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COUPLING LÉVY MEASURES AND COMPARISON

PRINCIPLES FOR VISCOSITY SOLUTIONS

NESTOR GUILLEN, CHENCHEN MOU, AND ANDRZEJ ŚWIE↪CH

Abstract. We prove new comparison principles for viscosity solutions of non-
linear integro-differential equations. The operators to which the method ap- Q1
plies include but are not limited to those of Lévy–Itô type. The main idea is
to use an optimal transport map to couple two different Lévy measures and
use the resulting coupling in a doubling of variables argument.

1. Introduction

In this paper we study comparison principles for viscosity subsolutions and su-
persolutions of integro-differential equations of the form

I(u, x) = sup
α∈A

inf
β∈B

{−Lαβ(u, x) + cαβ(x)u(x) + fαβ(x)} = 0 in O,(1.1)

where O is a bounded domain of Rd, cαβ(x) ≥ λ > 0, and

Lαβ(u, x) =

∫
Rd

[u(x+ z)− u(x)− χB1(0)(z)Du(x) · z]dμαβ
x (z),(1.2)

where μαβ
x are the respective Lévy measures. Equations of the form (1.1) arise

in stochastic optimal control and stochastic differential games where the operators
are the generators of pure jump processes. In a work by the first author and
Schwab [14], it is proved (roughly speaking) that the class of operators given by
a min-max as in (1.1) is the same as the class of operators satisfying the global
comparison property.

Comparison principles for viscosity solutions of such equations are now well
understood in two broad cases. The first case is when the operators admit a Lévy–
Itô form. This means that all of the measures μαβ

x are push-forward measures of
a single reference measure μ so that μαβ

x = (Tαβ
x )#μ, where Tαβ

x : U → R
d is a

family of Borel measurable maps defined on some separable Hilbert space, and μ
is a Lévy measure on U \ {0} (see (5.17) and (5.19)). First comparison principles
were obtained by Soner in [22, 23]. Further results, including results for equations Q2
with second order partial differential equation terms were obtained subsequently;
see [6–8, 16]. The second case is that of equations of order less than or equal to 1.
Here we mention the works of Soner [22,23] and the papers of Awatif [19,20], where Q3
comparison principles are proved for very general operators in the class where the
operators Lαβ are all such that the function |z| is uniformly integrable with respect
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to the measures μαβ
x . Also Alvarez and Tourin [3] and Alibaud [1] considered various

parabolic equations with nonlocal terms of order 0, that is, with μx of finite mass.
Little is known when the Lévy measures arising in (1.1) and (1.2) are neither

integrable with respect to |z| nor of Lévy–Itô form. The second and third authors
proved in [18] several comparison results for viscosity solutions which have some
regularity. Chasseigne and Jakobsen proved in [10] comparison results for fully
nonlinear equations involving quasi-linear nonlocal operators. We also mention
continuous dependence estimates for weak entropy solutions of degenerate para-
bolic equations with nonlinear fractional diffusion proved by Alibaud, Cifani, and
Jakobsen in [2]. Proving comparison in general is an important question, as many
operators of interest are not covered by the two situations discussed above, such
as the Dirichlet-to-Neumann maps for nonlinear elliptic equations or control/game
problems where the processes are not classical Lévy–Itô diffusions.

In this paper we introduce optimal transport techniques in an attempt to under-
stand this question. We obtain a comparison for nonlocal equations (1.1) and (1.2)
that cover the previous two instances without requiring a Lévy–Itô structure or a
restriction on the order of the operators. The idea is to use an optimal coupling for
the Lévy measures arising in the nonlocal terms. Then the continuity of the Lévy
measures with respect to the base point x is estimated with respect to an optimal
transport based metric.

The condition we impose is Lipschitz continuity with respect to an Lp-transport
metric. The exponent p ∈ [1, 2] is related to the order of the singularity at z = 0 for
the Lévy measures. In the case of operators of order smaller than 1, it is possible to
use the metric corresponding to p = 1, in which case our condition is (essentially)
a dual formulation of the condition used by Awatif [19]. Likewise, in the Lévy–Itô
case our condition reduces to the one typically imposed in the literature [8, 16].

Unfortunately, it is rather difficult to check the Lipschitz regularity of μx with
respect to our Lp-transport metric when p > 1 and μx is not in Lévy–Itô form
(this is precisely the case where the comparison is still unknown). Such Lipschitz
estimates are even nontrivial to check for Lévy measures of finite mass and fail to
hold.1 It is our hope that this paper will spur further research that will expand the
class of families of measures {μαβ

x }x,α,β , where this new approach can be applied.

1.1. The basic idea. Let us illustrate the main idea of the paper in a simple
situation. Consider the linear equation

λu(x)− L(u, x) = 0 in O,(1.3)

where λ > 0 and L(u, x) is an operator of the form (1.2), where we make the
following simplifying assumption on the Lévy measures μx: μx is a probability
measure with finite second moments for every x, and there is some C > 0 such
that, for any x, y,

d2(μx, μy) ≤ C|x− y|.(1.4)

Here d2 denotes the optimal transport distance with respect to the square distance
(the so-called Wasserstein distance). Suppose that u is a bounded viscosity subso-
lution of (1.3) and that v is a bounded viscosity supersolution of (1.3) such that
u ≤ v on R

d \ Oc. We start with the typical comparison proof. We assume that

1The authors would like to thank Alessio Figalli for helpful comments regarding this question.
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u �≤ v. We double the variables and penalize the doubling considering for ε > 0 the
function

u(x)− v(y)− 1

ε
|x− y|2.

Suppose that for all sufficiently small ε the global maximum is attained at (xε, yε),
where u(xε)− v(yε) ≥ � > 0 for some � > 0. In such circumstances it is well known
that

lim
ε→0

1

ε
|xε − yε|2 = 0,

so for small ε we must have (xε, yε) ∈ O ×O. Because of the global maximum, we
have (

u(xε + x)− u(xε)− 2
x · (xε − yε)

ε

)

−
(
v(yε + y)− v(yε)− 2

y · (xε − yε)

ε

)
≤ 1

ε
|x− y|2 ∀x, y.

For x and y let πx,y denote a probability measure on R
d × R

d with marginals μx

and μy achieving the optimal (quadratic) transport cost between them. Then we
integrate the above inequality with respect to the measure πxε,yε

to obtain

L(u, xε)− L(v, yε) ≤ 1

ε

∫
Rd×Rd

|x− y|2 dπxε,yε
(x, y).

Thus, by the definition of a viscosity solution and the definition of πx,y, we get

λ(u(xε)− v(yε)) ≤ 1

ε

∫
Rd×Rd

|x− y|2dπxε,yε
(x, y) =

1

ε
d2(μxε

, μyε
)2,

where the last equality follows from the optimality of πxε,yε
. Then, using (1.4), we

obtain

0 < λ� ≤ λ(u(xε)− v(yε)) ≤ C

ε
|xε − yε|2.

Since the right-hand side goes to 0 as ε → 0, we obtain a contradiction. Thus in
this model case the proof of comparison reduces to checking whether the measures
μx satisfy the Lipschitz condition (1.4) with respect of the (quadratic) optimal
transport distance.

Of course, it is atypical for a Lévy measure to also be a probability or even a
finite measure of constant total mass. To deal with this issue, we will make use of an
optimal transport problem featuring an “infinite mass reservoir” at 0 (after all, the
mass of the Lévy measure at 0 is immaterial). This means in particular that one can
consider transport between measures which may have unequal or infinite masses.
This problem was studied by Figalli and Gigli in [13], motivated by questions of
gradient flows with Dirichlet boundary conditions, and their work is aptly suited
to our purposes.

1.2. Outline of the paper. The notation and definitions are explained in Sec-
tion 2. The transport metric is explained in Section 3. Section 4 contains the
assumptions and the statement of the main result. In Section 5 we prove the main
comparison principle using the above technique. We then show how the result
covers comparison principles for nonlocal equations involving nonlocal terms either
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of Lévy form of order σ < 1 (see Example 5.12) or of Lévy–Itô form (see Exam-
ple 5.13). In Section 6 we discuss variants of our approach which we illustrate in
Example 6.2 related to operators of fractional Laplacian type. We also discuss in
Section 6 two other examples (Examples 6.3 and 6.4) comparing our results to these
of [19]. Finally, in Section 7 we derive various comparison principles for equations
which have more regular viscosity solutions. They lead to uniqueness of viscosity
solutions for a class of uniformly elliptic nonlocal equations (see Example 7.6). The
paper ends with an appendix which follows [13] collects the main facts about the
optimal transport problem “with boundary”.

2. Notation and definitions

In the whole paper we will consider equation (1.1), where the operators Lαβ are
assumed to be of the form (1.2), and {μαβ

x }x,α,β is a family of Lévy measures (see
Definition 2.1). Denoting

δu(x, z) := u(x+ z)− u(x)− χB1(0)(z)Du(x) · z,
we will write

Lαβ(u, x) =

∫
Rd

δu(x, z)dμαβ
x (z).(2.1)

We will denote by Br(x) the open ball in R
d centered at x with radius r > 0,

and by Br the open ball centered at 0 with radius r. Given an open set Ω ⊂ R
d

and h > 0, we define

Ωh = {x ∈ Ω | d(x, ∂Ω) > h}.
For a subset A ⊂ R

d we denote by Ac its complement, i.e., Ac = R
d \ A, and by

χA the characteristic function of A.
For 0 < α ≤ 1 and a domain O in R

d, we denote by C0,α(O) the space of
α-Hölder continuous functions in O.

We write Ck(O), k = 1, 2, . . . for the usual spaces of k-times continuously dif-
ferentiable functions in O. The space Ck

b (O) (resp., Cp
b (O)) consists of functions

in Ck(O) (resp., Cp(O)) which are bounded. We write BUC(Rd) for the set of
bounded and uniformly continuous functions in R

d. For two bounded measures
μ, ν we will write dTV(μ, ν) to denote the total variation of μ− ν.

Let μ be a Borel measure in R
d \ {0}, and let 1 ≤ p ≤ 2. We define

Np(μ) :=

∫
Rd\{0}

min{1, |z|p}dμ(z).(2.2)

Definition 2.1. Let 1 ≤ p ≤ 2. We define

Lp(R
d) :=

{
μ positive Borel measure in R

d \ {0} | Np(μ) < ∞
}
.

The set of all Lévy measures is L2(R
d). If Ω is an open subset of R

d, we will
consider the set

Lp(Ω) :=
{
μ ∈ Lp(R

d) | spt(μ) ⊂ Ω
}
.

Note that

Lp(Ω) ⊂ Lq(Ω) whenever p ≤ q.
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In other words, measures μ in Lp(Ω) are measures in Lp(R
d) such that μ(Rd\Ω) =

0. We decompose every measure μ ∈ Lp(R
d) as

μ = μ̂+ μ̌,(2.3)

where μ̂(·) := μ(· ∩B1) ∈ Lp(B1) and μ̌(·) := μ(· ∩ (Rd \B1)). We note that μ̌ is a
bounded measure.

Consider the Lévy operator given by some measure μ,

L(u, x) =

∫
Rd

[u(x+ z)− u(x)− χB1(0)(z)Du(x) · z] dμ(z).(2.4)

Let us decompose this operator as the sum of two operators, corresponding to the
Lévy measure decomposition in (2.3),

L(u, x) = L̂(u, x) + Ľ(u, x),

where

L̂(u, x) =

∫
Rd

[u(x+ z)− u(x)− χB1(0)(z)Du(x) · z] dμ̂(z),(2.5)

Ľ(u, x) =

∫
Rd

[u(x+ z)− u(x)] dμ̌(z).(2.6)

Definition 2.2. Given a Lévy measure μ in R
d, we define

Lμ(u, x) :=

∫
Rd

[u(x+ z)− u(x)− χB1(0)(z)Du(x) · z] dμ(z).

Definition 2.3. For p ∈ (1, 2), a function u is said to be pointwise-Cp at a point
x0 if u is differentiable at x0 and if there exists a constant C > 0 such that, for all
x in a neighborhood of x0,

(2.7) |u(x)− u(x0)−Du(x0) · (x− x0)| ≤ C|x− x0|p.
If u is differentiable at x0 and (2.7) is satisfied with p = 2 we say that u is pointwise-
C1,1 at x0. For p ∈ (0, 1] a function is said to be pointwise-Cp at a point x0 if there
is a constant C > 0 such that, for all x in a neighborhood of x0,

|u(x)− u(x0)| ≤ C|x− x0|p.
3. A transportation metric for Lévy measures

We will use a transportation metric on the space of Lévy measures. This met-
ric takes advantage of an “infinite reservoir” of mass which allows one to handle
measures which may not have equal (or finite) total mass. Such a metric was con-
sidered by Figalli and Gigli [13], where they studied the basic properties of such
a metric and used it to analyze gradient flows with Dirichlet boundary conditions.
Our presentation here generally follows that of [13]. This is not the only possible
extension of the transport metric to the case of unequal masses: other notions have
been considered by Kantorovich and Rubinstein. Another notion of distance for
Lévy measures is considered in [15].

We consider the following set of measures,

Mp(R
d) :=

{
μ ∈ Lp(R

d) |
∫
Rd\{0}

|z|pdμ(z) < ∞}
,

that is, the set of Lévy measures with finite p-moment. Note in particular that
Lp(B1) ⊂ Mp(R

d) due to the measures being supported in B1.
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First, we define the notion of admissible couplings between Lévy measures (see
also Definition A.3 for an analogous definition in a more general setting).

Definition 3.1. Let μ1, μ2 ∈ Mp(R
d). An admissible transport plan between μ1

and μ2 is any positive Borel measure on R
d × R

d such that γ({0} × {0}) = 0 and

π1
#γ|

Rd\{0}
= μ1, π2

#γ|
Rd\{0}

= μ2,

where for i = 1, 2, πi : Rd × R
d → R

d is defined by πi(x1, x2) = xi. The set of
admissible transport plans will be denoted by Adm(μ1, μ2).

In particular, if γ is admissible, then, for a Borel set A compactly supported in
R

d \ {0},
γ(A× R

d) = μ1(A), γ(Rd ×A) = μ2(A).

The key point in Definition 3.1 which distinguishes it from the notion of optimal
transport plans is that the marginals of γ coincide with μ1 and μ2 only away from
the origin. In particular, the marginals of γ may assign any amount of mass to the
origin.

Definition 3.2. Let 1 ≤ p ≤ 2. For a positive Borel measure γ on R
d × R

d, we
define

Jp(γ) :=

∫
Rd×Rd

|x− y|p dγ(x, y).

In the appendix we study the problem of minimizing Jp(γ) over γ ∈ Adm(μ1, μ2)
in greater generality. In this section we limit ourselves to stating a few further
definitions and a few results needed in later sections.

Definition 3.3. Let 1 ≤ p ≤ 2. The p-distance between measures μ, ν ∈ Mp(R
d)

is defined by

dLp
(μ, ν) :=

(
inf

γ∈Adm(μ,ν)
Jp(γ)

) 1
p

.

The optimization problem used in the definition of dLp
(μ1, μ2) shares many prop-

erties with the usual optimal transportation problem.

Theorem 3.4. For μ1, μ2 ∈ Mp(R
d) there is at least one γ ∈ Adm(μ1, μ2) that

achieves the minimum value of Jp.

Proof. The theorem is a special case of Theorem A.5 (see the appendix). �

The fact that dL2
defines a distance was proved in [13, Theorem 2.2 and Propo-

sition 2.7]. We will need this result for any p.

Theorem 3.5. dLp
defines a metric in Mp(R

d).

Proof. The theorem is a special case of Theorem A.16. �

The main tool at our disposal when estimating dLp
is the following duality result.

Lemma 3.6. For 1 ≤ p ≤ 2 and μ1, μ2 ∈ Mp(R
d), we have

dLp
(μ1, μ2)

p = sup
{∫

Rd

φ(x) dμ1(x) +

∫
Rd

ψ(y) dμ2(y) | (φ, ψ) ∈ Admp
}
.
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Here Admp denotes the set

Admp :=
{
(φ, ψ) | φ ∈ L1(μ), ψ ∈ L1(ν),

φ and ψ are upper semicontinuous,

φ(0) = ψ(0) = 0, and φ(x) + ψ(y) ≤ |x− y|p ∀x, y ∈ R
d
}
.

