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Summary. Hypothesis testing in the linear regression model is a fundamental statistical prob-
lem. We consider linear regression in the high dimensional regime where the number of pa-
rameters exceeds the number of samples (p > n). To make informative inference, we assume
that the model is approximately sparse, i.e. the effect of covariates on the response can be well
approximated by conditioning on a relatively small number of covariates whose identities are
unknown. We develop a framework for testing very general hypotheses regarding the model
parameters. Our framework encompasses testing whether the parameter lies in a convex cone,
testing the signal strength, and testing arbitrary functionals of the parameter. We show that the
procedure proposed controls the type I error, and we also analyse the power of the procedure.
Our numerical experiments confirm our theoretical findings and demonstrate that we control the
false positive rate (type I error) near the nominal level and have high power. By duality between
hypotheses testing and confidence intervals, the framework proposed can be used to obtain
valid confidence intervals for various functionals of the model parameters. For linear functionals,
the length of confidence intervals is shown to be minimax rate optimal.

Keywords: Bias; Confidence intervals; False positive rate; High dimensional inference;
Hypothesis testing; Statistical power

1. Introduction

Consider the high dimensional regression model where we are given n independent and identi-

cally distributed pairs .y1, x1/, .y2, x2/, : : : , .yn, xn/ with yi ∈R and xi ∈R
p denoting the response

values and the feature vectors respectively. The linear regression model posits that response val-

ues are generated as

yi =θT
0 xi +wi, wi ∼N.0, σ2/: .1/

Here θ0 ∈R
p is a vector of parameters to be estimated. In matrix form, letting y = .y1, : : : , yn/T

and denoting by X the matrix with rows xT
1 , : : : , xT

n we have

y =Xθ0 +w, w ∼N.0, σ2In×n/: .2/

We are interested in high dimensional models where the number of parameters p may far

exceed the sample size n. To make informative inference feasible in this setting, we assume
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sparsity structure for the model, i.e. θ0 has only a few (s0 <n) non-zero entries, whose identities

are unknown.

Our goal in this paper is to understand various parameter structures of the high dimensional

model. Specifically, we develop a flexible framework for testing null hypotheses of the form

H0 :θ0 ∈Ω0 versus HA :θ0 �∈Ω0, .3/

for a general set Ω0 ⊂R
p. Remarkably, we make no additional assumptions (such as convexity

or connectedness) on Ω0.

In Section 5, we shall relax the sparsity assumption on the model parameters to approxi-

mate sparsity. Consider the linear model y =XθÅ + w, where θÅ ∈ R
p is not necessarily sparse.

Approximate sparsity posits that, even if the true signal XθÅ cannot be written as a sparse linear

combination of the covariates, there is at least one sparse linear combination of the covariates

that grows close to the true signal. Formally, we assume that there is a vector θ0 ∈R
p such that

‖θ0‖0 = s0, and ‖XθÅ −Xθ0‖= oP .1/. Note that this notion of approximate sparsity is similar

to but stronger than that introduced in Bunea et al. (2007) and Belloni et al. (2012). (In Belloni

et al. (2012) the approximate sparsity assumption allows ‖XθÅ −Xθ0‖=OP .
√

s0/, whereas here

we are imposing the stronger requirement ‖XθÅ −Xθ0‖=oP .1/.)

In addition, in Section 6 we extend our analysis to non-Gaussian heteroscedastic noise.

1.1. Motivation

High dimensional models are ubiquitous in many areas of applications. Examples range from

signal processing (e.g. compressed sensing), to recommender systems (collaborative filtering),

to statistical network analysis, to predictive analytics, etc. The widespread interest in these

applications has spurred remarkable progress in the area of high dimensional data analysis

(Candès and Tao, 2007; Bickel et al., 2009; Bühlmann and van de Geer, 2011). Given that the

number of parameters goes beyond the sample size, there is no hope of designing reasonable

estimators without making further assumptions on the structure of model parameters. A natural

such assumption is sparsity, which posits that only s0 of the parameters θ0,i are non-zero, and

s0 �n. A prominent approach in this setting for estimating the model parameters is via the lasso

estimator (Tibshirani, 1996; Chen and Donoho, 1995) defined by

θ̂
n
.y, X;λ/≡arg max

θ∈R
p

{

1

2n
‖y −Xθ‖2

2 +λ‖θ‖1

}

: .4/

(We shall omit the arguments of θ̂
n
.y, X;λ/ whenever clear from the context.)

To date, the majority of work on high dimensional parametric models has focused on point

estimation such as consistency for prediction (Greenshtein and Ritov, 2004), oracle inequalities

and estimation of parameter vectors (Candès and Tao, 2007; Bickel et al., 2009; Raskutti et al.,

2009), model selection (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Wainwright,

2009) and variable screening (Fan and Lv, 2008). Bunea et al. (2007) extended the oracle in-

equalities for the lasso to the setting of weak sparsity and weak approximation, where the effect

of covariates on the response can be controlled up to a small approximation error by condi-

tioning on a relatively small number of covariates, whose identities are unknown. The minimax

rate for estimating the parameters in the high dimensional linear model was studied in Ye and

Zhang (2010) and Raskutti et al. (2011), assuming that the true model parameters belong to

some lq-ball.

Despite this remarkable progress, the fundamental problem of statistical significance is far less
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understood in the high dimensional setting. Uncertainty assessment is particularly important

when one seeks subtle statistical patterns about the model parameters θ0.

Below, we discuss some important examples of high dimensional inference that can be per-

formed when provided a methodology for testing hypotheses of form (3).

1.1.1. Example 1 (testing θmin condition)

Support that recovery in high dimension concerns the problem of finding a set Ŝ ⊆{1, 2, : : : , p},

such that P.Ŝ =S/ is large, where S ≡{i :θ0,i �=0, 1� i�p}. Work on support recovery requires

that the non-zero parameters are sufficiently large to be detected. Specifically, for exact support

recovery meaning that P.Ŝ �= S/ → 1, it is assumed that mini∈S |θ0,i| = Ω[
√

{log.p/=n}]. This

assumption is often referred to as the θmin-condition and has been shown to be necessary for

exact support recovery (Zhao and Yu, 2006; Fan and Li, 2001; Wainwright, 2009; Meinshausen

and Bühlmann, 2006).

Relaxing the task of exact support recovery, let α and β be the type I and type II error rates in

detecting non-zero (active) parameters of the model. In Javanmard and Montanari (2014a), it is

shown that, even for Gaussian design matrices, any hypothesis testing rule with non-trivial power

1−β >α requires mini∈S |θ0,i|=Ω.1=
√

n/. Although the θmin-assumption is commonplace, it is

not verifiable in practice and hence it calls for developing methodologies that can test whether

such a condition holds true.

For a vector θ∈R
p, define the support of θ as supp.θ/={1� i�p :θi �=0}. In tests (3), letting

Ω0 ={θ ∈ R
p : mini∈supp.θ/ |θi|� c}, we can test the θmin-condition for any given c � 0 and at a

preassigned level of significance α.

1.1.2. Example 2 (confidence intervals for quadratic forms)

We can apply our method to test hypotheses of form

H0 :‖Qθ0‖2 ∈Ω0, .5/

for some given set Ω0 ⊆ [0, ∞/ and a given matrix Q ∈ R
m×p. By duality between hypothesis

testing and confidence intervals, we can also construct confidence intervals for quadratic forms

‖Qθ0‖.

In the case of Q = I, this yields inference on the signal strength ‖θ‖2
2. As noted in Janson

et al. (2017), armed with such a testing method we can also provide confidence intervals for

the estimation error, namely ‖θ̂ − θ0‖2
2. Specifically, we split the collected samples into two

independent groups .y.0/, X.0// and .y.1/, X.1//, and construct an estimate θ̂ just by using the

first group. Letting ỹ ≡ y.1/ − X.1/θ̂, we obtain a linear regression model ỹ = X.1/.θ0 − θ̂/ + w.

Further, if θ̂ is a sparse estimate, then θ0 − θ̂ is also sparse. Therefore, inference on the signal

strength on the model obtained is similar to inference on the error size ‖θ0 − θ̂‖2
2.

Inference on quadratic forms turns out to be closely related to several well-studied problems,

such as estimates of the noise level σ2 and the proportion of explained variation (Fan et al., 2012;

Bayati et al., 2013; Dicker, 2014; Janson et al., 2017; Verzelen and Gassiat, 2018; Guo et al., 2019).

To expand on this point, suppose that attributes xi are drawn IID from a Gaussian distribution

with covariance Σ, and the noise level σ2 is unknown. Then, var.yi/ =σ2 +‖Σ1=2θ0‖2
2. Since

‖y‖2
2=var.yi/ follows a χ2-distribution with n degrees of freedom, we have ‖y‖2

2=n=var.yi/{1+
OP .n−1=2/}. Hence, the task of inference on the quadratic form ‖Σ1=2θ0‖2

2 and the noise level

σ2 are intimately related. This is also related to the proportion of explained variation defined as
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η.θ0, σ/=
E{.xT

i θ0/2}

var.yi/
=

µ

1+µ
, .6/

with µ = .1=σ2/‖Σ1=2θ0‖2
2 the signal-to-noise ratio. This quantity is of crucial importance in

genetic variability (Visscher et al., 2008) as it somewhat quantifies the proportion of variance in

a trait (the response) that is explained by genes (the design matrix) rather than the environment

(the noise part).

1.1.3. Example 3 (testing individual parameters θ0,i)

Recently, there has been significant interest in testing individual hypothesis H0,i : θi = 0, in the

high dimensional regime. This is a challenging problem because obtaining an exact characteri-

zation of the probability distribution of the parameter estimates in the high dimensional regime

is notoriously difficult.

A successful approach is based on debiasing the regularized estimators. The resulting debiased

estimator is amenable to distributional characterization which can be used for inference on

individual parameters (Javanmard and Montanari, 2013, 2014a,b; Zhang and Zhang, 2014;

Van de Geer et al., 2014). Our methodology for testing hypotheses of form (3) is built on the

debiasing idea. It also recovers the debiasing approach for Ω0 ={θ ∈R
p : θi =0}.

1.1.4. Example 4 (confidence intervals for predictions)

For a new sample ξ, we can perform inference on the response value ξTθ0 by letting Ω0 = {θ :

ξTθ0 = c} for a given value c. Further, by duality between hypothesis testing and confidence

intervals, we can construct confidence intervals for ξTθ0. We refer to Section 7 for further

details.

1.1.5. Example 5 (confidence intervals for f (θ0))

Let f : R
p → R be an arbitrary function. By letting Ω0 = {θ : f.θ0/ = c} we can test different

values of f.θ0/. Further, by employing the duality relationship between hypothesis testing and

confidence intervals, we can construct confidence intervals for f.θ0/. Note that examples 3 and

4 are special cases of f.θ0/ = eT
i θ0 and f.θ0/ = ξTθ0. Here ei is the ith standard basis element

with 1 at the ith entry and 0 everywhere else.

1.1.6. Example 6 (testing over convex cones)

For a given cone C, our framework enables us to test whether θ0 belongs to C. Some examples

that naturally arise in studying treatment effects are the non-negative cone C�0 ={θ ∈R
p : θi �

0 for all 1 � i�p} and the monotone cone CM ={θ ∈ R
p : θ1 � θ2 �: : :� θp}. Letting θi denote

the mean of treatment i, by testing θ0 ∈C�0, we can test whether all the treatments in the study are

harmless. Another case is when treatments correspond to an ordered set of dosages of the same

drug. Then, one might reason that, if the drug is of any effect, its effect should follow a monotone

relationship with its dosage. This hypothesis can be cast as θ0 ∈CM. Such testing problems over

cones have been studied for Gaussian sequence models by Kudo (1963), Robertson and Wegman

(1978) and Raubertas et al. (1986), and very recently by Wei et al. (2019).

1.2. Other related work

Testing in the high dimensional linear model has experienced a resurgence in the past few years.

