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COUPLING LEVY MEASURES AND COMPARISON
PRINCIPLES FOR VISCOSITY SOLUTIONS

NESTOR GUILLEN, CHENCHEN MOU, AND ANDRZEJ SWIECH

ABSTRACT. We prove new comparison principles for viscosity solutions of non-
linear integro-differential equations. The operators to which the method ap-
plies include but are not limited to those of Lévy—Ito type. The main idea is
to use an optimal transport map to couple two different Lévy measures and
use the resulting coupling in a doubling of variables argument.

1. INTRODUCTION

In this paper we study comparison principles for viscosity subsolutions and su-
persolutions of integro-differential equations of the form

(1.1) I(u,x) = sup inf {—L (u,2) + cap(x)u(z) + fos(x)} =0 in O,
acABEB

where O is a bounded domain of RY, c,s5(x) > A > 0, and

(1.2) Lo‘ﬂ(u, x) = /Rd [u(z + 2) —u(x) — XB,(0)(2)Du(z) - z]dug‘ﬁ(z),

where p2? are the respective Lévy measures. Equations of the form (1.1) arise
in stochastic optimal control and stochastic differential games where the operators
are the generators of pure jump processes. In a work by the first author and
Schwab [14], it is proved (roughly speaking) that the class of operators given by
a min-max as in (1.1) is the same as the class of operators satisfying the global
comparison property.

Comparison principles for viscosity solutions of such equations are now well
understood in two broad cases. The first case is when the operators admit a Lévy—
It6 form. This means that all of the measures u2” are push-forward measures of
a single reference measure p so that u2? = (T9%) 4, where T9% : U — R? is a
family of Borel measurable maps defined on some separable Hilbert space, and p
is a Lévy measure on U \ {0} (see (5.17) and (5.19)). First comparison principles
were obtained by Soner in [22,23]. Further results, including results for equations
with second order partial differential equation terms were obtained subsequently;
see [6-8,16]. The second case is that of equations of order less than or equal to 1.
Here we mention the works of Soner [22,23] and the papers of Awatif [19,20], where
comparison principles are proved for very general operators in the class where the
operators L®? are all such that the function |z| is uniformly integrable with respect
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to the measures u?. Also Alvarez and Tourin [3] and Alibaud [1] considered various
parabolic equations with nonlocal terms of order 0, that is, with p, of finite mass.

Little is known when the Lévy measures arising in (1.1) and (1.2) are neither
integrable with respect to |z| nor of Lévy—Ito form. The second and third authors
proved in [18] several comparison results for viscosity solutions which have some
regularity. Chasseigne and Jakobsen proved in [10] comparison results for fully
nonlinear equations involving quasi-linear nonlocal operators. We also mention
continuous dependence estimates for weak entropy solutions of degenerate para-
bolic equations with nonlinear fractional diffusion proved by Alibaud, Cifani, and
Jakobsen in [2]. Proving comparison in general is an important question, as many
operators of interest are not covered by the two situations discussed above, such
as the Dirichlet-to-Neumann maps for nonlinear elliptic equations or control/game
problems where the processes are not classical Lévy-Ito6 diffusions.

In this paper we introduce optimal transport techniques in an attempt to under-
stand this question. We obtain a comparison for nonlocal equations (1.1) and (1.2)
that cover the previous two instances without requiring a Lévy—Ito structure or a
restriction on the order of the operators. The idea is to use an optimal coupling for
the Lévy measures arising in the nonlocal terms. Then the continuity of the Lévy
measures with respect to the base point z is estimated with respect to an optimal
transport based metric.

The condition we impose is Lipschitz continuity with respect to an LP-transport
metric. The exponent p € [1, 2] is related to the order of the singularity at z = 0 for
the Lévy measures. In the case of operators of order smaller than 1, it is possible to
use the metric corresponding to p = 1, in which case our condition is (essentially)
a dual formulation of the condition used by Awatif [19]. Likewise, in the Lévy-TIto
case our condition reduces to the one typically imposed in the literature [8, 16].

Unfortunately, it is rather difficult to check the Lipschitz regularity of p, with
respect to our LP-transport metric when p > 1 and p, is not in Lévy-It6 form
(this is precisely the case where the comparison is still unknown). Such Lipschitz
estimates are even nontrivial to check for Lévy measures of finite mass and fail to
hold.! It is our hope that this paper will spur further research that will expand the
class of families of measures {u%? }2.0.8, where this new approach can be applied.

1.1. The basic idea. Let us illustrate the main idea of the paper in a simple
situation. Consider the linear equation

(1.3) Au(z) — L(u,x) =0 in O,
where A > 0 and L(u,z) is an operator of the form (1.2), where we make the
following simplifying assumption on the Lévy measures p,: ., is a probability

measure with finite second moments for every x, and there is some C' > 0 such
that, for any z,y,

(1.4) da (pas pry) < Claz —yl.

Here ds denotes the optimal transport distance with respect to the square distance
(the so-called Wasserstein distance). Suppose that u is a bounded viscosity subso-
lution of (1.3) and that v is a bounded viscosity supersolution of (1.3) such that
u < von R\ O°. We start with the typical comparison proof. We assume that

IThe authors would like to thank Alessio Figalli for helpful comments regarding this question.
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u £ v. We double the variables and penalize the doubling considering for € > 0 the
function

u(e) — ofy) - <o~y

Suppose that for all sufficiently small € the global maximum is attained at (x.,y.),
where u(z.) —v(y.) > £ > 0 for some £ > 0. In such circumstances it is well known
that

o1
lim 7“%6 - y5|2 =0,
e—=0 ¢

so for small e we must have (z.,y.) € O x O. Because of the global maximum, we

have
(U(% +z) —u(ze) — 2M)

1
)s Yooy ey
E I3

- (v(ya +y) —olye) —2
For z and y let 7, , denote a probability measure on R? x R? with marginals p,
and p, achieving the optimal (quadratic) transport cost between them. Then we
integrate the above inequality with respect to the measure m,_,_ to obtain

1
L(u,z2) — L(v,ye) < / & — yl? dmy. . (2,).
€ JRd xR4

Thus, by the definition of a viscosity solution and the definition of m, ,, we get

1 1
M) o) < 2 [ o= pfday (o) = Zda(e. )
€ JRdxRrd 9
where the last equality follows from the optimality of 7,_,_. Then, using (1.4), we
obtain
C
< —

> |$e _ys|2'
g

0 <M < Au(z:) —v(ye))
Since the right-hand side goes to 0 as ¢ — 0, we obtain a contradiction. Thus in
this model case the proof of comparison reduces to checking whether the measures
o satisfy the Lipschitz condition (1.4) with respect of the (quadratic) optimal
transport distance.

Of course, it is atypical for a Lévy measure to also be a probability or even a
finite measure of constant total mass. To deal with this issue, we will make use of an
optimal transport problem featuring an “infinite mass reservoir” at 0 (after all, the
mass of the Lévy measure at 0 is immaterial). This means in particular that one can
consider transport between measures which may have unequal or infinite masses.
This problem was studied by Figalli and Gigli in [13], motivated by questions of
gradient flows with Dirichlet boundary conditions, and their work is aptly suited
to our purposes.

1.2. Outline of the paper. The notation and definitions are explained in Sec-
tion 2. The transport metric is explained in Section 3. Section 4 contains the
assumptions and the statement of the main result. In Section 5 we prove the main
comparison principle using the above technique. We then show how the result
covers comparison principles for nonlocal equations involving nonlocal terms either



4 NESTOR GUILLEN, CHENCHEN MOU, AND ANDRZEJ SWIECH

of Lévy form of order o < 1 (see Example 5.12) or of Lévy-It6 form (see Exam-
ple 5.13). In Section 6 we discuss variants of our approach which we illustrate in
Example 6.2 related to operators of fractional Laplacian type. We also discuss in
Section 6 two other examples (Examples 6.3 and 6.4) comparing our results to these
of [19]. Finally, in Section 7 we derive various comparison principles for equations
which have more regular viscosity solutions. They lead to uniqueness of viscosity
solutions for a class of uniformly elliptic nonlocal equations (see Example 7.6). The
paper ends with an appendix which follows [13] collects the main facts about the
optimal transport problem “with boundary”.

2. NOTATION AND DEFINITIONS

In the whole paper we will consider equation (1.1), where the operators L*? are
assumed to be of the form (1.2), and {u2?},. 4.5 is a family of Lévy measures (see
Definition 2.1). Denoting

ou(w, z) := u(x + 2) — u(x) — xB,0)(2)Du(z) - 2,

we will write
(2.1) LY (u, ) = / du(z, 2)dusP (z).
R

We will denote by B,.(z) the open ball in R? centered at = with radius r > 0,
and by B, the open ball centered at 0 with radius r. Given an open set  C R?
and h > 0, we define

Q={zeQ |dx,00) > h}.

For a subset A C R? we denote by A€ its complement, i.e., A° = R%\ A, and by
xA the characteristic function of A.

For 0 < a < 1 and a domain O in R% we denote by C%*(0) the space of
a-Holder continuous functions in O.

We write C*(O),k = 1,2,... for the usual spaces of k-times continuously dif-
ferentiable functions in O. The space CF(O) (resp., CF(0)) consists of functions
in C*(O) (resp., C?(0)) which are bounded. We write BUC(R?) for the set of
bounded and uniformly continuous functions in R?. For two bounded measures
w, v we will write dry (i, ) to denote the total variation of 1 — v.

Let u be a Borel measure in R%\ {0}, and let 1 < p < 2. We define

(2.2 Ao i= [ min{L[=l" (o)
R4\ {0}
Definition 2.1. Let 1 < p < 2. We define
L,(RY) := {u positive Borel measure in R* \ {0} | N, (1) < oo}.

The set of all Lévy measures is Lo(R?). If  is an open subset of R, we will
consider the set

Ly(@) = {n € LR | spt() € }.
Note that
L,(2) C Ly () whenever p < g.
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In other words, measures j in LL,,(2) are measures in L, (R?) such that u(R4\Q) =
0. We decompose every measure u € L,(R%) as

where fi(+) := p(- N By) € Ly(B1) and fi(+) == p(-N (R\ By)). We note that i is a

bounded measure.
Consider the Lévy operator given by some measure u,

(2.4) L(u,x) = /]Rd [u(z + 2) —u(x) — XB,(0)(2)Du() - 2] du(z).

Let us decompose this operator as the sum of two operators, corresponding to the
Lévy measure decomposition in (2.3),

L(u,z) = L(u,z) + L(u, z),

where

(2.5) f/(u,x) = /le [u(z + 2) —u(z) — XB,(0)(2)Du(x) - 2] dji(2),

(2.6) L(u,z) = / [u(z + z) — u(x)] di(z).
R4
Definition 2.2. Given a Lévy measure p in R?, we define
L) i= [ fule+2) = u(e) = Xy () Dula) 2] duz).
R

Definition 2.3. For p € (1,2), a function u is said to be pointwise-C? at a point
xq if u is differentiable at zg and if there exists a constant C' > 0 such that, for all
z in a neighborhood of z,

(2.7) lu(x) — u(zo) — Dulzo) - (& — z0)| < Clz — xo]®.

If w is differentiable at x and (2.7) is satisfied with p = 2 we say that v is pointwise-
CH1 at . For p € (0,1] a function is said to be pointwise-CP at a point zq if there
is a constant C' > 0 such that, for all z in a neighborhood of zg,

lu(z) — u(zo)| < Clx — zo|”.