Proof. The lemma is a special case of Lemma A.14 �

Remark 3.7. In most of the paper we need only to take dLp
(μ, ν) for μ, ν ∈ Lp(B1).

In this case we could equivalently define the distance by considering the transport
problem in B1 ×B1, i.e., taking Ω = B1 instead of Ω = R

d (see the appendix). We
note that if μ, ν ∈ Lp(B1) and γ ∈ Adm(μ, ν), then γ((B1 ×B1)

c) = 0.

The following proposition (proved in the appendix) will be used in Section 5.

Proposition 3.8. Let ψ be a Lipschitz continuous function with compact support
in B1 \ {0}. If μ, ν ∈ Lp(B1), then∣∣∣∣

∫
B1

ψ dμ−
∫
B1

ψ dν

∣∣∣∣ ≤ (μ(spt(ψ)) + ν(spt(ψ)))
p−1
p [ψ]LipdLp

(μ, ν),

where [ψ]Lip is the Lipschitz constant of ψ.

4. Assumptions and main results

In this section we make the necessary assumptions about the measures and vari-
ous functions appearing in the operator I(u, x) in (1.1). We recall that throughout
the whole paper O ⊂ R

d is a bounded domain. The measures μαβ
x ∈ Lp(R

d) for
all x ∈ O, α ∈ A, β ∈ B for some index sets A,B. Last but not least, we recall
that in (2.3) we introduced the decomposition of a measure μ in terms of measures
μ̂ and μ̌ supported in B1(0) and in R

d \B1(0), respectively.

Assumption A. There are p ∈ [1, 2] and a constant C ≥ 0 such that

dLp
(μ̂αβ

x , μ̂αβ
y ) ≤ C|x− y| ∀x, y ∈ O, ∀α, β.(4.1)

Assumption B. There is a modulus of continuity θ such that

dTV(μ̌
αβ
x , μ̌αβ

y ) ≤ θ(|x− y|) ∀x, y ∈ O, ∀α, β.(4.2)

Assumption C. There are a modulus of continuity θ and a constant C ≥ 0 such
that

|fαβ(x)− fαβ(y)| ≤ θ(|x− y|) ∀x, y ∈ O, ∀α, β,(4.3)

|fαβ(x)| ≤ C, ∀x ∈ O, ∀α, β.(4.4)

Assumption D. There are constants 0 < λ ≤ λ1 such that

λ ≤ inf
x∈O

inf
α,β

cαβ(x) ≤ sup
x∈O

sup
α,β

cαβ(x) ≤ λ1,(4.5)

and there is a modulus θ such that

|cαβ(x)− cαβ(y)| ≤ θ(|x− y|) ∀x ∈ O, ∀α, β.
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Assumption E. Let p be from Assumption A. There exist a modulus of continuity
θ and a constant Λ ≥ 0 such that

sup
x∈O

sup
αβ

∫
Br

|z|p dμαβ
x (z) ≤ θ(r),(4.6)

sup
x∈O

sup
α,β

Np(μ
αβ
x ) ≤ Λ.(4.7)

Assumption B can be weakened; however, we want to keep its simpler form to
focus on the main difficulty of dealing with the singular part of the Lévy measures.
We leave such generalizations to the interested reader.

We recall two definitions of viscosity solutions of (1.1) which will be used in
this paper. To minimize the technicalities we will assume that viscosity sub-/
supersolutions are in BUC(Rd). The same results could be obtained assuming that
they are just bounded and continuous in R

d.

Definition 4.1. Let p ∈ [1, 2]. A function u ∈ BUC(Rd) is a viscosity subsolution
of (1.1) if whenever u − ϕ has a global maximum over R

d at x ∈ O for some
ϕ ∈ C2

b (R
d) and ϕ(x) = u(x), then I(ϕ, x) ≤ 0. A function u ∈ BUC(Rd) is a

viscosity supersolution of (1.1) if whenever u − ϕ has a global minimum over R
d

at x ∈ O for some ϕ ∈ C2
b (R

d) and ϕ(x) = u(x), then I(ϕ, x) ≥ 0. A function u
is a viscosity solution of (1.1) if it is both a viscosity subsolution and a viscosity
supersolution of (1.1).

Definition 4.2. Let p ∈ [1, 2]. A function u ∈ BUC(Rd) is a viscosity subsolution
of (1.1) if whenever u − ϕ has a global maximum over R

d at x ∈ O for some
ϕ ∈ C2(Rd), then for every 0 < δ < 1

sup
α∈A

inf
β∈B

{
−
∫
|z|<δ

δϕ(x, z)dμαβ
x (z)

−
∫
|z|≥δ

[
u(x+ z)− u(x)− χB1(0)(z)Dϕ(x) · z] dμαβ

x (z)

+ cαβ(x)u(x) + fαβ(x)
}
≤ 0.

A function u ∈ BUC(Rd) is a viscosity supersolution of (1.1) if whenever u−ϕ has
a global minimum over Rd at x ∈ O for some ϕ ∈ C2(Rd), then for every 0 < δ < 1

sup
α∈A

inf
β∈B

{
−
∫
|z|<δ

δϕ(x, z)dμαβ
x (z)

−
∫
|z|≥δ

[
u(x+ z)− u(x)− χB1(0)(z)Dϕ(x) · z] dμαβ

x (z)

+ cαβ(x)u(x) + fαβ(x)
}
≥ 0.

A function u is a viscosity solution of (1.1) if it is both a viscosity subsolution and
a viscosity supersolution of (1.1).

We remark that, since the Lévy measures μαβ
x are in Lp(R

d), we could use test
functions in Cp

b (R
d) and Cp(Rd) instead of test functions in C2

b (R
d) and C2(Rd).

However, it is not clear whether such definitions and the standard definitions pro-
vided above are equivalent under general assumptions. It is easy to see, however,
that they are equivalent for the most common measures considered in Example 5.12.
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Below we show that Definitions 4.1 and 4.2 are equivalent to each other.

Proposition 4.3. Under the assumptions of this paper, Definitions 4.1 and 4.2 are
equivalent.

Proof. We consider only the case of subsolutions. It is obvious that if u is a vis-
cosity subsolution in the sense of Definition 4.2, then it is a viscosity subsolution
in the sense of Definition 4.1. Let now u be a viscosity subsolution in the sense of
Definition 4.1. It is easy to see that without loss of generality all maxima/minima
in both definitions can be assumed to be strict. So let u − ϕ have a strict global
maximum over R

d at x ∈ O for some ϕ ∈ C2(Rd), and we can obviously require
that ϕ(x) = u(x). Let ϕn ∈ C2

b (R
d) be functions such that u ≤ ϕn ≤ ϕ on R

d,
ϕn(x) = u(x), Dϕn(x) = Dϕ(x), and ϕn → u as n → +∞ uniformly on R

d. Then

sup
α∈A

inf
β∈B

{
−
∫
|z|<δ

δϕ(x, z)dμαβ
x (z)

−
∫
|z|≥δ

[
u(x+ z)− u(x)− χB1(0)(z)Dϕ(x) · z] dμαβ

x (z)

+ cαβ(x)u(x) + fαβ(x)
}

= lim
n→+∞ sup

α∈A
inf
β∈B

{
−
∫
|z|<δ

δϕ(x, z)dμαβ
x (z)

−
∫
|z|≥δ

[
ϕn(x+ z)− ϕn(x)− χB1(0)(z)Dϕn(x) · z

]
· dμαβ

x (z) + cαβ(x)ϕn(x) + fαβ(x)
}

≤ I(ϕn, x) ≤ 0. �

The main result of the paper is the following theorem.

Theorem 4.4. Let Assumptions A–E hold for p ∈ [1, 2]. Then the comparison
principle holds for equation (1.1). That is, if u and v are, respectively, a viscosity
subsolution and a viscosity supersolution of (1.1) and u(x) ≤ v(x) for all x �∈ O,
then

u(x) ≤ v(x) ∀x ∈ O.

The following is a special case of Theorem 4.4, which we highlight to illustrate
its scope (see Sections 5.1 and 6 for further examples).

Corollary 4.5. Let Assumptions C and D be satisfied. Suppose that the measures
μαβ
x (z) are of the form

dμαβ
x (z) = Kαβ(x, z)dz

and that, for some σ ∈ (0, 1),

0 ≤ Kαβ(x, z) ≤ K(z) := Λ1|z|−(d+σ),

|Kαβ(x, z)−Kαβ(y, z)| ≤ C|x− y|K(z).

Then in this case Assumption B holds and Assumptions A and E hold with p = 1.
In particular, the comparison principle holds for equation (1.1) in this case.
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Theorem 4.4 and Corollary 4.5 will be proved in the next section. We also
note that Theorem 4.4 essentially covers several of the results in [19], where only
operators of order less than or equal to 1 are considered. However, it cannot be
applied directly to the equations in [19] since the operators considered there had a
slightly different form. This is discussed in greater detail in Examples 6.3 and 6.4.

5. Comparison principle

In this section we prove Theorem 4.4. A well-known property of sup-/inf- con-
volutions is that they produce approximations of viscosity sub- and supersolutions
which enjoy one-sided regularity (semiconvexity and semiconcavity), which makes
it easier—under the right circumstances—to evaluate the operator I(·, x) in the
classical sense.

Remark 5.1. An approach to Theorem 4.4 that does not rely on such approxima-
tions can be found in Section 7, where we prove a comparison result (Theorem 7.4)
under a different set of assumptions that are not amicable to such approximations.
A posteriori, it became clear that the approach in Section 7 leads to a simpler proof
of Theorem 4.4; however, we have decided to keep both approaches, as the tools
developed in this section are of interest in many other situations. See Remark 7.2
for further comments.

Definition 5.2. Given u, v ∈ BUC(Rd) and 0 < δ < 1, we define the sup-
convolution uδ of u and the inf-convolution vδ of v by

uδ(x) = sup
y∈Rd

{
u(y)− 1

δ
|x− y|2

}
,

vδ(x) = inf
y∈Rd

{
v(y) +

1

δ
|x− y|2

}
.

For the reader’s convenience we review some well-known properties of the sup-
/inf- convolutions in the following proposition.

Proposition 5.3. The sup-convolutions and the inf-convolutions have the following
properties:

(1) If δ1 ≤ δ2, then uδ1 ≤ uδ2 and vδ1 ≥ vδ2 . Moreover, ‖uδ‖∞ ≤ ‖u‖∞, ‖vδ‖∞
≤ ‖v‖∞.

(2) uδ(x) ≥ u(x) and vδ(x) ≤ v(x) for all x ∈ R
d.

(3) uδ → u and vδ → u uniformly on R
d as δ → 0.

(4) The function uδ is semiconvex and for any x0 ∈ R
d, uδ is touched from

below at x0 by a function of the form

u(x∗
0)− 1

δ |x− x∗
0|2 for some x∗

0 ∈ R
d.

The function vδ is semiconcave, and, for any x0 ∈ R
d, vδ is touched from

above at x0 by a function of the form

v(x∗
0) +

1
δ |x− x∗

0|2 for some x∗
0 ∈ R

d.

(5) Let ω be a modulus of continuity of u. For any x0 ∈ R
d and x∗

0 ∈ R
d such

that uδ(x0) = u(x∗
0)− 1

δ |x0 − x∗
0|2, we have

|x0 − x∗
0| ≤ (2δ‖u‖∞)1/2
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and

1
δ |x0 − x∗

0|2 ≤ ω
(
(2δ‖u‖∞)1/2

)
.

The analogous property holds for vδ.
(6) Let Ω ⊂ R

d, and let h > 0. If ω is a modulus of continuity for u in Ω,
then for sufficiently small δ ω1(s) = max(ω(s), 2

h‖u‖∞s) is a modulus of

continuity for uδ in Ω2h. A similar property holds for vδ.

Proof. To prove (1), note that if δ1 ≤ δ2, then
1
δ1
|x− y|2 ≥ 1

δ2
|x− y|2 for all x and

y, and thus uδ1(x) ≤ uδ2(x) for all x. The respective statement for vδ1 and vδ2 is
proved in the same way. Property (2) is obvious from the definitions. Property (3)
follows from (2) and (5).

Regarding (4), we note that the semiconvexity follows from the fact that uδ(x)+
1
δ |x|2 is the supremum of affine functions and is hence convex. If we fix x0 and if
x∗
0 is such that

uδ(x0) = u(x∗
0)−

1

δ
|x0 − x∗

0|2,
then for all other x we have uδ(x) ≥ P (x) := u(x∗

0)− 1
δ |x−x∗

0|2 by the definition of

uδ, so P is the desired paraboloid. To prove (5), let x0 and x∗
0 be as above. Then

1
δ |x0 − x∗

0|2 = u(x∗
0)− uδ(x0) ≤ u(x∗

0)− u(x0) ≤ 2‖u‖∞,

so

|x0 − x∗
0| ≤ (2δ‖u‖∞)1/2.

This means that u(x∗
0)− u(x0) is in fact bounded from above by ω

(
(2δ‖u‖∞)1/2

)
,

which gives (5).
Finally, to show (6), we observe that if x, y ∈ Ω2h and uδ(x) = u(x∗)− 1

δ |x−x∗|2,
then for small δ x ∈ Ωh. Now if |y−x| < h, we have uδ(y) ≥ u(x∗+y−x)− 1

δ |x−x∗|2,
so

uδ(x)− uδ(y) ≤ u(x∗)− u(x∗ + y − x) ≤ ω(|x− y|).
If |y − x| ≥ h, then obviously uδ(x)− uδ(y) ≤ 2

h‖u‖∞|y − x|. �

Definition 5.4. Given y ∈ O and the operator I(·, x) from (1.1), we define

I(y)(φ, x) = sup
α

inf
β

{
−Lμαβ

y
(φ, x) + cαβ(y)φ(x) + fαβ(y)

}
,(5.1)

where

Lμαβ
y
(φ, x) =

∫
Rd

[φ(x+ z)− φ(x)− χB1(0)(z)Dφ(x) · z] dμαβ
y (z).(5.2)

Note that this last expression is almost identical to Lαβ(φ, x), except that the
Lévy measure used is the one corresponding to the point y. Moreover, the coeffi-
cients in (5.1) are evaluated at y.

In the rest of this section, unless stated otherwise, we will always assume that
Assumptions A–E are satisfied.

Proposition 5.5. If u is a viscosity subsolution of I(u, x) = 0 in O, then uδ is a
viscosity subsolution of Iδ(u

δ, x) = 0 in Oh, h = (2δ‖u‖∞)1/2, where

Iδ(φ, x) := inf
{
I(y)(φ, x) : |y − x| ≤ h

}
.
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If v is a viscosity supersolution of I(v, x) = 0 in O, then vδ is a viscosity superso-
lution of Iδ(vδ, x) = 0 in Oh, h = (2δ‖v‖∞)1/2, where

Iδ(φ, x) := sup
{
I(y)(φ, x) : |y − x| ≤ h

}
.

Proof. Let us prove the statement for u and Iδ (the corresponding one for v and Iδ

is entirely analogous, and we omit it). Let φ touch uδ from above at some x0 ∈ Oh.
Let x∗

0 ∈ R
d be such that

uδ(x0) = u(x∗
0)−

1

δ
|x0 − x∗

0|2.
It follows from part (5) of Proposition 5.3 that x∗

0 ∈ O. Then, by the definition of
uδ, for any x and y we have

uδ(x+ x0 − x∗
0) ≥ u(y)− 1

δ
|x+ x0 − x∗

0 − y|2.
Choosing y = x, it follows that for every x we have

uδ(x+ x0 − x∗
0) ≥ u(x)− 1

δ
|x0 − x∗

0|2,
with equality for x = x∗

0. It follows that if define a new test function φ∗(x) by

φ∗(x) = φ(x+ x0 − x∗
0) +

1

δ
|x0 − x∗

0|2,
then φ∗ touches u from above at x∗

0. Since u is a subsolution, it follows that

I(φ∗, x∗
0) ≤ 0.