Most closely related to us is the line of work on debiasing or desparsifying that was pioneered

by Zhang and Zhang (2014), Van de Geer et al. (2014) and Javanmard and Montanari (2014b),

who proposed a debiased estimator θ̂
d

such that every co-ordinate θ̂
d

i is approximately Gaussian
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under the condition that s2
0 log.p/=n → 0, which is in turn used to test single co-ordinates

of θ0, H0 : θ0,i = 0, and to construct confidence intervals for θ0,i. In a parallel line of work,

Belloni et al. (2011, 2013, 2014, 2017) have also designed an asymptotically Gaussian pivot via

the post-double-selection lasso, under the same sample size condition of s2
0 log.p/=n→ 0. Cai

and Guo (2017) established that the sample size conditions that are required by debiasing and

post-double-selection are minimax optimal, meaning that to construct a confidence interval of

length O.1=
√

n/ for a co-ordinate of θ0 requires s2
0 log.p/=n→0 for general unknown popula-

tion covariance. Javanmard and Montanari (2018) introduced a novel ‘leave-one-out’ technique

by which they provided a sharper analysis of the debiasing approach for Gaussian designs and

improved the required sample size to s0 =o{n= log.p/2}, assuming that the population covari-

ance can be estimated sufficiently well. Very recently, Deshpande et al. (2019) introduced ‘on-line

debiasing’ for statistical inference in high dimensional models where the samples are collected

adaptively and hence are correlated. The work further discusses applications of on-line debiasing

to batched data settings and time series analysis.

The debiasing and post-double-selection approaches have also been applied to a wide variety

of other models for testing θ0,i including missing data linear regression (Wang et al., 2019),

quantile regression (Zhao et al., 2014) and graphical models (Ren et al., 2015; Chen et al., 2016;

Wang and Kolar, 2016; Barber and Kolar, 2018).

In the multiple-testing realm, the debiasing approach has been used to control directional

false discovery rates (Javanmard and Javadi, 2019). Other methods such as false discovery rate

thresholding and sorted l1-penalized estimation (‘SLOPE’) procedures control the false dis-

covery rate when the design matrix X is orthogonal (Su and Candes, 2016; Bogdan et al., 2015;

Abramovich et al., 2006). In the non-orthogonal setting, the knockoff procedure (Barber and

Candès, 2015) controls the false discovery rate whenever n� 2p, and the noise is isotropic. In

Janson and Su (2016) the knockoff procedure was generalized to control also for the familywise

error rate. More recently, Candès et al. (2018) developed the model-free knockoff which allows

for p>n when the distribution of X is known.

In parallel, there have been developments in selective inference, namely inference for the vari-

ables that the lasso selects. Lee et al. (2016) and Tibshirani et al. (2016) developed exact tests for

the regression coefficients corresponding to variables that the lasso selects. This was further gen-

eralized to a wide variety of polyhedral model selection procedures including marginal screening

and orthogonal matching pursuit in Lee and Taylor (2014). Tian and Taylor (2018), Fithian

et al. (2014) and Harris et al. (2016) developed more powerful and general selective inference

procedures by introducing noise in the selection procedure. To allow for selective inference in the

high dimensional setting, Lee et al. (2016) combined the polyhedral selection procedure with the

debiased lasso to construct selectively valid confidence intervals for θ0,i when s0 log.p/=
√

n→0.

Much of the previous work has focused on testing co-ordinates or one-dimensional projections

of θ0. An exception is Nickl and van de Geer (2013), who studied the problem of constructing

confidence sets for high dimensional linear models, so that, under Gaussian designs, the confi-

dence sets are honest over the family of sparse parameters. In other words, the confidence sets

should have the desired coverage over signals that are at least s sparse for a given sparsity level

s. Our work increases the applicability of the debiasing approach by allowing for the general hy-

pothesis, θ0 ∈Ω0. The set Ω0 can be non-convex or even disconnected. Our set-up encompasses

a broad range of testing problems and it is shown to be minimax optimal for special cases such

as Ω={θ :θi =0} and Ω0 ={θ : ξTθ = c}.

Zhu and Bradic (2017) have studied problem (3) independently and indeed Zhu and Bradic

(2017) was posted on line around the same time as the first draft of our paper was released. This

work also leverages the idea of debiasing but greatly differs from this work, in both methodol-
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ogy and theory, which we now discuss. In Zhu and Bradic (2017), the debiased estimator was

constructed in the standard basis (compared with ours which is done in a lower dimensional

subspace) and is followed by an l1-projection to construct the test statistic. The test statistic

involves a data-dependent vector and the method uses the bootstrap to approximate the dis-

tribution of the test statistic and to set the critical values. In terms of theory, Zhu and Bradic

(2017) showed that the method proposed controls the type I error at the desired level assuming

that log.p/=o.n1=8/ and s0 =o{n1=4=
√

log.p/} (see theorem 1 therein), whereas we prove such

a result for our test under s0 =o{
√

n= log.p/}. It was shown in Zhu and Bradic (2017) that the

rule achieves asymptotic power 1 provided that the signal strength (measured in term of the

l∞-distance of θ0 from Ω0) asymptotically dominates n−1=4. In comparison, in theorem 3 we

establish a lower bound of the power for all values of the signal strength and as a corollary of that

we show that the method achieves power 1 if the signal strength dominates n−1=2 asymptotically.

1.3. Organization of the paper

In the remaining part of Section 1, we present the notation and a few preliminary definitions.

The rest of the paper presents the following contributions.

(a) In Section 2, we explain our testing methodology. It consists of constructing a debiased

estimator for the projections of the model parameters in a lower dimensional subspace.

It is then followed by an l∞-projection to form the test statistic.

(b) In Section 3, we present our main results. Specifically, we show that our method controls

the false positive rate under a preassigned α-level. We also derive an analytical lower

bound for the statistical power of our test. In the case Ω0 ={θ ∈R
d : θi =0} (example 3),

it matches the bound that was proposed in Javanmard and Montanari (2014b), theorem

3.5, which is also shown to be minimax optimal.

(c) In Section 5, we explain the notion of approximate sparsity and discuss how our results

can be extended to allow for approximately sparse models.

(d) In Section 6, we relax the Gaussianity assumption on the noise component and discuss

how to address possibly non-Gaussian heteroscedastic noise under proper moment con-

ditions.

(e) In Section 7, we provide applications of our framework for some special cases: inference

on linear predictions, quadratic forms of the parameters and testing the θmin-condition.

In Section 7.1, we discuss the existing literature for these subproblems and compare it

with our proposed methodology.

(f) In Section 8, we provide numerical experiments to corroborate our findings and evaluate

the type I error and statistical power of our test under various settings.

(g) In Appendix A, proofs of the theorems are given whereas proofs of technical lemmas are

deferred to the on-line appendices.

1.4. Notation

We start by adapting some simple notation that will be used throughout the paper, along with

some basic definitions from the literature on high dimensional regression.

We use ei to refer to the ith standard basis element, e.g. e1 = .1, 0, : : : , 0/. For a vector v,

supp.v/ represents the positions of non-zero entries of v. For a vector θ and a subset S, θS is the

restriction of θ to indices in S. For an integer p�1, we use the notation [p]={1, : : : , p}. We write

‖v‖p for the standard lp-norm of a vector v, i.e. ‖v‖p = .Σi|vi|p/1=p and ‖v‖0 for the number of

non-zero entries of v. Whenever the subscript p is not mentioned it should be read as the l2-norm.

For a matrix A, we denote by |A|∞ ≡maxi�m,j�n |Aij| the maximum absolute value of entries
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of A. Further, its maximum and minimum singular values are respectively indicated by σmax.A/

and σmin.A/. Throughout, Φ.x/≡
∫ x

−∞ exp.−t2=2/dt=
√

.2π/ denotes the cumulative distribution

function of the standard normal distribution. We also denote the z-values zα =Φ
−1.1−α/.

The term ‘with high probability’ means with probability converging to 1 as n→∞ and, for two

functions f.n/ and g.n/, the notation f.n/=o{g.n/} means that g ‘dominates’ f asymptotically,

namely, for every fixed positive C, there exists n.C/ such that f.n/�Cg.n/ for n > n.C/. Like-

wise, f.n/=O{g.n/} indicates that f is ‘bounded’ above by g asymptotically, i.e. f.n/�Cg.n/

for some positive constant C. Analogously, we use the notation oP .·/ and OP .·/ to indicate

asymptotic behaviour in probability as the sample size n grows to ∞.

Let Σ̂= .XTX/=n ∈ R
p×p be the sample covariance of the design X ∈ R

n×p. In the high di-

mensional setting, where p exceeds n, Σ̂ is singular. As is common in high dimensional statistics,

we assume the compatibility condition which requires Σ̂ to be non-singular in a restricted set of

directions.

We use the notation ‖ · ‖ψ2
to refer to the sub-Gaussian norm. Specifically, for a random

variable X, we let

‖X‖ψ2
= sup

q�1

q−1=2.E|X|q/1=q: .7/

For a random vector X∈R
m, its sub-Gaussian norm is defined as

‖X‖ψ2
= sup

‖x‖�1

‖〈X, x〉‖ψ2
:

Definition 1. For a symmetric matrix J ∈R
p×p and a set S ⊆ [p], the compatibility condition

is defined as

φ2.J , S/≡ min
θ∈R

p

{

|S|〈θ, Jθ〉
‖θS‖2

1

:θ ∈R
p, ‖θSc‖1 �3‖θS‖1

}

: .8/

Matrix J is said to satisfy the compatibility condition for a set S ⊆ [p], with constant φ0 if

φ.J , S/�φ0.

2. Projection statistic

Depending on the structure of Ω0 it may be useful if, instead of testing the null hypothesis H0 :

θ0 ∈Ω0, we test it in a lower dimensional space. Consider a k-dimensional subspace represented

by an orthonormal basis {u1, : : : , uk}, with ui ∈ R
p. For this section, we assume that the basis

{u1, : : : , uk} is predetermined and fixed. In Section 4, we discuss how to choose the subspace

depending on Ω0 to maximize the power of the test. The projection onto this subspace is given

by

PU.θ/=
k

∑

i=1

〈θ, ui〉ui =UUTθ,

where U = .u1, : : : , uk/ ∈ R
p×k. We also use the notation PU.Ω0/ = {PU.θ/ : θ ∈Ω0} to denote

the projection of Ω0 onto the subspace U. Define the hypothesis

H̃0 :PU.θ0/∈PU.Ω0/: .9/

Under the null H0, H̃0 also holds, so controlling the type I error of H̃0 also controls the type I



692 A. Javanmard and J. D. Lee

error of H0. In what follows we propose a testing rule R∈{0, 1} for the null hypothesis H̃0 and

show that it controls the type I error below a preassigned level α. Consequently,

sup
θ∈Ω0

Pθ.R=1/� sup
PU .θ/∈PU .Ω0/

Pθ.R=1/�α:

For now, we consider an arbitrary fixed subspace U, and then after we analyse the statistical

power of our test we provide guidelines on how to choose U to increase the power.

To test H̃0 we construct a test statistic based on the debiasing approach.

We first let {θ̂, σ̂} be the scaled lasso estimator (Sun and Zhang, 2012) given by

{θ̂
n
.λ/, σ̂.λ/}= arg min

θ∈R
p,σ>0

{

1

2σn
‖y −Xθ‖2

2 +
σ

2
+λ‖θ‖1

}

: .10/

This optimization simultaneously gives an estimate of θ0 and σ. We use regularization parameter

λ=
√

{2:05 log.p/=n}. Because of the l1-penalization, the lasso estimator θ̂ is biased towards

small l1-norm, and so is the projection PU.θ0/. We view PU.θ0/ in the basis U, namely γ0 =UTθ0,

and construct a debiased estimator for it in the following way:

γ̂d =UTθ̂ +
1

n
GTXT.y −Xθ̂/, .11/

with the decorrelating matrix G = [g1|: : : |gk] ∈ R
p×k, where each gi is obtained by solving the

following optimization problems for each 1� i�k:

minimize gT
Σ̂g

subject to ‖Σ̂g −ui‖∞ �µ:
.12/

Note that the decorrelating matrix G ∈ R
p×p is a function of X, but not of y. We next state a

lemma that provides a a bias–variance decomposition for γ̂d and brings insight about the form

of debiasing given by equation (11).

Lemma 1. Let X∈ R
n×p be any (deterministic) design matrix. Assuming that optimization

problem (12) is feasible for i∈ [k], let γ̂d = γ̂d.λ/ be a general debiased estimator as per equation

(11). Then, setting Z =GTXTw=
√

n, with w the noise vector in regression (2), we have

√
n.γ̂d −UTθ0/=Z +∆, Z ∼N.0, σ2GT

Σ̂G/, ∆=
√

n.GT
Σ̂−UT/.θ0 − θ̂/: .13/

Further, assume that X satisfies the compatibly condition for the set S = supp.θ0/, |S|� s0,

with constant φ0, and let K ≡maxi∈[p].X
TX=n/ii. Then, choosing λ=c

√
{log.p/=n}, we have

P

{

‖∆‖∞ �
cµσs0

φ2
0

√
log.p/

}

�2p−c0 +2 exp

(

−
n

16

)

, c0 =
c2

32K
−1: .14/

Lemma 1 can be proved in a similar way to theorem 2.3 of Javanmard and Montanari (2014b)

and its proof is omitted here. The decomposition (13) explains the rationale behind optimization

(12). Indeed the convex program (12) aims at optimizing two objectives. On one hand, the

constraint controls the term |GT
Σ̂− UT|∞, which by lemma 1 controls the bias term ‖∆‖∞.

