
dense networks. We discuss the implications of our choices
on generalizability in the limitations section.

Tasks
We created the tasks based on the two recent taxonomies for
MVN tasks [24, 19]. Our tasks cover the main topological
structures outlined in both taxonomies: single nodes, neigh-
bors, clusters, and paths. The tasks are listed in Table 1.
Details about each task are described in the supplement.

Hypothesis
Prior to running the study, we developed a set of hypotheses
about how the two visualization approaches would compare
for different types of tasks. We present the hypotheses below
and later use them to frame and discuss our results.

Distractor Effects Hypothesis: In the AM, accuracy and
time will be resilient to the number of distractors (node at-
tributes that are visualized but that are not necessary for the

task). Distractors will have a negative effect in terms of per-
formance and time in the NL, since adding many attributes
to the NL will make identifying topological structures more
difficult, as the nodes get bigger, and the extraneous attributes
will make it harder to isolate the attribute necessary for the
task. We test the hypothesis with Tasks 1, 2, 4, and 5.

Attribute Sorting Hypothesis: The AM will perform better
(accuracy and time) in tasks that benefit from sorting the ma-
trix based on attributes, such as identifying an extreme node
according to a numerical attribute (Tasks 1, 2).

Scalable Attributes Hypothesis: The AM is more scalable
with respect to node attributes (Task 3). It will lead to faster
and more accurate decisions when many attributes (>3) are
present, except for tasks on topological structures ill-suited for
adjacency matrices, such as paths.

Common Neighbor Hypothesis: The NL will lead to more
accurate and faster responses for all tasks that are concerned
with common neighbors of two or more nodes. Although there
is weak evidence that show the AM to be advantageous for
similar tasks [26], we believe that the known benefits of NL
for path-finding will be relevant for tasks of this type (Task 8).

Within-Node Comparison Hypothesis: If the task involves
comparing attributes of identical scale within individual nodes
(Tasks 10, 11), the NL will lead to more accurate and faster
responses. We believe this to be due to the layout of the
bars, as the bars in the nodes use the same axis, whereas the
attributes in the matrix use adjacent columns.

Cluster Hypothesis: The AM will lead to more accurate and
faster results for tasks involving clusters (Task 12). We believe
that clusters are difficult to spot in the node link diagram, espe-
cially since node size is fairly large to accommodate attributes.

Path Hypothesis: As we know from previous studies, matri-
ces are ill-suited for path-based tasks [14, 18, 26]. Hence, this
hypothesis states that the NL will perform more accurately
and faster for all tasks related to paths (Tasks 13, 14, 15).

Insight Generation Hypothesis: When freely exploring the
network (Task 16) with the AM, participants are more likely to
have attribute-based insights. Conversely, the NL will lead to



more topology based insights, such as the presence or absence
of connections among nodes.

Pilots, Analysis, and Experiment Planning
We conducted several tests and pilots to evaluate tasks, sys-
tem usability, data collection modalities, measures, and our
procedure. We estimated the number of participants required
to uncover effects based on a pilot run on Prolific with 20
participants. We used a power analysis between the two dif-
ferent conditions to estimate the variance in our quantitative
measures, which we combined with our observed means to
estimate the number of trials required. Due to the limitations
of null hypothesis significance testing, we base our analysis
on best practices for fair statistical communication in HCI [9]
by reporting confidence intervals and effect sizes. We com-
pute 95% bootstrapped confidence intervals [8] and effect
sizes using Cohen’s d to indicate a standardized difference be-
tween two means. For each task, we display the accuracy and
time results in the form of a violin plot, which approximates
the density distribution of accuracy and time on task for all
participants. We superimpose the mean value with a 95% con-
fidence interval error bar to facilitate comparison. Compared
to just reporting confidence intervals, violin plots have the
advantage of making the distribution of the data salient. Al-
though we include p-values from Mann-Whitney tests (given
the non-normal distributions of time and accuracy data) in our
figures and highlight Bonferroni-corrected significant results
(we consider a corrected threshold of p=0.003), these are only
a supplement to the analysis.

RESULTS
We recruited 322 participants for this study. Half the par-
ticipants were assigned the node-link diagram (NL) and the
other half the adjacency matrix (AM). After reviewing all
submissions, we excluded the responses of 10 AM and 9 NL
participants due to low-effort answers or incomplete submis-
sions. Submissions were classified as low-effort when the
participant completed the study in under 10 minutes and had
an average accuracy of under 30%. This left us with 151
valid AM and 152 valid NL submissions. Here we present
a comparison of task accuracy and time to completion be-
tween the two conditions. We group the tasks according to
the hypothesis they were intended to investigate. Refer to
Table 1 and the supplementary material for task descriptions,
configurations, correct answers, and scoring methodology.
The study data, results, and the analysis scripts are available
at https://github.com/visdesignlab/mvnv-study-analysis. We
also include links to each condition in the figure captions.

Distractor Hypothesis
To evaluate our hypothesis that encoding non-task-essential
attributes, or distractors, would hinder performance in the NL
but not in the AM representation, participants were given two
pairs of tasks, one with distractors and one without. The first
of these task pairs targets single nodes.The second of these
task pairs targets node neighbors.

The accuracy and time for all four tasks are shown in Fig-
ure 3. For the no-distractor task T1, there were no significant
differences in task accuracy between NL and AM, with both
conditions showing high accuracy. We found a significant but

small difference in time, where AM leads to faster response
times. The addition of distractors in T2 led to a strong de-
crease in accuracy in NL (M = 0.59 [0.51,0.65]), but to only
a small degree in the AM condition (M = 0.92 [0.87,0.96]),
resulting in a notable difference in accuracy between the two
conditions. Likewise, there is a strong and significant dif-
ference in time to completion (M = 2.23 [0.71,0.83] for NL,
M = 0.85 [0.79,0.93] for AM). These data confirm the distrac-
tor hypothesis for single node targets. The distractor effect
does not hold for neighborhood tasks. The no-distractor con-
dition T4 shows slightly better accuracy with the NL than
the AM condition. When distractors are added in T5, both
conditions decreased in accuracy, but a significant difference
appears favoring the NL condition (NL M = 0.95 [0.89,0.97],
AM M = 0.82 [0.75,0.87]). NL leads to faster responses.