Let us rewrite the expression on the left. First, recall

I(φ∗, x∗
0) = sup

α
inf
β
{−Lαβ(φ∗, x∗

0) + cαβ(x
∗
0)φ

∗(x∗
0) + fαβ(x

∗
0)}.

Next, note that

Lαβ(φ∗, x∗
0) =

∫
Rd

[φ∗(x∗
0 + z)− φ∗(x∗

0)− χB1(0)Dφ∗(x∗
0) · z] dμαβ

x∗
0
(z).

Since

φ∗(x∗
0 + z)− φ∗(x∗

0)− χB1(0)Dφ∗(x∗
0) · z = φ(x0 + z)− φ(x0)− χB1(0)Dφ(x0) · z,

it follows that

Lαβ(φ∗, x∗
0) =

∫
Rd

[φ(x0 + z)− φ(x0)− χB1(0)Dφ(x0) · z] dμαβ
x∗
0
(z) = Lμαβ

x∗
0

(φ, x0).

In conclusion,

0 ≥ I(φ∗, x∗
0) = sup

α
inf
β
{−Lμαβ

x∗
0

(φ, x0) + cαβ(x
∗
0)(φ(x0) +

1
δ |x0 − x∗

0|2) + fαβ(x
∗
0)}

≥ sup
α

inf
β
{−Lμαβ

x∗
0

(φ, x0) + cαβ(x
∗
0)φ(x0) + fαβ(x

∗
0)}

≥ Iδ(φ, x0).

Using part (5) of Proposition 5.3 in this last inequality, the proposition follows. �

Let us also state in a single lemma two basic facts about classical evaluation of
Lévy operators and viscosity solutions. The proof of the lemma goes along lines
similar to those of the proofs of [9, Lemmas 4.3 and 5.7].
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Lemma 5.6. For any function u ∈ BUC(Rd) that is pointwise-C1,1 at a point
x0 ∈ O (resp., x0 ∈ Oh) the operator I(u, x0) (resp., Iδ(u, x0)) is classically defined.
If furthermore u is a viscosity subsolution of I(u, x) = 0 in O (resp., Iδ(u, x) ≤ 0
in Oh), then also I(u, x0) ≤ 0 (resp., Iδ(u, x0) ≤ 0) pointwise. A similar statement
is true for viscosity supersolutions.

Proof. We will prove the statement only for I(u, x0), as the other statements are
proved similarly. Recall that from Assumption E

Λ = sup
x,α,β

{N2(μ̂
αβ
x ) + μ̌αβ

x (Bc
1)}.

From the pointwise-C1,1 assumption at x0, we have∫
B1

|u(x0 + z)− u(x0)− χB1(0)(z)Du(x0) · z| dμαβ
x0

(z) ≤
∫
B1

Cu,x0
|z|2 dμαβ

x0
(z),∫

Bc
1

|u(x0 + z)− u(x0)| dμαβ
x0

(z) ≤ 2‖u‖∞
∫
Bc

1

dμαβ
x0

(z),

where Cu,x0
is from Definition 2.3. It thus follows that each integral defining

Lαβ(u, x0) converges and

sup
αβ

|Lαβ(u, x0)| ≤ (Cu,x0
+ 2‖u‖∞)Λ < ∞.

From here, it is immediate that I(u, x0) is classically defined. As for the second
assertion, define

ur :=

{
φ in Br(x0),

u outside of Br(x0),

where φ(x) = u(x0)+Du(x0) · (x−x0)+Cu,x0
|x−x0|2. The function φ is touching

u from above in a neighborhood of x0. From Definition 4.2 we have I(ur, x0) ≤ 0
for every r > 0. On the other hand,

I(u, x0) ≤ I(ur, x0) +M+
I (u− ur, x0),

where the operator M+
I is given by

M+
I (u− ur, x0) = sup

α,β

{−Lαβ(u− ur, x0)
}
.

Using the special form of ur, particularly that ur = u outside of Br, we have Q4

M+
I (u− ur, x0) = sup

α,β

{−Lαβ(u− ur, x0)
}

= sup
α,β

{∫
Br

[φ(x+ z)− u(x+ z)] dμαβ
x0

(z)

}

≤ 2Cu,x0
sup
α,β

{∫
Br

|z|2 dμαβ
x0

(z)

}
≤ θ(r),

where the last inequality follows from (4.6). Taking the limit as r → 0, we conclude
that

I(u, x0) ≤ 0. �
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We will need smooth approximations of functions |x − y|p for p ∈ [1, 2]. For

κ > 0 we define a function ψ̃κ : [0,+∞) → [0,+∞) by

ψ̃κ(r) =
(
κ+ r2

) p
2 − κ

p
2 .

Then the function

ψκ(x) := ψ̃κ(|x|)
is smooth and converges as κ → 0 to |x|p uniformly on R

d. We will be using the
following lemma.

Lemma 5.7. Let p ∈ [1, 2]. For every R > 0 the function ψκ(x) is uniformly
pointwise-Cp on BR, i.e., there exists a constant Cp,R such that, for every 0 < κ < 1
and every x0, x ∈ BR,

|ψκ(x)− ψκ(x0)−Dψκ(x0) · (x− x0)| ≤ Cp,R|x− x0|p if 1 < p ≤ 2,

|ψκ(x)− ψκ(x0)| ≤ C1,R|x− x0| if p = 1.

The following is the main lemma of the paper. We refer the reader to Defini-
tion 2.2 for the definition of Lμ.

Lemma 5.8. Let u, v ∈ BUC(Rd). Let α > 0, p ≥ 1, 0 < κ < 1, and suppose that
(x∗, y∗) ∈ O ×O is a global maximum point of the function

w(x, y) := u(x)− v(y)− αψκ(x− y).

Furthermore, suppose that u and v are pointwise-C1,1 at x∗ and y∗, respectively.
Then, for any two Lévy measures μ, ν ∈ Lp(B1), we have the inequality

Lμ(u, x∗)− Lν(v, y∗) ≤ CpαdLp
(μ, ν)p,

where Cp is independent of κ.

Proof. First, note that as (x∗, y∗) is a maximum point of w, we have

u(x) ≤ αψκ(x− y∗) + v(y∗) + (u(x∗)− v(y∗)− αψκ(x∗ − y∗)),

v(y) ≥ −αψκ(x∗ − y) + u(x∗)− (u(x∗)− v(y∗)− αψκ(x∗ − y∗)),

with equalities at x∗ and y∗, respectively. Second, for any (x, y) ∈ R
d × R

d

w(x∗ + x, y∗ + y)− w(x∗, y∗) ≤ 0.

Let γ ∈ Adm(μ, ν). Using that γ((B1 × B1)
c) = 0, and since δu(x∗, 0) = 0 and

δv(y∗, 0) = 0, we thus have

Lμ(u, x∗)− Lν(v, y∗)

=

∫
B1×B1

(
u(x∗ + x)− v(y∗ + y)− (u(x∗)− v(y∗))

− αDψκ(x∗ − y∗) · (x− y)

)
dγ(x, y).

On the other hand, if x, y ∈ B1, using Lemma 5.7, we also have

u(x∗ + x)− v(y∗ + y)− (u(x∗)− v(y∗))− αDψκ(x∗ − y∗) · (x− y)

≤ αψκ(x∗ + x− y − y∗)− αψκ(x∗ − y∗)− αDψκ(x∗ − y∗) · (x− y)

≤ Cpα|x− y|p.
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Therefore,

Lμ(u, x∗)− Lν(v, y∗) ≤ Cpα

∫
B1×B1

|x− y|pdγ(x, y).

Taking the infimum over all γ ∈ Adm(μ, ν), it thus follows that

Lμ(u, x∗)− Lν(v, y∗) ≤ Cpα dLp
(μ, ν)p. �

Corollary 5.9. Let u, v, x∗, and y∗ be as in Lemma 5.8, and let μ, ν ∈ Lp(R
d).

Then

Lμ(u, x∗)− Lν(v, y∗) ≤ Cpα dLp
(μ̂, ν̂)p + 2‖v‖∞dTV(μ̌, ν̌).

Proof. Let us write the difference as follows:

Lμ(u, x∗)− Lν(v, y∗) = Lμ̂(u, x∗)− Lν̂(v, y∗) + Lμ̌(u, x∗)− Lν̌(v, y∗).
Thanks to Lemma 5.8, the first difference on the right-hand side above is less than
or equal to Cpα dLp

(μ̂, ν̂)p. For the second one note that

Lμ̌(u, x∗)−Lν̌(v, y∗) =
∫
Bc

1

[u(x∗ + z)− u(x∗)] dμ(z)−
∫
Bc

1

[v(y∗ + z)− v(y∗)] dν(z)

=

∫
Bc

1

[u(x∗ + z)− v(x∗ + z)− (u(x∗)− v(y∗))] dμ(z)

+

∫
Bc

1

[v(y∗ + z)− v(y∗)] d(μ− ν)(z).

Since w achieves its global maximum at (x∗, y∗), it follows that u(x∗ + z)− v(y∗ +
z)− (u(x∗)− v(y∗)) ≤ 0. Hence we obtain

Lμ̌(u, x∗)− Lν̌(v, y∗) ≤
∫
Bc

1

[v(y∗ + z)− v(y∗)] d(μ− ν)(z)

≤ 2‖v‖∞dTV(μ̌, ν̌). �

We need a variant of a well-known doubling lemma (see, e.g., [12, Lemma 3.1]).

Lemma 5.10. Let u, v ∈ BUC(Rd) be such that M = sup(u − v) > τ > 0 and
u(x)− v(x) ≤ 0 for x ∈ Bc

R for some R > 0. For any ε, δ, κ > 0 set

w(x, y) := uδ(x)− vδ(y)− 1

ε
ψκ(x− y),

Mε,δ,κ := sup
Rd×Rd

w(x, y).

Then, for sufficiently small δ, ε, κ, there exist (xε, yε) such that

Mε,δ,κ = w(xε, yε).

Then we have

|xε − yε|p
ε

≤ ω((Cε+ cκ,ε,δ)
1/p) +

cκ,ε,δ
ε

,

lim
ε→0

lim
δ→0

lim
κ→0

Mε,δ,κ = M,
(5.3)

where above C = ‖u‖∞ + ‖v‖∞ ω is a modulus of continuity of u, and where cκ,ε,δ
is a constant that converges to 0 uniformly in ε and δ as κ → 0+.
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If Ω is an open subset of Rd and in addition u ∈ C0,r(Ω), 0 < r ≤ 1, and if all
of the points xε, yε ∈ Ω, then

(5.4) lim sup
κ→0

|xε − yε|p−r

ε
≤ C1

for some constant C1 independent of δ, ε, κ.

Proof. It is easy to see that the uniform convergence of the uδ, vδ to u, v, the
uniform convergence of ψκ(x − y) to |x − y|p, and the uniform continuity of u, v
(and hence of uδ, vδ, uniform in δ) implies that, for sufficiently small δ, ε, κ, we must
have w(x, y) ≤ τ/2 when either x or y is in Bc

R. Thus w must attain maximum at
some point (xε, yε) ∈ BR ×BR.

Denote

Mε,δ := sup
Rd×Rd

(uδ(x)− vδ(y)− 1

ε
|x− y|p),

Mε := sup
Rd×Rd

(u(x)− v(y)− 1

ε
|x− y|p).

Again, using the uniform convergence of uδ, vδ, ψκ(x−y) and the uniform continuity
of u, v, we easily find (see also [12, proof of Lemma 3.1]) that

lim
κ→0

Mε,δ,κ = Mε,δ, lim
δ→0

Mε,δ = Mε, lim
ε→0

Mε = M.

We obviously have

(5.5)
1

ε
ψκ(xε − yε) +

cκ,ε,δ
ε

=
1

ε
|xε − yε|p,

where cκ,ε,δ is a constant which converges to 0 uniformly in ε and δ as κ → 0+.
Now

uδ(yε)− vδ(yε) ≤ uδ(xε)− vδ(yε)− 1

ε
ψκ(xε − yε),

which, by (5.5), implies

|xε − yε|p
ε

≤ uδ(xε)− uδ(yε) +
cκ,ε,δ
ε

≤ ω(|xε − yε|) + cκ,ε,δ
ε

.

This, together with the fact that we must have

|xε − yε|p
ε

≤ ‖u‖∞ + ‖v‖∞ +
cκ,ε,δ
ε

,

gives (5.3). The last claim, (5.4), follows by a similar argument since now

1

ε
(lim sup

κ→0
|xε − yε|)p = lim sup

κ→0

|xε − yε|p
ε

≤ lim sup
κ→0

C|xε − yε|r

= C(lim sup
κ→0

|xε − yε|)r. �

Proof of Theorem 4.4. Arguing by contradiction, assume that there is some � > 0
such that

sup
x∈Rd

{u(x)− v(x)} = � > 0.
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Step 1 (Taking inf-/sup- convolutions). Let uδ and vδ denote the sup- and inf-
convolutions of u and v for δ > 0. Then

sup
x∈Rd

{uδ(x)− vδ(x)} ≥ �.

We may make δ0 small enough so that for δ < δ0 we have

sup
x �∈O

{uδ(x)− vδ(x)} ≤ 1
4�.

Recall that if ω is a modulus of continuity of u and v, then it is also a modulus of
continuity of uδ and vδ. Therefore, reducing δ0 if necessary, we have

uδ(x)− vδ(x) ≤ 1
2� for x ∈ O \ O2h0

,

as long as δ < δ0, where Oh0
= {x ∈ O | d(x, ∂O) > h0} and h0 > 0 is some

constant. In particular, for such δ the supremum of uδ − vδ in R
d can be achieved

only within O2h0
.

Step 2 (Doubling of variables). For ε, δ, κ > 0 we let w be as in Lemma 5.10 and
let (xε, yε) ∈ R

d × R
d be such that

w(xε, yε) = max
Rd×Rd

w(x, y).

From Step 1 we know that uδ − vδ ≤ �/2 in O \ O2h0
and uδ − vδ ≥ � somewhere

in O. Furthermore, we know that uδ and vδ are uniformly continuous in O, and
uniformly so with respect to δ < 1. From these facts and (5.3), it follows that
(xε, yε) must belong to Oh0

× Oh0
for all sufficiently small ε, δ, and κ or else it

cannot be the maximum point of wε.
On the other hand, Proposition 5.5 says that uδ is a viscosity subsolution of

Iδ(u
δ, x) = 0, and that vδ is a viscosity supersolution of Iδ(vδ, x) = 0 in Oh0

for
sufficiently small δ. The function uδ is touched from above by a smooth function
at xε, and vδ is touched from below at yε. It follows that u

δ and vδ are pointwise-
C1,1 at xε and yε, respectively (see Definition 2.3). Applying Lemma 5.6, we
conclude that Iδ(u

δ, xε) and Iδ(vδ, yε) are well defined in the classical sense, with
Iδ(u

δ, xε) ≤ 0 and Iδ(vδ, xε) ≤ 0. It follows from Proposition 5.5 that there are
points x∗

δ and y∗δ such that

I(x
∗
δ)(uδ, xε) ≤ δ, I(y

∗
δ )(vδ, yε) ≥ −δ,

and

(5.6) |xε − x∗
δ |, |yε − y∗δ | ≤ h,

where h =
(
2δ(‖u‖∞ + ‖v‖∞)

) 1
2 .

Step 3 (Equation structure). Let us use the structure of I(·, x) to bound I(x
∗
δ)

(uδ, xε)− I(y
∗
δ )(vδ, yε) from below. Using the expression in (5.1), we have

I(x
∗
δ)(uδ, xε) = sup

α
inf
β

{
−Lμαβ

x∗
δ

(uδ, xε) + cαβ(x
∗
δ)u

δ(xε) + fαβ(x
∗
δ)

}
,

I(y
∗
δ )(vδ, yε) = sup

α
inf
β

{
−Lμαβ

y∗
δ

(vδ, yε) + cαβ(y
∗
δ )vδ(yε) + fαβ(y

∗
δ )

}
.
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Therefore, for our purposes it suffices to compare the expressions appearing on the
right-hand side for each fixed α, β. Let us write

(I)αβ = −Lμαβ

x∗
δ

(uδ, xε) + cαβ(x
∗
δ)u

δ(xε) + fαβ(x
∗
δ),

(II)αβ = −Lμαβ

y∗
δ

(vδ, yε) + cαβ(y
∗
δ )vδ(yε) + fαβ(y

∗
δ ).