3. A TRANSPORTATION METRIC FOR LEVY MEASURES

We will use a transportation metric on the space of Lévy measures. This met-
ric takes advantage of an “infinite reservoir” of mass which allows one to handle
measures which may not have equal (or finite) total mass. Such a metric was con-
sidered by Figalli and Gigli [13], where they studied the basic properties of such
a metric and used it to analyze gradient flows with Dirichlet boundary conditions.
Our presentation here generally follows that of [13]. This is not the only possible
extension of the transport metric to the case of unequal masses: other notions have
been considered by Kantorovich and Rubinstein. Another notion of distance for
Lévy measures is considered in [15].

We consider the following set of measures,

My (RY) = {p € Ly(RY) | 2Pdu(z) < oo,
R4\ {0}
that is, the set of Lévy measures with finite p-moment. Note in particular that
L,(B1) C M,(R?) due to the measures being supported in Bj.
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First, we define the notion of admissible couplings between Lévy measures (see
also Definition A.3 for an analogous definition in a more general setting).

Definition 3.1. Let 1,2 € M,(R%). An admissible transport plan between s
and 5 is any positive Borel measure on R? x R? such that v({0} x {0}) = 0 and

1 _ 2 _
T4 Mpay oy = M1 T3 Vzay 0y — H20

where for i = 1,2, 7° : R? x R — R? is defined by 7'(x1,72) = x;. The set of
admissible transport plans will be denoted by Adm(uq, p2).

In particular, if v is admissible, then, for a Borel set A compactly supported in
R\ {0},
YAXRY) = m(4), (R x A) = p2(A).

The key point in Definition 3.1 which distinguishes it from the notion of optimal
transport plans is that the marginals of v coincide with pq and ps only away from
the origin. In particular, the marginals of v may assign any amount of mass to the
origin.

Definition 3.2. Let 1 < p < 2. For a positive Borel measure v on R? x R?, we
define

%W%=A;le—mﬁh@w)
d,><d

In the appendix we study the problem of minimizing J,(y) over v € Adm(p1, p2)
in greater generality. In this section we limit ourselves to stating a few further
definitions and a few results needed in later sections.

Definition 3.3. Let 1 < p < 2. The p-distance between measures u, v € M,(R%)
is defined by

1
P

e oy (it )

The optimization problem used in the definition of dp,, (1, 12) shares many prop-
erties with the usual optimal transportation problem.

Theorem 3.4. For uy, 2 € M,(R?) there is at least one v € Adm(uq, p2) that
achieves the minimum value of J,.

Proof. The theorem is a special case of Theorem A.5 (see the appendix). (]

The fact that dj,, defines a distance was proved in [13, Theorem 2.2 and Propo-
sition 2.7]. We will need this result for any p.

Theorem 3.5. d, defines a metric in M,(R?).
Proof. The theorem is a special case of Theorem A.16. O
The main tool at our disposal when estimating dy,, is the following duality result.

Lemma 3.6. For 1 <p <2 and p1, 2 € My( R?), we have

dp, (p1, p2)? = sup /¢ ) dpa (x /¢ ) dua(y |(¢7¢)5Admp}.
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Here Adm? denotes the set
Adm? = {(6,9) | o€ L'(n), ¥ € L'(v),
¢ and 1 are upper semicontinuous,
6(0) = $(0) = 0, and ¢(x) +¥(y) < |z — yl? Va,y € R},
Proof. The lemma is a special case of Lemma A.14 (I

Remark 3.7. In most of the paper we need only to take dp, (u, v) for p, v € Ly,(B1).
In this case we could equivalently define the distance by considering the transport
problem in B; x By, i.e., taking Q = B instead of Q = R? (see the appendix). We
note that if ,v € L,(B1) and v € Adm(u, v), then y((B1 x B1)¢) = 0.

The following proposition (proved in the appendix) will be used in Section 5.

Proposition 3.8. Let ¢ be a Lipschitz continuous function with compact support
in By \ {0}. If p,v € L,(By), then

wdu—/ b dv
B By

where [Y]Lip is the Lipschitz constant of 1.

—1

< (p(spt(e) + v(spt()) T [WlLipde, (1, v),

4. ASSUMPTIONS AND MAIN RESULTS

In this section we make the necessary assumptions about the measures and vari-
ous functions appearing in the operator I(u,z) in (1.1). We recall that throughout
the whole paper O C R? is a bounded domain. The measures u$? € L,(R?) for
allz € O, a € A, § € B for some index sets A, B. Last but not least, we recall
that in (2.3) we introduced the decomposition of a measure 4 in terms of measures

o and ji supported in By (0) and in R?\ B;(0), respectively.
Assumption A. There are p € [1,2] and a constant C' > 0 such that
(4.1) du, (357, ig7) < Cle —y|  Va,y € O, Vo, 8.
Assumption B. There is a modulus of continuity 6 such that

(4.2) drv (g, ") < O(le —yl) Vo,y €O, Yo, B

Assumption C. There are a modulus of continuity 6 and a constant C' > 0 such
that

(4.3) |fap(x) = fapW) < O0(lz—yl)  Va,y € O, Vo, B,
(4.4) |fap(x)| < C, Vo eO, Ya,p.
Assumption D. There are constants 0 < A < Ay such that
(4.5) A < inf inf eqp(x) < sup sup cap(x) < A1,

z€0 o, z€0 a,B

and there is a modulus 6 such that

Cap(®) = Cap(y)] < O(lz —y[) Vo eO, Va,p.
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Assumption E. Let p be from Assumption A. There exist a modulus of continuity
0 and a constant A > 0 such that

(16) supsup [ [af? du”(2) < 6(r),
z€O0 aof JB,
(4.7) sup sup N, (u2?) < A.
z€O a,p

Assumption B can be weakened; however, we want to keep its simpler form to
focus on the main difficulty of dealing with the singular part of the Lévy measures.
We leave such generalizations to the interested reader.

We recall two definitions of viscosity solutions of (1.1) which will be used in
this paper. To minimize the technicalities we will assume that viscosity sub-/
supersolutions are in BUC(R?). The same results could be obtained assuming that
they are just bounded and continuous in R%.

Definition 4.1. Let p € [1,2]. A function u € BUC(R?) is a viscosity subsolution
of (1.1) if whenever u — ¢ has a global maximum over R? at x € O for some
¢ € CZ(RY) and ¢(x) = u(x), then I(p,x) < 0. A function u € BUC(R?) is a
viscosity supersolution of (1.1) if whenever u — ¢ has a global minimum over R?
at x € O for some ¢ € CZ(R?) and ¢(x) = u(x), then I(p,z) > 0. A function u
is a viscosity solution of (1.1) if it is both a viscosity subsolution and a viscosity
supersolution of (1.1).

Definition 4.2. Let p € [1,2]. A function u € BUC(R?) is a viscosity subsolution
of (1.1) if whenever u — ¢ has a global maximum over R? at x € O for some
¢ € C?(R%), then for every 0 < § < 1

sup inf —/ Sop(x, 2)dul? (2
sup int { = | Sle,2)di’(2)

_ /| s [u(x +2) —u(x) — X B, (0)(2)Dp(x) - z] dugﬁ(z)

+ cap(x)u(z) + fag(x)} <0.

A function u € BUC(R?) is a viscosity supersolution of (1.1) if whenever u — ¢ has
a global minimum over R? at x € O for some ¢ € C?(R%), then for every 0 < § < 1

sup inf —/ Sop(x, 2)dul? (2
sup int { = | Sle,2)di’()

_ /l s [u(z + 2) — u(x) — XB,(0)(2) D() - 2] du? (z)

+ Cap(@)u(@) + fasle) } 0.

A function u is a viscosity solution of (1.1) if it is both a viscosity subsolution and
a viscosity supersolution of (1.1).

We remark that, since the Lévy measures u2” are in L, (RY), we could use test
functions in CF(RY) and CP(R?) instead of test functions in CZ(R?) and C?(R?).
However, it is not clear whether such definitions and the standard definitions pro-
vided above are equivalent under general assumptions. It is easy to see, however,
that they are equivalent for the most common measures considered in Example 5.12.
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Below we show that Definitions 4.1 and 4.2 are equivalent to each other.

Proposition 4.3. Under the assumptions of this paper, Definitions 4.1 and 4.2 are
equivalent.

Proof. We consider only the case of subsolutions. It is obvious that if u is a vis-
cosity subsolution in the sense of Definition 4.2, then it is a viscosity subsolution
in the sense of Definition 4.1. Let now u be a viscosity subsolution in the sense of
Definition 4.1. It is easy to see that without loss of generality all maxima/minima
in both definitions can be assumed to be strict. So let u — ¢ have a strict global
maximum over R? at 2 € O for some ¢ € C?(R?), and we can obviously require
that p(z) = u(x). Let p, € CZ(RY) be functions such that u < ¢, < ¢ on RY,
on(z) = u(z), Do,(z) = Dp(x), and @, — u as n — +oo uniformly on R?. Then

sup inf —/ Sp(x, 2)dul? (2
aeAﬂeB{ |z|<6 #lz:2) )

— /| - [u(m +2) —u(r) — XBl(o)(z)Dgp(x) . z] dugﬁ(z)
+ cap(z)u(z) + fa,@(a:)}

= lim supinf{—/ S(x, 2)dus? (2
ol sup inf s plx, 2)dug"(2)

_ /| - [‘Pn(l‘ +2) = on(z) — XB1(0)(Z)D<,Dn(x) Z}

A (2) + cap (@) on (@) + fup(@) }

The main result of the paper is the following theorem.

Theorem 4.4. Let Assumptions A-E hold for p € [1,2]. Then the comparison
principle holds for equation (1.1). That is, if u and v are, respectively, a viscosity
subsolution and a viscosity supersolution of (1.1) and u(z) < v(x) for allz ¢ O,
then

u(z) < ov(z) Vo e O.

The following is a special case of Theorem 4.4, which we highlight to illustrate
its scope (see Sections 5.1 and 6 for further examples).

Corollary 4.5. Let Assumptions C and D be satisfied. Suppose that the measures
ulP(2) are of the form

dusP(2) = Kop(x, 2)dz
and that, for some o € (0,1),
0 < Kap(w,2) < K(2) i= Agle| @+,
[Kap(@,2) = Kap(y, 2)| < Cla — y|K(2).

Then in this case Assumption B holds and Assumptions A and E hold with p = 1.
In particular, the comparison principle holds for equation (1.1) in this case.
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Theorem 4.4 and Corollary 4.5 will be proved in the next section. We also
note that Theorem 4.4 essentially covers several of the results in [19], where only
operators of order less than or equal to 1 are considered. However, it cannot be
applied directly to the equations in [19] since the operators considered there had a
slightly different form. This is discussed in greater detail in Examples 6.3 and 6.4.

5. COMPARISON PRINCIPLE

In this section we prove Theorem 4.4. A well-known property of sup-/inf- con-
volutions is that they produce approximations of viscosity sub- and supersolutions
which enjoy one-sided regularity (semiconvexity and semiconcavity), which makes
it easier—under the right circumstances—to evaluate the operator I(-,x) in the
classical sense.