From these results, we can conclude that NL and AM are
roughly equivalent for global search tasks on the nodes with a
single attribute that is encoded as the node size (NL) or a sorted
bar chart (AM). However, if distractors are present, the NL
condition has to accommodate the larger number of attributes
with an encoding that is less amenable to global search —
small nested bars — and strong differences appear in accuracy
and time. In neighborhood tasks, where users first identify the
node of interest through the search feature, this effect inverts,
although performance in AM does not deteriorate quite as
much as does that in NL in global search. We speculate that
the reason for this is that neighborhood highlighting is more
efficient in NL, and that this effect drowns out any benefits the
attribute representation in the AM might have.

Attribute Sorting Hypothesis
Tasks 1 and 2 were also used to investigate the hypothesis that
tasks that relied on global maximum or minimum attribute
values would benefit from the sorting inherent to the table
in the AM configuration. The results (shown in Figure 3a)
indicate that when comparing bubbles in NL to sorted tables
in the AM, no significant differences appear in task accu-
racy, yet a significant difference with a medium effect size
(d = 0.63 [0.38,0.87]) appears in time to completion. When
comparing complex on-node encoding (nested bars) to sorted
tables, as in T2, the effects are significantly and strongly in
favor of sorted tables (accuracy: d = −0.92 [−1.16,−0.65],
time: d = 1.46 [1,26,1.66]). Hence, we can conclude that the
attribute sorting hypothesis is correct.

Scalable Attribute Hypothesis
Task 3 is an advanced task designed to test the hypothesis
that tasks that relied on several attributes and topology would
perform better in AM condition. We speculated that the table
would support easy comparison of multiple attributes across
nodes, and that sorting on a single attribute could help. How-
ever, the results show that the NL condition was significantly
more accurate than the AM condition, although both were
of fairly low accuracy. The perceived difficulty was high,
reported on average at about 5 in both conditions. Both condi-
tions took approximately the same amount of time. Overall,
this hypothesis is not supported. In retrospect, we believe that
since this task required integrating information from many
different attributes and topological features, participants had
to resort to a serial search, i.e., scanning all nodes, to answer
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it. In this case, the bars and sorting capability of the matrix
did not offer a benefit.

Accuracy Time (minutes)
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W= 13602  p= 0.0006808 d=0.4~[0.15,0.64]      
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W= 10076 p= 0.08098 d=−0.21~[−0.42,0.03] 

T03 − Node Search on Topology and Multiple Attributes
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NL
2.08~[1.88,2.34]

2.46~[2.17,2.81]

Figure 4: Results for Scalable Attribute Hypothesis. NL, AM.

Common Neighbor Hypothesis
Task 8 asks participants to select the common neighbor of
two nodes with the most followers. User performance on this
task (see supplement) does not reveal significant differences
in accuracy or in time between NL and AM, and hence the
hypothesis does not hold. Overall, this outcome was surprising
to us. We expected that the known benefits of path finding
for node-link diagrams would extend to common neighbor
tasks. Although the correct node was not directly in between
the nodes in the NL condition, NL layouts in general cannot
guarantee this. Also note that our scoring gave 0.5 points
to the common neighbor with the second highest number of
followers. The violin plot indicates that very few participants
selected the second-best answer in the AM condition, whereas
this was a common response in the NL condition.

Within-Node Comparison Hypothesis
T10 and T11 test the hypothesis that the node-link diagram is
better suited to comparing attributes of the same scale within
a given node, on large and small networks respectively. Fig-
ure 5 shows a small but significant accuracy advantage of
the NL over the AM for the large network. The smaller
network (see supplement) task shows similar accuracies for
both conditions. However, the NL condition resulted in much
faster responses in both the large (NL M = 0.87 [0.81,0.96]
vs AM M = 1.79 [1.66,1.93]) and the small networks (NL
M = 0.71 [0.65,0.83] vs AM M = 1.25 [1.14,1.41]). We con-
clude that this hypothesis is supported, with the caveat that
the task we used involved identifying neighbors of a target
node. The results of Task 4 indicate that NL tends to have
advantages when neighborhoods are involved. One possible
reason is that a task on identifying a node globally would
benefit from sorting strongly; i.e., we believe that the sorting
hypothesis supersedes the node comparison hypothesis.
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Accuracy Time (minutes)
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Figure 5: Results for Within-Node Hypoth. NL, AM

Cluster Hypothesis
To investigate our hypothesis that the AM would perform
better on cluster tasks, T12 asks users to identify the nodes
in a cluster, and then to average the number of followers
in that cluster. Results (Figure 6) show significantly higher
accuracies with a medium effect size for the AM condition
than for the NL, and comparable time. Of note are the overall
very low accuracies and the long time spent on task for both
conditions. To investigate this result further, we also computed
user accuracy for selecting the cluster separately from that
for estimating the average attribute value. The results (see
supplementary figures) indicate that users were equally able
to estimate the average value of an attribute in the NL and the
AM, but were better at selecting the cluster structure in the AM
(M = 0.2 [0.16,0.26]) than in the NL (M = 0.04 [0.02,0.07]).
Overall, we conclude that the hypothesis is supported.

0.00 0.50 1.00 0 2 4 6

AM

NL

AM

NL

T12 − Cluster and Attribute Estimation

W= 8089  p= 1.28e−09 d=−0.53~[−0.69,−0.35]       

0.02~[0.01,0.03]

0.13~[0.1,0.16] 

3.46~[2.99,4.62] 

3.43~[3.03,3.95]

W= 11246 p= 0.8397 d=0.01~[−0.22,0.23]

Accuracy Time (minutes)
3.46~[2.99,4.62] 

3.43~[3.03,3.95]

Figure 6: Results for Cluster Hypoth. NL, AM.