On the other hand, it minimizes the objective function gT
Σ̂g, which controls the variance of γ̂d

i .

Therefore, the parameter µ in optimization (12) controls the bias–variance trade-off and should

be chosen sufficiently large to ensure that solving problem (12) is feasible. (See Section 3.1 for

further discussion.)
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Remark 1. In the special case of k = 1 and u = ei, the debiased estimator (11) reduces to

the estimator that was introduced in Javanmard and Montari (2014b). For the special case of

k =1, it becomes similar to the estimator that was proposed by Cai and Guo (2017) that is used

to construct confidence intervals for linear functionals of θ0. Note that the proposed debiasing

procedure incurs small bias in the infinity norm with respect to the rotated basis, ‖γ̂d −UTθ0‖∞,

as opposed to the standard debiasing procedure (Javanmard and Montanari, 2013, 2014a,b;

Zhang and Zhang, 2014; Van de Geer et al., 2014) which incurs small bias, in the infinity norm,

with respect to the original basis, and not necessarily in the rotated basis.

The following assumption ensures that the entries of noise Z have non-vanishing variances.

Assumption 1. We have lim infn→∞ mini∈[k].G
T
Σ̂G/i,i � c0 > 0, for some positive constant

c0.

Assumption 1 entails the decorrelating matrix G, where our proposal constructs via opti-

mization (12). In the following lemma, we provide a sufficient condition for assumption 1 to

hold.

Lemma 2. Suppose that

lim sup
n→∞

µ.max
i∈[k]

‖ui‖1/� c< 1

and

lim sup
n→∞

max
i∈[k]

.uT
i Σ̂ui/<C<∞,

for some constant c, C. Then, assumption 1 holds.

We refer to the on-line appendix A.1 for the proof of lemma 2.

Remark 2. The very recent work Cai et al. (2019) uses the debiasing approach for inference on

individualized treatment effect (and for general linear function uTθ0). The mechanism proposed

slightly differs from problem (12) in that it includes an extra constraint. By this trick, the

proposed mechanism of Cai et al. (2019) can be used for inference on a broad family of loading

vector u. We can follow the same idea and replace optimization problem (12) by

minimize gT
Σ̂g

subject to ‖Σ̂g −ui‖∞ �µ,

|uT
i Σ̂g −1|�µ:

.15/

This way assumption 1 is automatically satisfied (see Cai et al. (2019), lemma 1, for the details).

Define the shorthand

Q.n/ ≡
σ̂2

n
.GT

Σ̂G/,

D.n/ ≡diag.{Q
.n/
ii }−1=2/:

.16/

To ease the notation, we hereafter drop the superscript ‘.n/’. We next construct a test statistic

Tn so that the large values of Tn provide evidence against the null hypothesis. For this, consider

the l∞ projection estimator that is given by

θp =arg min
θ∈R

p
‖D.γ̂d −UTθ/‖∞

subject toθ ∈Ω0:

.17/
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We then define the test statistic to be the optimal value of estimator (17), i.e.

Tn =‖D.γ̂d −UTθp/‖∞: .18/

The reason for using the l∞-norm in the projection is that the bias term of γ̂d is controlled in

l∞-norm. (See lemma 1.) The decision rule is then based on the test statistic

RX.y/=
{

1 if Tn � zα=.2k/ .reject H̃0/,

0 otherwise .fail to reject H̃0/:
.19/

The above procedure generalizes the debiasing approach of Javanmard and Montanari (2014b).

Specifically, for Ω0 = {θ : θ1 = 0} = {0} × R
p−1 and U = e1eT

1 , the test rule becomes the rule

that was proposed by Javanmard and Montanari (2014b) for testing hypotheses of the form

H0 :θ0,1 =0 versus its alternative.

Remark 3. Using lemma 1, under the null hypothesis H0 : θ0 ∈ Ω0, we have that D.γ̂d −
UTθp/ is (asymptotically) stochastically dominated by DZ, whose entries are dependent and are

distributed as standard normal. The choice of threshold zα=.2k/ in expression (19) comes from

using this observation and union bounding to control the (two-sided) tail of ‖DZ‖∞. Given

that lemma 1 also characterizes the dependence structure of the entries of DZ, we can pursue

another (less conservative) approach to choose the rejection threshold. As an implication of

lemma 1, and since k (the dimension of Z) is fixed, we have that, for all t ∈R,

P{‖D.γ̂d −UTθ0/‖∞ � t}−P.‖DZ‖∞ � t/=oP .1/: .20/

Under the null hypothesis H0, we have that ‖D.γ̂d − UTθp/‖∞ � ‖D.γ̂d − UTθ0/‖∞ and, by

result (20), the distribution of ‖D.γ̂d − UTθ0/‖∞ is asymptotically equal to the maximum of

dependent standard normal variables ‖DZ‖∞, whose distribution can be easily simulated since

the covariance of the multivariate Gaussian vector DZ is known.

In the next section, we prove that decision rule (19) controls the type I error below the target

level α provided that the basis U is independent of the samples .yi, xi/, 1� i�n. We also develop

a lower bound on the statistical power of the testing rule and use that to choose the basis U.

3. Main results

3.1. Controlling false positive rate

Definition 2. Consider a given triple .X; U; G/ where X∈R
n×p, U ∈R

p×k with UTU = I and

G ∈ R
p×k. The generalized coherence parameter of .X; U; G/ denoted by µÅ.X; U; G/ is given

by

µÅ.X; U; G/≡|Σ̂G−U|∞, .21/

where Σ̂ = .XTX/=n is the sample covariance of X. The minimum generalized coherence of

.X; U/ is µmin.X; U/=min
G∈R

p×k µÅ.X; U; G/.

Note that, choosing µ�µmin.X; U/, solving the optimization problem (12) becomes feasible.

We take a minimax perspective and require that the probability of type I error (false positive)

is controlled uniformly over s0-sparse vectors.

For a testing rule R∈{0, 1} and a set Ω0, we define

αn.R/≡ sup{Pθ0
.R=1/ :θ0 ∈Ω0, ‖θ0‖0 � s0.n/}: .22/

Our first result shows the validity of our test for general set Ω0 under deterministic designs.
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Theorem 1. Consider a sequence of design matrices X ∈ R
n×p, with dimensions n → ∞,

p=p.n/→∞ satisfying the following assumptions. For each n, the sample covariance Σ̂=
.XTX/=n satisfies the compatibility condition for the set S0 = supp.θ0/, with a constant φ0 >0.

Also, assume that K � maxi∈[p] Σ̂ii for some constant K > 0. Also consider a sequence of

matrices U ∈R
p×k, with fixed k and p=p.n/→∞, such that UTU = Ik.

Consider the linear regression (2) and let θ̂
n

and σ̂ be obtained by the scaled lasso, given by

expression (10), with λ= c
√

{log.p/=n}. Construct a debiased estimator γ̂d as in expression

(11) by using µ�µmin.X; U/, where µmin.X; U/ is the minimum generalized coherence param-

eter as per definition 2, and suppose that assumption 1 holds. Choose c2 > 32K and suppose

that s0 = o.min[1={µ
√

log.p/}, n= log.p/]/. For the test RX that is defined in equation (19),

and for any α∈ [0, 1], we have

lim sup
n→∞

αn.RX/�α: .23/

We next prove validity of our test for general set Ω0 under random designs.

Theorem 2. Let Σ ∈ R
p×p such that σmin.Σ/ � Cmin > 0 and σmax.Σ/ � Cmax < ∞ and

maxi∈[p] Σii � 1. Suppose that XΣ
−1=2 has independent sub-Gaussian rows, with mean 0

and sub-Gaussian norm ‖Σ−1=2x1‖ψ2
=κ, for some constant κ> 0.

Let θ̂
n

and σ̂ be obtained by the scaled lasso, given by expression (10), withλ=c
√

{log.p/=n},

and c2 >48. Consider an arbitrary U ∈R
p×k, with UTU =I, that is independent of the samples

{.xi, yi/}
n
i=1. Construct a debiased estimator γ̂d as in expression (11) with µ=a

√
{log.p/=n}

and a2 > 48e2κ4Cmax=Cmin. In addition, suppose that lim supn→∞ µ.maxi∈[k]‖ui‖1/� c′, for

some constant 0 <c′ < 1 and s0 =o{
√

n= log.p/}.

For the test RX that is defined in equation (19), and for any α∈ [0, 1], we have

lim sup
n→∞

αn.RX/�α: .24/

We refer to Appendix A for the proof of theorems 1 and 2.

3.2. Statistical power

We next analyse the statistical power of our test. Before proceeding, note that, without further

assumption, we cannot achieve any non-trivial power, namely power of α which is obtained by

a rule that randomly rejects the null hypothesis with probability α. Indeed, by choosing θ0 �∈Ω0

but arbitrarily close to Ω0, one can make H0 essentially indistinguishable from HA. Taking this

point into account, for a set Ω0 ⊆R
p and θ0 ∈R

p, we define the distance d.θ0, Ω0; U/ as

d.θ0, Ω0; U/= inf
θ∈Ω0

‖UT.θ −θ0/‖∞: .25/

We shall assume that, under the alternative hypothesis, d.θ0, Ω0; U/�η as well. Define

βn.R/≡ sup{Pθ0
.R=0/ :‖θ0‖0 � s0.n/, d.θ0, Ω0; U/�η}: .26/

Quantity βn is the probability of type II error (false negative) and 1 − βn is the statistical

power of the test.

Theorem 3. Let RX be the test that is defined in equation (19). Under the conditions of

theorem 2, for all α∈ [0, 1]:

lim inf
n→∞

1−βn.RX/

1−βÅ
n .η/

�1, 1−βÅ
n .η/≡F

(

α,

√
nη

σ̂m0
, k

)

+
.27/
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where we define m0 as

m0 ≡max
i∈[k]

.uT
i Σ

−1ui/
1=2: .28/

Further, for α∈ [0, 1], x∈R+, and integer k �1, the function F.α, x, k/ is defined as follows:

F.α, x, k/=1−k

[

Φ

{

x+Φ
−1

(

1−
α

2k

)}

−Φ

{

x−Φ
−1

(

1−
α

2k

)}]

: .29/

The proof of theorem 3 is given in Appendix A.3.

For any fixed k�1 and α>0, the function x �→F.α, x, k/ is continuous and monotone increas-

ing, i.e. the larger d.θ0, Ω0; U/, the higher power is achieved. Also, to achieve a specific power

β >α, our scheme requires η >cβm0.σ=
√

n/, for some constant cβ that depends on the desired

power β. In addition, if η
√

n→∞, the rule achieves asymptotic power 1.

It is worth noting that, in the case of testing individual parameters H0,i :θ0,i =0 (corresponding

to Ω0 ={θ ∈ R
p : θi = 0} and k = 1), we recover the power lower bound that was established in

Javanmard and Montanari (2014b), which by comparing with the minimax trade-off that was

studied in Javanmard and Montanari (2014a) is optimal up to a constant.

4. Choice of subspace U

Before we start this section, we stress again that, by theorems 1 and 2, the proposed testing rule

controls the type I error below the desired level α, for any choice of U ∈R
p×k, with 1�k �p and

UTU = I that is independent of X. Here, we provide guidelines for choosing U that yield high

power. For this we use the result of theorem 3.

Note that

m0 �max
i∈[k]

.C−1
min‖ui‖2/1=2 =C

−1=2
min ,

where we recall that σmin.Σ/>Cmin > 0 and ‖ui‖=1, for i∈ [k]. Hence,

F

{

α,

√
n d.θ0, Ω0; U/

σ̂m0
, k

}

�F

{

α,
1

σ̂

√
.nCmin/ d.θ0, Ω0; U/, k

}

: .30/

We propose to choose U by maximizing the right-hand side of inequality (30), which by theorem 3

serves as a lower bound for the power of the test. Nevertheless, the above optimization involves

θ0 which is unknown. To cope with this issue, we use the lasso estimate θ̂ via the following

procedure.