Remark 5.1. An approach to Theorem 4.4 that does not rely on such approxima-
tions can be found in Section 7, where we prove a comparison result (Theorem 7.4)
under a different set of assumptions that are not amicable to such approximations.
A posteriori, it became clear that the approach in Section 7 leads to a simpler proof
of Theorem 4.4; however, we have decided to keep both approaches, as the tools
developed in this section are of interest in many other situations. See Remark 7.2
for further comments.

Definition 5.2. Given u,v € BUC(R?) and 0 < § < 1, we define the sup-
convolution u® of u and the inf-convolution vs of v by

() = sup {uw) - 3lo — o |

yER4

1
vs(z) = inf {v(y)+ =|lz—y[*}.
s(a) = inf, {olo) + 3lo o

For the reader’s convenience we review some well-known properties of the sup-
/inf- convolutions in the following proposition.

Proposition 5.3. The sup-convolutions and the inf-convolutions have the following
properties:
(1) If 61 < 8, then u®* < w2 and vs, > vs,. Moreover, |[u®| oo < ||1loo, [|vs]loo
< [[vloo-
(2) v (x) > u(z) and vs(x) < v(x) for all x € RY.
(3) u® = u and vs — u uniformly on R? as 6 — 0.
(4) The function u’ is semiconver and for any o € R, u’ is touched from

below at xo by a function of the form
u(xg) — %|x —x|? for some z; € RY.

The function vs is semiconcave, and, for any xo € R%, vs is touched from
above at xo by a function of the form

v(xy) + %|x —x|? for some zy € RY.

(5) Let w be a modulus of continuity of u. For any o € R? and zf € R? such
that v’ (z9) = u(zy) — +|wo — xf|*, we have

o — 25| < (20]|ullo)'/?
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and
Hwo — 25 < w((20]lufl)'?).

The analogous property holds for vs.

(6) Let Q C RY, and let h > 0. If w is a modulus of continuity for u in €,
then for sufficiently small § wi(s) = max(w(s), 2||ullos) is a modulus of
continuity for u® in Qop,. A similar property holds for vs.

Proof. To prove (1), note that if 6; < d2, then i|x -yl > é|x —y|? for all z and
y, and thus u% (z) < u®?(z) for all . The respective statement for vs, and vs, is
proved in the same way. Property (2) is obvious from the definitions. Property (3)
follows from (2) and (5).

Regarding (4), we note that the semiconvexity follows from the fact that u®(z)+
+|x|? is the supremum of affine functions and is hence convex. If we fix z and if
x4 is such that

* 1 *
(o) = u(at) — 5hoo — 2%,

then for all other = we have u®(z) > P(x) := u(x}) — |z — 2§|* by the definition of
u%, so P is the desired paraboloid. To prove (5), let 2o and x(, be as above. Then
§lzo — 25 |* = ulag) — u’ (wo) < u(xg) — ulzo) < 2|uflo,
S0
o — 25| < (26]|ulloo)'/.
This means that u(zf) — u(zo) is in fact bounded from above by w((25u~)/?),
which gives (5).

Finally, to show (6), we observe that if ,y € Qg, and v®(z) = u(z*) — 3|z —z*|?,
then for small § = € Q. Now if [y—z| < h, we have u®(y) > u(z*+y—z)—}|z—z*|?,
0

u(2) —u’(y) < ule®) —ule® +y —2) <w(lz —yl).
If |y — 2| > h, then obviously u®(z) — u’(y) < Z||ullsc|y — |- O

Definition 5.4. Given y € O and the operator (-, z) from (1.1), we define
(1) 19(g.x) = supind {~L0(6.2) + cas(®)0(@) + fas(v)}
where

(5.2) Los(d,x) = /Rd [b(z + 2) — d(x) — X, (0)(2) DB(x) - 2] dpi’ ().

Note that this last expression is almost identical to L*?(¢, ), except that the
Lévy measure used is the one corresponding to the point y. Moreover, the coeffi-
cients in (5.1) are evaluated at y.

In the rest of this section, unless stated otherwise, we will always assume that
Assumptions A-E are satisfied.

Proposition 5.5. If u is a viscosity subsolution of I(u,z) =0 in O, then u’ is a

viscosity subsolution of I5(u®,z) =0 in Op, h = (20||ul|e0)'/?, where

I5(¢,x) := inf {I(y)(qﬁ,az) Hy—x| < h} .



12 NESTOR GUILLEN, CHENCHEN MOU, AND ANDRZEJ SWIECH

If v is a wiscosity supersolution of I(v,z) =0 in O, then vs is a viscosity superso-
lution of I°(vs,x) = 0 in O, h = (26]|v]lx)*/?, where

1(6,) = sup { 1) (6,2) : |y = < h} .

Proof. Let us prove the statement for u and I5 (the corresponding one for v and I°
is entirely analogous, and we omit it). Let ¢ touch u® from above at some z € Oj,.
Let z; € R? be such that

* 1 *
(o) = u(w) = 510 — il

It follows from part (5) of Proposition 5.3 that af € O. Then, by the definition of
ud, for any 2 and y we have

ul(x + o — xh) > uly) — %|x + a0 —xf —yl
Choosing y = z, it follows that for every x we have
ul(x + zo — x3) > u(x) — %|m0 — 2|2,
with equality for x = . It follows that if define a new test function ¢*(x) by
8" (@) = 8z + 20 — 38) + 120 — 3,
then ¢* touches u from above at z{j. Since u is a subsolution, it follows that
I(¢",xf) <0.
Let us rewrite the expression on the left. First, recall
H(¢7, ) = sup i%f{*Laﬁ(QS*vIS) + Cap(20)9"(25) + fap(p)}-
Next, note that

L6, at) = [ 1605+ 2) = 9" (3) — xi, 000" (@) 2] duZf (2).
Since

" (x5 + 2) — 0" (x5) — XB,(0) D9 (25) - 2 = d(20 + 2) — d(20) — XB, (0)DP(20) - 2,
it follows that

L6, at) = |

| [6(@0+2) = 6(w0) = XB,0) Dé(w0) - 2 digf (2) = L5 (9, 20).

In conclusion,
02> 1(¢",x5) = Sgpi%f{—Lﬂg(,?(qﬁ, w0) + cap(w5)(6(0) + §lz0 — 25]%) + fas(25)}
> SUp (=L (6:20) + 0o (25)0(20) + fos a))
> 15(¢, o).
Using part (5) of Proposition 5.3 in this last inequality, the proposition follows. [

Let us also state in a single lemma two basic facts about classical evaluation of
Lévy operators and viscosity solutions. The proof of the lemma goes along lines
similar to those of the proofs of [9, Lemmas 4.3 and 5.7].
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Lemma 5.6. For any function u € BUC(R?) that is pointwise-CY' at a point
xo € O (resp., xg € Oy) the operator I(u, xg) (resp., Is(u,z0)) is classically defined.
If furthermore u is a viscosity subsolution of I(u,x) =0 in O (resp., Is(u,z) <0
in Op), then also I(u,x0) <0 (resp., Is(u,x0) < 0) pointwise. A similar statement
is true for viscosity supersolutions.

Proof. We will prove the statement only for I(u,zg), as the other statements are
proved similarly. Recall that from Assumption E

A = sup {Na(13”) + i (BY)}.

$7a)

From the pointwise-C!>! assumption at xg, we have

L/’|u<xo+-z>—-u(xo>—-XBlancaz)u<xo>-z|du;f<z>s;jf Comol2[? AP (2),
Bl Bl

J

where Cy 4, is from Definition 2.3. It thus follows that each integral defining
L°P(u, ) converges and

i +2) = )] s () < 2l [ A2,

c
1

sup | LY (u, 20)| < (Cumo + 2|1l 00) A < 00.
ap

From here, it is immediate that I(u,xo) is classically defined. As for the second
assertion, define

- {¢ in B, (x0),

u outside of B,(zo),

where ¢(z) = u(zg) + Du(zg) - (z — 20) + Cyze |7 — 70|?. The function ¢ is touching
u from above in a neighborhood of . From Definition 4.2 we have I(u,,z) < 0
for every r > 0. On the other hand,

I(u,z0) < I(ur, ) + M (u — uy, z0),
where the operator M? is given by

M (u—up,x0) = sup { —L*?(u — u,, 70) } -

o,
Using the special form of u,., particularly that u, = u outside of B,, we have

M (u—up,x0) = sup { —L*?(u — u,, ) }
B

a7

—sup{ [ folo+2) - o+ ) sl )}

a,p By

smxwam{/'uﬁm@ﬁ@}sev»
B,

a,8
where the last inequality follows from (4.6). Taking the limit as » — 0, we conclude
that
I(u,x0) <0 O

Q4
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We will need smooth approximations of functions |z — y|P for p € [1,2]. For
£ > 0 we define a function v, : [0, +00) — [0, +00) by

P
2

V() = (k+71%)2 - k2.
Then the function
(@) = i (|2])
is smooth and converges as x — 0 to |z|? uniformly on RY. We will be using the
following lemma.

Lemma 5.7. Let p € [1,2]. For every R > 0 the function ¢, (x) is uniformly
pointwise-CP on Bp, i.e., there exists a constant Cp, r such that, for every 0 < k < 1
and every xg,x € Bpg,

|V (2) = i(0) — DY(0) - (2 — w0)| < Cp rlT — 207 ifl<p<2,
[V () — w(z0)| < C1 RlT — 20 if p=1.

The following is the main lemma of the paper. We refer the reader to Defini-
tion 2.2 for the definition of L.

Lemma 5.8. Let u,v € BUC(R?). Let a >0, p>1,0< s < 1, and suppose that
(s, yx) € O x O is a global mazimum point of the function

w(z,y) = u(z) —v(y) — apu(z —y).

Furthermore, suppose that u and v are pointwise-CY' at z, and y., respectively.
Then, for any two Lévy measures p,v € L,(B1), we have the inequality

Ly(u,2.) — Ly (v,y:) < Cpady, (p, )",
where C,, is independent of k.
Proof. First, note that as (x.,y.) is a maximum point of w, we have
u(z) < athu( — i) +0(ye) + (u(@s) — v(ys) — ahu(Te — i),
v(y) 2 —ahe(zs —y) + ul@s) — (u(z.) = v(y) — ahe(ze —ys)),
with equalities at x, and y., respectively. Second, for any (z,y) € R% x R?
W(Ts + 2, Ys +y) — w(Tk,ys) < 0.

Let v € Adm(u,v). Using that v((By x B1)¢) = 0, and since du(z,,0) = 0 and
dv(y«,0) = 0, we thus have

L, (u,zy) — Ly(v,y)

_ /B . (u(x* +2) = oy + ) — (ula.) — v(y.))

—aDy(zs —y.) - (x — y)) dy (@, y).
On the other hand, if x,y € By, using Lemma 5.7, we also have
w(@s +x) = vy +y) — (u(@e) —v(ys)) — D@ —yi) - (2 — y)

S (e +2 =y — Yu) — (s — yu) — aDYy (2 — ys) - (x — y)
< Chalz —y|P.
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Therefore,

Lu(u,2.) — Ly(v,3) < Cpar / 2 — yPdr(z,y).
leBl

Taking the infimum over all v € Adm(u, v), it thus follows that
Ly(u, ) — Ly (v,y.) < Cpady, (p,v)P. O

Corollary 5.9. Let u,v,x., and y. be as in Lemma 5.8, and let p,v € L,(R?).
Then

L,u(uv I*) - LV(Ua y*) < Cpa de (.[I’a ﬁ)p + QH’U”DOdTV(:[L? f/)
Proof. Let us write the difference as follows:
Ly(u, i) = Ly (v,y2) = Lp(u, 2.) — Lo (v, ys) + Lp(u, 2.) — Ly (v, y*).