Path Hypothesis
Our path hypothesis postulated that the NL would outperform
the AM for all path-related tasks. T13 and T14 test a path
task on a large network and a small one, respectively. The
results, shown in Figure 7 (see supplement for T14), confirm
our hypothesis with the NL resulting in significantly higher
accuracy for T13 and for T14, although the effect size is less
pronounced in the small network. T15 is a more challenging
path task and again shows a significantly higher accuracy with
a large effect size in the NL vs. the AM. Participants also were
more than a minute faster on average in the NL.
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(a) Node search tasks without (T1) and with (T2) distractors.
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Figure 3: Task results for the Distractor and Sorting Hypothesis. Stimuli: T1 NL, AM, T2 NL, AM, T4 NL, AM, T5 NL, AM.

https://vdl.sci.utah.edu/mvnv-study/?&vis=NL&taskNum=3
https://vdl.sci.utah.edu/mvnv-study/?&vis=AM&taskNum=3
https://vdl.sci.utah.edu/mvnv-study/?&vis=NL&taskNum=10
https://vdl.sci.utah.edu/mvnv-study/?&vis=AM&taskNum=10
https://vdl.sci.utah.edu/mvnv-study/?&vis=NL&taskNum=12
https://vdl.sci.utah.edu/mvnv-study/?&vis=AM&taskNum=12
https://vdl.sci.utah.edu/mvnv-study/?&vis=NL&taskNum=1
https://vdl.sci.utah.edu/mvnv-study/?&vis=AM&taskNum=1
https://vdl.sci.utah.edu/mvnv-study/?&vis=NL&taskNum=2
https://vdl.sci.utah.edu/mvnv-study/?&vis=AM&taskNum=2
https://vdl.sci.utah.edu/mvnv-study/?&vis=NL&taskNum=4
https://vdl.sci.utah.edu/mvnv-study/?&vis=AM&taskNum=4
https://vdl.sci.utah.edu/mvnv-study/?&vis=NL&taskNum=5
https://vdl.sci.utah.edu/mvnv-study/?&vis=AM&taskNum=5


0.00 0.50 1.00 0 2 4 6

AM

NL

AM

NL

T13 − Attribute along Shortest Path

W= 15630  p= 1.36e−12 d=0.88~[0.63,1.14]       

0.89~[0.83,0.93] 

0.54~[0.46,0.62]

1.04~[0.97,1.11]

1.94~[1.76,2.18]

W= 5419 p= 3.21e−15 d=−0.92~[−1.07,−0.75]

Accuracy Time (minutes)
1.04~[0.97,1.11]

1.94~[1.76,2.18]

0.00 0.50 1.00 0 2 4 6

AM

NL

AM

NL

T15 − Attribute on Multiple Paths

W= 15484  p= 4.34e−10 d=0.77~[0.52,1.05]      

0.72~[0.64,0.77]

0.37~[0.29,0.44]

1.21~[1.09,1.4] 

2.79~[2.5,3.28]

W= 4161.5 p= 2.2e−16 d=−0.92~[−1.17,−0.66] 

Accuracy Time (minutes)
1.21~[1.09,1.4] 

2.79~[2.5,3.28]

Figure 7: Results for Path Hyp. T13 NL, AM, T15 NL, AM.
Edge Attributes
Tasks 6, 7, and 9 investigate the performance of each condi-
tion on tasks that relied on edge attributes. T6 and T9 require
the user to select and inspect a single neighbor based on edge
attributes. T7 is an overview task, requiring the user to summa-
rize edge attributes for all edges incident to a node. All three
tasks show no significant difference in accuracy or time to
completion between the two conditions, possibly as a result of
the visualizations’ ability to highlight neighbors, thereby sig-
nificantly reducing the search space for completing these tasks.
Results plots for these tasks can be found in the supplement.

Insight Generation Hypothesis
Task 16 instructed participants to freely explore the network
and report on any insights they derived from their exploration.
In order to analyze the responses, we performed a qualitative
coding of a sample of 120 responses (60 of each condition),
categorizing insights into a set of codes that were derived by
an initial open coding of the data. A full list of codes and their
frequencies is provided in the supplement.

Two types of insight were markedly more common in the
adjacency matrix condition: overview and ranked attribute
insights. Overview insights were those that derived from
an assessment of the entire network, such as “Institutions
have much fewer tweets in general than a person’s account.”
Ranked attribute insights were those that identified maxi-
mum or minimum values for one or more attributes, such
as “MViews has the 2nd youngest account age; however it
has the 4th largest follower count even though it also has the
fewest tweets.” Across-node attribute comparisons were also
more common in the AM, including insights such as “Nodes
with the most followers actually have much fewer tweets than
those with far fewer followers”.

Conversely, the node-link diagram favored topology-only,
topology-attribute, and within-node-attribute comparison in-
sights. Topology-only insights do not mention any attributes
and included “Steven, Evan, Jo, and Till have only ever had
1 interaction and they have all been with Lane.” Topology-
attribute insights were more common in NL and refer to those
that comment on both the structure of the network and one or
more attributes. Observed examples include “It does seem a
bit odd that Jeffrey, Alex, and Rob have such large networks
with their lower than average tweeting”. Within-node attribute
insights are those in which the comment relies on comparison
of attributes for a given node, such as “Jeffrey hasn’t made
many tweets (less than a thousand) yet has a lot of followers
and a fairly long account age.”

We were positively surprised by the extent and the quality
of the insights, the engagement of the participants, and the
ability of both techniques to reveal insights of various types,
albeit with different frequency. We saw the biggest differ-
ences in overview-attribute insights (much more in AM) and
ranked-attribute insight (exclusively in AM). Consequently,
we consider this hypothesis to be confirmed.