Step 1: we randomly split the data .y, X/ into two subsamples .y.1/, X.1// and .y.2/, X.2//

each with sample size n0 = n=2. We let θ̂
.1/

be the optimizer of the scaled lasso applied to

.y.1/, X.1//.

Step 2: we choose U ∈R
p×k by solving the following optimization:

maximize
k∈[p],U∈R

p×k ,UTU=I

F

{

α,
1

σ̂

√
.nCmin/ d.θ0, Ω0; U/, k

}

: .31/

Step 3: we construct the debiased estimator by using the data .y.2/, X.2//. Specifically, set

Σ̂
.2/ ≡ .1=n0/.X.2//T.X.2// and let gi be the solution of the following optimization problems

for each 1� i�k:

minimize gT
Σ̂

.2/
g

subject to ‖Σ̂.2/
g −ui‖∞ �µ:

.32/
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Define the decorrelating matrix G = [g1|: : : |gk] ∈ R
p×k and let θ̂

.2/
be the optimizer of the

scaled lasso applied to .y.2/, X.2//. Let

γ̂d =UTθ̂
.2/ +

1

n0
GT.X.2//T.y.2/ −X.2/θ̂

.2/
/: .33/

Step 4: set Q≡ .σ̂2=n/.GT
Σ̂

.2/
G/ and D≡diag.{Qii}

−1=2/. Find the l∞-projection as

θp =arg min
θ∈R

p
‖D.γ̂d −UTθ/‖∞ subject to θ ∈Ω0: .34/

Step 5: define the test statistics Tn =‖D.γ̂d −UTθp/‖∞. The testing rule is given by

RX.y/=
{

1 if Tn � zα=.2k/ .reject H0/,

0 otherwise .fail to reject H0/:
.35/

Note that the data splitting above ensures that U is independent of .y.2/, X.2//, which is

required for our analysis (see theorems 1–3.)

4.1. Convex sets Ω0

When the set Ω0 is convex, step 2 in the above procedure can be greatly simplified. Indeed, we

can only focus on k =1 in this case.

Lemma 3. Define the set J of matrices as

J ≡arg max
U∈R

p×k
F

{

α,
1

σ̂

√
.nCmin/ d.θ̂

.1/
, Ω0; U/, k

}

subject to 1�k �p, UTU = Ik:

.36/

If Ω0 is convex then there is a unit norm uÅ ∈R
p×1 such that uÅ ∈J .

A proof of lemma 3 is given in the on-line appendix A.3.

Focusing on k =1, optimization (31) reduces to the following optimization over u∈R
p×1:

u∈arg max
u∈R

p,‖u‖2=1
F

{

α,
1

σ̂

√
.nCmin/ d.θ̂

.1/
, Ω0; u/, 1

}

: .37/

The function x �→ F.α, x, k/ is monotone increasing in x and, by substituting for d.θ0, Ω0; u/,

this becomes equivalent to the problem

maximize
u∈R

p,‖u‖2�1
inf
θ∈Ω0

|uT.θ − θ̂
.1/

/|: .38/

Given that the objective is linear in u and θ, and the set Ω0 is convex we can apply von Neumann’s

minimax theorem and change the order of max and min:

inf
θ∈Ω0

max
u∈R

p,‖u‖2�1
|uT.θ − θ̂

.1/
/|: .39/

Denote the orthogonal projection of θ̂
.1/

onto Ω0 by PΩ0
.θ̂

.1/
/=arg minθ∈Ω0

‖θ − θ̂
.1/‖2. Then

it is straightforward to see that the optimal u is given by

u=
P⊥

Ω0
.θ̂

.1/
/

‖P⊥
Ω0

.θ̂
.1/

/‖
, .40/

with P⊥
Ω0

.θ̂
.1/

/= θ̂
.1/ −PΩ0

.θ̂
.1/

/.
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Fig. 1. Illustration of the example of non-convex Ω0 discussed in remark 4 for pD2

We remind again that the type I error is controlled at the desired level for any U ∈ R
p×k

with UTU = I that is independent of .y, X/. The choice of u in equation (40) is a guideline for

increasing power in the case of convex sets Ω0.

Remark 4. We stress again that the convexity assumption of set Ω0 is crucial in deriving the

recipe (40). To build further insight, we provide a concrete example of a non-convex Ω0 and

argue that k = 1 is not the right choice. Let Ω0 =Ω1 ∪Ω2, where Ωi = {x ∈ R
p : |xi|� a, |xj|�

3a, for j �= i}, for i = 1, 2 and a fixed constant a > 0. Let θ0 = .2a, 2a, 0, : : : , 0/ ∈ R
p. Observe

that Ω0 is not convex and θ0 �∈Ω0. By choosing k = p and U = Ip×p, we have d.θ0, Ω0; U/ = a

and hence our method achieves non-trivial power. However, we argue that, setting k = 1, our

method cannot do better than random guessing. Specifically, we show that, for any vector

u ∈ R
p, we have d.θ0, Ω0; u/ = 0. By symmetry, assume that |u1| � |u2|. Note that the point

z0 =±.a sgn.u1/, 3a sgn.u2/, : : : , 3a sgn.up//∈Ω1 ⊂Ω0. Further, uTz0 =±.a|u1|+3a|u2|+ : : :+
3a|up|/. By convexity of Ω1, we have that Pu.Ω1/⊇A where A={αu : |α|� |uTz0|}. In addition,

we have uTθ0 = 2a.u1 + u2/ and, using the assumption |u1| � |u2|, we obtain |uTθ0| � |uTz0|.
Therefore, Pu.θ0/ ∈ A ⊆Pu.Ω1/ ⊂Pu.Ω0/. This implies that d.θ0, Ω0; u/ = 0, meaning that we

cannot do better than random guessing if the inference is done in the one-dimensional projected

space. We refer to Fig. 1 for a schematic illustration of this example in p=2.

5. Approximate sparsity

With the aim of broadening the application of our proposed method, we relax the sparsity

assumption of the model to a so-called approximate sparsity structure. Consider the linear model

y =XθÅ +w, .41/

with w ∼ N.0, σ2In×n/, and θÅ ∈ R
p the unknown model parameters that are not necessarily

sparse. However, we assume that there is at least one sparse linear combination of the covariates
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that approaches close to the true signal. This is formally stated as the approximate sparsity that

is stated below, which is similar to that introduced by Belloni et al. (2012).

Assumption 2 (approximately sparse model). The signal XθÅ is well approximated by a linear

combination of unknown s0 �1 covariates:

XθÅ =Xθ0 + r, ‖r‖=oP .1/: .42/

The approximate sparsity assumption in Belloni et al. (2012) is weaker than the assumption

that we are imposing here, as the former allows for ‖r‖=OP .
√

s0/. As shown in our analysis of

the debiased estimator in theorem 4 below, assuming approximately sparse models instead of

sparse models leads to an extra term .1=
√

n/GTXTr in the decomposition of
√

n.γ̂d − UTθ0/.

We control this term by a simple l2–l2-bound, namely
∥

∥

∥

∥

1
√

n
GTXTr

∥

∥

∥

∥

∞
�

(

max
i∈[k]

∥

∥

∥

∥

1
√

n
Xgi

∥

∥

∥

∥

)

‖r‖2 =op.1/,

where in the last step we used the approximate sparsity assumption. Although the l2–l2-bound

could be conservative, it is difficult to improve it for general setting as the terms GTXT and r

both depend on X and hence are highly dependent.

The next assumption was also introduced by Belloni et al. (2012), under the name of the

‘RF condition’ for reduced form errors and regressors. This is basically an assumption on

the moments of covariates and the noise component. In stating that we borrow the following

empirical process notation from Belloni et al. (2012): En.f/≡En{f.zi/}≡Σ
n
i=1f.zi/=n and Ē.f/≡

E{En.f/}=E[En{f.zi/}]=Σ
n
i=1E{f.zi/}=n.

Assumption 3 (moment condition). Suppose that the following moment conditions hold.

(a) For a constant C2 > 0, Ē.y2
i /+ Ē.X2

ijy2
i /+1=Ē.X2

ijw2
i /�C2.

(b) We have maxj∈[p] Ē.|X3
ijw3

i |/�o[
√

{n= log.p/3}], and also s0 log.p/=o.n/.

(c) maxi∈[n],j∈[p] X2
ijs0 log.p/=n → 0, in probability, and maxj∈[p] |.En − Ē/.X2

ijw2
i /|+ |.En −

Ē/.X2
ijy2

i /|→0, in probability.

The above moment condition was proposed in Belloni et al. (2012) where they bounded the

estimate error of selection methods such as the lasso under approximate sparsity conditions.

Our lemma below provides a set of alternative conditions that, for sub-Gaussian designs, imply

the moment condition 3.

Lemma 4. Suppose that the design X has independent sub-Gaussian centred rows with

uniformly bounded sub-Gaussian norm (‖xi‖ψ2
�C). Assume that yi and wi have uniformly

bounded conditional moments of order 4, i.e. E.y4
i |xi/�C′ and E.w4

i |xi/�C′′, for i∈ [n]. In

addition, suppose that s0 =o{n= log2.p/} and log.p/=o.n1=3/. Then the moment condition

3 holds.

We refer to the on-line appendix A.12 for the proof of lemma 4.

5.1. Iterated lasso

Following Belloni et al. (2012), we consider a weighted lasso estimator of θ0. Formally, let θ̂ be

given by

θ̂ =arg min
θ∈R

p

{

1

n
‖y −Xθ‖2 +λ

p
∑

j=1

|τjθj|
}

, .43/

where the regularization λ is chosen as
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Table 1. Algorithm 1: choosing weights in the iterated lasso estimator

Input: response vector y, design matrix X, regularization parameter λ,
number of iteration K

Output: estimator θ̂

1, (initialization) set τj =
√

En.X2
ijy2

i /, for j ∈ [p]

2, for k =1, 2,: : : , K do

3, compute estimator θ̂ given by estimator (43)

4, update the weights as τj =
√

En{X2
ij.yi −xT

i θ̂/2}

λ=
2:2
√

n
Φ

−1

{

1−
0:1

2p log.p/

}

: .44/

The weights τj, for j ∈ [p], are ideally chosen as τj =
√

En.X2
ijw2

i /. But since the noise terms wi

are unobserved this ideal option is not realizable. Hence, we use an iterative method that was

proposed in Belloni et al. (2012, 2014) to set the weights τj. (The resulting lasso estimator θ̂ is

referred to as the ‘iterated Lasso’ in Belloni et al. (2012, 2014).) The details of the procedure are

described in algorithm 1 (Table 1).

Our next theorem is analogous to theorem 2 and shows that our procedure controls the type

I error for random designs under approximately sparse models.

Theorem 4. Let Σ ∈ R
p×p such that σmin.Σ/ � Cmin > 0 and σmax.Σ/ � Cmax < ∞ and

maxi∈[p] Σii � 1. Suppose that the regression model (41) is approximately sparse (assump-

tion 2). Suppose that X has independent sub-Gaussian rows and the moment condition

(assumption 3) or the alternative assumptions of lemma 4 hold.

Let θ̂ be the iterated lasso estimator using data .y, X/, given by estimator (43). Con-

sider an arbitrary U ∈ R
p×k, with UTU = I, that is independent of the samples {.xi, yi/}

n
i=1.

Construct a debiased estimator γ̂d as in expression (11) with µ = a
√

{log.p/=n}, and a2 >

48e2κ4Cmax=Cmin. In addition, suppose that lim supn→∞ µ.maxi∈[k]‖ui‖1/�c′, for some con-

stant 0 <c′ < 1, s0 =o{
√

n= log.p/} and log.p/=o.n1=3/.

For the test RX that is defined in equation (19), and for any α∈ [0, 1], we have

lim sup
n→∞

αn.RX/�α: .45/

We refer to Appendix A.4 for the proof of theorem 4. We stress that the moment condition

(assumption 3) or the alternative sufficient conditions that are stated in lemma 4 is needed only

for the lasso l1-estimation error bound developed in Belloni et al. (2012) under the approximate

sparsity condition.

6. Extension to non-Gaussian heteroscedastic noise

Our analysis can be extended to the case of non-Gaussian heteroscedastic noise measurements.