Thanks to Lemma 5.8, the first difference on the right-hand side above is less than
or equal to Cpardy, (f1,7)P. For the second one note that

L(u, )~ Lo (v,y.) :/

By

(. + 2) — u(a.)] du(z) - / (g + 2) — v(g.)] dv(2)

By

- / (s + 2) = 0(we + 2) = (u(z2) — 0(y.))] du(2)

1
+ [ o+ 2) = o) da = )00
.
Since w achieves its global maximum at (2., y.), it follows that u(z. + 2z) — v(ys +
2) — (u(xy) — v(ys)) < 0. Hence we obtain

Law) = Lo(w) < [ (000 +2) = o(u)] du =) (2

< 2||vflecdrv (i, D). 0
We need a variant of a well-known doubling lemma (see, e.g., [12, Lemma 3.1]).

Lemma 5.10. Let u,v € BUC(RY) be such that M = sup(u —v) > 7 > 0 and
u(z) —v(z) <0 for x € B for some R > 0. For any ¢,0,k > 0 set

w(e,) = (2) = vs(y) = Talz — )
M5 == sup w(zx,y).
Rd xRd
Then, for sufficiently small 6, ¢, k, there exist (x.,y.) such that
Me 5.5 = w(Te, Ye ).
Then we have

|xs_ya|p 1 Ck.e,6
e Z Vel o (O + pes)?) + E28
- 8 (Ot ) +

lim lim lim M. s, = M,
e—=+06—0kK—0 Y

where above C' = ||ul|oo + |[|V]|oc w is @ modulus of continuity of u, and where ¢, - 5
is a constant that converges to 0 uniformly in € and § as k — 0F.
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If Q is an open subset of RY and in addition u € C*7(Q),0 < r < 1, and if all
of the points x.,y. € 2, then
<y

P
(5.4) lim sup e =y

Kk—0 €

for some constant Cy independent of 6, ¢, k.

Proof. Tt is easy to see that the uniform convergence of the u’, vs to w,v, the
uniform convergence of ¢, (z — y) to | — y|’, and the uniform continuity of u,v
(and hence of u%, vs, uniform in §) implies that, for sufficiently small 6, £, s, we must
have w(z,y) < 7/2 when either « or y is in Bf. Thus w must attain maximum at
some point (x.,y.) € Br x Bg.

Denote

1
M. s5:= sup (u’(x) —vs(y) — =|z — y|"),
Rd xRd 3

1
M. := sup (u(z) —v(y) — —|z —yl?).
R x R4 €

Again, using the uniform convergence of u®, vs, v, (x—v) and the uniform continuity
of u,v, we easily find (see also [12, proof of Lemma 3.1]) that

lim M. 5, =M.s5, limM,s=M, limM.=M.
H ’ §—0 ’ e—0

k—0
We obviously have

1 Cre,s 1
(5'5) gd)n(za - ya) + ; = g‘me - ye‘pv
where ¢, - 5 is a constant which converges to 0 uniformly in € and 6 as k — 0%.
Now
1

Ué(ys) —vs(ye) < u(s(xa) —vs(ye) — gwn(xa —Ye)s

which, by (5.5), implies
|xe — ya‘p

€

This, together with the fact that we must have

Ck.e,6

Ck.e,6
<o) () + 22 < e )+

‘xe - y5|p K,e,0

¢
< Hlulloo + (o]l + =2,
€
gives (5.3). The last claim, (5.4), follows by a similar argument since now

|I5 7ys|
g

1 P
—(limsup |z. — yc|)? = limsup < limsup C|z: — y.|"
€ r—0 r—0

K—0

= C(limsup |z — y|)". O
r—0
Proof of Theorem 4.4. Arguing by contradiction, assume that there is some £ > 0
such that

sup {u(z) —v(x)} =£> 0.
z€R4
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Step 1 (Taking inf-/sup- convolutions). Let u’ and wvs denote the sup- and inf-
convolutions of v and v for 6 > 0. Then

sup {u’(x) — vs(x)} > L.
z€R4

We may make dg small enough so that for § < §y we have
sup{u (@) - v5(2)} < 3.
€O

Recall that if w is a modulus of continuity of v and v, then it is also a modulus of
continuity of u® and vs. Therefore, reducing & if necessary, we have

u’(z) —vs(x) < 44 for x € O\ Oap,,

as long as § < &g, where Op, = {z € O | d(x,00) > ho} and hy > 0 is some
constant. In particular, for such ¢ the supremum of u® —vs in R? can be achieved
only within Ogp, .

Step 2 (Doubling of variables). For ,d,x > 0 we let w be as in Lemma 5.10 and
let (z.,y.) € R? x R? be such that

w(2e, Ye) = MmaX w(z,y).

From Step 1 we know that u® —vs < £/21in O\ Oap, and u? — vs > £ somewhere
in O. Furthermore, we know that u® and vs are uniformly continuous in O, and
uniformly so with respect to § < 1. From these facts and (5.3), it follows that
(zz,y:) must belong to Oy, x Oy, for all sufficiently small ¢, §, and k or else it
cannot be the maximum point of w®.

On the other hand, Proposition 5.5 says that u® is a viscosity subsolution of
Is(u’,z) = 0, and that vs is a viscosity supersolution of I°(vs,x) = 0 in Oy, for
sufficiently small §. The function u’ is touched from above by a smooth function
at ., and v is touched from below at y.. It follows that u® and vy are pointwise-
Cl1l at x. and y., respectively (see Definition 2.3). Applying Lemma 5.6, we
conclude that I5(u®,z.) and I°(vs,y.) are well defined in the classical sense, with
Is(u’,z.) < 0 and I°(vs,2.) < 0. It follows from Proposition 5.5 that there are
points x} and yj such that

1@ (W0 z) <6, T (vs,y.) > —6,
and

(5.6) e — 5], [y — 5| <,

where h = (20(Julloo + [0]120)) -

Step 3 (Equation structure). Let us use the structure of I(-,z) to bound I(*5)
(u®,z.) — IWs)(v0,y.) from below. Using the expression in (5.1), we have

1@ (0 x.) = sup irﬁ1f {_Lua*ﬁ (U0, ) + cap(zi)u’ (z2) + fag(xg‘)} )
« Ts

199 (v, ye) = sup inf {—Luag (v5,92) + cap (5 )vs(ye) + faﬁ(yfs‘)} :
« yé



18 NESTOR GUILLEN, CHENCHEN MOU, AND ANDRZEJ SWIECH

Therefore, for our purposes it suffices to compare the expressions appearing on the
right-hand side for each fixed «, 5. Let us write

Dap = _Luaf (u®,e) + Caﬁ(xg)ué(xs) + fap(25),
“s

(IDapg = _Luf“i* (Vs,Ye) + Cap (Y5 )vs(Ye) + fap(ys)-
Ys

We now look for an upper bound for (I),3 — (II)43 which is independent of o and 3
by breaking this difference into parts. First, recall that the function u’(z) —vs(y) —
%77/15(50 — y) achieves its global maximum at (z.,y:), in which case Corollary 5.9
guarantees that

C
5 A A~ ~ ~
Ly (0 22) = Ly (05,92) € el (2 50+ 2l it (i ).

Then, thanks to Assumptions A and B and (5.6), we have

L op (W, z.) — L

C * * * *
(v, ye) < — o5 — y51” + 2[|vlloc(]25 — w31)
(57)

ney
Ys
¢ P
< Sfre el + 2otz — vel) + 2(5),
where for a fixed € lims_,g p-(0) = 0.

Next, we have the elementary inequality

Cap (@)’ (=) = Cap(y3)vs(ye) > cap(r})(u’(z) — vs(ye))
(5.8) = [cap(@5) = cap(ys)lvs(ye)l
> M = 0(|ze — ye|)|[v]|oo — pe(9),

where p.(0) is a function as before and we used that u®(z.) — vs(ye) > ¢.
Finally, by Assumption C

(5.9) [fap(@2) = fap(y2)] < O0(|ze — vel) + pe(0).
Now, combining (5.7), (5.8), (5.9), we have the estimate
Das ~ (M 2 N = oz~ yel? = O (e i) — (),
where C' is some absolute constant. Therefore, we conclude that
13 (8, 22) = 108) (05,52) 2 N = < e = yel? = OO ([ = yel) = o (9)

Step 4 (Using the subsolution and supersolution property). Recalling the way
and y; were selected, we have I (ud x.) — IWs) (vs,y.) < 26, and therefore

C
M <204 —|we —yel” + CO(|ze — yel) + pe(9).

It now remains to take lim._,qlims_,olimsup, _,, on both sides of the above in-
equality and use (5.3) to obtain a contradiction. O
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5.1. Estimating dy, in special cases.

Proposition 5.11. Let p € [1,2].
(i) Let p,v € Ly(B1), and let ¢,¢ € Adm”. If n — v is a positive measure,

then
(5.10) s@du(o) + [ avty) < [ faPdiu-v)(e)
B B By
(ii) For any p,v € Ly(B1) we have

p—1 1
(5.11) du, (1,v) < 27 drv (. ) 7,
where dp, = |z|Pdp, dp, = |zPdp.

Proof.
(i) Since ¢ € L*(u), we also have ¢ € L(v). Then we may write

o(x)dp(z) + | P(y)dv(y)
B1 By

=/ o(x)dp(z) — ; o(x)dv(z) + ; o(y)dv(y) + : Y(y)dv(y)

— [ b@d(u— ) + / (6() + (w))dv(y)
B, B

< [ o=@ < [ laldu— (o)

where in the last line we used ¢(y) + ¢¥(y) < |y —y[? =0 Vy € By and ¢(z) <
|z|P Vz € By.

(ii) Denoting by (1 —v)T and (1 —v)~, the positive and negative parts of y— v,
we have [p—v| = (u—v)T+(u—v)~. We also notice that u—(u—v)" =v—(u—v)".
It thus follows from (5.10) and Lemma A.14 that

dy, (o — (4 — v)*)P < /B 2 Pd(p — v)* (),

i, = (=)' < [l ) (@),

B,
Moreover, it is obvious that

dTV(,upv Vp) = /

By

jaPd( — v)* (@) + / 2Pd( — v)~ ().

B
Therefore, using the triangle inequality for the distance and the inequality a + b <

1

2%1((#’ + bP)% for a,b > 0, we obtain

du, (1, v) < du, (g — (= v)7) +du, (v, 0 = (p—v)7F)

< ([ oo =) @)+ [ o X0)

p—1 1
=27 drv(pp, vp)?. O

P

Let us now discuss the case when the Lévy measures u%? are absolutely contin-
uous with respect to the Lebesgue measure.
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Example 5.12. Let us consider operators whose Lévy measures dul?(z) are all of
the form K,g(z, z)dz. Assumption E holds, for instance, if

(5.12) 0 < Kap(z,2) < K(2),

where K(z) is such that for some p € [1, 2]

(5.13) min(1,|z|P)K(z)dz < +o0.
Rd

Regarding Assumption A, suppose that there are some v € (0,1] and C' > 0 such
that

(5.14) / |2|P| Kop(x, 2) — Kop(y, 2)|dz < Clz —y|” Va,y € O, Va, 5.
By

Condition (5.14) is obviously satisfied if

(5.15) |Kap(m,2) — Kop(y, 2)|dz < |z — y|"K(2) Va,y € O, Vz € By, Vo, §.
Let now z,y € O. To estimate dr, (ﬂg‘ﬁ,ﬂg‘ﬁ), we use Proposition 5.11. It follows
from (5.11) and (5.14), that

(5.16)

R . p—1 P 2
d, (257, pg?) <277 (/ |2|P [Kap(z, 2) —Kaﬁ(y,Z)le) < Clz —yl?.
By

In particular, (4.1) is satisfied for these measures when p =1 and v = 1.