We now look for an upper bound for (I)αβ− (II)αβ which is independent of α and β
by breaking this difference into parts. First, recall that the function uδ(x)−vδ(y)−
1
εψκ(x − y) achieves its global maximum at (xε, yε), in which case Corollary 5.9
guarantees that

Lμαβ

x∗
δ

(uδ, xε)− Lμαβ

y∗
δ

(vδ, yε) ≤ C

ε
dLp

(μ̂αβ
x∗
δ
, μ̂αβ

y∗
δ
)p + 2‖vδ‖∞dTV(μ̌x∗

δ
, μ̌y∗

δ
).

Then, thanks to Assumptions A and B and (5.6), we have

Lμαβ

x∗
δ

(uδ, xε)− Lμαβ

y∗
δ

(vδ, yε) ≤ C

ε
|x∗

δ − y∗δ |p + 2‖v‖∞θ(|x∗
δ − y∗δ |)

≤ C

ε
|xε − yε|p + 2‖v‖∞θ(|xε − yε|) + ρε(δ),

(5.7)

where for a fixed ε limδ→0 ρε(δ) = 0.

Next, we have the elementary inequality

cαβ(x
∗
δ)u

δ(xε)− cαβ(y
∗
δ )vδ(yε) ≥ cαβ(x

∗
δ)(u

δ(xε)− vδ(yε))

− |cαβ(x∗
δ)− cαβ(y

∗
δ )||vδ(yε)|

≥ λ�− θ(|xε − yε|)‖v‖∞ − ρε(δ),

(5.8)

where ρε(δ) is a function as before and we used that uδ(xε)− vδ(yε) ≥ �.
Finally, by Assumption C

|fαβ(x∗
ε)− fαβ(y

∗
ε )| ≤ θ(|xε − yε|) + ρε(δ).(5.9)

Now, combining (5.7), (5.8), (5.9), we have the estimate

(I)αβ − (II)αβ ≥ λ�− C

ε
|xε − yε|p − Cθ

(|xε − yε|)− ρε(δ),

where C is some absolute constant. Therefore, we conclude that

I(x
∗
δ)(uδ, xε)− I(y

∗
δ )(vδ, yε) ≥ λ�− C

ε
|xε − yε|p − Cθ

(|xε − yε|)− ρε(δ).

Step 4 (Using the subsolution and supersolution property). Recalling the way x∗
δ

and y∗δ were selected, we have I(x
∗
δ)(uδ, xε)− I(y

∗
δ )(vδ, yε) ≤ 2δ, and therefore

λ� ≤ 2δ +
C

ε
|xε − yε|p + Cθ

(|xε − yε|) + ρε(δ).

It now remains to take limε→0 limδ→0 lim supκ→0 on both sides of the above in-
equality and use (5.3) to obtain a contradiction. �
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5.1. Estimating dLp
in special cases.

Proposition 5.11. Let p ∈ [1, 2].

(i) Let μ, ν ∈ Lp(B1), and let φ, ψ ∈ Admp. If μ − ν is a positive measure,
then

(5.10)

∫
B1

φ(x)dμ(x) +

∫
B1

ψ(y)dν(y) ≤
∫
B1

|x|pd(μ− ν)(x).

(ii) For any μ, ν ∈ Lp(B1) we have

(5.11) dLp
(μ, ν) ≤ 2

p−1
p dTV(μp, νp)

1
p ,

where dμp = |x|pdμ, dμp = |x|pdμ.
Proof.

(i) Since φ ∈ L1(μ), we also have φ ∈ L1(ν). Then we may write∫
B1

φ(x)dμ(x) +

∫
B1

ψ(y)dν(y)

=

∫
B1

φ(x)dμ(x)−
∫
B1

φ(x)dν(x) +

∫
B1

φ(y)dν(y) +

∫
B1

ψ(y)dν(y)

=

∫
B1

φ(x)d(μ− ν)(x) +

∫
B1

(φ(y) + ψ(y))dν(y)

≤
∫
B1

φ(x)d(μ− ν)(x) ≤
∫
B1

|x|pd(μ− ν)(x),

where in the last line we used φ(y) + ψ(y) ≤ |y − y|p = 0 ∀y ∈ B1 and φ(x) ≤
|x|p ∀x ∈ B1.

(ii) Denoting by (μ−ν)+ and (μ−ν)−, the positive and negative parts of μ−ν,
we have |μ−ν| = (μ−ν)++(μ−ν)−. We also notice that μ−(μ−ν)+ = ν−(μ−ν)−.
It thus follows from (5.10) and Lemma A.14 that

dLp
(μ, μ− (μ− ν)+)p ≤

∫
B1

|x|pd(μ− ν)+(x),

dLp
(ν, μ− (μ− ν)+)p ≤

∫
B1

|x|pd(μ− ν)−(x).

Moreover, it is obvious that

dTV(μp, νp) =

∫
B1

|x|pd(μ− ν)+(x) +

∫
B1

|x|pd(μ− ν)−(x).

Therefore, using the triangle inequality for the distance and the inequality a+ b ≤
2

p−1
p (ap + bp)

1
p for a, b ≥ 0, we obtain

dLp
(μ, ν) ≤ dLp

(μ, μ− (μ− ν)+) + dLp
(ν, μ− (μ− ν)+)

≤ 2
p−1
p

(∫
B1

|x|pd(μ− ν)+(x) +

∫
B1

|x|pd(μ− ν)−(x)
) 1

p

= 2
p−1
p dTV(μp, νp)

1
p . �

Let us now discuss the case when the Lévy measures μαβ
x are absolutely contin-

uous with respect to the Lebesgue measure.
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Example 5.12. Let us consider operators whose Lévy measures dμαβ
x (z) are all of

the form Kαβ(x, z)dz. Assumption E holds, for instance, if

0 ≤ Kαβ(x, z) ≤ K(z),(5.12)

where K(z) is such that for some p ∈ [1, 2]

(5.13)

∫
Rd

min(1, |z|p)K(z)dz < +∞.

Regarding Assumption A, suppose that there are some γ ∈ (0, 1] and C ≥ 0 such
that ∫

B1

|z|p|Kαβ(x, z)−Kαβ(y, z)|dz ≤ C|x− y|γ ∀x, y ∈ O, ∀α, β.(5.14)

Condition (5.14) is obviously satisfied if

|Kαβ(x, z)−Kαβ(y, z)|dz ≤ |x− y|γK(z) ∀x, y ∈ O, ∀z ∈ B1, ∀α, β.(5.15)

Let now x, y ∈ O. To estimate dLp
(μ̂αβ

x , μ̂αβ
y ), we use Proposition 5.11. It follows

from (5.11) and (5.14), that

dLp
(μ̂αβ

x , μ̂αβ
y ) ≤ 2

p−1
p

(∫
B1

|z|p |Kαβ(x, z)−Kαβ(y, z)| dz
) 1

p

≤ C|x− y| γp .

(5.16)

In particular, (4.1) is satisfied for these measures when p = 1 and γ = 1.

We can now prove Corollary 4.5.

Proof of Corollary 4.5. We notice that the measures μαβ
x satisfy (5.12), (5.13), and

(5.15) with γ = p = 1 andK(z) = Λ1|z|−d−σ, and hence they satisfy Assumptions A
and E. It is also easy to see that they satisfy Assumption B. Thus the result follows
from Theorem 4.4. �

Example 5.13. A well studied subclass of operators which arise in zero-sum two-
player stochastic differential games are those of Lévy–Itô form. This corresponds
to the situation where the Lαβ appearing in (1.1) have the form

Lαβ(u, x) =

∫
U\{0}

[u(x+ Tαβ
x (z))− u(x)−Du(x) · Tαβ

x (z)] dμ(z).(5.17)

Here U is a separable Hilbert space, and μ is a fixed reference Lévy measure on
U \ {0}. The maps Tαβ

x : U → R
d are Borel measurable and such that for all

α ∈ A, β ∈ B, x, y ∈ O, z ∈ U \ {0},
|Tαβ

x (z)− Tαβ
y (z)| ≤ Cρ(z)|x− y|, |Tαβ

x (z)| ≤ Cρ(z),

for some positive Borel function ρ : U \ {0} → R which is bounded on bounded
sets, inf |z|>r ρ(z) > 0 for every r > 0, and

(5.18)

∫
U\{0}

ρ(z)2dμ(z) ≤ C.

Under these conditions the measures μαβ
x = (Tαβ

x )#μ are Lévy measures. The
comparison principle for sub-/super- solutions of (1.1) with Lαβ as in (5.17) is
known to hold, as discussed in the introduction. Let us revisit it using the transport
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metric. For every x0, y0 ∈ O, α ∈ A, β ∈ B we have γ = (Tαβ
x0

× Tαβ
y0

)#μ ∈
Adm(μαβ

x0
, μαβ

y0
) and, therefore,

dL2
(μαβ

x0
, μαβ

y0
)2 ≤

∫
Rd×Rd

|x− y|2dγ(x, y)

=

∫
U\{0}

|Tαβ
x0

(z)− Tαβ
y0

(z)|2 dμ(z) ≤ C|x0 − y0|2.

In this case the whole measures μx0
and μy0

satisfy Assumption A for p = 2, and
our approach can be applied without the decomposition of the measures μαβ

x into
μ̂αβ
x and μ̌αβ

x .
If the operators Lαβ in (1.1) have a more common Lévy–Itô form

(5.19) Lαβ(u, x) =

∫
U\{0}

[u(x+ Tαβ
x (z))− u(x)− χB1(0)Du(x) · Tαβ

x (z)] dμ(z),

where instead of (5.18) we now assume only∫
U\{0}

(ρ(z)2χ|z|<1 + χ|z|≥1)dμ(z) ≤ C,

we need to modify this approach. We now do the decomposition

μαβ
x = μ̂αβ

x + μ̌αβ
x ,

where

μ̂αβ
x = (Tαβ

x )#μ̂, μ̂ = μ|{|z|<1}, μ̌αβ
x = (Tαβ

x )#μ̌, μ̌ = μ|{|z|≥1},

and consider the measures μ̂αβ
x +μ̌αβ

x and μ̌αβ
x as measures on R

d by the usual exten-
sion. Then the measures μ̂αβ

x ∈ L2(R
d), and they satisfy Assumption A for p = 2.

Unfortunately, the measures μ̌αβ
x may not satisfy Assumption B now; however, the

terms containing them can be handled in a standard way (see, e.g., [16]), and thus
our approach can still be implemented (see also the next section and Example 6.2).

6. Variants of the approach

The approach to proving a comparison principle presented so far has been based
on the splitting of the measures μαβ

x into μ̂αβ
x and μ̌αβ

x , their restrictions to B1(0)
and Bc

1(0), respectively. The reader should think about it as the basic technique.
However, in many cases this splitting may not be ideal. When calculating the dis-
tance between two measures μ̂αβ

x and μ̂αβ
y , we have only the set Γ = {0}, where we

can deposit some excess mass, and moving mass there may be costly. Thus some-
times a much better estimate can be obtained if we allow for a more sophisticated
splitting μαβ

x = μ̂αβ
x + μ̃αβ

x + μ̌αβ
x , where the measures μ̂αβ

x are now supported in
some neighborhoods of the origin contained in B1(0), μ̃αβ

x are bounded measures
also supported in B1(0), and μ̌αβ

x are as in (2.3). In such a case we may only re-
quire that Assumption A (i.e., (4.1)) be satisfied for the new measures μ̂αβ

x . We will
illustrate the advantage of this approach in Example 6.2. Thus the main message
is that we should look at the technique of using coupling distance in the proof of
comparison principle as flexible, and Assumption A should really be considered to
be an assumption about the behavior of Lévy measures for small z, not necessarily
for z ∈ B1(0).
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Suppose then that for every α, β we have a decomposition μαβ
x = μ̂αβ

x +μ̃αβ
x +μ̌αβ

x

as described above, and we decompose

Lαβ(u, x) = L̂αβ(u, x) + L̃αβ(u, x) + Ľαβ(u, x),

where

L̂αβ(u, x) =

∫
Rd

δu(x, z) dμ̂αβ
x (z), L̃αβ(u, x) =

∫
Rd

δu(x, z) dμ̃αβ
x (z),

Ľαβ(u, x) =

∫
Rd

[u(x+ z)− u(x)] dμ̌αβ
x (z).

We can then prove the following variant of Theorem 4.4.

Theorem 6.1. Let Assumptions A–E (with the new measures μ̂αβ
x ) hold for p ∈

[1, 2], and suppose there are L1, L2 ≥ 0 such that

(6.1) μ̃αβ
x (B1(0)) ≤ L1 ∀x ∈ O, ∀α, β,

(6.2)

∫
Rd

|z| d|μ̃αβ
x − μ̃αβ

y |(z) ≤ L2|x− y| ∀x, y ∈ O, ∀α, β.

Then the comparison principle holds for equation (1.1). That is, if u and v are,
respectively, a viscosity subsolution and a viscosity supersolution of (1.1) and u(x) ≤
v(x) for all x �∈ O, then

u(x) ≤ v(x) ∀x ∈ O.

Proof. The proof proceeds exactly as the proof of Theorem 4.4 except that now in
Step 3 we also need to find an estimate from above for

Lμ̃αβ

x∗
δ

(uδ, xε)− Lμ̃αβ

y∗
δ

(vδ, yε),

which is independent of α and β, where the operators Lμ̃αβ

x∗
δ

(uδ, xε) and Lμ̃αβ

y∗
δ

(vδ, yε)

are defined as in (5.2) for the measures μ̃αβ
x∗
δ
and μ̃αβ

y∗
δ
. We have

Lμ̃αβ

x∗
δ

(uδ, xε)− Lμ̃αβ

y∗
δ

(vδ, yε)

≤
∫
B1

∣∣∣∣uδ(xε + z)− uδ(xε)− 1

ε
Dψκ(xε − yε) · z

∣∣∣∣ d|μ̃αβ
x∗
δ
− μ̃αβ

y∗
δ
|(z)

+

∫
B1

(
uδ(xε + z)− uδ(xε)− (vδ(yε + z)− vδ(yε))

)
dμ̃αβ

y∗
δ
(z).

Let ω be the modulus of continuity of u. It is also a modulus of continuity for uδ.
The modulus ω is bounded, and we can assume that it is concave. We notice that
the integrand of the second integral above is nonpositive. Therefore, we obtain

Lμ̃αβ

x∗
δ

(uδ, xε)− Lμ̃αβ

y∗
δ

(vδ, yε) ≤
∫
B1

(
ω(|z|) + 1

ε
|Dψκ(xε − yε)||z|

)
d|μ̃αβ

x∗
δ
− μ̃αβ

y∗
δ
|(z).
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Using (6.1) and (6.2), the concavity of ω, Jensen’s inequality, the subadditivity of
ω, and |Dψκ(xε − yε)| ≤ p|xε − yε|p−1, we can now estimate

Lμ̃αβ

x∗
δ

(uδ, xε)− Lμ̃αβ

y∗
δ

(vδ, yε) ≤ Cω

(∫
Rd

|z| d|μ̃αβ
x∗
δ
− μ̃αβ

y∗
δ
|(z)

)

+
C

ε
|xε − yε|p−1|x∗

δ − y∗δ |

≤ Cω (|x∗
δ − y∗δ |) +

C

ε
|xε − yε|p−1|x∗

δ − y∗δ |.

This allows us to complete the proof by following the rest of the proof of Theo-
rem 4.4. �

The next example illustrates the usefulness of this modified approach and The-
orem 6.1.