Specifically, suppose that the noise term wi satisfies

E.wi|X/=0,

E.w2
i |X/=σ2

i ,

E.|wi|4+a|X/�B,

⎫

⎪

⎬

⎪

⎭

.46/

for some constants a, B> 0, and 1� i�n.
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Recall that our analysis is based on a bias–variance decomposition of the estimate γ̂d as in

lemma 1. The bias term ‖∆‖∞ can be bounded as

‖∆‖∞ �
√

n‖GT
Σ̂−U‖∞‖θ0 − θ̂‖1:

The first term does not involve the noise term w and can be treated as before. For bounding

‖θ0 − θ̂‖1, we used the result of Belloni et al. (2012), theorem 1 (see proposition 9.7 in the on-

line appendix) that also applies to non-Gaussian heteroscedastic noise as long as the moment

conditions (assumption 3) hold, which by lemma 4 for sub-Gaussian designs reduces to requiring

that the noise variables wi have bounded conditional moment of order 4.

So the remaining part is characterizing the limiting distribution of Z. For this, we shall show

that the Lindeberg condition holds and hence Z admits an asymptotically normal distribution

by virtue of the central limit theorem.

Similarly to the approach that was taken in Javanmard and Montanari (2014b), we slightly

modify our construction of the decorrelating matrix G to ensure that the Lindeberg condition

holds. Let G= [g1| : : : |gk]∈R
p×k, where each gi is obtained by solving the following optimization

problems for each 1� i�k:

minimize gT
Σ̂g

subject to ‖Σ̂g −ui‖∞ �µ

‖Xg‖∞ �nβ , for arbitrary fixed 0 <β < 1
2
:

.47/

Our following proposition shows that Z admits an asymptotically normal distribution in the

non-Gaussian setting.

Proposition 1. Suppose that the noise variables wi are independent with E.wi|X/=0, E.w2
i |X/=

σ2
i and E.|wi|4+a|X/�B for some a> 4β=.1−2β/, such that s2

n ≡ .1=n/Σn
i=1σ

2
i is bounded away

from 0 and from above uniformly in n. Let G = [g1| : : : |gk] ∈ R
p×k be the matrix that is con-

structed by solving optimization problem (47). For i∈ [p], define

Zi =
1

√
n

gT
i XTw

sn.gT
i Σ̂gi/1=2

: .48/

Suppose that the assumptions of theorem 4 hold. Then, for any sequence i= i.n/∈ [p], and any

x∈R, we have

lim
n→∞

P.Zi �x|X/=Φ.x/, .49/

with Φ.x/ indicating the cumulative distribution function of a standard normal variable.

We refer to the on-line appendix A.4 for the proof of proposition 1.

The distributional characterization (49) involves the unknown quantity sn. We next propose

an estimator of sn that can be used in lieu of sn in equation (48) and still have result (49) in place.

Denote by θ̂ the iterated lasso estimator given by expression (43) and define

ŝ2
n =

1

n

n
∑

i=1

.yi −〈xi, θÅ〉/2: .50/

Our next lemma shows that ŝn is a consistent estimator of sn.

Lemma 5. Consider regression model (41) along with assumption 2 (approximate sparsity)
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and assumption 3 (moment conditions). Consider the estimator ŝn that is given by equation

(50). If s0 =o{
√

n= log.p/}, then limn→∞.ŝn − sn/=0, with high probability.

The proof of lemma 5 is deferred to the on-line appendix A.5.

7. Discussion

It is useful to study the proposed methodology for some specific choices of Ω0 and to discuss

its optimality.

7.1. Example 1 (predictions)

Fix an arbitrary c∈R and consider the set Ω0 ={θ : ξTθ= c}. This corresponds to the set where

the (noiseless) unobserved response on the new feature vector ξ is c. We can use our methodology

to test H0 :θ0 ∈Ω0 versus its alternative. Further, by duality of hypothesis testing and confidence

intervals, our methodology provides confidence intervals for a linear functional of the form ξTθ0.

Computing u from expression (40) in this case gives u = ξ=‖ξ‖. Since ξ is independent of

.y, X/, the data splitting step in the procedure becomes superfluous. By duality, we construct

1 −α confidence intervals for ξTθ0 by finding the range of values c such that the rule fails to

reject H0 at level α. This is formalized in the next lemma.

Lemma 6. Consider a sequence of design matrices X∈R
n×p, with dimensions n, p→∞ and

p = p.n/ →∞ satisfying the assumptions of theorem 1. For given α∈ .0, 1/, define C.α/ =
[cmin, cmax] with

cmin =‖ξ‖γ̂d −
σ̂

√
n

√
.gT

Σ̂g/ zα=2‖ξ‖2, .51/

cmax =‖ξ‖γ̂d +
σ̂

√
n

√
.gT

Σ̂g/ zα=2‖ξ‖2, .52/

where γ̂d is the debiased estimator given by expression (33) with u= ξ=‖ξ‖. Then,

lim inf
n→∞

P{ξTθ0 ∈C.α/}�1−α: .53/

We refer to the on-line appendix A.6 for the proof of lemma 6. The confidence interval

constructed has length of rate ‖ξ‖=
√

n. In Cai and Guo (2017) it was shown that the minimax

expected length of confidence intervals for ξTθ0, with a sparse vector ξ (i.e. ‖ξ‖0 = O.s0/) is

‖ξ‖{1=
√

n + s0 log.p/=n}. Therefore, in the regime s0 = o{
√

n= log.p/}, which is the focus of

the current paper, the confidence intervals constructed are minimax rate optimal. It is worth

noting that the confidence interval that is defined in lemma 6 is similar to that proposed by Cai

and Guo (2017). For the case of non-sparse ξ, Cai and Guo (2017) established the minimax

rate ‖ξ‖∞s0
√

{log.p/=n} for the expected length of confidence interval for ξTθ0, and hence our

construction (51) has an optimality gap in this case.

7.2. Example 2 (quadratic forms)

As another example we apply our framework to testing the squared l2-norm of θ0. Consider

the set Ω0.c/ = {θ : ‖θ‖2
2 = c}, where c � 0 is a fixed arbitrary constant. We use the framework

proposed to test the null hypothesis H0 : θ0 ∈Ω0.c/. Computing u from expression (40) in this

case gives u = θ̂
.1/

=‖θ̂.1/‖. We next use the duality between hypothesis testing and confidence

intervals to construct confidence intervals for ‖θ0‖2
2.

Lemma 7. Consider a sequence of design matrices X∈R
n×p, with dimensions n, p→∞ and
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p = p.n/ →∞ satisfying the assumptions of theorem 2. For given α∈ .0, 1/, define C.α/ =
[cmin, cmax] with

cmin = .2γ̂d‖θ̂.1/‖−‖θ̂.1/‖2 −L/+,

cmax = .2γ̂d‖θ̂.1/‖−‖θ̂.1/‖2 +L/,
.54/

L=‖θ̂.1/‖
√

.gT
Σ̂g/{1+o.1/}

σ̂zα=2√
n

, .55/

where a+ = max.a, 0/ and γ̂d is the debiased estimator given by expression (33) with u =
θ̂.1/=‖θ̂.1/‖. Then,

lim inf
n→∞

P{‖θ0‖2
2 ∈C.α/}�1−α: .56/

We give the proof of lemma 7 in the on-line appendix A.7.

7.3. Example 3 (testing θmin-condition)

For a given c> 0, define the set Ω0 ={θ∈R
p : minj∈supp.θ/ |θj|� c}. Apart from the importance

of this example as discussed in Section 1, it differs from the previous examples in that the set

Ω0 is non-convex and disconnected. Recall that guideline (40) was provided for convex sets Ω0,

which is not true in this example.

Before proposing a choice of U for this example, we state a lemma.

Lemma 8. Let v∈R
p and define θ ∈R

p with θi =S.vi, c/, where

S.x, c/=

⎧

⎪

⎨

⎪

⎩

x |x|� c,

c x∈ .c=2, c/,

0 x∈ [−c=2, c=2],

−c x∈ .−c, − c=2/:

.57/

Then θ is a solution to minθ∈R
p ‖D.v−θ/‖∞, subject to θ ∈Ω0, for any diagonal matrix D.

A proof of lemma 8 is straightforward and so has been omitted.

In the numerical experiments, we apply our framework for this example with k =1 and U =
u∈R

p given by

u= eiÅ , iÅ ≡arg max
i∈[p]

|θ̂.1/

i −S.θ̂
.1/

i , c/|: .58/

We refer to the on-line appendix A.8 for a justification for this choice. By using lemma 8, the

test statistic in this case amounts to Tn =|d{γ̂d −S.γ̂d, c/}| (see step 5 of the algorithm that was

presented in Section 4).

7.4. Prior art

The inference problem (3) that is studied in this paper is very general and encompasses several

important problems such as the examples that were discussed in Section 1.1. For specific choices

of set Ω0, we may use the structure of the set Ω0 to come up with methods with higher statistical

power. However, in what follows we argue that, for three classes of inferential problems, our

proposed framework either recovers the previously proposed methods for that specific problem

or has comparable performance. We also contrast the underlying assumptions of our framework

and those of other methods that have been designed for these specialized problems.

7.4.1. Inference on prediction

As discussed in Section 7.1, for inference on linear functions γ0 =ξTθ0 (predictions), our frame-

work proposes u= ξ=‖ξ‖ and we construct a debiased estimator of γ0 taking the form
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γ̂d =
ξT

‖ξ‖
θ̂ +

1

n
gTXT.y −Xθ̂/, .59/

with g obtained by solving optimization problem (12). As argued for the case of random designs

with population covariance Σ, this implies that g≈Σ
−1ξ=‖ξ‖. As also discussed earlier in Section

1 and the previous section, a similar approach has been used by Cai and Guo (2017) and they

proved that the resulting confidence interval would be minimax rate optimal. It is indeed an

appealing property of our method that, despite its generality, it recovers the method of Cai and

Guo (2017) for this specific case and enjoys minimax optimality.

7.4.1.1. Assumptions. In terms of assumptions, Cai and Guo (2017) focused on high di-

mensional linear models with Gaussian designs (rows of design matrix are drawn IID from a

multivariate normal distribution), sparse parameter vector and Gaussian measurement noise.

Our analysis in Section 3 considers sub-Gaussian random designs (theorem 2) and coherent fixed

designs (theorem 1). We also extended our analysis to approximately sparse models (Section 5)

and non-Gaussian noise (Section 6).

7.4.1.2. Least favourable one-dimensional submodel. It is worth noting that the form of

debiasing (59) for linear functionals of θ can also be derived from the perspective of least

favourable scores that were discussed in Zhang and Zhang (2014). Akin to the semiparametric

models, consider the one-dimensional submodel {θ0 +uφ, |φ|< "Å} with "Å → 0, φ scalar and

u∈R
p. By imposing the constraint ξTu=1, we have ξT.θ0 +uφ/− ξTθ0 =φ. The idea of Zhang

and Zhang (2014) is to look for the least favourable submodels at θ0, given by θ0 +uφ with u0 the

direction that minimizes Fisher’s information. For the log-likelihood li.θ0/= l.θ0|yi, xi/, recall

that the Fisher information operator at θ is defined as F =−E{l̈i.θ/} and, for linear regression

with Gaussian errors, we have F = .1=σ/2
E.xix

T
i /= .1=σ/2

Σ. The least favourable direction in

the submodel is then given by

u0 =arg min
u

{uT
Σu : ξTu=1}=Σ

−1ξ=.ξT
Σ

−1ξ/:

Following Zhang and Zhang (2014), we can construct a low dimensional projection estimator as

a one-step maximum likelihood correction of θ̂ in the direction of the least favourable submodel

u as follows:

γ̂d = ξTθ̂ +arg max
φ∈R

n
∑

i=1

li.θ̂ +uφ/

= ξTθ̂ +
uTXT.y −Xθ̂/

‖Xu‖2
= ξTθ̂ +

ξT
Σ

−1ξ

‖XΣ−1ξ‖2
ξT

Σ
−1XT.y −Xθ̂/

≈ ξTθ̂ +
1

n
ξT

Σ
−1XT.y −Xθ̂/, .60/

where in the last step we replaced the denominator by its expectation. Comparing expression

(60) with equation (59) we see that (up to a normalization by ‖ξ‖) they are the same if g=Σ
−1ξ.

However, Σ is unknown in general and optimization problem (12) tries to find g ≈Σ
−1ξ that

also minimizes the variance of the debiased estimator obtained.

7.4.1.3. Choice of k and effect of sample splitting. Our procedure uses sample splitting to find

the best subspace U for the sake of statistical power. On one side, the sample splitting incurs a

loss in power as we are using only half of the data points. On the other side, the purpose of sample

splitting was to choose U to increase the power. To understand this trade-off we consider the

following inference problem. Consider a function h : R
p �→R

q defined as h.θ/= .ξT
1 θ, : : : , ξT

q θ/,
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for a linearly independent set {ξ1, : : : , ξq}. The goal is to do inference on the value of h.θ0/. We

consider the following two methods of choosing U in constructing the debiased estimator.