We can now prove Corollary 4.5.

Proof of Corollary 4.5. We notice that the measures u&? satisfy (5.12), (5.13), and
(5.15) withy = p = 1 and K (z) = A1|2|~%77, and hence they satisfy Assumptions A
and E. It is also easy to see that they satisfy Assumption B. Thus the result follows
from Theorem 4.4. O

Example 5.13. A well studied subclass of operators which arise in zero-sum two-
player stochastic differential games are those of Lévy-Ito form. This corresponds
to the situation where the L*? appearing in (1.1) have the form

(5.17) L (u,x) = /U\{O} [u(z + TP(2)) — u(x) — Du(z) - TSP (2)] du(z2).

Here U is a separable Hilbert space, and pu is a fixed reference Lévy measure on
U\ {0}. The maps T¢? : U — R? are Borel measurable and such that for all
ae A peBxye0,zeU\{0},

IT57(2) = TP () < Cp()|z —yl,  |T39(2)] < Cpl2),
for some positive Borel function p : U \ {0} — R which is bounded on bounded
sets, inf|;|>, p(2) > 0 for every r > 0, and

(5.18) /U\{o} p(z)2du(z) < C.

Under these conditions the measures u&? = (728 )xp are Lévy measures. The
comparison principle for sub-/super- solutions of (1.1) with L** as in (5.17) is
known to hold, as discussed in the introduction. Let us revisit it using the transport
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metric. For every z,y0 € O, € A, € B we have y = (T2F x T;)B)#u €
Adm(pg?, u;‘f ) and, therefore,

sl < [ o= sPdrte)
X

— [ 1T - TP du(e) < Clao — ol
U\{0}

In this case the whole measures p,, and p,, satisfy Assumption A for p = 2, and
our approach can be applied without the decomposition of the measures ugﬁ into
A% and 5.

If the operators L®# in (1.1) have a more common Lévy-Ité form

(519) L*(u,2) = /U\{O} [ + T2 (2)) — u(x) — X, 0y D) - T2 (2)] dp(2),

where instead of (5.18) we now assume only
| 0Pt xgz)dn() < €.
U\{0}

we need to modify this approach. We now do the decomposition
pe? = i 4 i
where

138 = (TP ity o= plgs<ay, 197 = (T9P) ity o= plgpzp=1ys

and consider the measures 4274127 and j19% as measures on R by the usual exten-
sion. Then the measures 427 € Ly(R9), and they satisfy Assumption A for p = 2.
Unfortunately, the measures /i%® may not satisfy Assumption B now; however, the
terms containing them can be handled in a standard way (see, e.g., [16]), and thus
our approach can still be implemented (see also the next section and Example 6.2).

6. VARIANTS OF THE APPROACH

The approach to proving a comparison principle presented so far has been based
on the splitting of the measures p2? into %% and i%?, their restrictions to By (0)
and B{(0), respectively. The reader should think about it as the basic technique.
However, in many cases this splitting may not be ideal. When calculating the dis-
tance between two measures 437 and 437, we have only the set I' = {0}, where we
can deposit some excess mass, and moving mass there may be costly. Thus some-
times a much better estimate can be obtained if we allow for a more sophisticated
splitting puo? = 2% + %% + 197 where the measures 427 are now supported in
some neighborhoods of the origin contained in B;(0), fi%® are bounded measures
also supported in B;(0), and i@ are as in (2.3). In such a case we may only re-
quire that Assumption A (i.e., (4.1)) be satisfied for the new measures 1%*. We will
illustrate the advantage of this approach in Example 6.2. Thus the main message
is that we should look at the technique of using coupling distance in the proof of
comparison principle as flexible, and Assumption A should really be considered to
be an assumption about the behavior of Lévy measures for small z, not necessarily
for z € B1(0).
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Suppose then that for every a, 3 we have a decomposition u&? = a8 +pef 4 o8
as described above, and we decompose

L (u,z) = L (u, z) + L (u, ) + L (u, z),
where

LY (u,x) = du(z, z) di®P (2), L (u,x) = du(z, z) di®? (2),
Rd Rd

%(ua) = [ [u(o+2) — u(e)] di’ ).
Rd
We can then prove the following variant of Theorem 4.4.

Theorem 6.1. Let Assumptions A-E (with the new measures &%) hold for p €
[1,2], and suppose there are Ly, Ly > 0 such that

(6.1) [8%(B1(0) <Ly Va €O, Va,B,

(6.2) [l — 1) < Lale -yl Ve €0, Va8
R

Then the comparison principle holds for equation (1.1). That is, if u and v are,
respectively, a viscosity subsolution and a viscosity supersolution of (1.1) and u(x) <
v(x) for all z & O, then

u(z) < wv(x) Vo e O.

Proof. The proof proceeds exactly as the proof of Theorem 4.4 except that now in
Step 3 we also need to find an estimate from above for

Lﬁ:f (u57 Te) — Lﬁ?; (vs,Ye),

5
which is independent of o and /3, where the operators Lﬁaﬂ (u%, z.) and Lﬂaﬁ (vs,Ye)
X i

1
are defined as in (5.2) for the measures /lgg and ﬁ;‘f . We have

Lﬁaf (Ué, Ig) - Lﬁaf (057 yE)
Ts

Ys
g /
B,

b [ (Wt 2) =) — (sl +2) = val) g (2).
B,

1 —a .
w(ae +2) = u () = ~Dibulae — ye) - 2| dliiz? = ! |(2)

75

Let w be the modulus of continuity of u. It is also a modulus of continuity for u°.
The modulus w is bounded, and we can assume that it is concave. We notice that
the integrand of the second integral above is nonpositive. Therefore, we obtain

1
5 ~af ~af
Lﬂ:(f; (u axe) - Lﬂaf (Uéaye) < Ll (UJ(|Z|) + g|D"/}n(xs - y6)|2|> d|ﬂ“m§ - Nyg (Z)

Ys
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Using (6.1) and (6.2), the concavity of w, Jensen’s inequality, the subadditivity of
w, and |Dy (7. — y.)| < plze — y-|P~1, we can now estimate

(08120 = Ly (usone) < Co [ 11s? = 5t
v} R
C _
+ e — el s — w3
<C * 0k g _ p—1 * 0k
< Cw (o —y5]) + E\xe Yel P s — w5

This allows us to complete the proof by following the rest of the proof of Theo-
rem 4.4. ]

The next example illustrates the usefulness of this modified approach and The-
orem 6.1.

Example 6.2. Let the measures u&° be such that

o Aop(T
dusP(z) = |Z/ZEFU)

for some 1 < o < 2. Assume that the functions ans : O — R are nonnegative and
such that there exists L > 0 such that

1

az,(x) —aZ,(y)| < Lle—y|  Va,y €O, Ya, 8.

Without loss of generality we will also assume that a,s < 1. The case 0 =1
can also be considered similarly, but since calculations are slightly different, it is
omitted here, as it is an easy variation. The case 0 < o < 1 is taken care of by
Corollary 4.5.

We decompose the measures u2? in the following way. We set %% := a ﬂ( x).
af _ = =
:uz :ux, |B aﬁ’ :LL.L /J’z |B1\B 0(87 :ux, H.L |B§»

and as always all measures are then extended to measures on RY. We claim that
these measures satisfy the assumptions of Theorem 6.1 with o < p < 2.
Assumptions B and E are obvious, so we will focus on Assumption A, (6.1),
and (6.2). Regarding Assumption A, we note that, by an elementary calculation,
if anp(x) > 0, then %P = (T9P) 4 u, where
TOB(2) = a% () dp(z) = ——xp.d
x aB ) 1 |Z|d+g XB,dz.

These types of transformations were used in [2,10]. If a,z(z) = 0, then 2# = 0.
Then, if ags(z) > 0, aap(y) > 0, v = (TP x TgP)pp € Adm(ag?, i57), and

A5 < [ aPdiam) = [ 1206 - T )
X

, Lol
= als(x) —ag P dz < Clz — y|P.
/Bl (@) =~ a3 0) P i < Cla =
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If anp(z) > 0 and g% = 0, then also v = (T5° x T5?) 4 € Adm(ig”, 45°), where
T;‘B(z) =0, and

A i 57 < [T ) = o due)
1

— % _ % p |z|p dz < Clx — ylP
- ‘aaﬁ(x) aaﬂ(y)l d+o B “/I‘. y| .
2|4+

B,

Regarding (6.1), we see that

1
~af _ aaﬂ(m) o C o
i =c [ iD= 0 - au@)

It remains to check condition (6.2). Suppose that aqs(z) < ans(y). Then

/ 2] dIi® — 52P(z) = / 2] djic® (2)
R4 ’I‘?BS‘Z‘<T@B

Yy

L (),
rof<|zl<1 |z|d+e

We estimate each integral separately:

i L ats” (v) = agy” ()
[ @) = Canalo) | | = Caapla) o2
r2f <zl <rg? e s’ (Y)ans” (@)

< CaZy (@) (ans” (1) — ay” (@)

By the mean value theorem

1" () — aly” (@) = 2 (aZ5y) — aZs(@) < ayy” (@) (aZ5(0) — aZs(@) )

1 1
where ¢ is some number such that aJ,(z) < ¢ < agg(y). Thus we obtain

1 1
/ 242" (=) < O (aZy () — aZy(@)) < il — .
ref <zl <ry?

For the second integral, by an elementary calculation we obtain

(aap(y) — aas@)lzl ;o N
/T;’ﬁ<z<1 |z|d+e dz = Claas(y) — aap(x)) | 4=

Now, again by the mean value theorem,

aas(y) — aap(@) = " (aZ5(y) — aZ5(@)) < ans” 1) (as(w) — aZs(@))

1 1
where ¢ is some number such that aJ;(2) < ¢ < aggz(y). Therefore, it follows that

/T;ﬁ<|z<1 (aaﬁ(y>lz|d‘jiﬂ(x))|z| dz<C (afw(y) - agﬂ(z)) (1- a;;%(y))
< Colz —yl.

This completes the proof of (6.2).
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We remark that if we apply the estimate of Example 5.12 to the kernels

_ ap(x)
Kop(a,2) = 2|d+o
and use only the information that the functions a,g are Lipschitz continuous, we
obtain

~ ~ 1
do, (437, 457) < Cla —y| 7.

Thus Example 6.2 shows that the general estimate of Example 5.12 coming from
Proposition 5.11 is not optimal for 1 < p < 2.