Example 6.2. Let the measures μαβ
x be such that

dμαβ
x (z) =

aαβ(x)

|z|d+σ

for some 1 < σ < 2. Assume that the functions aαβ : O → R are nonnegative and
such that there exists L ≥ 0 such that∣∣∣a 1

σ

αβ(x)− a
1
σ

αβ(y)
∣∣∣ ≤ L|x− y| ∀x, y ∈ O, ∀α, β.

Without loss of generality we will also assume that aαβ ≤ 1. The case σ = 1
can also be considered similarly, but since calculations are slightly different, it is
omitted here, as it is an easy variation. The case 0 < σ < 1 is taken care of by
Corollary 4.5.

We decompose the measures μαβ
x in the following way. We set rαβx := a

1
σ

αβ(x).

μ̂αβ
x = μαβ

x |B
r
αβ
x

, μ̃αβ
x = μαβ

x |B1\B
r
αβ
x

, μ̌αβ
x = μαβ

x |Bc
1
,

and as always all measures are then extended to measures on R
d. We claim that

these measures satisfy the assumptions of Theorem 6.1 with σ < p ≤ 2.
Assumptions B and E are obvious, so we will focus on Assumption A, (6.1),

and (6.2). Regarding Assumption A, we note that, by an elementary calculation,
if aαβ(x) > 0, then μ̂αβ

x = (Tαβ
x )#μ, where

Tαβ
x (z) = a

1
σ

αβ(x)z, dμ(z) =
1

|z|d+σ
χB1

dz.

These types of transformations were used in [2, 10]. If aαβ(x) = 0, then μ̂αβ
x = 0.

Then, if aαβ(x) > 0, aαβ(y) > 0, γ = (Tαβ
x × Tαβ

y )#μ ∈ Adm(μ̂αβ
x , μ̂αβ

y ), and

dLp
(μ̂αβ

x , μ̂αβ
y )p ≤

∫
Rd×Rd

|z1 − z2|2dγ(z1, z2) =
∫
Rd

|Tαβ
x (z)− Tαβ

y (z)|p dμ(z)

=

∫
B1

|a 1
σ

αβ(x)− a
1
σ

αβ(y)|p
|z|p

|z|d+σ
dz ≤ C|x− y|p.
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If aαβ(x) > 0 and μ̂αβ
y = 0, then also γ = (Tαβ

x ×Tαβ
y )#μ ∈ Adm(μ̂αβ

x , μ̂αβ
y ), where

Tαβ
y (z) = 0, and

dLp
(μ̂αβ

x , μ̂αβ
y )p ≤

∫
B1

|Tαβ
x (z)− 0|p dμ(z)

=

∫
B1

|a 1
σ

αβ(x)− a
1
σ

αβ(y)|p
|z|p

|z|d+σ
dz ≤ C|x− y|p.

Regarding (6.1), we see that

μ̃αβ
x (B1) = C

∫ 1

rαβ
x

aαβ(x)

r1+σ
dr =

C

σ
(1− aαβ(x)).

It remains to check condition (6.2). Suppose that aαβ(x) < aαβ(y). Then∫
Rd

|z| d|μ̃αβ
x − μ̃αβ

y |(z) =
∫
rαβ
x ≤|z|<rαβ

y

|z| dμ̃αβ
x (z)

+

∫
rαβ
y ≤|z|<1

(aαβ(y)− aαβ(x))|z|
|z|d+σ

dz.

We estimate each integral separately:

∫
rαβ
x ≤|z|<rαβ

y

|z| dμ̃αβ
x (z) = Caαβ(x)

1

rσ−1

∣∣∣∣
rαβ
y

rαβ
x

= Caαβ(x)
a
1− 1

σ

αβ (y)− a
1− 1

σ

αβ (x)

a
1− 1

σ

αβ (y)a
1− 1

σ

αβ (x)

≤ Ca
2
σ−1

αβ (x)
(
a
1− 1

σ

αβ (y)− a
1− 1

σ

αβ (x)
)
.

By the mean value theorem

a
1− 1

σ

αβ (y)− a
1− 1

σ

αβ (x) = cσ−2
(
a

1
σ

αβ(y)− a
1
σ

αβ(x)
)
≤ a

1− 2
σ

αβ (x)
(
a

1
σ

αβ(y)− a
1
σ

αβ(x)
)
,

where c is some number such that a
1
σ

αβ(x) < c < a
1
σ

αβ(y). Thus we obtain∫
rαβ
x ≤|z|<rαβ

y

|z| dμ̃αβ
x (z) ≤ C

(
a

1
σ

αβ(y)− a
1
σ

αβ(x)
)
≤ C1|x− y|.

For the second integral, by an elementary calculation we obtain

∫
rαβ
y ≤|z|<1

(aαβ(y)− aαβ(x))|z|
|z|d+σ

dz = C(aαβ(y)− aαβ(x))

⎛
⎝ 1

a
1− 1

σ

αβ (y)
− 1

⎞
⎠ .

Now, again by the mean value theorem,

aαβ(y)− aαβ(x) = cσ−1
(
a

1
σ

αβ(y)− a
1
σ

αβ(x)
)
≤ a

1− 1
σ

αβ (y)
(
a

1
σ

αβ(y)− a
1
σ

αβ(x)
)
,

where c is some number such that a
1
σ

αβ(x) < c < a
1
σ

αβ(y). Therefore, it follows that∫
rαβ
y ≤|z|<1

(aαβ(y)− aαβ(x))|z|
|z|d+σ

dz ≤ C
(
a

1
σ

αβ(y)− a
1
σ

αβ(x)
)
(1− a

1− 1
σ

αβ (y))

≤ C2|x− y|.
This completes the proof of (6.2).
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We remark that if we apply the estimate of Example 5.12 to the kernels

Kαβ(x, z) =
aαβ(x)

|z|d+σ

and use only the information that the functions aαβ are Lipschitz continuous, we
obtain

dLp
(μ̂αβ

x , μ̂αβ
y ) ≤ C|x− y| 1p .

Thus Example 6.2 shows that the general estimate of Example 5.12 coming from
Proposition 5.11 is not optimal for 1 < p ≤ 2.

The following two examples concern Awatif’s comparison results in [19]. Ex-
ample 6.3 in particular shows Theorem 4.4 implies the main comparison result
in [19], in the case where the measures μαβ are all supported in a ball. We note
that [19, Theorem III.1] dealt with the case of O = R

d and the nonlocal operators
there were slightly different, so Theorem 4.4 cannot be applied directly to the case
considered in [19]; however, our approach covers the essential difficulties of the proof
of the general result of [19]. Example 6.4 is related to an alternative assumption
discussed later in the paper [19, Section III.1, p. 1065].

Example 6.3. In this example we explain how the assumption of [19, equa-
tion (1.3)] (reproduced below in (6.3)) implies Assumption A with p = 1: assume
that there is a constant C > 0 such that, for any φ ∈ C0,1(B1) with φ(0) = 0 and
Lipschitz constant 1, we have the inequality∫

B1

φ(z) dμx(z)−
∫
B1

φ(z) dμy(z) ≤ C|x− y| ∀x, y ∈ O,(6.3)

where we assume that the measures μx ∈ L1(B1). We will show that then the
measures μ̂x = μx satisfy Assumption A with p = 1, that is, dL1

(μ̂x, μ̂y) ≤ C|x− y|
for all x, y. To this end, let φ be any function as above. The Lipschitz condition
means that for every z1, z2 we have φ(z1)− φ(z2) ≤ |z1 − z2|, and in particular the
pair (φ,−φ) belongs to the set Adm1 defined in Lemma 3.6. Then Lemma 3.6 says
that

dL1
(μ̂x, μ̂y) ≤

∫
B1

φ(z) dμx(z) +

∫
B1

(−φ(z)) dμy(z),

and thus assumption (6.3) implies that dL1
(μ̂x, μ̂y) ≤ C|x− y|.

Example 6.4. Assume that the measures μx ∈ L1(B1) and that there is a constant
C > 0 such that, for all τ > 0 and x, y ∈ O,

sup
h∈C(B1\{0}),‖h‖∞≤1

{∫
τ≤|z|<1

h(z)|z|dμx(z)−
∫
τ≤|z|<1

h(z)|z| dμy(z)

}
≤ C|x− y|.

(6.4)

Then the measures μ̂x = μx satisfy Assumption A with p = 1, that is,

dL1
(μ̂x, μ̂y) ≤ C|x− y|.

To show it, we start arguing as in Example 6.3. We take any function φ with
Lipschitz constant 1 and such that φ(0) = 0. The Lipschitz condition means that
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for every z1, z2 we have φ(z1)−φ(z2) ≤ |z1−z2|, and in particular (φ,−φ) ∈ Adm1.
Then Lemma 3.6 guarantees that

dL1
(μ̂x, μ̂y) ≤

∫
B1

φ(z) dμx(z)−
∫
B1

φ(z) μy(z).

Since φ has Lipschitz constant 1 and φ(0) = 0, it follows that |φ(z)| ≤ |z|. In
particular, if h(z) = |z|−1|φ(z)|, then h is continuous in B1 \ {0} and |h(z)| ≤ 1
for all z, so h(z) is an admissible function for the supremum in (6.4). We conclude
that for every τ > 0∫

τ≤|z|<1

φ(z) dμx(z)−
∫
τ≤|z|<1

φ(z) μy(z)

=

∫
τ≤|z|<1

h(z)|z| dμx(z)−
∫
τ≤|z|<1

h(z)|z| μy(z) ≤ C|x− y|.

Letting τ → 0, the integral on the left converges to
∫
B1(0)

φ(z) dμx(z)−
∫
B1(0)

φ(z)

μy(z), so

dL1
(μ̂x, μ̂y) ≤ C|x− y|.

7. Comparison principles under additional assumptions

As in the previous section, throughout this section we consider a fixed bounded
domain O ⊂ R

d. In this section we prove a few comparison results for more regular
viscosity sub-/super- solutions. In return, we are allowed to replace Assumption A
with a weaker assumption.

Assumption A1. Let p ∈ [1, 2]. There exist C > 0 and s ∈ (0, 1) such that

dLp
(μ̂αβ

x , μ̂αβ
y ) ≤ C|x− y|s ∀x, y ∈ O, ∀α, β.

Remark 7.1. Consider a Lévy measure μ ∈ Lp(B1). For r ∈ (0, 1) we define

μr(·) := μ(· ∩Bc
r).

Then we have the estimate

dLp
(μ, μr)

p ≤
∫
Br

|x|p dμ(x).

To see why this is so, simply note that among the admissible plans we have the one
that sends all of the mass of μ in Br \ {0} to 0 and leaves the rest of the mass fixed
in place. To be more precise, define

T (x) =

{
0 for x ∈ Br \ {0},
x otherwise.

Then γ = (T × Id)#μ ∈ Adm(μr, μ) and

dLp
(μ, μr)

p ≤
∫
Rd×Rd

|x− y|pdγ(x, y) =
∫
Rd

|T (x)− x|2 dμ(x) =

∫
Br

|x|p dμ(x).

Remark 7.2. Estimating the distance between μ and μr is of interest to us since it
can be used to bound the difference between the operators

Lμ̂(u, x) :=

∫
B1

δu(x, z) dμ̂(z)
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and

Lμ̂r
(u, x) :=

∫
B1∩Bc

r

δu(x, z) dμ̂r(z).

The second operator can be classically evaluated for any continuous function, while
the first one in general cannot. Being able to estimate the difference between them
will be an important step in the proof of Theorem 7.4, removing the need for the
use of the sup-/inf- convolutions (as mentioned in Remark 5.1).

Theorem 7.3. Let Assumptions A1 and A–E be satisfied. Let u be a viscosity
subsolution, and let v be a viscosity supersolution of (1.1), and let u(x) ≤ v(x) for
all x �∈ O. If either u or v is in C0,r(O) for some r ∈ (0, 1) and we have 1− r

p < s

(where s is from Assumption A1), then

u(x) ≤ v(x) ∀x ∈ O.

Proof. The proof follows along the lines of the proof of Theorem 4.4. The only
difference is that when either u or v is C0,r, instead of (5.3) we now have (5.4),
i.e.,

lim sup
κ→0

|xε − yε|p−r

ε
≤ C,

and in this case, following the original proof, we obtain

λ� ≤ 2δ +
C

ε
|xε − yε|sp + Cθ

(|xε − yε|) + ρε(δ),

which produces a contradiction after taking limε→0 limδ→0 lim supκ→0 if sp > p−r,
which is the case precisely when 1− r

p < s. �

The previous theorem does not cover the limiting situation where s = 1 − r
p ;

however, with extra work one can show that if u or v is of class C1, then we can
choose s = 1− 1

p , and we still have a comparison. The proof is different from that

of Theorem 4.4 since we do not use the sup-/inf- convolutions.

Theorem 7.4. Let Assumptions B–F hold, and let Assumption A1 hold with p > 1
and s = 1 − 1

p . Suppose that u and v are, respectively, a viscosity subsolution and

a viscosity supersolution of (1.1) and u(x) ≤ v(x) for all x �∈ O. If either u or v is
in C1(O), then

u(x) ≤ v(x) ∀x ∈ O.

Remark 7.5. If we allowed C1 functions to be test functions in the case p = 1, then
Theorem 7.4 would trivially hold for p = 1 without the need for Assumptions A
and B and the continuity of the coefficients, since then either u or v would be a
classical sub-/supersolution of (1.1) and could thus be used as a test function.

Proof. Without loss of generality let us say that u ∈ C1(O). As before, we argue
by contradiction, in which case there is some � > 0 such that

sup
x∈Rd

{u(x)− v(x)} = �.

Step 1 (Doubling of variables and perturbation). Let K ⊂ O be a compact neigh-
borhood of the set of maximum points of u − v in O. There exists a sequence of



28 NESTOR GUILLEN, CHENCHEN MOU, AND ANDRZEJ ŚWIE↪CH

C3(Rd)∩BUC(Rd) functions {φn}n, each of which has second and third derivatives
bounded in R

d, and such that |u− φn| → 0 uniformly in R
d and

lim
n→∞ sup

K
|Du−Dφn| = 0.

Now let (xn,ε, yn,ε) ∈ R
d × R

d be a global maximum point of wn,ε over R
d × R

d,
where

wn,ε(x, y) :=
(
u(x)− φn(x)

)− (
v(y)− φn(y)

)− ψκ(x− y)

ε
.

As in Lemma 5.10, one can show that for any n

lim sup
ε→0

lim sup
κ→0

|xn,ε − yn,ε|p
ε

= 0,

lim sup
ε→0

lim sup
κ→0

(
u(xn,ε)− v(yn,ε)

)
= �.

Observe that u is touched from above at xn,ε by

φ̄(x) := u(xn,ε)− φn(xn,ε) + φn(x) +
1

ε
(ψκ(x− yn,ε)− ψκ(xn,ε − yn,ε)) ,

while v is touched from below at yn,ε by

φ(y) := v(yn,ε)− φn(yn,ε) + φn(y)− 1

ε
(ψκ(xn,ε − y)− ψκ(xn,ε − yn,ε)) .

Since u is C1, this means first that

Du(xn,ε)−Dφn(xn,ε) = p(κ+ |xn,ε − yn,ε|2)
p
2−1xn,ε − yn,ε

ε
.

There is some small c > 0 such that Bc(xn,ε) ∪ Bc(yn,ε) ⊂ K if ε and κ are
sufficiently small. Therefore,

(7.1) lim sup
ε→0

lim sup
κ→0

|xn,ε − yn,ε|p−1

ε
= o 1

n
(1).

On the other hand, since u is a viscosity subsolution and v a viscosity supersolution,
for any 0 < r < 1 we have

I(ur, xn,ε) ≤ 0

and

I(vr, yn,ε) ≥ 0,

where (recall Definition 4.1)

ur(x) :=

{
φ̄(x) in Br(xn,ε),

u(x) in Bc
r(xn,ε)

and

vr(x) :=

{
φ(x) in Br(yn,ε),

v(x) in Bc
r(yn,ε).
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Step 2 (Equation structure, main term). Using the fact that I(·, x) has the inf-sup
representation in (1.1), it follows that

I(vr, yn,ε)− I(ur, xn,ε) ≤ sup
α,β

{
L̂αβ(ur, xn,ε)− L̂αβ(vr, yn,ε)

}
+ sup

α,β

{
Ľαβ(ur, xn,ε)− Ľαβ(vr, yn,ε)

}
+ sup

α,β

{
cαβ(yn,ε)v(yn,ε)− cαβ(xn,ε)u(xn,ε)

}
+ sup

α,β

{
fαβ(yn,ε)− fαβ(xn,ε)

}
.