(a) Method 1: we let k =q and U be a basis for the space that is spanned by {ξ1, : : : , ξq}. This

method does not require any sample splitting.

(b) Method 2: define Ω0 ={θ : h.θ/= c}, for a given c> 0. Since Ω0.c/ is convex, our method-

ology sets k =1 and chooses u as in expression (40). Here we require sample splitting for

q�2 (see Section 4.1).

Note that the two methods become identical for q = 1. We next compare (the analytical lower

bound on) the statistical power of these two methods for choosing U. Let ηu =d.θ̂, Ω0; u/ and

ηu =d.θ̂, Ω0; U/, with u given by expression (40) and U a basis for the space {ξ1, : : : , ξq}. Using

theorem 3 and equation (30), the lower bound for the power of method 1 and method 2 are re-

spectively given by F{α, 1=σ̂
√

.nCmin/ηU , q} and F{α, 1=.
√

2σ̂/
√

.nCmin/ηu, 1}. Furthermore,

by equation (92) in the on-line supplementary material we have ηu �ηU and, since F.α, x, k/ is

increasing in x, we obtain

F

{

α,
1

√
2σ̂

√
.nCmin/ηu, 1

}

�F

{

α,
1

√
2σ̂

√
.nCmin/ηU , 1

}

:

In summary, we have

lim inf
n→∞

power1.n/

F{α, 1=σ̂
√

.nCmin/ηU , q}
�1,

lim inf
n→∞

power2.n/

F{α, 1=.
√

2σ̂/
√

.nCmin/ηU , 1}
�1:

.61/

These lower bounds nicely capture the trade-off between the choice of k and the sample splitting.

The function F.α, x, k/ is decreasing in k which supports the use of k = 1, but the function is

increasing in x and hence decreases under sample splitting. To understand this trade-off we

basically need to compare F.α, x, 1/ and F.α,
√

2x, q/, with x=1=.
√

2σ̂/
√

.nCmin/ηU . In Fig. 2,

we have plotted these curves for α=0:05 and several values of q. As we see for small values of

signal strength x, method 2 (k = 1 and sample splitting) has higher statistical power, whereas,

for larger signal strength x, method 1 (k> 1 and no sample splitting) prevails.

7.4.2. Inference on quadratic forms of parameters

Janson et al. (2017) proposed EigenPrism, which is a procedure to construct two-sided confidence

intervals for the signal squared magnitude ‖θ0‖2. An appealing property of this procedure

is that, albeit its applicability to the high dimensional setting (p > n), it does not make any

assumption on the coefficient sparsity. However, it is theoretically justified only for standard

Gaussian designs where Xij ∼N.0, 1/, independently. As explained in Janson et al. (2017) this

assumption is crucial because it ensures that, in the singular value decomposition of X=UDV T,

the columns of V are uniformly distributed on the unit sphere, and hence enables computing the

expectation and variance of inner products of columns of V with θ0, which constitutes a main

building component of Eigenprism. By contrast, our procedure (when specialized to inference

on quadratic forms of parameters as discussed in Section 7, example 2) applies to a much broader

family of sub-Gaussian random designs but assumes the coefficient sparsity s0 =o{
√

n= log.p/}.

In the limit n, p →∞ and n=p → γ ∈ .0, 1/, the length of confidence intervals that are con-

structed by Eigenprism for ‖θ0‖2 works out at Cγ.‖θ0‖2 + σ2/zα=2=
√

n, with Cγ a numerical

constant defined based on the Marcenko–Pastur distribution with parameter γ. By compari-
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Fig. 2. Plot of F.α, x, 1/ ( ) and F.α,
p

2x, q/ for qD2 ( ), 4 ( ) and αD0.05

son, using lemma 7, the confidence interval that is obtained by our method is of length

2L<
2zα=2√
Cmin

‖θ̂.1/‖
σ

√
n

:

As we see, the length of confidence intervals for ‖θ0‖2 from both methods scale at rate 1=
√

n.

7.4.3. Inference on individual parameters

As discussed in Section 1.1, for the special case of inference on an individual model parameter,

our approach recovers the debiasing method of Javanmard and Montanari (2014b). A similar

debiasing approach (with different construction of the decorrelating matrix, using nodewise

regression) was proposed in Zhang and Zhang (2014) and Van de Geer et al. (2014) and its

validity is proved under the assumption that the precision matrix Σ
−1 is sparse. Belloni et al.

(2014) proposed a significantly different approach for doing inference on an individual param-

eter, called ‘post-double selection’. Suppose that we are interested in parameter θi. This method

consists of two selection steps.

(a) Let I1 be the covariates selected by the lasso in regressing columns i of the design matrix

on the other columns.

(b) Let I2 denote the covariates that are selected by the lasso in regressing y on the design X.

The estimation of parameter θi is then defined as the least squares estimator obtained by regres-

sion y on xi and the selected features I1 ∪ I2 (we may expand this set to include other features

also that the statistician thinks are relevant). It is shown that the post-double estimator obeys

an asymptotically normal distribution.

The limiting distribution of the post-double estimator is characterized under approximate

sparsity structure and also applies to non-Gaussian noise as well, as far as some moment con-

ditions (similar to assumption 3) hold. We stress that the approximate sparsity assumption in

Belloni et al. (2014) is much weaker than ours in that it allows for ‖r‖=OP .
√

s0/, whereas we

require ‖r‖=oP .1/.
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8. Numerical illustration

In this section, we examine the performance of our inference framework in terms of coverage

rate and length of confidence intervals, type I error and statistical power under various set-ups.

We consider linear model (2) where the design matrix X ∈ R
n×p has IID rows generated from

N.0, Σ/, with Σ∈R
p×p being the Toeplitz matrix Σi,j =ρ|i−j|. For coefficient parameter θ0, we

consider a uniformly random support (set of non-zero parameters) S ⊆ [p], with |S|= s0. The

measurement errors are wi ∼N.0, 1/.

8.1. Testing θmin-condition

We consider the set Ω0 = {θ : minj∈supp.θ0/ |θ0,j| � c} and the null hypothesis H0 : θ0 ∈ Ω0. As

explained in Section 7 (example 3), the set Ω0 is non-convex (indeed is disconnected) and we

consider a one-dimensional projection of the problems along the direction u given by expression

(58) for this example. For the scaled lasso estimator θ̂
n
, given by expression (10), we set the

regularization parameter λ=
√

{2:05 log.p/=n}. Further, the parameter µ in constructing the

debiased estimator (see optimization problem (12)) is set to µ=2
√

{log.p/=n}. We set p=1000,

n = 600 and s0 = 10. The non-zero parameters θ0,i, i ∈ S, are chosen as 0:1, 0:2, : : : , 1. We set

α=0:05 and vary the values of c and ρ. The rejection probabilities are computed based on 300

random samples for each value of pair .c, ρ/. When c � 0:1, H0 holds and thus the rejection

probability corresponds to the type I error. When c> 0:1, the rejection probability corresponds

to the power of the test. The results are reported in Table 2. As we see in Table 2, part (a), the

type I error is controlled below the desired level α=0:05. Also, as evident in Table 2, part (b),

the power of our test increases at a very fast rate as c increases.

8.2. Confidence intervals for linear functions

We use our methodology to construct 95% confidence intervals for functions of the form ξTθ0.

We set p=3000 and s0 =30 and choose the correlation parameter ρ=0:5. The model parameters

are set as follows. We set θ0,j =0:5 for j=1, : : : , s0, and θ0,j =0:5=.j−s0 +1/, for j=s0 +1, : : : , p.

Table 2. Type I error and statistical power for H0 :
minj2supp.θ0/ jθ0,j j�c, for level of significance αD0.05

c Results (%) for the following values of ρ:

0.2 0.4 0.6 0.8

(a) Type I error
0.02 0.00 0.004 1.33 2.33
0.04 0.33 1.66 2.33 3.00
0.06 1.66 2.00 3.00 3.66
0.08 3.33 4.33 3.66 4.66
0.1 3.00 4.00 4.66 4.33

(b) Statistical power
0.2 8.00 10.66 18.66 14.33
0.3 17.33 24.66 28.66 35.33
0.4 86.00 93.33 92.66 84.66
0.5 90.00 88.00 97.33 86.66
0.6 100.00 88.33 100.00 100.00
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(a)

(b)

Fig. 3. (a) Coverage of 95% confidence intervals (51) for linear functions hξ, θ0i versus sample size n and
(b) confidence interval widths versus sample size n (here p D 3000, s0 D 30 and ρ D 0.5, and the model
parameters are approximately sparse as described in Section 8.2): , ξ1; , ξ2; , ξ3; , ξ4; , ξ5; ,
�0.5 log.n/

We construct confidence intervals according to lemma 6. We choose five vectors ξ1, ξ2, : : : , ξ5

as eigenvectors of Σ with well-separated eigenvalues. Specifically, sorting the eigenvalues of Σ

as σ1 �σ2 � : : :�σ3000, we choose the eigenvectors corresponding to σ1, σ750, σ1500, σ2250 and

σ3000. For each ξi, we vary n in {1000, 1200, 1400, : : : , 2600}. For each configuration .ξi, n/,

we consider 300 independent realizations of measurement noise and, on each realization, we

construct 95% confidence intervals for ξT
i θ0 based on lemma 6.

In Fig. 3(a), we plot the average coverage probability of constructed confidence intervals for

each configuration. Each curve corresponds to one of the vectors ξi. As we see, the coverage

probability for all of them and across different values of n is close to the nominal value.

In Fig. 3(b), we plot the average length of confidence intervals as we vary the sample size n in the

log–log-scale. As is evident from the Fig. 3(b), the length of confidence intervals scales as 1=
√

n.
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Table 3. Testing in the non-negative cone, .n, s0, p/D
.600, 10, 1000/†

b Results (%) for the following values of ρ:

0.2 0.4 0.6 0.8

(a) Type I error
1 2.00 2.00 2.00 3.33
0.8 0.66 2.33 2.33 2.66
0.6 3.00 3.66 1.00 2.66
0.4 2.66 2.33 1.33 2.00
0.2 2.33 1.66 2.33 3.66

(b) Statistical power
−0:2 35.33 68.00 78.00 80.00
−0:4 99.33 100.00 100.00 100.00
−0:6 100.00 100.00 100.00 100.00
−0:8 100.00 100.00 100.00 100.00
−1 100.00 100.00 100.00 100.00

†The non-zero entries have magnitude b, and the covari-
ance Σij =ρ|i−j|.

Table 4. Coverage rate of the con-
fidence intervals for ξTθ0 and kθ0k2

2
computed as in equation (62) for the
real data experiment and at various
noise levels σ

σ ξTθ0 ‖θ0‖2
2

1 0.96 0.95
5 0.94 0.93

10 0.93 0.94

8.3. Testing for the non-negative cone

Define Ω0 ={θ : θi � 0 for all i} as the non-negative cone. In this section, we test θ0 ∈Ω0 versus

θ0 �∈Ω0. The null model is generated as follows. The non-zero entries in support S are chosen as

b, b=2, b=3, : : : , b=s0, where s0 =|S| and b> 0. The entries outside S are set to 0. The alternative

model is generated similarly where b is replaced by −b. As in the previous sections, the design

matrix X∈R
n×p has IID rows generated from N.0, Σ/, with Σ∈R

p×p being the Toeplitz matrix

Σi,j = ρ|i−j| and measurement errors wi ∼ N.0, 1/, with parameters .n, s0, p/ = .600, 10, 1000/.

We set α=0:05 and vary the values of b and ρ. The rejection probabilities are computed based

on 300 random samples for each value of the pair .b, ρ/.

The simulation reported in Table 3 shows that the type I error is controlled below the target

level α=0:05. Per statistical power, the method achieves power at least 99% for |b|�0:4. Note

that we have a very difficult alternative in the sense that only a small fraction of the co-ordinates,

s0=d, is negative with small magnitudes ranging in [b=10, b], so it is a very mild violation of the

null, yet our algorithm still has high power.
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Fig. 4. 95% confidence intervals for (a) ξTθ0 and (b) kθ0k2
2 for the riboflavin data set: j, value of ξTθ0 and

kθ0k2
2; , confidence interval covering the true value , confidence interval not covering the true

value

8.4. Real data experiment

We measure the performance of our testing procedure on a riboflavin data set, which is publicly

available from Bühlmann et al. (2014) and can be downloaded via the hdi R package. The data

set includes p= 4088 predictors corresponding to the genes and n= 71 samples. The response

variable indicates the logarithm of the riboflavin production rate and the covariates are the

logarithm of the expression levels of the genes. We model the riboflavin production rate by a

linear model. We first fit the lasso solution θ̂ by using the glmnet package (Friedman et al., 2010)
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and then generate N =100 instances of the problem as y.i/ =Xθ̂+w.i/, where w.i/ ∼N.0, σ2In/.