The following two examples concern Awatif’s comparison results in [19]. Ex-
ample 6.3 in particular shows Theorem 4.4 implies the main comparison result
in [19], in the case where the measures u®? are all supported in a ball. We note
that [19, Theorem I11.1] dealt with the case of O = R and the nonlocal operators
there were slightly different, so Theorem 4.4 cannot be applied directly to the case
considered in [19]; however, our approach covers the essential difficulties of the proof
of the general result of [19]. Example 6.4 is related to an alternative assumption
discussed later in the paper [19, Section III.1, p. 1065].

Example 6.3. In this example we explain how the assumption of [19, equa-
tion (1.3)] (reproduced below in (6.3)) implies Assumption A with p = 1: assume
that there is a constant C' > 0 such that, for any ¢ € C%!(B;) with ¢(0) = 0 and
Lipschitz constant 1, we have the inequality

(6.3) ¢(2) dpa(2) = | 6(2) dpy(2) < Cle—y|  Va,y €O,
By B

where we assume that the measures p, € Li(B1). We will show that then the
measures [l = fi, satisfy Assumption A with p =1, that is, dr, (fa, fty) < Clz —y|
for all x,y. To this end, let ¢ be any function as above. The Lipschitz condition
means that for every z1, 2o we have ¢(z1) — ¢(22) < |21 — 22|, and in particular the
pair (¢, —¢) belongs to the set Adm' defined in Lemma 3.6. Then Lemma 3.6 says
that

du, (o iiy) < [ 6(2) dpia(z) + / (—6(2)) dpsy (=),
B, By

and thus assumption (6.3) implies that dr, (fiz, fiy) < Clz —yl.

Example 6.4. Assume that the measures u, € L;(B;) and that there is a constant
C > 0 such that, for all 7 > 0 and z,y € O,

(6.4)

sup { / h(z)|ldpa (=) — / h<z>|z|duy<z>}30xy|.
heC(B1\{0}),[|h]<1 T<|z|<1 < |z|<1

Then the measures fi, = p, satisfy Assumption A with p = 1, that is,

dLl (ﬂazaﬂy) < C‘.’E - y|

To show it, we start arguing as in Example 6.3. We take any function ¢ with
Lipschitz constant 1 and such that ¢(0) = 0. The Lipschitz condition means that
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for every 21, 2o we have ¢(21) — ¢(22) < |21 — 22, and in particular (¢, —¢) € Adm'.
Then Lemma 3.6 guarantees that

di, (fies fiy) < | 0(2) dpe(z) = | &(2) py(2).
B, B,

Since ¢ has Lipschitz constant 1 and ¢(0) = 0, it follows that |¢(z)| < |z|. In
particular, if h(z) = |z|71|¢(z)|, then h is continuous in B; \ {0} and |h(2)] < 1
for all z, so h(z) is an admissible function for the supremum in (6.4). We conclude
that for every 7 > 0

z) dug(z) — 2) fy(2
/Tg|z|<1¢“ 1ol2) /TS|Z|<1¢()M()
- / h(z)|2] dpa(z) - / h(z)|2] py(2) < Clz — yl.
T<|z|<1

T<|z|<1
Letting 7 — 0, the integral on the left converges to fBl(O) &(2) dpg(2) — fBl(O) o(2)
y(2), SO
d]LI (ﬂuﬂy) < C‘x - y|

7. COMPARISON PRINCIPLES UNDER ADDITIONAL ASSUMPTIONS

As in the previous section, throughout this section we consider a fixed bounded
domain O C R?. In this section we prove a few comparison results for more regular
viscosity sub-/super- solutions. In return, we are allowed to replace Assumption A
with a weaker assumption.

Assumption Al. Let p € [1,2]. There exist C' > 0 and s € (0, 1) such that
du, (427, iy") < Cle =yl Va,y €0, Va, .
Remark 7.1. Consider a Lévy measure p € L,(B1). For r € (0,1) we define
pr () 2= p(- O By).

Then we have the estimate

de, (1 )? < / 2P dy(z).

r

To see why this is so, simply note that among the admissible plans we have the one
that sends all of the mass of 1 in B, \ {0} to 0 and leaves the rest of the mass fixed
in place. To be more precise, define

T(e) = {0 for z € B, \ {0},

x otherwise.

Then v = (T x Id)xp € Adm(p,, 1) and
de, (o )P < / & — yPdy(z,y) = / T(2) - of? du(x) = / 2 dyu(z).
Rd xR4 R4 B,

Remark 7.2. Estimating the distance between p and g, is of interest to us since it
can be used to bound the difference between the operators

Ly(u,z) = ; ou(zx, z) din(z)
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and
L, (u,z) ::/ ou(z, z) dii.(2).
BlﬁB;:,

The second operator can be classically evaluated for any continuous function, while
the first one in general cannot. Being able to estimate the difference between them
will be an important step in the proof of Theorem 7.4, removing the need for the
use of the sup-/inf- convolutions (as mentioned in Remark 5.1).

Theorem 7.3. Let Assumptions Al and A-E be satisfied. Let u be a viscosity
subsolution, and let v be a viscosity supersolution of (1.1), and let u(z) < v(zx) for
allz ¢ O. If either u or v is in CO"(O) for some r € (0,1) and we have 1 -5 <s

(where s is from Assumption Al), then
u(z) <wv(z) v e 0.
Proof. The proof follows along the lines of the proof of Theorem 4.4. The only

difference is that when either u or v is C%", instead of (5.3) we now have (5.4),
i.e.,

li |ze — ye|P"
imsup ————
Kk—0 €

<C,
and in this case, following the original proof, we obtain

C
M <26 + —fwe = yel " + CO(|we — yel) + p=(9),

which produces a contradiction after taking lim._,¢ lims_,o limsup,,_,, if sp > p—r,
which is the case precisely when 1 — % < s. O

The previous theorem does not cover the limiting situation where s = 1 — g;
however, with extra work one can show that if u or v is of class C'', then we can
choose s =1 — ]lj, and we still have a comparison. The proof is different from that

of Theorem 4.4 since we do not use the sup-/inf- convolutions.

Theorem 7.4. Let Assumptions B-F hold, and let Assumption Al hold withp > 1
and s =1— 1%. Suppose that u and v are, respectively, a viscosity subsolution and

a viscosity supersolution of (1.1) and u(x) < v(x) for all x ¢ O. If either u or v is
in C*(O), then

u(z) < o(x) Ve e O.

Remark 7.5. If we allowed C'!' functions to be test functions in the case p = 1, then
Theorem 7.4 would trivially hold for p = 1 without the need for Assumptions A
and B and the continuity of the coefficients, since then either w or v would be a
classical sub-/supersolution of (1.1) and could thus be used as a test function.

Proof. Without loss of generality let us say that u € C1(O). As before, we argue
by contradiction, in which case there is some ¢ > 0 such that

sup {u(z) —v(z)} = L.
zER4

Step 1 (Doubling of variables and perturbation). Let K C O be a compact neigh-
borhood of the set of maximum points of u — v in O. There exists a sequence of
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C3(RY)NBUC(R?) functions {¢y, }n, each of which has second and third derivatives
bounded in R?, and such that |u — ¢,| — 0 uniformly in R¢ and

lim sup |Du — D¢,| = 0.
n—oo

Now let (750, Yn.c) € R? x R? be a global maximum point of w™¢ over R? x RY,
where

W (@,y) = (u(x) = 6u(@)) = (0(y) = () — LY,

€
As in Lemma 5.10, one can show that for any n

. . |xn,£ - yn,s|p
limsup limsup ———————— =
e—0 k—0 €

0,

lim sup lim sup (w(zp,c) — v(yYn,c)) = L.

e—0 K—0

Observe that u is touched from above at z,, . by

Hz) 1= () — nn) + 00(@) + = (Wnlx — ) — YulEne — 90.0)),

while v is touched from below at y,, . by

¢(y) = U(yn,s) - ¢n,(yn,e) + ¢n(y) - é (1/15(%75 - y) - wn(xn,s - yn,e)) .

Since u is C*, this means first that

)%—1 Tne — Yn,e

Du(zpe) — Dép(tne) = p(k + [Tne — yn)5|2 .

There is some small ¢ > 0 such that B.(z,:) U Be(yne) C K if € and x are
sufficiently small. Therefore,

_ p—1
(7.1) limsuplimsupM =o01(1).

e—0 ~k—0 3

3=

On the other hand, since u is a viscosity subsolution and v a viscosity supersolution,
for any 0 < r < 1 we have

I(up,n,e) <0
and

I(vr,yn,e) =0,
where (recall Definition 4.1)

uT(x) L {¢($) in Br(xn,e)v

u(z) in BS(xn.e)

and

v. (x) = {qb(x) in Br(yn,s)a
7 v(z) in Bi(yn.e)-
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Step 2 (Equation structure, main term). Using the fact that I(-, ) has the inf-sup
representation in (1.1), it follows that

10y, Yne) — I(ty, 2 ) < sup {ﬁaﬁ(ur7 Tne) — L vy, yn,e)}
o

+ sup {Laﬁ (ur, xn,s) - La,@ (Urv yn,s)}
a,B

+5up {caayne)0(ine) = capline)ulene)
o,

+ Salfg {faﬁ(yme) - faﬁ(xnﬁ)}'

Let us bound each of the terms on the right-hand side of (7.2). As before, the most
delicate term is the first one. Fixing v and [, we note that

LB (uy ne) = / Sty (o) du? (@) + [ Su(wn,w) di? (),
, .

L (0, yn ) / v (yn.cry) dit? (y) + B@U(yma,y) iy’ (y).

Let us choose v, € Adm(ag? ., ﬂ‘;‘fa’r) (using the notation introduced in Re-
mark 7.1), which minimizes the p-cost. Denote

= ({0} x (B1\ By)) U ((B1\ By) x {0}) U ((B1\ By) x (B1\ By)).
Since du(zy,,0) = 6v(Yn,e,0) = 0 and

(73) 7 (((BL\ Br) U{0})° x RY) U (R? x ((By\ By) U{0})%)) =

we have

/ Sultn.e,x) dps® (z) = / S err) AP ()

— [ Gulne) duley) = [ Sulznen) drla)
R4 xRd A,
Similarly,

SV(Yn.e, y) dfis? ( )=/ OV(Yner y) dyr(,y)-
B¢ A,

Therefore, we obtain

Laﬁ uraxn a) - [A/ ﬁ(vrayn s)
/ dur( wn e duz“ / (S’Ur yn e Y duyns( )

/ G es ) — 60(gnery)] (. )-
A,

Using the fact that (24, ¢, Yn,) is a maximum point of w™*, we have the following
pointwise bound for pairs (z,y) € A,:

C
5u(x’ﬂ,€ﬂ LU) - 6U(yn,67 y) S ;'x - y|p + 5¢(xn,57 x) - 5¢(yn,aa y)
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It thus follows (again using d¢(xy.,0) = 06(yn,0) = 0 and (7.3)) that
[ u(e2) = 50(3c.)] )
< (;/A [z —y|” dye (2, y)
+ [ bd(wnc,®) di? (@)= [ 6d(yney) ditg? (v),

Be¢ Be¢

and since v, is the optimizer in Adm(fi,, ., fly, . )

/ Bu(n e, ) — 60(yne,y)] dyi(2,3)
A,

c ~a ~a
S ;d (:U’J,EEJ?H’ny r)p + 5 6¢(xn767 ) d:uz" E( )

- 5 6¢(yn,sa )d:u’yna(y)

As for the integrals over B,.(0), note that

/ o ( -rn ey X d,uggn . / dvp( yn Y d“yn 5( )
= [ 180(encr) + 200 = g )] i (o)

[ o) = 20— Hamerv)] di (o)

T

Putting the last inequality and last equality together, we have
L? (ur, l‘n,e) — 1P (vr, yn,e)

c Ao Ta T o C
= zde (an 5;T’Myfs7r) + L 6(¢naxn,8) —L B(¢nvyn,6) + ;9(7")7

where we used Assumption E and Lemma 5.7.