(7.2)

Let us bound each of the terms on the right-hand side of (7.2). As before, the most
delicate term is the first one. Fixing α and β, we note that

L̂αβ(ur, xn,ε) =

∫
Br

δur(xn,ε, x) d̂̂μ
αβ
xn,ε

(x) +

∫
Bc

r

δu(xn,ε, x) dμ̂
αβ
xn,ε

(x),

L̂αβ(vr, yn,ε) =

∫
Br

δvr(yn,ε, y) dμ̂
αβ
yn,ε

(y) +

∫
Bc

r

δv(yn,ε, y) dμ̂
αβ
yn,ε

(y).

Let us choose γr ∈ Adm(μ̂αβ
xn,ε,r, μ̂

αβ
yn,ε,r) (using the notation introduced in Re-

mark 7.1), which minimizes the p-cost. Denote

Ar := ({0} × (B1 \Br)) ∪ ((B1 \Br)× {0}) ∪ ((B1 \Br)× (B1 \Br)).

Since δu(xn,ε, 0) = δv(yn,ε, 0) = 0 and

(7.3) γr
(
(((B1 \Br) ∪ {0})c × R

d) ∪ (Rd × ((B1 \Br) ∪ {0})c)) = 0,

we have ∫
Bc

r

δu(xn,ε, x) dμ̂
αβ
xn,ε

(x) =

∫
Bc

r

δu(xn,ε, x) dμ̂
αβ
xn,ε,r(x)

=

∫
Rd×Rd

δu(xn,ε, x) dγr(x, y) =

∫
Ar

δu(xn,ε, x) dγr(x, y).

Similarly, ∫
Bc

r

δv(yn,ε, y) dμ̂
αβ
yn,ε

(y) =

∫
Ar

δv(yn,ε, y) dγr(x, y).

Therefore, we obtain

L̂αβ(ur, xn,ε)− L̂αβ(vr, yn,ε)

=

∫
Br

δur(xn,ε, x) dμ̂
αβ
xn,ε

(x)−
∫
Br

δvr(yn,ε, y) dμ̂
αβ
yn,ε

(y)

+

∫
Ar

[δu(xn,ε, x)− δv(yn,ε, y)] dγr(x, y).

Using the fact that (xn,ε, yn,ε) is a maximum point of wn,ε, we have the following
pointwise bound for pairs (x, y) ∈ Ar:

δu(xn,ε, x)− δv(yn,ε, y) ≤ C

ε
|x− y|p + δφ(xn,ε, x)− δφ(yn,ε, y).
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It thus follows (again using δφ(xn,ε, 0) = δφ(yn,ε, 0) = 0 and (7.3)) that∫
Ar

[δu(xn,ε, x)− δv(yn,ε, y)] dγr(x, y)

≤ C

ε

∫
Ar

|x− y|p dγr(x, y)

+

∫
Bc

r

δφ(xn,ε, x) dμ̂
αβ
xn,ε

(x)−
∫
Bc

r

δφ(yn,ε, y) dμ̂
αβ
yn,ε

(y),

and since γr is the optimizer in Adm(μ̂xn,ε
, μ̂yn,ε

),∫
Ar

[δu(xn,ε, x)− δv(yn,ε, y)] dγr(x, y)

≤ C

ε
dLp

(μ̂αβ
xn,ε,r, μ̂

αβ
yn,ε,r)

p +

∫
Bc

r

δφ(xn,ε, x) dμ̂
αβ
xn,ε

(x)

−
∫
Bc

r

δφ(yn,ε, y) dμ̂
αβ
yn,ε

(y).

As for the integrals over Br(0), note that∫
Br

δur(xn,ε, x) dμ̂
αβ
xn,ε

(x)−
∫
Br

δvr(yn,ε, y) dμ̂
αβ
yn,ε

(y)

=

∫
Br

[δφn(xn,ε, x) +
1

ε
δψκ(· − yn,ε)(xn,ε, x)] dμ̂

αβ
xn,ε

(x)

−
∫
Br

[δφn(yn,ε, y)− 1

ε
δψκ(xn,ε − ·)(yn,ε, y)] dμ̂αβ

yn,ε
(x).

Putting the last inequality and last equality together, we have

L̂αβ(ur, xn,ε)− L̂αβ(vr, yn,ε)

≤ C

ε
dLp

(μ̂αβ
xn,ε,r, μ̂

αβ
yn,ε,r)

p + L̂αβ(φn, xn,ε)− L̂αβ(φn, yn,ε) +
C

ε
θ(r),

where we used Assumption E and Lemma 5.7.
Next, we use Remark 7.1 to get dLp

(μ̂αβ
xn,ε,r, μ̂

αβ
yn,ε,r)

p ≤ dLp
(μ̂αβ

xn,ε
, μ̂αβ

yn,ε
)p + ρ(r),

where ρ(r) → 0 as r → 0. Then, using Assumption A1 (recall that s = 1− 1/p), it
follows that

dLp
(μ̂αβ

xn,ε,r, μ̂
αβ
yn,ε,r)

p ≤ C|xn,ε − yn,ε|p−1 + ρ(r).

Thus

L̂αβ(ur, xn,ε)− L̂αβ(vr, yn,ε) ≤ C

ε
|xn,ε − yn,ε|p−1

+ L̂αβ(φn, xn,ε)− L̂αβ(φn, yn,ε) +
C

ε
(θ(r) + ρ(r)).

Letting r → 0, it follows that for every κ, n, and ε

lim sup
r→0

sup
α,β

{
L̂αβ(ur, xn,ε)− L̂αβ(vr, yn,ε)

}

≤ C

ε
|xn,ε − yn,ε|p−1 + sup

α,β

{
L̂αβ(φn, xn,ε)− L̂αβ(φn, yn,ε)

}
.

(7.4)
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Step 3 (Equation structure, remaining terms). For any r ∈ (0, 1) and any α, β we
have

Ľαβ(ur, xn,ε)− Ľαβ(vr, yn,ε) = Ľαβ(u, xn,ε)− Ľαβ(v, yn,ε).

Furthermore, arguing as in Step 3 of the proof of Theorem 4.4,

cαβ(xn,ε)u(xn,ε)− cαβ(yn,ε)v(yn,ε) ≥ λ(u(xn,ε)− v(yn,ε))− ‖v‖L∞θ(|xn,ε − yn,ε|),
(7.5)

|fαβ(xn,ε)− fαβ(yn,ε)| ≤ θ(|xn,ε − yn,ε|).(7.6)

Going back to (7.2) and combining it with (7.4)–(7.6), it follows that for any κ, n,
and ε

lim sup
r→0

{
I(vr, yn,ε)− I(ur, xn,ε)

} ≤ C

ε
|xn,ε − yn,ε|p−1+(1 + ‖v‖L∞)θ(|xn,ε − yn,ε)

+ λ(v(yn,ε)− u(xn,ε))

+ sup
α,β

{
Ľαβ(u, xn,ε)− Ľαβ(v, yn,ε)

}
+ sup

α,β

{
L̂αβ(φn, xn,ε)− L̂αβ(φn, yn,ε)

}
.

(7.7)

Let us handle the last two terms on the right. Using Assumption B and the fact
that φn ∈ C0,1(Rd), we have for any α and β

Ľαβ(u, xn,ε)− Ľαβ(v, yn,ε)

=

∫
Bc

1

[δu(xn,ε, x)− δv(yn,ε, x)] dμ̌
αβ
xn,ε

(x)

+

∫
Bc

1

δv(yn,ε, y)d
[
μ̌αβ
xn,ε

(y)− μ̌αβ
yn,ε

(y)
]

≤
∫
Bc

1

(δφn(xn,ε, x)− δφn(yn,ε, x)) dμ̌
αβ
xn,ε

(x) + 2‖v‖L∞dTV(μ̌
αβ
xn,ε

, μ̌αβ
yn,ε

)

≤ C(n)|xn,ε − yn,ε|+ 2‖v‖L∞θ(|xn,ε − yn,ε|).
Then we have

sup
α,β

{
Ľαβ(u, xn,ε)− Ľαβ(v, yn,ε)

} ≤ C(n)|xn,ε − yn,ε|+ 2‖v‖L∞θ(|xn,ε − yn,ε|).
(7.8)

For the other remaining term we note that

L̂αβ(φn, xn,ε)− L̂αβ(φn, yn,ε) =

∫
B1

[δφn(xn,ε, x)− δφn(yn,ε, x)] dμ̂
αβ
xn,ε

(x)

+

∫
B1

δφn(yn,ε, x)dμ̂
αβ
xn,ε

(x)

−
∫
B1

δφn(yn,ε, y)dμ̂
αβ
yn,ε

(y).
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Since the third derivatives of φn are bounded, we have∣∣∣∣
∫
B1

[δφn(xn,ε, x)− δφn(yn,ε, x)] dμ̂
αβ
xn,ε

(x)

∣∣∣∣
≤

∫
B1

∫ 1

0

|〈(D2φn(xn,ε + sx)−D2φn(yn,ε + sx))x, x〉(1− s)|ds dμ̂αβ
xn,ε

(x)

≤ C(n)|xn,ε − yn,ε|.

The remaining integrals are estimated as follows. For τ ∈ (0, 1) let ητ be a smooth
function such that 0 ≤ ητ ≤ 1, ητ ≡ 1 in Bτ (0), and ητ ≡ 0 outside of B2τ . Then
we may write∫

B1

δφn(yn,ε, x)dμ̂
αβ
xn,ε

(x) =

∫
B1

(1− ητ (x))δφn(yn,ε, x)dμ̂
αβ
xn,ε

(x)

+

∫
B1

ητ (x)δφn(yn,ε, x)dμ̂
αβ
xn,ε

(x),∫
B1

δφn(yn,ε, y)dμ̂
αβ
yn,ε

(y) =

∫
B1

(1− ητ (y))δφn(yn,ε, y)dμ̂
αβ
yn,ε

(y)

+

∫
B1

ητ (y)δφn(yn,ε, y)dμ̂
αβ
yn,ε

(y).

Applying Proposition 3.8 together with (4.7), and using again Assumption A1, it
is straightforward to observe that, for fixed n and τ ,

lim
ε→0

sup
α,β

∣∣∣∣
∫
B1

(1− ητ (x))δφn(yn,ε, x)dμ̂
αβ
xn,ε

(x)

−
∫
B1

(1− ητ (y))δφn(yn,ε, y)dμ̂
αβ
yn,ε

(y)

∣∣∣∣ = 0.

On the other hand, since each φn is C3, we have |δφn(yn,ε, x)| ≤ Cn|x|2 for all
x ∈ B1. Therefore,∣∣∣∣

∫
B1

ητ (x)δφn(yn,ε, x)dμ̂
αβ
xn,ε

(x)

∣∣∣∣ ≤
∫
B1

|ητ (x)δφn(yn,ε, x)|dμ̂αβ
xn,ε

(x)

≤ Cn

∫
Bτ

|x|2dμ̂αβ
xn,ε

(x),∣∣∣∣
∫
B1

ητ (y)δφn(yn,ε, y)dμ̂
αβ
yn,ε

(y)

∣∣∣∣ ≤ Cn

∫
Bτ

|y|2dμ̂αβ
yn,ε

(y),

and we have

lim sup
τ→0

sup
α,β

∫
Bτ

|x|2dμ̂αβ
xn,ε

(x) = lim sup
τ→0

sup
α,β

∫
Bτ

|y|2dμ̂αβ
yn,ε

(y) = 0.

Gathering these estimates, we conclude that for every n

lim
ε→0

sup
α,β

∣∣L̂αβ(φn, xn,ε)− L̂αβ(φn, yn,ε)
∣∣ = 0.(7.9)
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Step 4 (Using the subsolution and supersolution property). Using Definition 4.2,
we obtain from (7.7) that

λ(u(xn,ε)− v(yn,ε)) ≤ C

ε
|xn,ε − yn,ε|p−1 + (1 + ‖v‖L∞)θ(|xn,ε − yn,ε|)

+ sup
αβ

{
Ľαβ(u, xn,ε)− Ľαβ(v, yn,ε)

}
+ sup

αβ

{
L̂αβ(φn, xn,ε)− L̂αβ(φn, yn,ε)

}
.

(7.10)

Letting κ → 0 first and then ε → 0 in (7.10), and using (7.1), (7.8), and (7.9), we
now obtain

0 < λl ≤ o 1
n
(1),

which gives a contradiction. �

The following is an example of measures satisfying the assumptions of Theo-
rem 7.4.

Example 7.6. Let dμαβ
x (z) := Kαβ(x, z)dz be such that (5.12) and (5.15) hold for

some p ∈ (1, 2] and γ ∈ (0, 1], whereK satisfies (5.13). Using (5.16), Assumption A1
is satisfied with s = 1− 1

p if γ = p− 1.

Assumption F. There are σ ∈ (1, 2) and positive constants λ̄ < Λ̄ such that
the measures μαβ

x are all of the form dμαβ
x (z) = Kαβ(x, z)dz, with Kαβ(x, z) =

Kαβ(x,−z), and

λ̄

|z|d+σ
≤ Kαβ(x, z) ≤ Λ̄

|z|d+σ
(7.11)

and

|Kαβ(x, z)−Kαβ(y, z)| ≤ Λ̄|x− y|γ
|z|d+σ

.

Corollary 7.7. Let the measures μαβ
x be as above. Assume that Assumptions C, D,

and F hold with some σ ∈ (1, 2) and γ > σ − 1. Then, given a viscosity solution u
and a viscosity subsolution (resp., supersolution) v of (1.1) such that v ≤ u (resp.,
u ≤ v) in Oc, we have

v ≤ u in O (resp., u ≤ v in O).

Proof. The proof is an immediate application of Theorem 7.4 with p = 1 + γ, the
computation in Example 5.12, and the fact that u ∈ C1(O) by [17, Theorem 4.1].

�

Remark 7.8. The comparison result of Corollary 7.7 can be extended to the case
σ = 1 if we use Theorem 7.3 instead of Corollary 7.7. The result of Corollary 7.7
can be also extended to the case λ = 0; see [18, Theorem 4.1].

It is worth noting that in [18] the second and third authors obtained unique-
ness results under similar assumptions to those of Corollaries 4.5 and 7.7, including
Lipschitz-type assumption on the continuity of the kernels with respect to x. How-
ever, uniqueness results in [18] cover only σ in the range (0, 3/2), whereas the
combination of Corollaries 4.5 and 7.7 (see also Remark 7.8) covers all σ up to 2.
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Remark 7.9. The assumption (7.11) used in Corollary 7.7 can be relaxed a great
deal. This assumption was used merely in order to guarantee that the viscosity
solution is C1+α in the interior. Indeed, interior Cα and C1+α regularity estimates
are now available for nonlocal equations for a far larger class of kernels, including
those K(x, z) which may not be symmetric in z or which vanish even for large
sets of directions of z. See the works of Schwab and Silvestre [21, Section 8] and
Kriventsov [17].

Appendix A. A variant of the optimal transportation problem

In this appendix, which follows [13], we describe the optimal transport problem
with boundary. Throughout we make the following assumptions: Ω is an open Q5
subset of Rd, and Γ is a compact subset of Ω. We are also given a function c :
Ω × Ω → R, known as the cost. We impose several assumptions on c(x, y) and Γ,
recorded in (1.1) and (1.2).