In other words, we treat θ̂ as the true parameter θ0 and generate new data by resampling the noise.

We run two sets of experiments on these data.

8.4.1. Confidence interval for predictions

We fix a vector ξ ∈ R
p that is generated as ξi ∼ N.0, 1=

√
p/, independently for i ∈ [p]. On each

problem instance .i/, we construct confidence intervals CI.i/ for ξTθ0, by using lemma 6. We

compute the coverage rate as

Cov=
1

N

N
∑

i=1

I.ξTθ0 ∈CI.i//: .62/

8.4.2. Confidence interval for squared norm

On each problem instance .i/, we construct confidence intervals for ‖θ0‖2
2 by using lemma 7 and

compute the coverage rate given by equation (62).

The results are reported in Table 4. As we see for various values of noise standard deviation

σ, the coverage rates of the intervals constructed remain close to the nominal value. In Fig. 4,

we depict the constructed confidence intervals for 40 random problem instances, in each exper-

iment.
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Appendix A: Proof of theorems

A.1. Proof of theorem 1
We first prove a lemma to bound the estimation error of σ̂ returned by the scaled lasso. The following
lemma uses the analysis of Sun and Zhang (2012) and its proof is given in the on-line appendix A.9 for
readers’ convenience.

Lemma 9. Under the assumptions of theorem 1, let σ̂ = σ̂.λ/ be the scaled lasso estimator of the noise
level, with λ= c

√
{log.p/=n} and define σÅ =‖w‖=

√
n. Then, σ̂ satisfies

P

[
∣

∣

∣

∣

σ̂

σÅ −1

∣

∣

∣

∣

�
2c

φ0σÅ

√
{

s0 log.p/

n

}]

�2p−c0 +2 exp

(

−
n

16

)

, c0 =
c2

32K
−1: .63/

Armed with lemmas 9 and 1 we are ready to prove theorem 1. Under H0, we have θ0 ∈Ω0 and hence, by
invoking lemma 1, we have

Tn =‖D.γ̂d −UTθp/‖∞ �‖D.γ̂d −UTθ0/‖∞

�
1

√
n

‖DZ‖∞ +
1

√
n

‖D∆‖∞: .64/

Note that, for Z̃ ≡ σ̂DZ=.σ
√

n/∈R
k
, we have Z̃i ∼N.0, 1/. The entries of Z̃ are correlated though.



712 A. Javanmard and J. D. Lee

Fix ε> 0 and apply equation (64) to write

P.Tn �x/�P

(

σ

σ̂
‖Z̃‖∞ +

1
√

n
‖D∆‖∞ �x

)

�P

(

σ

σ̂
‖Z̃‖∞ �x− ε

)

+P

(

1
√

n
‖D∆‖∞ � ε

)

�P{‖Z̃‖∞ � .1− ε/.x− ε/}+P

(
∣

∣

∣

∣

σ̂

σ
−1

∣

∣

∣

∣

� ε

)

+P

(

1
√

n
‖D∆‖∞ � ε

)

: .65/

For the second term, we proceed as follows:

P

(
∣

∣

∣

∣

σ̂

σ
−1

∣

∣

∣

∣

� ε

)

�P

(
∣

∣

∣

∣

σ̂

σÅ −1

∣

∣

∣

∣

�
ε

2

)

+P

(
∣

∣

∣

∣

σ̂

σÅ −
σ̂

σ

∣

∣

∣

∣

�
ε

2

)

: .66/

Now, note that σÅ →σ, in probability, as n→∞. Therefore, by applying lemma 9 and using the assumption
s0 =o{n= log.p/}, we obtain

lim sup
n→∞

P

(
∣

∣

∣

∣

σ̂

σ
−1

∣

∣

∣

∣

� ε

)

=0: .67/

Using this in inequality (65), we have

lim sup
n→∞

P.Tn �x/� lim sup
n→∞

P{‖Z̃‖∞ � .1− ε/.x− ε/}

+ lim sup
n→∞

P

(

1
√

n
‖D∆‖∞ � ε

)

: .68/

We next note that by definition (16), and using the assumption lim infn→∞ mini∈[k].G
T
Σ̂G/ii �c0 >0, we

have

lim sup
n→∞

P

(

1
√

n
‖D∆‖∞ � ε

)

� lim sup
n→∞

P

(

1

σ̂
√

c0

‖∆‖∞ � ε

)

� lim sup
n→∞

P

(

2

σ
√

c0

‖∆‖∞ > ε

)

+P

(

σ

σ̂
�2

)

: .69/

By equation (67), we have P.σ=σ̂ � 2/→ 0. In addition, since s0 =o[1={µ
√

log.p/}], for n and p suffi-
ciently large, we have cµs0

√
log.p/=φ2

0 � ε
√

c0=2. Hence, by expression (14),

lim sup
n→∞

P

(

1
√

n
‖D∆‖∞ � ε

)

� lim sup
n→∞

P

(

‖∆‖∞ >
εσ

√
c0

2

)

� lim sup
n→∞

{

2p−c0 +2 exp

(

−
n

16

)}

=0: .70/

By substituting inequality (70) into inequality (65), we obtain

lim sup
n→∞

P.Tn �x/� lim sup
n→∞

P.‖Z̃‖∞ �x− ε+ ε2/: .71/

By union bounding over the entries of Z̃, we obtain

P.‖Z̃‖∞ �x− εx+ ε2/�2k{1−Φ.x− εx+ ε2/}: .72/

Observe that inequality (72) holds for any ε> 0, and that the right-hand side is bounded pointwise for all
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ε. Therefore, by applying the dominated convergence theorem, we obtain

lim sup
n→∞

P.Tn �x/�2k{1−Φ.x/}:

The result follows by choosing x=Φ
−1{1−α=.2k/}.

A.2. Proof of theorem 2
For φ0, s0, K�0, let En =En.φ0, s0, K/ be the event that the compatibility condition holds for Σ̂= .XTX=n/,
for all sets S ⊆ [p], |S|� s0 with constant φ0 > 0, and that maxi∈[p] Σ̂i, i �K. Explicitly

En.φ0, s0, K/≡
{

X∈R
n×p

: min
S:|S|�s0

φ.Σ̂, S/�φ0, max
i∈[p]

Σ̂i, i �K, Σ̂= .XTX=n/

}

: .73/

Then, by the result of Rudelson and Zhou (2013), theorem 6 (see also Javanmard and Montari (2014b),
theorem 2.4(a)), random designs satisfy the compatibility condition with constant φ0 =

√
Cmin=2, provided

that n�νs0 log.p=s0/, where ν = cκ4Cmax=Cmin, for a constant c> 0. More precisely,

P{X∈En.
√

Cmin=2, s0, K/}�1−4 exp.−c1n=κ4/, .74/

where c1 = c1.c/> 0 is a constant.
We next provide an explicit upper bound for the minimum generalized coherence µmin.X; U/ (see defi-

nition 2) for random designs.

Proposition 2 (Javanmard and Montanari, 2014b). Let Σ∈R
p×p

be such that σmin.Σ/�Cmin > 0 and
σmax.Σ/�Cmax <∞ and maxi∈[p] Σii �1. Suppose that XΣ

−1=2 has independent sub-Gaussian rows, with
mean 0 and sub-Gaussian norm ‖Σ−1=2x1‖ψ2

=κ, for some constant κ> 0. For U ∈R
p×k

independent of
X satisfying UTU = I and, for fixed constant a> 0, define

Gn.a/≡
[

X∈R
n×p

:µmin.X; U/<a

√
{

log.p/

n

}]

: .75/

In other words, Gn.a/ is the event that solving problem (12) is feasible for µ= a
√

{log.p/=n}. Then, for
n�a2Cmin log.p/=.4e2Cmaxκ

4/, the following result holds true with high probability:

P{X∈Gn.a/}�1−2p−c2 , c2 =
a2Cmin

24e2κ4Cmax

−2: .76/

We refer to the on-line appendix A.10 for the proof of proposition 9.
The last step is to prove that assumption 1 holds. In doing that, we use lemma 2. Note that the first

condition of lemma 2 holds by assumption of theorem 2. To prove the second condition, we use the
following result.

Lemma 10. Let Σ ∈ R
p×p

such that σmin.Σ/ � Cmin > 0 and σmax.Σ/ � Cmax < ∞ and maxi∈[p] Σii �

1. Suppose that XΣ
−1=2 has independent sub-Gaussian rows, with mean 0 and sub-Gaussian norm

‖Σ−1=2x1‖ψ2
= κ, for some constant κ > 0. Let Σ̂ ≡ .XTX/=n. For ui ∈ R

p
independent of X, we

have

P

[

uT
i .Σ̂−Σ/ui �C

√
{

log.p/

n

}]

�p−c, .77/

for a constant C> 0 depending on κ, Cmax, and c> 2 depending on C.

We refer to the on-line appendix A.2 for the proof of lemma 10. The second condition of lemma 2 follows
from uT

i Σui �Cmax‖ui‖2 =Cmax, union bounding over i∈ [k] and lemma 10 (along with the Borel–Cantelli
lemma).

Putting the three probabilistic bounds (74), (76) and (77) together in theorem 1, we obtain that, for
random designs with s0 =o{

√
n= log.p/}, lim supn→∞ αn.RX/�α.
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A.3. Proof of theorem 3
We start by stating a lemma that will be used later in the proof.

Lemma 11. Under the assumptions of theorem 2, for any i∈ [k] we have

P

[

gT
i Σ̂gi �uT

i Σ
−1ui +C

√
{

log.p/

n

}]

�2 p−c,

where c is a constant depending on a and C and, by a suitable choice of them, we have c�2.

We refer to the on-line appendix A.11 for the proof of lemma 11.

Corollary 1. Assuming the setting of theorem 2, by an application of the Borel–Cantelli lemma and
using lemma 11, of any i∈ [k] we have almost surely

lim sup
n→∞

.gT
i Σ̂gi −uT

i Σ
−1ui/�0: .78/

Recalling the definition of m0, given by expression (28), we have the following corollary.

Corollary 2. Recalling the definition of m0 given by expression (28), for any i ∈ [k], we have almost
surely

lim sup
n→∞

.gT
i Σ̂gi −m2

0/�0: .79/

Let zÅ ≡Φ
−1{1−α=.2k/} and write

lim inf
n→∞

1−βn.RX/

1−βÅ
n .η/

= lim inf
n→∞

1

1−βÅ
n .η/

inf
θ0

{Pθ0
.RX =1/ :‖θ0‖0 � s0, d.θ0, Ω0; U/�η}

= lim inf
n→∞

1

1−βÅ
n .η/

inf
θ0

[P{‖D.γ̂d −UTθp/‖∞ � zÅ} :‖θ0‖0 � s0, d.θ0, Ω0; U/�η]:

.80/
We define the shorthands v ≡ DUT.θp − θ0/ and ṽ ≡ D.γ̂d − UTθ0/. Note that v, ṽ ∈ R

k
. We further let

iÅ ≡arg maxi∈[k] |vi|. Then, we can write

‖D.γ̂d −UTθp/‖∞ =|v− ṽ|∞ � |viÅ − ṽiÅ |: .81/

By an argument that is very similar to that used to derive equation (71), we can show that, for any fixed
i∈ [k] and all x∈R, we have

lim sup
n→∞

sup
‖θ0‖0�s0

|P.ṽi �x/�Φ.x/|=0: .82/

In words, each co-ordinate of ṽ asymptotically admits a standard normal distribution.
The other remark that we want to make is about the quantity ‖v‖∞, which will be a key factor in

determining the power of the test. Because θp ∈Ω0, we have

|viÅ |=‖v‖∞ �min
i∈[k]

.Dii/‖UT.θp −θ0/‖∞ �min
i∈[k]

.Dii/ d.θ0, Ω0; U/�η min
i∈[k]

.Dii/: .83/

Continuing with equation (80), we write

lim inf
n→∞

1−βn.RX/

1−βÅ
n .η/

= lim inf
n→∞

1

1−βÅ
n .η/

inf
θ0

[P{‖D.γ̂d −UTθp/‖∞ � zÅ} :‖θ0‖0 � s0, d.θ0, Ω0; U/�η]

.a/

� lim inf
n→∞

1

1−βÅ
n .η/

inf
θ0

{

P.|viÅ − ṽiÅ |� zÅ/ : |viÅ |�η min
i∈[k]

.Dii/

}
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= lim inf
n→∞

1

1−βÅ
n .η/

[

1− sup
θ0

{P.|viÅ − ṽiÅ |� zÅ/ : |viÅ |�η min
i∈[k]

.Dii/}

]

� lim inf
n→∞

1

1−βÅ
n .η/

[

1− sup
θ0

{P.∃j ∈ [k] : |viÅ − ṽj|� zÅ/ : |viÅ |�η min
i∈[k]

.Dii/}

]

� lim inf
n→∞

1

1−βÅ
n .η/

[

1−k sup
θ0

{P.|viÅ − ṽ1|� zÅ/ : |viÅ |�η min
i∈[k]

.Dii/}

]

.b/

� lim inf
n→∞

1

1−βÅ
n .η/

{

1−kP

(
∣

∣

∣

∣

√
nη

σ̂m0

−Z

∣

∣

∣

∣

� zÅ

)}

= lim inf
n→∞

1

1−βÅ
n .η/

[

1−k

{

Φ

(√
nη

σ̂m0

+ zÅ

)

−Φ

(√
nη

σ̂m0

− zÅ

)}]

.c/= lim inf
n→∞

1

1−βÅ
n .η/

F

(

α,

√
nη

σ̂m0

, k

)

=1, .84/

where inequality (a) follows from equations (81) and (83) and inequality (b) holds because of corollary 2
and equation (82). Here Z is a standard normal variable; equation (c) follows by substituting for zÅ.