Next, we use Remark 7.1 to get dp, (237 ., /:Lgfsm)p <d, (ﬂg‘fg,ﬂgfs)p + p(r),
where p(r) — 0 as r — 0. Then, using Assumption Al (recall that s = 1 — 1/p), it
follows that

du, (A58 050 )P < Clane —ynel”™" +p(r).

Thus

) . C -
Laﬂ(“mxnﬁ) - Laﬁ(vrayn,s) < — ‘xn e yn,s|p !

L 20.2) ~ L (G 0) + S (007) + plr).

Letting » — 0, it follows that for every x, n, and ¢

lim sup sup {[A/O‘B(ur, Tne) — Les (v, ynﬁ)}
r—=0 «,B

(7.4) ’ A
< ;|J"YL,E - yn,a|p + 511[}; {L ¢n7 Tn 5) Laﬁ(¢n, yn,a)}-
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Step 3 (Equation structure, remaining terms). For any r € (0,1) and any «, 5 we
have

Eaﬁ(u“ mn,a) o ('Ura yn,s) = Eaﬁ(u’ xn,s) - Laﬁ(u yn,a)~
Furthermore, arguing as in Step 3 of the proof of Theorem 4.4,

(7.5)
Cap(Tn,e)u(Tne) = Cap(Un,e)V(Yne) = AMw(@ne) = v(Yne)) = [Vl Lo O(|Tn.e — Yn.el)s
(7.6) |fap(Tn.e) = fap(Yne)l < O(|Tne — Ynel)-

Going back to (7.2) and combining it with (7.4)—(7.6), it follows that for any &, n,
and ¢

(7.7)
T (L (ol p)0( 20, = Yne)

+ /\(U(yn,s) - u(l"n,E))
+ sup {Lo‘ﬁ(u, Tne) — Iiaﬁ(v, yn,s)}
o,

. C
thllp {I(Ura yn,e) - I(Umxn,a)} < ;lxme -

r—0

+ suﬁp {ﬁ“ﬁ(gbn, Tne) — iaﬂ(%’ ynE)}

Let us handle the last two terms on the right. Using Assumption B and the fact
that ¢,, € C%1(R?), we have for any a and 3

Eaﬂ (u7 xn,&) - ffaB (Ua yn,e)

= /C [du(zp.e,x) — 0V(Yn e, )] dﬂwn (@)

| vy ) |2 (y) — 5P ()
Bf

< / (6¢n(xn787x) - 5¢n(yn7az )) dﬂz" E( ) + 2||U|\L°°dTV(ﬂgf,EvﬂZi)
i
< C(n)|zne = Ynel +2[|0[[L0(|Tn,e = Ynel)-

Then we have

(7.8)

Sug {Laﬂ(%xn,s) - La'g(va yn,E)} < C(n)|xn’€ - yn,s| + 2HU||L°°9(|33¢L,€ -

l)-

For the other remaining term we note that

iaﬁ(d’naxn,s) - iaﬁ(gbnayn,s) = / [5¢n(xn,syx) - 5¢n(yn,sv )] d:u"rn E( )

B,

+ 6¢n(yn,57$)dﬂ?55 (:C)
By

- » 6 (Yn.e, y)dﬂgfg (y)-
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Since the third derivatives of ¢,, are bounded, we have

/B (00 (Tner2) — 66n(yne, @) AP (2)

1
< / / {(D2bn(ine + 52) — D2y e + s2))a ) (1 — s)|ds dic? ()
By JO
< O(n)|xn,s - yn,sl-

The remaining integrals are estimated as follows. For 7 € (0,1) let 7, be a smooth
function such that 0 <7, <1, n, =1 in B;(0), and n, = 0 outside of By,. Then
we may write

5 (tm e, 2)AASP_(2) = /B (1= 7 ()86 (e )5 ()

By

+ /31 777—($)(5¢n(yn,e, )d/%n E( )

5 (n.es 1) _(y) = /B (1= 17 (9))0m (g2, 1) _(9)

By

4 / e (856 (s )RS ().
B,

Applying Proposition 3.8 together with (4.7), and using again Assumption Al, it
is straightforward to observe that, for fixed n and 7,

lim sup
e—0 a,B

/B(l_nr(x))5¢n(yn,sv )d/-%;ns( )
- /B (1= 10 (1)) (e )RS (3)] = 0.

On the other hand, since each ¢, is C3, we have [0¢,,(yn.c,z)| < Cplz|* for all
x € B;. Therefore,

/ e ()50 (e )PP ()] < / 170 (&) (g e ) AP ()
By

<C, / x?dps? (x),

/B e (1) (U2 0)AAE ()] < C / w2’ (y)
and we have

limsupsup/ || dﬂg‘fg( )zlimsupsup/ |y|? duym(y) =0.

=0 «,3 0 B

Gathering these estimates, we conclude that for every n

(7.9) hm sup |L (Dn, Tne) — ﬁaﬁ((bm yn€)| =0.
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Step 4 (Using the subsolution and supersolution property). Using Definition 4.2,
we obtain from (7.7) that

C _
/\(U(xn,s) - U(yn,s)) < ;|xns - yn,s|p T+ (1+ HU”L“)@O%L,E - yn,sD

(7.10) o+ sup {L% (u, 2n,c) = L (v, yn c) }
+ suﬂp {iaﬁ(¢n’ xn,E) - j;aB((bTu yn,a)}~

Letting x — 0 first and then € — 0 in (7.10), and using (7.1), (7.8), and (7.9), we
now obtain

0< A <oi(1),
which gives a contradiction. O

The following is an example of measures satisfying the assumptions of Theo-
rem 7.4.

Example 7.6. Let du®?(z) := Kap(z, 2)dz be such that (5.12) and (5.15) hold for
some p € (1,2] and v € (0, 1], where K satisfies (5.13). Using (5.16), Assumption A1l
is satisfied with s =1~ ify=p— 1.

Assumption F. There are o € (1,2) and positive constants A < A such that
the measures p2” are all of the form du®®(z) = K,p(z,2)dz, with K,s(z,2) =
K.p(x,—2), and

A A
7.11 — < Kyp(z,2) <
(7.11) e < sz, 2) EEE
and
Alz —y|?

|Kap(x,2) — Kap(y, 2)| < RECE

Corollary 7.7. Let the measures u®® be as above. Assume that Assumptions C, D,
and F hold with some o € (1,2) and v > o — 1. Then, given a viscosity solulion u
and a viscosity subsolution (resp., supersolution) v of (1.1) such that v < u (resp.,
u <) in O°, we have

v<wuin O (resp.,u <wvin O).

Proof. The proof is an immediate application of Theorem 7.4 with p = 1 + ~, the
computation in Example 5.12, and the fact that u € C1(O) by [17, Theorem 4.1].
O

Remark 7.8. The comparison result of Corollary 7.7 can be extended to the case
o =1 if we use Theorem 7.3 instead of Corollary 7.7. The result of Corollary 7.7
can be also extended to the case A = 0; see [18, Theorem 4.1].

It is worth noting that in [18] the second and third authors obtained unique-
ness results under similar assumptions to those of Corollaries 4.5 and 7.7, including
Lipschitz-type assumption on the continuity of the kernels with respect to z. How-
ever, uniqueness results in [18] cover only o in the range (0,3/2), whereas the
combination of Corollaries 4.5 and 7.7 (see also Remark 7.8) covers all o up to 2.
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Remark 7.9. The assumption (7.11) used in Corollary 7.7 can be relaxed a great
deal. This assumption was used merely in order to guarantee that the viscosity
solution is C**¢ in the interior. Indeed, interior C* and C'T® regularity estimates
are now available for nonlocal equations for a far larger class of kernels, including
those K (x,z) which may not be symmetric in z or which vanish even for large
sets of directions of z. See the works of Schwab and Silvestre [21, Section 8] and
Kriventsov [17].

APPENDIX A. A VARIANT OF THE OPTIMAL TRANSPORTATION PROBLEM

In this appendix, which follows [13], we describe the optimal transport problem
with boundary. Throughout we make the following assumptions: €2 is an open
subset of R?, and I' is a compact subset of Q. We are also given a function c :
Q x Q — R, known as the cost. We impose several assumptions on ¢(z,y) and T,
recorded in (1.1) and (1.2).

First, we assume that ¢ satisfies the following:

(1.1)

c(x,y) is continuous;  ¢(z,y) = c(y,x), c(z,z) =0, c(z,y) >0 if z #y Vo, y.
Second, I and ¢ must be such that there is a measurable function
P:Q—T
which plays the role of the “projection” onto I, in the sense that
(1.2) c(x, P(x)) = ;2? c(z,y).

Definition A.1. Letting E be a Borel subset of Q, we define the function
c(x,E) = yirégc(x,y).
Lastly, the following auxiliary cost will be relevant in what follows:
é(x,y) = min{c(z,y), c(z,T) +c(y, )}
We also consider the set
(1.3) K={(z,y) €eQxQ | c(z,y) <c(z,T)+c(y,T)}.

Definition A.2. Given Q and I', we let M. (Q2) be the set of positive Borel measures
won 2\ T such that

/70(:E,F) du(x) < oo,
Q
and

p({z € Qld(x,T) >r}) <oo for every r > 0.

Definition A.3. Let p,v € M.(Q). By an admissible coupling of y and v, we
mean a positive Borel measure 7 over € x 2, satisfying v(I' x I') = 0 and

Ty loe= 1 7Y = v
The set of admissible couplings will be denoted by Admp(u, V).

Note that a measure in M.(Q) may fail to have finite mass since inf ¢(x,T') = 0.
We are now ready to state the optimal transport problem with boundary.

Q5
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Problem A.4. Consider two measures p,v € M.(Q). Among all admissible mea-
sures v € Admr (i, v), find one that minimizes the functional

J('(’Y) :/ﬁ ﬁc(l‘,y)d’y(fﬂ,y)

We make no claim as to whether all of the assumptions on the cost and Q are
necessary, but they are sufficiently general for our purposes and make most of the
proofs relatively straightforward (for instance, the symmetry assumption on c¢(z, y)
is not necessary but makes the notation simpler). In any case, the costs we care
about in the main body of the paper are

ep(z,y) = |z —yl?, 1<p<2

Since we are specially concerned with these costs, we shall write J,(y) to refer to
the above functional when the cost is ¢,(z,y). At the same time, the main Q and
I" we care about are

Q =R\ {0}
and
I = {0}.
Evidently, these sets, together with the costs c¢,, comply with our requirements.
The first basic fact about Problem A.4 is the existence of minimizers. The proof is

essentially the same as in the optimal transport case (compactness of the measures
and lower semicontinuity of J.(v)) (cf. [4, Theorem 1.5], [13, Section 2]).

Theorem A.5. Let p,v € M.(Q). Then J.(y) < oo for at least one v* €
Admr(p,v). Moreover, there exists at least one minimizer y for Problem A.4.