First, we assume that c satisfies the following:

c(x, y) is continuous; c(x, y) = c(y, x), c(x, x) = 0, c(x, y) > 0 if x �= y ∀x, y.
(1.1)

Second, Γ and c must be such that there is a measurable function

P : Ω → Γ

which plays the role of the “projection” onto Γ, in the sense that

c(x, P (x)) = inf
y∈Γ

c(x, y).(1.2)

Definition A.1. Letting E be a Borel subset of Ω, we define the function

c(x,E) = inf
y∈E

c(x, y).

Lastly, the following auxiliary cost will be relevant in what follows:

c̃(x, y) = min{c(x, y), c(x,Γ) + c(y,Γ)}.
We also consider the set

K = {(x, y) ∈ Ω× Ω | c(x, y) ≤ c(x,Γ) + c(y,Γ)}.(1.3)

Definition A.2. Given Ω and Γ, we letMc(Ω) be the set of positive Borel measures
μ on Ω \ Γ such that ∫

Ω

c(x,Γ) dμ(x) < ∞,

and

μ({x ∈ Ω | d(x,Γ) > r}) < ∞ for every r > 0.

Definition A.3. Let μ, ν ∈ Mc(Ω). By an admissible coupling of μ and ν, we
mean a positive Borel measure γ over Ω× Ω, satisfying γ(Γ× Γ) = 0 and

π1
#γ |Ω\Γ= μ, π2

#γ |Ω\Γ= ν.

The set of admissible couplings will be denoted by AdmΓ(μ, ν).

Note that a measure in Mc(Ω) may fail to have finite mass since inf c(x,Γ) = 0.
We are now ready to state the optimal transport problem with boundary.
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Problem A.4. Consider two measures μ, ν ∈ Mc(Ω). Among all admissible mea-
sures γ ∈ AdmΓ(μ, ν), find one that minimizes the functional

Jc(γ) :=

∫
Ω×Ω

c(x, y)dγ(x, y).

We make no claim as to whether all of the assumptions on the cost and Ω are
necessary, but they are sufficiently general for our purposes and make most of the
proofs relatively straightforward (for instance, the symmetry assumption on c(x, y)
is not necessary but makes the notation simpler). In any case, the costs we care
about in the main body of the paper are

cp(x, y) := |x− y|p, 1 ≤ p ≤ 2.

Since we are specially concerned with these costs, we shall write Jp(γ) to refer to
the above functional when the cost is cp(x, y). At the same time, the main Ω and
Γ we care about are

Ω = R
d \ {0}

and
Γ = {0}.

Evidently, these sets, together with the costs cp, comply with our requirements.
The first basic fact about Problem A.4 is the existence of minimizers. The proof is Q6
essentially the same as in the optimal transport case (compactness of the measures
and lower semicontinuity of Jc(γ)) (cf. [4, Theorem 1.5], [13, Section 2]).

Theorem A.5. Let μ, ν ∈ Mc(Ω). Then Jc(γ) < ∞ for at least one γ∗ ∈
AdmΓ(μ, ν). Moreover, there exists at least one minimizer γ for Problem A.4.

Proof. With the map P being as in (1.2), we define the measure

γ∗ := (Id× P )#μ+ (P × Id)#ν.

It is clear that γ∗ ∈ AdmΓ(μ, ν). At the same time,

Jc(γ
∗) =

∫
Ω×Ω

c(x, y) dγ∗(x, y) =
∫
Ω

c(x,Γ) dμ(x) +

∫
Ω

c(y,Γ) dν(y),

and thus Jc(γ
∗) < ∞ since μ, ν ∈ Mc(Ω).

In order to prove that the infimum is achieved, we will first prove that AdmΓ(μ, ν)
is compact with respect to a certain notion of convergence. Let K be any compact
subset of Ω×Ω \Γ×Γ. Since Γ×Γ and K are compact, we have d(K,Γ×Γ) > 0.

Then there exists a compact subset K̃ of Ω\Γ such thatK ⊂ (K̃×Ω)∪(Ω×K̃). Since
Γ is compact and (1.1) holds, there is an ε0 > 0 such that infx∈K̃ c(x,Γ) > ε0. And

thus μ(K̃) < +∞ since μ ∈ Mc(Ω). Similarly, we have ν(K̃) < +∞. Therefore, if
γ ∈ AdmΓ(μ, ν), we have

γ(K) ≤ μ(K̃) + ν(K̃) < ∞.

Since μ(K̃) + ν(K̃) is independent of γ, it follows that, given a sequence {γn} in
AdmΓ(μ, ν), there is a subsequence γnk

and a measure γ in Ω×Ω such that γnk
⇀ γ,

with the convergence being in the following sense:

∫
Ω×Ω

φ(x, y) dγ(x, y) = lim
k→∞

∫
Ω×Ω

φ(x, y) dγnk
(x, y), φ ∈ C0

c (Ω× Ω \ Γ× Γ).

(1.4)
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Now we must show that γ ∈ AdmΓ(μ, ν). Observe that for each n

γn ∈ AdmΓ(μ, ν) ⇒
γn({(x, y) | d(x,Γ) ≥ r or d(y,Γ) ≥ r}) ≤ μ({d(x,Γ) ≥ r}) + ν({d(x,Γ) ≥ r}),

so from the assumptions on μ and ν (Definition A.2) it follows that the right-hand
side goes to 0 as r → ∞ with a rate depending only on μ and ν (note that when Ω is
compact, this last assertion holds trivially). From this estimate and the convergence
in (1.4) it is not hard to see that∫

Ω×Ω

φ(x) dγ(x, y) = lim
k→∞

∫
Ω×Ω

φ(x) dγnk
(x, y) ∀φ ∈ C0

c (Ω \ Γ);

a similar statement holds for functions of y with support away from Γ. In particular,∫
Ω×Ω

φ(x) dγ(x, y) =

∫
Ω

φ(x) dμ(x),

∫
Ω×Ω

ψ(x) dγ(x, y) =

∫
Ω

ψ(y) dν(y),

which shows that γ ∈ AdmΓ(μ, ν). In conclusion, the set of admissible cou-
plings AdmΓ(μ, ν) is sequentially compact with respect to the notion of convergence
in (1.4).

Let γn be a minimizing sequence in AdmΓ(μ, ν), that is, a sequence such that
Jc(γn) → inf Jc as n → ∞. At the same time, let ck be a monotone increasing
sequence of continuous functions with compact support in Ω× Ω \ Γ× Γ and such
that ck(x, y) → c(x, y) locally uniformly in Ω×Ω\Γ×Γ. Using a diagonal argument,
there exist a subsequence, still denoted by γn, and γ∗ ∈ AdmΓ(μ, ν) such that for
every fixed k

lim
n→∞

∫
Ω×Ω

ck(x, y) dγn(x, y) =

∫
Ω×Ω

ck(x, y) dγ∗(x, y).

Now, by the monotonicity of the ck, we have

Jc(γ∗) =
∫
Ω×Ω

c(x, y) dγ∗(x, y) = sup
k

Jck(γ∗),

while for any k we have

Jck(γ∗) = lim
n→∞

∫
Ω×Ω

ck(x, y) dγn(x, y) ≤ lim
n→∞ J(γn) = inf

γ∈AdmΓ(μ,ν)
J(γ).

This proves that γ∗ achieves the minimum value of Jc among all admissible plans.
�

We now characterize minimizers for Problem A.4 using c-concave functions and
c-cyclical monotonicity.

Definition A.6. For a function φ : Ω → R∪{±∞} with φ �= −∞ for at least some
x, its c-transform φc : Ω → R ∪ {−∞} is the function given by

φc(y) = inf
x∈Ω

{
c(x, y)− φ(x)

}
.

A function φ is said to be c-concave if there is some ψ such that

φ = ψc.

If φ and ψ are two c-concave functions such that φ = ψc and ψ = φc, then we say
they are c-conjugate to one another. Just the same, we talk about c̃-transforms
and c̃-concave functions.
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Remark A.7. Since the cost is assumed to be continuous, it follows that φc is the
infimum of a family of continuous functions of y ({y �→ c(x, y)−φ(x)}x), accordingly,
φc is upper semicontinuous. In particular, if (φ, ψ) is a c-conjugate pair, then both
φ and ψ are upper semicontinuous functions.

Remark A.8. Suppose that (φ, ψ) are c-conjugate. Then for every x and y we have

φ(x) + ψ(y) ≤ c(x, y).

The set of pairs (x, y) for which we have equality will be important in what
follows.

Definition A.9. Let φ be a c-concave function, and let ψ=φc. The c-subdifferential
of φ, denoted by ∂cφ, is defined as the set of pairs (x, y) such that

φ(x) + ψ(y) = c(x, y).

Moreover, for each x we define ∂cφ(x) to be the set of all y such that (x, y) ∈ ∂cφ.
We define ∂ c̃φ and ∂ c̃(x) for a c̃-concave φ in the same manner.

Definition A.10. A subset of Ω × Ω is said to be c-cyclically monotone if, given
a finite sequence {(xi, yi)}ni=0 and any permutation σ, we have

n∑
i=1

c(xi, yi) ≤
n∑

i=1

c(xi, yσ(i)).

If c is replaced by c̃, we have c̃-cyclical monotonicity.

The following proposition is a (minor) modification of a well-known convex anal-
ysis result of Rockafellar (previously extended for c-concave functions). This mod-
ification pertains the set Γ and the costs c(x, y) and c̃(x, y).

Proposition A.11. Let γ be a measure concentrated on K and such that spt(γ) ∪
Γ×Γ is c̃-cyclically monotone. Then there are c-conjugate functions φ and ψ such
that

φ ≡ ψ ≡ 0 on Γ

and
spt(γ) ⊂ ∂cφ.

Proof. This follows from standard optimal transport theory. Indeed, as shown
in [4, proof of Theorem 1.13, (ii)⇒ (iii)], since spt(γ)∪Γ×Γ is c̃-cyclically monotone,
there must be a c̃-concave function φ such that

spt(γ) ∪ Γ× Γ ⊂ ∂ c̃φ.

Since any pair (x, y) ∈ Γ× Γ belongs to ∂ c̃φ, it follows that

φ(x) + φc̃(y) = c̃(x, y) = 0 ∀x, y ∈ Γ.

We emphasize that the above holds for any two points x and y in Γ, which in
particular means that φ and φc̃ are constant on Γ. Adding a constant to φ, we can
assume without loss of generality that φ = 0 on Γ, which in turn guarantees that
φc̃ = 0 on Γ as well.

We claim that ∂ c̃φ ∩K ⊂ ∂cφ. Indeed, if (x0, y0) ∈ K is such that y0 ∈ ∂ c̃φ(x0),
then

φ(x) ≤ c̃(x, y0)− φc(y0) ≤ c(x, y0)− φc(y0)
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since c̃(x, y) ≤ c(x, y) for all x and y. Since (x0, y0) ∈ K, we have c̃(x0, y0) =
c(x0, y0), so

φ(x0) = c̃(x, y0)− φc(y0) = c(x, y0)− φc(y0).

It follows from this that (x0, y0) ∈ ∂cφ(x), and the claim is proved. The same
argument also shows that if y ∈ Γ, then φc(y) = φc̃(y) = 0. Since φ was chosen so
that spt(γ) ⊂ ∂ c̃φ and γ is supported in K, it follows that spt(γ) ⊂ ∂cφ. Therefore,
φ and φc are the desired c-conjugate functions. �

As in the usual optimal transport problem, a basic tool for the analysis of Prob-
lem A.4 is a dual problem. This problem deals with a family of admissible pairs of
functions,

Admc :=
{
(φ, ψ) | φ ∈ L1(μ) and ψ ∈ L1(ν),

φ and ψ are upper semicontinuous,

φ ≡ ψ ≡ 0 on Γ,

and φ(x) + ψ(y) ≤ c(x, y) in Ω× Ω
}
.

(1.5)

We now can state the problem dual to Problem (A.12).

Problem A.12. Among all pairs (φ, ψ) ∈ Admc, find one that maximizes the
functional

J∗(φ, ψ) :=
∫
Ω

φ(x) dμ(x) +

∫
Ω

ψ(y) dν(y).

The characterization of minimizers in Problem A.4 and maximizers for Prob-
lem A.12 is the content of Theorem A.13 and Lemma A.14. In the proof we will
make use of Proposition A.11, together with the characterization of optimizers for
the usual optimal transportation problem [4, Theorem 1.13].

Theorem A.13. Let γ ∈ AdmΓ(μ, ν) for two measures μ, ν ∈ Mc(Ω). Then γ is
a minimizer for Problem A.4 if and only if γ is concentrated on the set K defined
in (1.3), and spt(γ) ∪ Γ× Γ is a c̃-cyclically monotone set.

Proof. Assume first that γ ∈ AdmΓ(μ, ν) is optimal. Consider γ̃, the plan given
by γ̃ = γ̂|Ω×Ω\Γ×Γ, where γ̂ is defined as

γ̂ := γ|K + (π1, P ◦ π1)#

(
γ|Ω×Ω\K

)
+ (P ◦ π2, π2)#

(
γ|Ω×Ω\K

)
;

here P is as in (1.2). What the plan γ̂ is meant to do is to adjust the original plan
γ by shifting the transport of some of the mass so that it is sent to Γ whenever it
is advantageous to do so (and only for points (x, y) outside of K). The coupling γ̃
comes from taking γ̂ and discarding any potential mass Γ× Γ; this makes sure we
have an admissible coupling. Therefore, γ̃ ∈ AdmΓ(μ, ν). Moreover, we have the
formula∫

Ω×Ω

c(x, y) dγ̃(x, y) =

∫
K
c(x, y)dγ(x, y) +

∫
Ω×Ω\K

[c(x,Γ) + c(Γ, y)] dγ(x, y).

From the definition of K we have c(x, y) > c(x,Γ) + c(Γ, y) outside of K; thus∫
Ω×Ω\K

[c(x,Γ) + c(Γ, y)] dγ(x, y) ≤
∫
Ω×Ω\K

c(x, y) dγ(x, y).
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It follows that ∫
Ω×Ω

c(x, y) dγ̃(x, y) ≤
∫
Ω×Ω

c(x, y) dγ(x, y),

with strict inequality if and only if γ(Ω × Ω \ K) > 0. By the optimality of γ we
then conclude that γ(Ω× Ω \ K) = 0; that is, γ is supported in K.

Now we must show that spt(γ) ∪ Γ × Γ is c̃-monotone. We deal first with the
case where γ has finite mass. In this instance, let us write

μ̄ = π1
#γ, ν̄ = π2

#γ.(1.6)

Then, as μ̄ and ν̄ are the marginals of γ (in all of Ω), they must have the same total
mass which is finite since γ has finite mass. Let γ0 denote the optimal transport
plan between μ̄ and ν̄ according to c̃, and let γ̃0 be constructed from γ0 in the
same way as γ̃ was constructed from γ (first, by pushing parts of its mass to the
boundary as done above, yielding a measure γ̂0, and then restricting to Ω×Ω\Γ×Γ).
Since μ̄|Ω = μ and ν̄|Ω = ν, we have γ̃0 being a measure in AdmΓ(μ, ν), and as

argued above for γ and γ̃, if γ0 were not supported in K, then γ̃0 would be a better
coupling. This shows that c = c̃ γ-a.e. and γ0-a.e., and thus

Jc̃(γ) = Jc(γ), Jc̃(γ0) = Jc(γ0).

Combining these identities with the optimality of γ and γ0 yields the inequalities

Jc̃(γ) ≥ Jc̃(γ0) = Jc(γ0) ≥ Jc(γ0|Ω×Ω\Γ×Γ) ≥ Jc(γ)

(we used the facts that γ0|Ω×Ω\Γ×Γ ∈ AdmΓ(μ, ν) and that c(x, y) ≥ 0), and we

conclude that

Jc̃(γ0) = Jc̃(γ).