A.4. Proof of theorem 4
The proof of theorem 4 goes along the same lines as the proof of theorems 1 and 2.

Defining r = XθÅ − Xθ0 and by plugging in for y = XθÅ + w = Xθ0 + r + w in the definition (11), we
obtain

γ̂d =UTθ̂ +
1

n
GTXTX.θ0 − θ̂/+

1

n
GTXTr +

1

n
GTXTw

=UTθ0 + .GT
Σ̂−UT/.θ0 − θ̂/+

1

n
GTXTr +

1

n
GTXTw

=UTθ0 +
1

√
n

∆+
1

√
n

Z, .85/

with

∆≡∆1 +∆2,

∆1 ≡
√

n.GT
Σ̂−UT/.θ0 − θ̂/,

∆2 ≡
1

√
n

GTXTr,

Z ≡
1

√
n

GTXTw:

Since w ∼N.0, σ2In×n/, we have Z|X∼N.0, σ2GT
Σ̂G/. We next bound ‖∆‖∞.

It is straightforward to see that the assumptions of theorem 4 imply the assumption of lemma 4 and
hence, by the result of the lemma, the moment conditions (assumption 3) hold. To deal with ∆1, we use
the following result from Belloni et al. (2012) that bounds the l1-error of the iterated lasso estimator under
assumptions 2 and 3.

Proposition 3 (Belloni et al. (2012) theorem 1). Suppose that in the regression model (41), assumption 2
(approximate sparsity) and assumption 3 (moment conditions) hold. Let θ̂ be the iterated lasso estimator
(43) with weights γj specified by algorithm (44). Then, θ̂ satisfies

‖θ̂ −θ0‖1 �CC−1
mins0

√
{

log.p/

n

}

, .86/

with high probability, for some finite constant C> 0.

Now let En be the probability event that ‖θ̂ − θ0‖1 �CC−1
mins0

√
{log.p/=n}. Recall the event Gn.a/ from
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definition (75) and define Fn ≡Gn.a/∩En. Then, by using propositions 2 and 3, we have that Fn happens
with high probability. Further, on the event Fn we have

‖∆1‖�
√

na

√
{

log.p/

n

}

CC−1
mins0

√
{

log.p/

n

}

=CC−1
minas0

log.p/
√

n
: .87/

We next bound ∆2. Write

‖∆2‖∞ �

(

max
i∈[k]

∥

∥

∥

∥

1
√

n
Xgj

∥

∥

∥

∥

)

‖r‖:

Using lemma 11, we have

∥

∥

∥

∥

1
√

n
Xgi

∥

∥

∥

∥

2

=gT
i Σ̂gi �uT

i Σ
−1ui +C

√
{

log.p/

n

}

�
1

Cmin

+C

√
{

log.p/

n

}

<C′,

with C′ =1=Cmin +C, and with probability at least 1−2p−c, for c �2. By union bounding over i∈ [k], we
obtain

max
i∈[k]

∥

∥

∥

∥

1
√

n
Xgi

∥

∥

∥

∥

�C′,

with probability at least 1−2kp−c �1−2p−c+1. Using assumption 2, ‖r‖=oP .1/, which gives us

‖∆2‖∞ =oP .1/: .88/

Combining expressions (87) and (88), we have

‖∆‖∞ =OP

{

s0

log.p/
√

n

}

+oP .1/:

Hence ‖∆‖∞ = op.1/ and Z|X is asymptotically normally distributed. Having this result, we can then
follow the lines of the proof of theorem 2 to show that our procedure controls the type I error, i.e.
lim supn→∞ αn.RX/�α.
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Bühlmann, P., Kalisch, M. and Meier, L. (2014) High-dimensional statistics with a view toward applications in

biology. A. Rev. Statist. Appl., 1, 255–278.



Hypothesis Testing in High Dimensions 717

Bunea, F., Tsybakov, A. and Wegkamp, M. (2007) Sparsity oracle inequalities for the lasso. Electron. J. Statist.,
1, 169–194.

Cai, T., Cai, T. and Guo, Z. (2019) Individualized treatment selection: an optimal hypothesis testing approach in
high-dimensional models. Preprint arXiv:1904.12891.

Cai, T. T. and Guo, Z. (2017) Confidence intervals for high-dimensional linear regression: minimax rates and
adaptivity. Ann. Statist., 45, 615–646.

Candès, E., Fan, Y., Janson, L. and Lv, J. (2018) Panning for gold: ‘model-X’ knockoffs for high dimensional
controlled variable selection. J. R. Statist. Soc. B, 80, 551–577.

Candés, E. and Tao, T. (2007) The Dantzig selector: statistical estimation when p is much larger than n. Ann.
Statist., 35, 2313–2351.

Chen, M., Ren, Z., Zhao, H. and Zhou, H. (2016) Asymptotically normal and efficient estimation of covariate-
adjusted Gaussian graphical model. J. Am. Statist. Ass., 111, 394–406.

Chen, S. S. and Donoho, D. L. (1995) Examples of basis pursuit. In Proc. Wavelet Applications in Signal and
Image Processing III, San Diego.

Deshpande, Y., Javanmard, A. and Mehrabi, M. (2019) Online debiasing for adaptively collected high-dimensional
data. Preprint arXiv:1911.01040.

Dicker, L. H. (2014) Variance estimation in high-dimensional linear models. Biometrika, 101, 269–284.
Fan, J., Guo, S. and Hao, N. (2012) Variance estimation using refitted cross-validation in ultrahigh dimensional

regression. J. R. Statist. Soc. B, 74, 37–65.
Fan, J. and Li, R. (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am.

Statist. Ass., 96, 1348–1360.
Fan, J. and Lv, J. (2008) Sure independence screening for ultrahigh dimensional feature space (with discussion).

J. R. Statist. Soc. B, 70, 849–911.
Fithian, W., Sun, D. and Taylor, J. (2014) Optimal inference after model selection. Preprint arXiv:1410.2597.

Department of Statistics, University of California at Berkeley, Berkeley.
Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization paths for generalized linear models via coordinate

descent. J. Statist. Softwr., 33, 1–22.
Greenshtein, E. and Ritov, Y. (2004) Persistence in high-dimensional predictor selection and the virtue of over-

parametrization. Bernoulli, 10, 971–988.
Guo, Z., Wang, W., Cai, T. T. and Li, H. (2019) Optimal estimation of genetic relatedness in high-dimensional

linear models. J. Am. Statist. Ass., 114, 358–369.
Harris, X. T., Panigrahi, S., Markovic, J., Bi, N. and Taylor, J. (2016) Selective sampling after solving a convex

problem. Preprint arXiv:1609.05609.
Janson, L., Barber, R. F. and Candes, E. (2017) Eigenprism: inference for high dimensional signal-to-noise ratios.

J. R. Statist. Soc. B, 79, 1037–1065.
Janson, L. and Su, W. (2016) Familywise error rate control via knockoffs. Electron. J. Statist., 10, 960–975.
Javanmard, A. and Javadi, H. (2019) False discovery rate control via debiased lasso. Electron. J. Statist., 13,

1212–1253.
Javanmard, A. and Montanari, A. (2013) Nearly optimal sample size in hypothesis testing for high-dimensional

regression. In Proc. 51st A. Allerton Conf., Monticello, June, pp. 1427–1434. New York: Institute of Electrical
and Electronics Engineers.

Javanmard, A. and Montanari, A. (2014a) Hypothesis testing in high-dimensional regression under the Gaussian
random design model: asymptotic theory. IEEE Trans. Inform. Theory, 60, 6522–6554.

Javanmard, A. and Montanari, A. (2014b) Confidence intervals and hypothesis testing for high-dimensional
regression. J. Mach. Learn. Res., 15, 2869–2909.

Javanmard, A. and Montanari, A. (2018) Debiasing the lasso: optimal sample size for gaussian designs. Ann.
Statist., 46, no. 6A, 2593–2622.

Kudo, A. (1963) A multivariate analogue of the one-sided test. Biometrika, 50, 403–418.
Lee, J. D., Sun, D. L., Sun, Y. and Taylor, J. E. (2016) Exact post-selection inference, with application to the lasso.

Ann. Statist., 44, 907–927.
Lee, J. D. and Taylor, J. E. (2014) Exact post model selection inference for marginal screening. In Advances in

Neural Information Processing Systems, pp. 136–144. Cambridge: MIT Press.
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Van de Geer, S., Bühlmann, P., Ritov, Y. and Dezeure, R. (2014) On asymptotically optimal confidence regions

and tests for high-dimensional models. Ann. Statist., 42, 1166–1202.
Verzelen, N. and Gassiat, E. (2018) Adaptive estimation of high-dimensional signal-to-noise ratios. Bernoulli, 24,

no. 4B, 3683–3710.
Visscher, P. M., Hill, W. G. and Wray, N. R. (2008) Heritability in the genomics era—concepts and misconceptions.

Nat. Rev. Genet., 9, 255–266.
Wainwright, M. J. (2009) Sharp thresholds for high-dimensional and noisy sparsity recovery using `1-constrained

quadratic programming. IEEE Trans. Inform. Theory, 55, 2183–2202.
Wang, J. and Kolar, M. (2016) Inference for high-dimensional exponential family graphical models. Proc. Int.

Conf. Artificial Intelligence and Statistics, pp. 751–760.
Wang, Y., Wang, J., Balakrishnan, S. and Singh, A. (2019) Rate optimal estimation and confidence intervals for

high-dimensional regression with missing covariates. J. Multiv. Anal., 174, article 104526.
Wei, Y., Wainwright, M. J. and Guntuboyina, A. (2019) The geometry of hypothesis testing over convex cones:

generalized likelihood ratio tests and minimax radii. Ann. Statist., 47, 994–1024.
Ye, F. and Zhang, C.-H. (2010) Rate minimaxity of the lasso and Dantzig selector for the `q loss in `r balls. J.

Mach. Learn. Res., 11, 3519–3540.
Zhao, P. and Yu, B. (2006) On model selection consistency of Lasso. J. Mach. Learn. Res., 7, 2541–2563.
Zhao, T., Kolar, M. and Liu, H. (2014) A general framework for robust testing and confidence regions in high-

dimensional quantile regression. Preprint arXiv:1412.8724.
Zhang, C.-H. and Zhang, S. S. (2014) Confidence intervals for low dimensional parameters in high dimensional

linear models. J. R. Statist. Soc. B, 76, 217–242.
Zhu, Y. and Bradic, J. (2017) A projection pursuit framework for testing general high-dimensional hypothesis.

Preprint arXiv:1705.01024.

Supporting information
Additional ‘supporting information’ may be found in the on-line version of this article:

‘Supplementary material to “A flexible framework for hypothesis testing in high-dimensions”’.