DISCUSSION
Overall, our results show that AMs are best suited for tasks
on clusters, tasks that benefit from sorted attributes, and tasks
that are performed in the presence of distractors and require
scanning the entire network. NLs, on the other hand, are
well suited for paths, tasks that rely on within-node compar-
isons, and tasks on neighbors given the ability of highlighting
neighbors in the network. The disadvantage of the AM for
performing path tasks is well known [26, 14, 19] and was once
again confirmed in our study. Our results indicate that the suit-
ability of AMs for cluster tasks, previously described by Okoe
et al. [26], also holds for cluster tasks involving attributes. The
cluster task in the present study incorporates attributes both in
the cluster selection (only select nodes of type person) and in
the attribute estimation component.

We could not find differences between the AM and NL in
the ability to analyze edge attribute in three different tasks,
which is in contrast to the results of Alper et al. [3], where AM
performed better than NL. Our NL edge design was different
in that we used curved, separated edges instead of straight,
bundled edges. The discrepancy in our findings may be due to
the differences in study design, our different NL design, or the
dataset and types of tasks used in both studies. All tasks used
in the Alper et al. study involved comparing parallel edges
between pairs of nodes, so the linear juxtaposition of edges in
their design versus the curved edges in the present study could
conceivably affect performance. Based on these results, we
conclude that adjacency matrices are at least as good for
edge attribute tasks as node-link diagrams, even for the
very sparse graphs we tested.

Okoe et al. [26] found weak evidence for AM to perform better
in common neighbor tasks. Our findings do not support this, if
the tasks also consider attributes. Both the NL and the AM per-
formed about equally well. User insights from the free-explore
task corroborate the results from other tasks. For example,
they show that AMs are particularly well suited for tasks on
extreme values for one or more attributes, which is also sup-
ported by Task 1. Generally, insights related to attributes were
much more common in the adjacency matrix, and insights re-
lated to topology were slightly more common in the node-link
diagram. This finding highlights the respective strengths and
weaknesses of the techniques. We discuss implications for
designing network visualizations in the supplement.

METHODOLOGY CONSIDERATIONS
Creating an evaluation methodology for comparing complex
interactive systems with non-expert users resulted in a unique
set of challenges and considerations that we outline and reflect
on. First, we had to ensure participants were properly trained
on the interactive techniques. We conducted two rounds of
pilots to test and improve our training materials. Our first pilot
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revealed that the passive training videos plus trials were insuf-
ficient to recall all available interactions, particularly for the
adjacency matrix. As a result, we implemented active training,
which required users to perform all available interactions cor-
rectly before starting the study. Results from the second pilot
were much improved, as indicated by both user performance
and participant feedback.

Another challenge is the long study duration when compared
to typical crowdsourcing tasks. We found that by offering
above-average hourly compensation and clearly specifying
the duration of the study, participants were willing to invest
the longer time to complete the study. We recruited all 322
participants who completed the study in under two hours. 423
people started the study but returned it before completion, usu-
ally within a few minutes. Feedback by participants indicates
that our study was more involved than others on Prolific.

We logged all interactions with the system in order to track en-
gagement and collect a rich dataset on how users leverage the
features in each visualization to perform the tasks. We mostly
used this data to verify the quality of each trial and to identify
and reason about outliers. For example, we found that excep-
tionally long task completion time often correlates with par-
ticipants browsing away from the tab showing the experiment.
An initial analysis of this data reveals visualization-specific
interaction patterns: For example, participants highlight neigh-
bors more often in the NL, suggesting that neighbors are easier
to identify in AM without highlighting. We leave a detailed
analysis of this data to future work.

LIMITATIONS
Our comparison of two complex systems makes it impossible
to identify individual factors that contribute to the performance
of the techniques. For example, we do not know whether it is
interactive sorting or the encoding in aligned bars that leads to
attribute-related insights in the AM.

One limitation of our study is that we were not able to compare
multiple different network types in terms of size and density.
Instead, we focused on testing a broad set of tasks on networks
with varying attribute configurations. Although we cannot
make claims as to whether our results would generalize to
networks with significantly different topological characteris-
tics, we based our decision to test two size variants of a single
network on prior studies that investigated the effect of network
size on task accuracy. Ghoniem et al.’s [14] results indicate
that for networks under 100 nodes, there was no effect be-
tween size and user accuracy for all tasks except for overview
tasks such as estimating the number of nodes or links in a
graph, where node-link diagrams performed better for small
graphs. For density, Ghoniem et al. [14] found that AM out-
performs NL for dense graphs in all tasks with the exception
of path-finding, where NL representations were always better.
By choosing a sparse network for this study, we were able to
attribute performance differences between AM and NL to the
controlled network attribute variations, and not to the inherent
advantage of the AM over NL for dense networks.

REFLECTIONS
We believe that our study is unique in terms of the complexity
of the techniques and the tasks that we evaluate. Reflecting on

our approach, we ask whether such a study that cannot ade-
quately separate individual factors is worth the effort. Aren’t
more qualitative approaches, like case studies, a better ap-
proach for these cases? We believe that a quantitative approach
is appropriate because it can give definitive answers to ques-
tions about the relative merits of two widely used interactive
visualization techniques, and that it is not feasible to isolate all
factors and test them individually. We believe that our results
are impervious to subtle changes in the visualization or interac-
tion design. For example, we believe that if the embedded bar
charts in the NL conditions were replaced with an alternative,
equivalently powerful design, our results would still hold.

Second, should this method be the new gold standard for
evaluating a novel technique? Absolutely not. It is important
to use this approach only for techniques that have passed
the test of time, and for which the design process is free of
biases. We believe, however, that a broad class of published
visualization techniques is amenable to our approach.