Thus γ is an optimal plan for the usual transport problem with cost c̃. By optimal
transport theory, the support set spt(γ) is c̃-cyclically monotone. To prove that
spt(γ) ∪ Γ× Γ is still c̃-cyclically monotone, simply note that if γ0 is any measure
supported in Γ × Γ, then γ + γ0 may not belong to AdmΓ(μ, ν), but arguing as
above, we can show that it is optimal for the standard optimal transport problem
with cost c̃ and marginals π1

#(γ+γ0) and π2
#(γ+γ0). This shows that spt(γ+γ0) =

spt(γ) ∪ Γ× Γ is c̃-cyclically monotone.
This covers the case where γ has finite mass. For the general case we argue

just as in [13, Proposition 2.3]: that the one property from the classical optimal
transport problem that we needed was that if the support of γ is not c̃-cyclically
monotone, then γ cannot be optimal with respect to c̃. It is worth noting that
that even if μ̄ and ν̄ do not have finite mass, they are still the marginals of γ by
definition (1.6), so the set of measures with marginals μ̄ and ν̄ is nonempty, so one
can proceed with the Kantorovich problem as in standard optimal transport theory.
Therefore, the above argument extends to the case of γ with infinite mass, and we
conclude that spt(γ) ∪ Γ× Γ is c̃-cyclically monotone in all cases.

Conversely, assume that γ is supported in K and that spt(γ) ∪ Γ × Γ is a c̃-
cyclically monotone set. Then Proposition A.11 says that there is a function φ
which is c-concave, such that φ and φc both vanish on Γ, and

spt(γ) ⊂ ∂cφ.
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In particular, this means that φ(x) + φc(y) = c(x, y) on spt(γ), so∫
Ω×Ω

c(x, y) dγ(x, y) =

∫
Ω×Ω

[φ(x) + φc(y)] dγ(x, y),

=

∫
(Ω\Γ)×Ω

φ(x) dγ(x, y) +

∫
Ω×(Ω\Γ)

φc(y) dγ(x, y),

=

∫
Ω\Γ

φ(x) dμ(x) +

∫
Ω\Γ

φc(y) dν(y).

This suffices to guarantee the optimality of γ. Indeed, take any γ̃ ∈ AdmΓ(μ, ν);
then∫
Ω×Ω

c(x, y) dγ̃(x, y) ≥
∫
Ω×Ω

[φ(x) + φc(y)] dγ̃(x, y)

=

∫
Ω\Γ

φ(x) dμ(x) +

∫
Ω\Γ

φc(y) dν(y) =

∫
Ω×Ω

c(x, y) dγ(x, y),

and we conclude that γ achieves the minimum value. �

Just as in the usual optimal transport problem, a solution to Problem A.4 cor-
responds to a solution to Problem A.12, and the corresponding values coincide.

Lemma A.14. The problems (A.4) and (A.12) are dual, meaning that

inf
γ∈AdmΓ(μ,ν)

J(γ) = sup
(φ,ψ)∈Admc

J∗(φ, ψ).

Proof. If (φ, ψ) ∈ Admc, then φ(x) + ψ(y) ≤ c(x, y) for all x and y, and φ ≡ ψ ≡ 0
on Γ. Therefore, for any γ ∈ AdmΓ(μ, ν) we have∫

Ω×Ω

c(x, y) dγ(x, y) ≥
∫
Ω×Ω

[φ(x) + ψ(y)] dγ(x, y)

=

∫
Ω\Γ

φ(x) dμ(x) +

∫
Ω\Γ

ψ(y) dν(y)

=

∫
Ω

φ(x) dμ(x) +

∫
Ω

ψ(y) dν(y).

Since (φ, ψ) ∈ Admc and γ ∈ AdmΓ(μ, ν) were arbitrary, it follows that

inf
γ∈AdmΓ(μ,ν)

∫
Ω×Ω

c(x, y) dγ(x, y) ≥ sup
(φ,ψ)∈Admc

{∫
Ω

φ dμ(x) +

∫
Ω

ψ dν(y)
}
.(1.7)

The reverse inequality follows from Theorem A.13. To see why, let π ∈ AdmΓ(μ, ν)
be the minimizer. Then the theorem says that spt(γ)∪Γ×Γ is c̃-cyclically mono-
tone, and its support is contained in K, in which case Proposition A.11 says that
there are functions φ and ψ which are c-conjugate, vanish on Γ, and are such that
φ(x) + ψ(y) = c(x, y) for γ-a.e. (x, y). The functions φ, ψ have a couple of extra
properties. First, since ψ(y) = 0 for y ∈ Γ, we have φ(x) ≤ c(x, y) for every y ∈ Γ,
and taking the infimum in y, it follows that

φ(x) ≤ c(x,Γ) ∀x ∈ Γ.

Likewise, it follows that ψ(y) ≤ c(y,Γ) for every y ∈ Γ. This implies that

max{φ, 0} ∈ L1(μ), max{ψ, 0} ∈ L1(ν).(1.8)
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In particular, the integrals
∫
Ω
φ(x)dμ(x) and

∫
Ω
ψ(y)dν(y) are well defined. Second,

using that φ(x) + ψ(y) = c(x, y) for γ-a.e. (x, y), that φ ≡ ψ ≡ 0 on Γ, and that
γ ∈ AdmΓ(μ, ν), it follows that∫

Ω

φ(x) dμ(x) +

∫
Ω

ψ(y) dν(y) =

∫
Ω\Γ

φ(x) dμ(x) +

∫
Ω\Γ

ψ(y) dν(y)

=

∫
Ω×Ω

[φ(x) + ψ(y)] dγ(x, y)

=

∫
Ω×Ω

c(x, y) dγ(x, y).

Since this last integral is finite, it follows that
∫
Ω
φ(x)dμ(x) and

∫
Ω
ψ(y)dν(y) are

finite, and in light of (1.8) it follows that φ ∈ L1(μ) and ψ ∈ L1(ν). This shows
that (φ, ψ) ∈ Admc, and this yields the reverse inequality of (1.7), proving the
lemma. �

The following lemma is a minor modification of [13, Lemma 2.1], and we omit
its proof. The lemma itself is a variant of a standard lemma in optimal transport
theory [5, Lemma 5.3.2]. We recall that, below, Mp(Ω) := Mc(Ω) for c(x, y) =
|x− y|p.
Lemma A.15. Let p ≥ 1, and consider measures μ1, μ2, μ3 ∈ Mp(Ω), γ12 ∈
AdmΓ(μ1, μ2), and γ23 ∈ AdmΓ(μ2, μ3). Then there is a Borel measure in Ω×Ω×Ω,
denoted γ123, whose 2-marginals satisfy

π12
# γ123 = γ12 + σ12, π23

# γ123 = γ23 + σ23,(1.9)

where σ12 and σ23 are measures concentrated on the set {(x, x) | x ∈ Γ}, and
π12(x1, x2, x3) = (x1, x2), π

2,3(x1, x2, x3) = (x2, x3).

We can now prove that dLp
(μ, ν) is a metric in Mp(Ω).

Theorem A.16. The quantity

dLp
(μ, ν) := inf

γ∈AdmΓ(μ,ν)

(∫
Ω×Ω

|x− y|pdγ(x, y)
) 1

p

defines a metric in Mp(Ω).

Proof. It is clear that dLp
(μ, ν) = dLp

(ν, μ) and that dLp
(μ, ν) ≥ 0 for all μ and ν.

Moreover, if dLp
(μ, ν) = 0, it means that there is some γ ∈ AdmΓ(μ, ν) such that

0 =

∫
Ω×Ω

|x− y|p dγ(x, y) ⇒ spt(γ) ⊂ {(x, y) ∈ Ω× Ω | x = y}.

This implies that for any φ ∈ C0
c (Ω \ Γ) we have∫

Ω\Γ
φ(x) dμ(x) =

∫
Ω×Ω

φ(x) dγ(x, y) =

∫
Ω×Ω

φ(y) dγ(x, y) =

∫
Ω\Γ

φ(y) dν(y);

in other words, μ = ν. It remains to prove the triangle inequality. Consider
measures μ1, μ2, μ3 in Mp(Ω), and let the measures γ12 ∈ AdmΓ(μ1, μ2) and
γ23 ∈ AdmΓ(μ2, μ3) be optimizers for the respective problems. Then Lemma A.15
guarantees that there is a measure γ123 satisfying (1.9).

It will be convenient to denote an element Ω × Ω × Ω as (x1, x2, x3). At the
same time, the “coordinates” x1, x2, x3 define three functions Ω×Ω×Ω → Ω ⊂ R

d.
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With this in mind, we note that the function |x1 − x3|p is independent of x2, so
(denoting π13(x1, x2, x3) = (x1, x3))

dLp
(μ1, μ3)

p ≤
∫
Ω×Ω

|x1 − x3|p dπ13
# γ123(x1, x3)

=

∫
Ω×Ω×Ω

|x1 − x3|p dγ123(x1, x2, x3)

(1.10)

On the other hand, applying Minkowski’s inequality to Lp(Ω × Ω × Ω, dγ123) for
the functions x1 − x2 and x2 − x3, we have(∫

Ω×Ω

|x1 − x3|p dγ123(x1, x2, x3)

) 1
p

≤
(∫

Ω×Ω

|x1 − x2|p dγ123(x1, x2, x3)

) 1
p

+

(∫
Ω×Ω

|x2 − x3|p dγ123(x1, x2, x3)

) 1
p

.

Then, using the optimality of γ12 as well as (1.9),∫
Ω×Ω

|x1 − x2|p dγ123(x1, x2, x3) =

∫
Ω×Ω

|x1 − x2|p d(γ12 + σ12)(x1, x2)

=

∫
Ω×Ω

|x1 − x2|p(x1, x2) dγ
12 = dLp

(μ1, μ2)
p,

where the second to last inequality used the fact that σ12 is supported on the
diagonal so that σ12-a.e. we have |x1 − x2| = 0. Just the same, we can see that∫

Ω×Ω

|x2 − x3|p dγ123(x1, x2, x3) = dLp
(μ2, μ3)

p.

Then, recalling (1.10), we conclude that

dLp
(μ1, μ3) ≤ dLp

(μ1, μ2) + dLp
(μ2, μ3),

which finishes the proof that dLp
(μ, ν) is a metric. �

Proof of Proposition 3.8. For any γ ∈ Adm(μ, ν) (recall that now Γ = {0}) we have∫
B1

ψ dμ(x)−
∫
B1

ψ dν(y) =

∫
spt(ψ)×Rd

ψ(x) dγ(x, y)−
∫
Rd×spt(ψ)

ψ(y) dγ(x, y)

=

∫
Aψ

[ψ(x)− ψ(y)] dγ(x, y),

where Aψ := (spt(ψ)× R
d) ∪ (Rd × spt(ψ)). Then∣∣∣∣

∫
B1

ψ dμ(x)−
∫
B1

ψ dν(y)

∣∣∣∣≤
∫
Aψ

|ψ(x)− ψ(y)| dγ(x, y)≤
∫
Aψ

[ψ]Lip|x− y| dγ(x, y).

Since spt(ψ) is a positive distance away from Γ, for any admissible γ we have
γ(Aψ) ≤ μ(spt(ψ)) + ν(spt(ψ)) < +∞. Thus, by Hölder’s inequality,

∣∣∣∣
∫
B1

ψ dμ−
∫
B1

ψ dν

∣∣∣∣ ≤ [ψ]Lipγ(Aψ)
p−1
p

(∫
Aψ

|x− y|p dγ(x, y)

) 1
p

.
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Taking infimum over all γ ∈ Adm(μ, ν), we thus obtain∣∣∣∣
∫
B1

ψ dμ−
∫
B1

ψ dν

∣∣∣∣ ≤ (μ(spt(ψ)) + ν(spt(ψ)))
p−1
p [ψ]LipdLp

(μ, ν). �
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Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), no. 3, 293–317, DOI 10.1016/S0294-
1449(16)30106-8 (English, with English and French summaries). MR1395674

[4] L. Ambrosio and N. Gigli, A user’s guide to optimal transport, Modelling and optimisation of
flows on networks, Lecture Notes in Math., vol. 2062, Springer, Heidelberg, 2013, pp. 1–155,
DOI 10.1007/978-3-642-32160-3 1. MR3050280
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Basel, 2008. MR2401600

[6] M. Arisawa, A new definition of viscosity solutions for a class of second-order degenerate
elliptic integro-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006),
no. 5, 695–711, DOI 10.1016/j.anihpc.2005.09.002 (English, with English and French sum-
maries). MR2259613

[7] G. Barles, R. Buckdahn, and E. Pardoux, Backward stochastic differential equations and
integral-partial differential equations, Stochastics Stochastics Rep. 60 (1997), no. 1-2, 57–83,
DOI 10.1080/17442509708834099. MR1436432

[8] G. Barles and C. Imbert, Second-order elliptic integro-differential equations: Viscosity solu-
tions’ theory revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), no. 3, 567–585,
DOI 10.1016/j.anihpc.2007.02.007. MR2422079

[9] L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential
equations, Comm. Pure Appl. Math. 62 (2009), no. 5, 597–638, DOI 10.1002/cpa.20274.
MR2494809

[10] E. Chasseigne and E. R. Jakobsen, On nonlocal quasilinear equations and their local lim-
its, J. Differential Equations 262 (2017), no. 6, 3759–3804, DOI 10.1016/j.jde.2016.12.001.
MR3592657

[11] M. G. Crandall and H. Ishii, The maximum principle for semicontinuous functions, Differ-
ential Integral Equations 3 (1990), no. 6, 1001–1014. MR1073054

[12] M. G. Crandall, H. Ishii, and P.-L. Lions, User’s guide to viscosity solutions of second order
partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1–67, DOI
10.1090/S0273-0979-1992-00266-5. MR1118699

[13] A. Figalli and N. Gigli, A new transportation distance between non-negative measures, with
applications to gradients flows with Dirichlet boundary conditions, J. Math. Pures Appl. (9)
94 (2010), no. 2, 107–130, DOI 10.1016/j.matpur.2009.11.005 (English, with English and
French summaries). MR2665414

[14] N. Guillen and R. W. Schwab, Min-max formulas for nonlocal elliptic operators,
arXiv:1606.08417 (2016).

http://www.ams.org/mathscinet-getitem?mr=2364893
http://www.ams.org/mathscinet-getitem?mr=3218830
http://www.ams.org/mathscinet-getitem?mr=1395674
http://www.ams.org/mathscinet-getitem?mr=3050280
http://www.ams.org/mathscinet-getitem?mr=2401600
http://www.ams.org/mathscinet-getitem?mr=2259613
http://www.ams.org/mathscinet-getitem?mr=1436432
http://www.ams.org/mathscinet-getitem?mr=2422079
http://www.ams.org/mathscinet-getitem?mr=2494809
http://www.ams.org/mathscinet-getitem?mr=3592657
http://www.ams.org/mathscinet-getitem?mr=1073054
http://www.ams.org/mathscinet-getitem?mr=1118699
http://www.ams.org/mathscinet-getitem?mr=2665414


44 NESTOR GUILLEN, CHENCHEN MOU, AND ANDRZEJ ŚWIE↪CH
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QUERIES

Q1: The complete article title is too long to serve as a running head in TRAN.
As a default, “Coupling Lévy measures and comparison principles” was chosen as a suitable-length
version of the title for the running head. Should you wish to use another truncated version of the
title for your running, please submit one that consists of fewer than 50 characters. (Please include
spaces in your character count.)

Q2: The acronym “PDE” was replaced by its definition, in accordance with
TRAN style guidelines, as the acronym appeared only once in the text. Please ensure that the
acronym was properly defined as “partial differential equation”.

Q3: 2010 Mathematics Subject Classification numbers must be identified as
“Primary” or “Secondary” ones. As a default, all of your 2010 MSC numbers have been designated
as Primary ones. Please advise if any of these numbers should be designated as Secondary ones.

Q4: There was an unmatched right parentheses on the first line of the unnum-
bered display equation in the sentence beginning “Using the special form”. Please ensure that the
removal of this right parentheses conveys your intended meaning.

Q5: Please note that AMS style allows only one use of quotation marks or italics
for the emphasis of a given term per paper. When quotation marks or italics were used multiple
times for the same term in this paper, only the first mention was set in quotation marks or italics.

Q6: The abbreviation “cf.” is taken to mean “compare to” in TRAN papers.
Please review your use of this abbreviation in the sentence beginning “The proof is essentially”,
and change it to “see” if that is your intended meaning.
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