Reflecting on our validation process, we believe that the expert
interviews helped us to design better techniques, yet we were
frustrated by the low return rate and by our inability to have
a discussion with the experts. We were largely unsuccessful
framing our questions so that they were answered in the con-
text of that technique. We believe that a dialog, potentially in a
series of structured interviews, would have been more fruitful.

Regarding the use of crowdsourcing platforms for evaluating
complex techniques, we found that users achieved remarkably
high average accuracy (75.2% across both conditions). We
attribute this (1) to our extensive training and (2) to our above
average compensation, which we speculate motivated partici-
pants to pay attention and be willing to invest time. We have
evidence for the former in the form of qualitative feedback on
the study, where participants complimented the training. The
latter is demonstrated by our high rates of useful comments on
the open-explore tasks (80% of all answers contained insights).
Given this data, we believe that the view of the visualization
community on which kinds of studies can be run on a crowd-
sourcing platform might be too narrow, and that a broader
range of systems is amenable to crowdsourced experiments.

CONCLUSION
Multivariate networks are a common and important data type.
We present the first quantitative study of two complex, val-
idated visualization techniques tailored to multivariate net-
works. Our results reveal that the AM outperforms the NL
for tasks on clusters as well as configurations where non-task
essential attributes are encoded. NL are bested suited for paths
and tasks that rely on within-node comparisons. We also re-
flect on our approach of using advanced visualization designs
in quantitative studies. We highlight the importance of includ-
ing active training, as well as above-average compensation to
ensure motivated users for a longer-than-average study.
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1 Participant Demographics
This section presents the demographic information for our participant pool, including distribution of age, sex, highest degree
achieved, browser used, and self-assessed visualization proficiency.
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Figure 1: Participant Demographics.
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2 Tasks
The following section contains, for each task, the task prompt, which hypothesis it was meant to investigate, the visual
configuration shown to the user depending on their assigned condition, how we scored for accuracy on that task, and results.
We also provide links to the interactive visualizations with task instructions and stimuli.

The result plot caption contains the following statistical parameters: Wilcox Test (W), p-value (p), Cohen’s d for Effect
Size (d), and Median value + 95% confidence intervals (M).

Task Name Task Prompt Properties Topology
Target

Hypothesis

T01 Node Search on At-
tribute

Find the North American with the most tweets. Large
2NA

Single
Node

Distractor, Attribute Sort-
ing

T02 Node Search on At-
tribute
with Distractors

Find the European person or institution with the least
likes.

Large
6NA

Single
Node

Distractor, Attribute Sort-
ing

T03 Node Search on Topol-
ogy
and Multiple Attributes

Which person has many interactions (edges) in this
network, several followers, but few tweets and likes
in general?

Large
4NA

Single
Node

Scalable Attributes

T04 Neighbor Search
on Attribute.

Find all of Lane’s European neighbors. Large
1NA

Neighbors Distractor

T05 Neighbor Search on
Attribute with Distrac-
tors.

Find all of giCentre’s North American neighbors. Large
6NA

Neighbors Distractor

T06 Neighbor Search
on Edge Attribute.

Who had the most mention interactions with Jeffrey? Large
2EA

Neighbors Edge Attributes

T07 Neighbor Overview
on Edge Attribute.

Does Alex have more mention interactions with North
American or European accounts? Who does he have
the most mentions interactions with?

Large
1NA2EA

Neighbors Edge Attributes

T08 Attribute of Common
Neighbors.

Among all people who have interacted with both Jef-
frey and Robert, who has the most followers?

Large
1NA

Neighbors Common Neighbor

T09 Edge Attributes. What is the most common form of interaction between
Evis19 and Jon? How often has this interaction hap-
pened?

Large
2EA

Neighbors Edge Attribute

T10 Node Attribute
Comparison.

Select all of Noeska’s neighbors that are people and
have more friends than followers.

Large
3NA

Neighbors Within-node Comparison

T11 Node Attr. Comparison
on Small Network.

Select the people who have interacted with Thomas
and have more friends than followers.

Small
3NA

Neighbors Within-node Comparison

T12 Cluster and Attribute
Estimation

Select all the people who are in a cluster with Alex.
Estimate the average number of followers among the
selected people.

Large
1NA

Cluster Cluster

T13 Attribute along
Shortest Path

What is the institution on a shortest path between Lane
and Rob? What is its continent of origin?

Large
2NA

Path Path

T14 Attribute along Shortest
Path on Small Network.

What is the institution on a shortest path between
Jason and Jon? What is its continent of origin?

Small
2NA

Path Path

T15 Attribute on Multiple
Paths

Of the North Americans who are two interactions
away from Sereno, who has been on twitter the
longest?

Large
1NA

Paths Path

T16 Free Explore Please explore the network freely and report on your
findings. Is there anything surprising or particularly
interesting in the network?

Large
6NA

NA Insight Generation

Table 1: Summary of tasks, the configrations, the topology target, and the associated hypothesis.
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2.1 Task 1: Node Search on Attribute

Instruction: Find the North American with the most tweets.
Properties: Large Network, 2 Node Attributes, Topology Target: Single Node.
Hypothesis: Distractor Effect Hypothesis, Sorting Attribute Hypothesis.
Scoring: Full score for T.J. 0.5 points for the NA with the second most tweets (Arvind).
Links: NL, AM

Accuracy Time (minutes) Confidence Difficulty

0.00 0.25 0.50 0.75 1.00 0 2 4 6 1 3 5 7 1 3 5 7

AM

NL

 W= 11241  p= 0.5903 d=−0.06~[−0.3,0.16]               W= 16678 p= 3.45e−12 d=0.63~[0.38,0.87] 
 NL: M=0.93~[0.88,0.96] AM: M=0.95~[0.89,0.97]          NL: M=0.77~[0.71,0.83] AM: M=0.55~[0.5,0.61]

Figure 2: Task 1 configuration and results.
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2.2 Task 2: Node Search on Attribute with Distractors

Instruction: Find the European person or institution with the least likes.
Properties: Large Network, 6 Node Attributes, Topology Target: Single Node.
Hypothesis: Distractor Effect Hypothesis, Sorting Attribute Hypothesis.
Scoring: .5 points for the two Europeans with the second least likes (Jason/Evision).
Links: NL, AM

Accuracy Time (minutes) Confidence Difficulty

0.00 0.25 0.50 0.75 1.00 0 2 4 6 1 3 5 7 1 3 5 7

AM

NL

 W= 6802.5  p= 2.39e−14 d=−0.92~[−1.16,−0.65]               W= 20312 p= 2.2e−16 d=1.46~[1.26,1.66] 
 NL: M=0.59~[0.52,0.66] AM: M=0.92~[0.88,0.95]          NL: M=2.23~[2.05,2.46] AM: M=0.85~[0.79,0.93]

Figure 3: Task 2 configuration and results.
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2.3 Task 3: Node Search on Topology and Multiple Attributes

Instruction: Which person has many interactions (edges) in this network, several followers, but few tweets and likes in
general?
Properties: Large Network, 4 Node Attributes, Topology Target: Single Node.
Hypothesis: Scalable Attributes.
Scoring: This task didn’t ask for a precise answer. We gave 1 point for Jeffrey and Alex, 0.5 points for Noeska and Rob.
Links: NL, AM

Accuracy Time (minutes) Confidence Difficulty

0.00 0.25 0.50 0.75 1.00 0 2 4 6 1 3 5 7 1 3 5 7

AM

NL

 W= 13258  p= 0.009292 d=0.31~[0.09,0.55]               W= 10076 p= 0.08098 d=−0.21~[−0.42,0.03] 
 NL: M=0.61~[0.53,0.68] AM: M=0.46~[0.38,0.54]          NL: M=2.08~[1.88,2.34] AM: M=2.46~[2.17,2.81]

Figure 4: Task 3 configuration and results.
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2.4 Task 4: Neighbor Search on Attribute

Instruction: Find all of Lane’s European neighbors
Properties: Large Network, 1 Node Attribute, Topology Target: Neighbors.
Hypothesis: Distractor Hypothesis.
Scoring: Correct answer is AA, Noeska, Till, and Joe. 1/4 point for each correct answer. -1/4 point for each incorrect answer.
Links: NL, AM

Accuracy Time (minutes) Confidence Difficulty

0.00 0.25 0.50 0.75 1.00 0 2 4 6 1 3 5 7 1 3 5 7

AM

NL

 W= 12244  p= 0.01174 d=0.35~[0.2,0.49]               W= 4084 p= 2.2e−16 d=−0.92~[−1.09,−0.71] 
 NL: M=0.98~[0.95,0.99] AM: M=0.93~[0.88,0.96]          NL: M=0.43~[0.39,0.47] AM: M=0.84~[0.76,0.94]

Figure 5: Task 4 configuration and results.
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2.5 Task 5: Neighbor Search on Attribute with Distractors

Instruction: Find all of giCentre’s North American neighbors
Properties: Large Network, 6 Node Attributes, Topology Target: Neighbors.
Hypothesis: Distractor Hypothesis.
Scoring: Full score for only Robert. 0 otherwise.
Links: NL, AM

Accuracy Time (minutes) Confidence Difficulty

0.00 0.25 0.50 0.75 1.00 0 2 4 6 1 3 5 7 1 3 5 7

AM

NL

 W= 12244  p= 0.01174 d=0.35~[0.2,0.49]               W= 4084 p= 2.2e−16 d=−0.92~[−1.09,−0.71] 
 NL: M=0.98~[0.95,0.99] AM: M=0.93~[0.88,0.96]          NL: M=0.43~[0.39,0.47] AM: M=0.84~[0.76,0.94]

Figure 6: Task 5 configuration and results.
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2.6 Task 6: Neighbor Search on Edge Attribute.

Instruction: Who had the most mentions interactions with Jeffrey?
Properties: Large Network, 2 Edge Attributes, Topology Target: Neighbors.
Hypothesis: Edge Attributes.
Scoring: Full score for only Robert. 0 otherwise
Links: NL, AM

Accuracy Time (minutes) Confidence Difficulty

0.00 0.25 0.50 0.75 1.00 0 2 4 6 1 3 5 7 1 3 5 7

AM

NL

 W= 11012  p= 0.2464 d=−0.13~[−0.36,0.1]               W= 7621 p= 6.32e−07 d=−0.26~[−0.5,−0.02] 
 NL: M=0.91~[0.84,0.95] AM: M=0.95~[0.89,0.97]          NL: M=0.73~[0.66,0.86] AM: M=0.87~[0.8,0.96]

Figure 7: Task 6 configuration and results.
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2.7 Task 7: Neighbor Overview on Edge Attribute

Instruction: Does Alex have more mention interactions with North American or European accounts? Who does he have the
most mentions interactions with?
Properties: Large Network, 1 Node Attribute, 2 Edge Attributes, Topology Target: Neighbors.
Hypothesis: Edge Attributes
Scoring: European (worth .5 points). Marc (worth .5 points).
Links: NL, AM

Accuracy Time (minutes) Confidence Difficulty

0.00 0.25 0.50 0.75 1.00 0 2 4 6 1 3 5 7 1 3 5 7

AM

NL

 W= 10206  p= 0.02177 d=−0.22~[−0.43,0.02]               W= 9518 p= 0.0131 d=−0.23~[−0.45,0.07] 
 NL: M=0.84~[0.79,0.88] AM: M=0.9~[0.85,0.94]          NL: M=1.66~[1.52,2.12] AM: M=2~[1.81,2.34]

Figure 8: Task 7 configuration and results.
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2.8 Task 8: Attribute of Common Neighbors

Instruction: Among all people who have interacted with both Jeffrey and Robert, who has the most followers?
Properties: Large Network, 1 Node Attribute, Topology Target: Neighbors.
Hypothesis: Common Neighbor Hypothesis
Scoring: Full score for Chris, .5 point for Tamara.
Links: NL, AM

Accuracy Time (minutes) Confidence Difficulty

0.00 0.25 0.50 0.75 1.00 0 2 4 6 1 3 5 7 1 3 5 7

AM

NL

 W= 9952  p= 0.03108 d=−0.19~[−0.42,0.04]               W= 9460.5 p= 0.0106 d=−0.4~[−0.59,−0.19] 
 NL: M=0.6~[0.53,0.66] AM: M=0.69~[0.61,0.75]          NL: M=1.8~[1.66,1.97] AM: M=2.35~[2.12,2.67]

Figure 9: Task 8 configuration and results.
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2.9 Task 9: Edge Attributes

Instruction: What is the most common form of interaction between Evis19 and Jon? How often has this interaction happened?
Properties: Large Network, 2 Edge Attributes, Topology Target: Neighbors.
Hypothesis: Edge Attributes
Scoring: Most common interaction is ‘Mentions’, worth .5 points. The number of times it has happened is 4, worth .5 points
if part A was correct.
Links: NL, AM

Accuracy Time (minutes) Confidence Difficulty

0.00 0.25 0.50 0.75 1.00 0 2 4 6 1 3 5 7 1 3 5 7

AM

NL

 W= 10438  p= 0.05002 d=−0.24~[−0.47,−0.02]               W= 10018 p= 0.0685 d=−0.17~[−0.37,0.06] 
 NL: M=0.85~[0.79,0.89] AM: M=0.92~[0.86,0.95]          NL: M=0.9~[0.82,0.98] AM: M=1~[0.92,1.13]

Figure 10: Task 9 configuration and results.
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2.10 Task 10: Node Attribute Comparison

Instruction: Select all of Noeska’s neighbors that are people and have more friends than followers.
Properties: Large Network, 3 Node Attributes, Topology Target: Neighbors.
Hypothesis: Within-Node Attribute Comparison Hypothesis
Scoring: Correct answers are Lonni, Thomas, Anna, and Klaus. 1/4 point for each correct answer. -1/4 point for each
incorrect answer.
Links: NL, AM

Accuracy Time (minutes) Confidence Difficulty

0.00 0.25 0.50 0.75 1.00 0 2 4 6 1 3 5 7 1 3 5 7

AM

NL

 W= 13318  p= 0.0007957 d=0.32~[0.07,0.53]               W= 2537 p= 2.2e−16 d=−1.32~[−1.6,−1.02] 
 NL: M=0.91~[0.87,0.94] AM: M=0.83~[0.76,0.87]          NL: M=0.94~[0.84,1.23] AM: M=1.79~[1.67,1.95]

Figure 11: Task 10 configuration and results.
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2.11 Task 11: Node Attribute Comparison on Small Network

Instruction: Select the people who have interacted with Thomas and have more friends than followers.
Properties: Small Network, 3 Node Attributes, Topology Target: Neighbors
Hypothesis: Within-node Attribute Comparison Hypothesis
Scoring: Correct answer is Anna. Full score for only Anna, 0 otherwise.
Links: NL, AM

Accuracy Time (minutes) Confidence Difficulty

0.00 0.25 0.50 0.75 1.00 0 2 4 6 1 3 5 7 1 3 5 7

AM

NL

 W= 12063  p= 0.1061 d=0.19~[−0.05,0.41]               W= 5068 p= 2.2e−16 d=−0.76~[−0.97,−0.49] 
 NL: M=0.92~[0.86,0.95] AM: M=0.86~[0.8,0.9]          NL: M=0.71~[0.65,0.83] AM: M=1.25~[1.14,1.41]

Figure 12: Task 11 configuration and results.
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2.12 Task 12: Cluster and Attribute Estimation

Instruction: Select all the people who are in a cluster with Alex. Estimate the average number of followers among the
selected people.
Properties: Large Network, 1 Node Attribute, Topology Target: Cluster.
Hypothesis: Cluster Hypothesis
Scoring: For subquestion 1, we determined clusters by two different methods: using a network clustering plugin to
Cytoscape [2], and a seriation algorithm (optimal leaf clustering) [1] for the adjacency matrix. Based on these algorithmically
defined clusters, we inspected the NL and AM to identify which nodes are distinctly in clusters in both visualizations and in
the cluster results from the algorithms. Based on this, we defined a core cluster containing Alex, Robert, Noeska, and Jason.
There are other members of the core cluster, but they are institutions, not people. The cluster score was then defined by the
edit distance to the correct answer, with the following exceptions: As Alex was the node asked for in the question, including it
doesn’t get points, leaving it out doesn’t incur a penalty. We also defined an extended cluster that contained people nodes that
could reasonably be included in the cluster. This extended cluster includes Tamara, James, Jon, Marc and Klaus. These nodes
were excluded from calculating the edit distance, i.e., including them did not incur a benefit or penalty.

For subquestion 2, the average number of followers of the cluster members, we averaged the number of followers for
the nodes selected by the user in part A and computed the standard deviation of those values. The score was weighted from
average -1/2 std dev to average +1/2 std dev, with full score given for the average, going to 0 at the extremes. The score for the
combined task was the score for part A multiplied by the score for part B.
Links: NL, AM

Accuracy Time (minutes) Confidence Difficulty

0.00 0.25 0.50 0.75 1.00 0 2 4 6 1 3 5 7 1 3 5 7

AM

NL

 W= 8089  p= 1.28e−09 d=−0.53~[−0.69,−0.35]               W= 11246 p= 0.8397 d=0.01~[−0.22,0.23] 
 NL: M=0.02~[0.01,0.03] AM: M=0.13~[0.1,0.16]          NL: M=3.46~[2.99,4.62] AM: M=3.43~[3.03,3.95]

Accuracy

0.00 0.50 1.00

T12B − Attribute Estimation
Accuracy

0.00 0.50 1.00

AM

NL

T12A - Cluster Selection 

NL: M=0.04~[0.03,0.07]
AM: M=0.2~[0.16,0.24]

NL: M=0.51~[0.45,0.56]
AM: M=0.61~[0.54,0.67]

Figure 13: Task 12 results.
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Figure 14: Task 12 configuration.
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2.13 Task 13: Attribute Along Shortest Path

Instruction: What is the institution on a shortest path between Lane and Rob? What is its continent of origin?
Properties: Large Network, 2 Node Attributes, Topology Target: Paths.
Hypothesis: Path Hypothesis
Scoring: The answer to subquestion 1 is AA, for which the user is awarded .5 point. Anything else is 0. If the user got the
first part right, the continent of origin is EU, worth another .5 points.
Links: NL, AM

Accuracy Time (minutes) Confidence Difficulty

0.00 0.25 0.50 0.75 1.00 0 2 4 6 1 3 5 7 1 3 5 7

AM

NL

 W= 15630  p= 1.36e−12 d=0.88~[0.63,1.14]               W= 5419 p= 3.21e−15 d=−0.92~[−1.07,−0.75] 
 NL: M=0.89~[0.83,0.93] AM: M=0.54~[0.46,0.62]          NL: M=1.04~[0.97,1.11] AM: M=1.94~[1.76,2.18]

Figure 15: Task 13 configuration and results.
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2.14 Task 14: Attribute Along Shortest Path on Small Network

Instruction: What is the institution on a shortest path between Jason and Job? What is its continent of origin?
Properties: Small Network, 2 Node Attributes, Topology Target: Paths
Hypothesis: Path Hypothesis
Scoring: The answer to subquestion 1 is EVis19, for which the participant is awarded .5 point. Anything else is 0. The answer
to subquestion 2 is EU. If the participant got subquestion 1 right, and then got subquestion 2 right, they got another 0.5 points.
Links: NL, AM

Accuracy Time (minutes) Confidence Difficulty

0.00 0.25 0.50 0.75 1.00 0 2 4 6 1 3 5 7 1 3 5 7

AM

NL

 W= 13308  p= 0.0005172 d=0.4~[0.17,0.63]               W= 5848 p= 2.53e−13 d=−0.75~[−0.94,−0.54] 
 NL: M=0.86~[0.79,0.9] AM: M=0.7~[0.62,0.77]          NL: M=0.93~[0.86,1.03] AM: M=1.53~[1.39,1.71]

Figure 16: Task 14 configuration and results.
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2.15 Task 15: Attribute on Multiple Paths

Instruction: Of the north americans who are two interactions aways from Sereno, who has been on twitter the longest?
Properties: Large Network, 1 Node Attribute, Topology Target: Paths
Hypothesis: Path Hypothesis
Scoring: The answer is Robert. 1 point Robert, 0 otherwise.
Links: NL, AM

Accuracy Time (minutes) Confidence Difficulty

0.00 0.25 0.50 0.75 1.00 0 2 4 6 1 3 5 7 1 3 5 7

AM

NL

 W= 15484  p= 4.34e−10 d=0.77~[0.52,1.05]               W= 4161.5 p= 2.2e−16 d=−0.92~[−1.17,−0.66] 
 NL: M=0.72~[0.64,0.77] AM: M=0.37~[0.29,0.44]          NL: M=1.21~[1.09,1.4] AM: M=2.79~[2.5,3.28]

0 2 4 6

Figure 17: Task 15 configuration and results.
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2.16 Task 16: Free Explore

Instruction: Please explore the network freely and report on your findings. Is there anything surprising or particularly
interesting in the network?
Properties: Large Network, 6 Node Attributes, Topology Target: NA
Hypothesis: Insight Generation Hypothesis
Scoring: Qualitative coding based on answer types..
Links: NL, AM

Time (minutes)

0 2 4 6

AM

NL

W= 11428 p= 0.9706 NA 
NL: M=3.18~[2.86,3.68] AM: M=3.22~[2.87,3.7]

Figure 18: Task 16 configuration and results.
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Figure 19: Frequencies of insights faceted by type of insight and condition.
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3 Provenance
We tracked various types of interactions using a provenance framework. The following figures show the frequency of selected
interactions. We used custom visualizations to inspect the provenance data, which is available at https://vdl.sci.utah.edu/mvnv-
study-analysis/.
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Figure 20: Interaction count per participant as a function of task and specific interaction type.
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Figure 21: Interaction count per participant for sorting interactions in the Adjacency Matrix.
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4 Design Guidelines
For a sparse network with few attributes, we recommend a design similar to our node-link diagram with bubbles. Global
tasks on a single numerical attribute are about as well supported as in the AM. Most topology tasks are supported about
equally well, with the exceptions of path-related tasks, which are much better supported in NL, and cluster tasks, which are
better supported in AM. We believe it is important to provide the ability to selectively show attributes of interest in NL, so
that bubble size can be leveraged and nested charts can be avoided. Interactions such as node dragging and neighborhood
highlighting were extensively used, and a system should certainly provide them.

For sparse networks with attributes that need to be analyzed simultaneously, and any dense network, we recommend
a design similar to our adjacency matrix. While performance on the task that had the most attributes but also considered
topology (T3) was slightly more accurate with the NL, the AM performed well on global discovery tasks (e.g., T1) and
resulted in a lot of overview insights. The AM is clearly the method of choice for discovering clusters or communities and
characterizing their attributes, but is also competitive for neighborhood and common neighbour tasks. As far as interaction is
concerned, sorting was extensively used in the matrix, and is clearly an important feature for any implementation.
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