Proof. With the map P being as in (1.2), we define the measure
v = (Id x P)gp+ (P x Id)gv.
It is clear that v* € Admp(p, v). At the same time,

100 = [ cle) dr (@) = [ el duto)+ [ 1) dviy)
axQ Q Q
and thus J.(v*) < oo since p, v € M.(Q).

In order to prove that the infimum is achieved, we will first prove that Admr(u, v/)
is compact with respect to a certain notion of convergence. Let K be any compact
subset of @ x Q\T' x I'. Since I' x I and K are compact, we have d(K,T' x I') > 0.
Then there exists a compact subset K of Q\T such that K ¢ (K xQ)U(QxK). Since
I" is compact and (1.1) holds, there is an g9 > 0 such that inf__z c(z,T') > . And
thus p(K) < +oo since p € M(Q). Similarly, we have v(K) < +oco. Therefore, if
v € Admr(p, v), we have

YK) < u(K) + v(K) < oo.

Since pu(K) + v(K) is independent of v, it follows that, given a sequence {7,} in
Admr(p, v), there is a subsequence 7, and a measure v in 2 x Q2 such that v, — 7,
with the convergence being in the following sense:

(1.4)

| @ y) dy(wy) = lim | ¢(wy) dum(z,y), € CoQxQ\I xT).
OxQ 00 JOxQ

Q6
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Now we must show that v € Admr(u,v). Observe that for each n
Yo € Admp(p, v) =
m{(z,y) [ d(z,T) > 7 ord(y,I') > r}) < p({d(e, ) > r}) +v({d(z,T) > r}),

so from the assumptions on p and v (Definition A.2) it follows that the right-hand
side goes to 0 as r — oo with a rate depending only on y and v (note that when € is
compact, this last assertion holds trivially). From this estimate and the convergence
in (1.4) it is not hard to see that

@) dy(z,y) = lim | ¢(z) dym,(2,y) Vo€ Co(Q\T);
QOxQ = JaxQ
a similar statement holds for functions of y with support away from I'. In particular,
[ s drey) = [ o due). [ wle) drle) = [ () dvlo)
axa Q axa Q

which shows that v € Admr(g,v). In conclusion, the set of admissible cou-
plings Admr(u, ) is sequentially compact with respect to the notion of convergence
in (1.4).

Let 7, be a minimizing sequence in Admr(u, v), that is, a sequence such that
Je(vn) — inf J. as n — oco. At the same time, let ¢, be a monotone increasing
sequence of continuous functions with compact support in © x Q\ I x I and such
that c(z,y) — c(z,y) locally uniformly in @ x Q\I'xI". Using a diagonal argument,
there exist a subsequence, still denoted by 7,,, and v, € Admp(p,v) such that for
every fixed k

lim [ cp(z,y) dyn(z,y) = L _ce(@,y) dys(z,y).
N0 Jaxa QxQ
Now, by the monotonicity of the ¢, we have
Je(s) = /, _c(@,y) dyu(@,y) = sup Je, (1),
QxQ k
while for any k we have
_ g < 1 _ . .
o) = lim | _en(wy) dun(ey) < lm J(on) = inf - J(7)

This proves that v, achieves the minimum value of J. among all admissible plans.
O

We now characterize minimizers for Problem A.4 using c-concave functions and
c-cyclical monotonicity.

Definition A.6. For a function ¢ : Q — RU{#00} with ¢ # —oo for at least some
x, its c-transform ¢° : @ — R U {—oc} is the function given by

¢°(y) = Inf {c(z,y) — $(x)}.
A function ¢ is said to be c-concave if there is some 1 such that
¢ =°.
If ¢ and v are two c-concave functions such that ¢ = ¢ and 1 = ¢¢, then we say

they are c-conjugate to one another. Just the same, we talk about c¢-transforms
and ¢-concave functions.
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Remark A.7. Since the cost is assumed to be continuous, it follows that ¢ is the
infimum of a family of continuous functions of y ({y — c(z,y)—¢()}.), accordingly,
¢° is upper semicontinuous. In particular, if (¢, 1) is a c-conjugate pair, then both
¢ and 1 are upper semicontinuous functions.

Remark A.8. Suppose that (¢,1) are c-conjugate. Then for every x and y we have
p(x) +P(y) < c(z,y).

The set of pairs (x,y) for which we have equality will be important in what
follows.

Definition A.9. Let ¢ be a c-concave function, and let ©» = ¢“. The c-subdifferential
of ¢, denoted by 0°¢, is defined as the set of pairs (z,y) such that

o(x) +9(y) = c(z,y).
Moreover, for each = we define 0°¢(x) to be the set of all y such that (z,y) € 9°¢.
We define 9°¢ and 9°(z) for a é-concave ¢ in the same manner.

Definition A.10. A subset of Q x € is said to be c-cyclically monotone if, given
a finite sequence {(x;,y;)}", and any permutation o, we have

C(xiv yz) < Z C(xia yo(L))
i=1 i=1

If ¢ is replaced by ¢, we have ¢-cyclical monotonicity.

The following proposition is a (minor) modification of a well-known convex anal-
ysis result of Rockafellar (previously extended for c-concave functions). This mod-
ification pertains the set I' and the costs ¢(x,y) and é(x,y).

Proposition A.11. Let v be a measure concentrated on K and such that spt(vy) U
I' x T is ¢-cyclically monotone. Then there are c-conjugate functions ¢ and v such
that

o=1v=0 onI'
and

spt(y) C 9.

Proof. This follows from standard optimal transport theory. Indeed, as shown
in [4, proof of Theorem 1.13, (ii) = (iii)], since spt(y)UI'xT"is é-cyclically monotone,
there must be a ¢-concave function ¢ such that

spt(7) UT x I € 9%.
Since any pair (x,7) € I' x ' belongs to 0°¢, it follows that

¢(x) +¢°(y) = é(z,y) =0 Va,yel.
We emphasize that the above holds for any two points z and y in I', which in
particular means that ¢ and ¢¢ are constant on I'. Adding a constant to ¢, we can
assume without loss of generality that ¢ = 0 on I', which in turn guarantees that
¢¢ =0 on I as well.
We claim that 9°¢ N K C 9°¢. Indeed, if (zo,y0) € K is such that yo € 9%¢(x),
then

o(x) < é(w,y0) — ¢°(yo) < (@, y0) — ¢°(yo)
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since é(z,y) < c¢(z,y) for all  and y. Since (xg,y0) € K, we have ¢(xg,y0) =
C('/L‘Ovyo)a S0

(o) = &(x,y0) — ¢°(yo) = c(z,y0) — ¢°(yo)-

It follows from this that (zo,yo) € 9°¢(x), and the claim is proved. The same
argument also shows that if y € T', then ¢°(y) = ¢°(y) = 0. Since ¢ was chosen so
that spt(y) C 9°¢ and ~ is supported in K, it follows that spt(y) C 9°¢. Therefore,
¢ and ¢° are the desired c-conjugate functions. O

As in the usual optimal transport problem, a basic tool for the analysis of Prob-
lem A.4 is a dual problem. This problem deals with a family of admissible pairs of
functions,

Adm® := {(¢, ¥) | ¢ € LY (u) and o € L (v),
¢ and v are upper semicontinuous,
o=1v=0onT,

and ¢(z) + ¥(y) < c(x,y) in Q x ﬁ}
We now can state the problem dual to Problem (A.12).

(1.5)

Problem A.12. Among all pairs (¢,v) € Adm®, find one that maximizes the
functional

ﬁwww=é¢wdmw+ﬁywwmw

The characterization of minimizers in Problem A.4 and maximizers for Prob-
lem A.12 is the content of Theorem A.13 and Lemma A.14. In the proof we will
make use of Proposition A.11, together with the characterization of optimizers for
the usual optimal transportation problem [4, Theorem 1.13].

Theorem A.13. Let v € Admr(u,v) for two measures p,v € M (). Then v is
a minimizer for Problem A.4 if and only if v is concentrated on the set K defined
in (1.3), and spt(y) UT X T' is a ¢-cyclically monotone set.

Proof. Assume first that v € Admp(u,v) is optimal. Consider 4, the plan given
by ¥ = Ygxa\rxr: where 4 is defined as
g = Mk + (m, Po Wl)# (I\”ﬁxﬁ\n) +(Po WQ’WQ)# (Py‘ﬁxﬁ\)c) ;

here P is as in (1.2). What the plan 4 is meant to do is to adjust the original plan
~ by shifting the transport of some of the mass so that it is sent to I' whenever it
is advantageous to do so (and only for points (x,y) outside of K). The coupling ¥
comes from taking 4 and discarding any potential mass I" x I'; this makes sure we
have an admissible coupling. Therefore, ¥ € Admr(p, ). Moreover, we have the
formula

[ _cla,y) dy(z,y) = / c(x, y)dy(z,y) + /, _ e, 1) + e y)] dy (2, y).-
axq K axa\k
From the definition of K we have ¢(x,y) > c¢(x,I') + ¢(T', y) outside of K; thus

ﬁ,[@ﬂ+ﬂ@MW@sﬁ,(mwwmw
AxO\K AxO\K
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It follows that

[ ctwn) dion) < [ cloy) dita)
QxQ QxQ
with strict inequality if and only if v(Q x Q \ K) > 0. By the optimality of v we
then conclude that v(Q x Q\ K) = 0; that is, 7 is supported in K.

Now we must show that spt(y) UT x T is é-monotone. We deal first with the
case where v has finite mass. In this instance, let us write

(1.6) o= Tr;gy, V= ﬂ'i*y.

Then, as fi and 7 are the marginals of y (in all of ), they must have the same total
mass which is finite since v has finite mass. Let 9 denote the optimal transport
plan between i and 7 according to ¢, and let 4y be constructed from -y in the
same way as 4 was constructed from v (first, by pushing parts of its mass to the
boundary as done above, yielding a measure 4, and then restricting to QxQ\I'xT").
Since g = 1 and Vg = Vv, we have 4o being a measure in Admr(u,v), and as
argued above for v and 7, if 7y were not supported in IC, then 79 would be a better
coupling. This shows that ¢ = ¢ v-a.e. and 7p-a.e., and thus

Je(v) = Je(v),  Je(v0) = Je(r0)-
Combining these identities with the optimality of v and vy yields the inequalities

‘]E(ﬂ)/) > JE(VO) = JC("YO) > JC(PYO|§><§\F><F) > Jc(’)/)

(we used the facts that Yo;g.q\rxr € Admr(u,v) and that c(z,y) = 0), and we
conclude that

Jz(v0) = Jz (7).

Thus ~ is an optimal plan for the usual transport problem with cost ¢. By optimal
transport theory, the support set spt(y) is ¢-cyclically monotone. To prove that
spt(y) UT x T is still é-cyclically monotone, simply note that if g is any measure
supported in ' x T, then v 4 79 may not belong to Admr(u, ), but arguing as
above, we can show that it is optimal for the standard optimal transport problem
with cost ¢ and marginals w# (v+70) and 7@(7—&—70). This shows that spt(y+7) =
spt(y) UT x T is é-cyclically monotone.

This covers the case where « has finite mass. For the general case we argue
just as in [13, Proposition 2.3]: that the one property from the classical optimal
transport problem that we needed was that if the support of v is not ¢-cyclically
monotone, then + cannot be optimal with respect to ¢. It is worth noting that
that even if i and 7 do not have finite mass, they are still the marginals of v by
definition (1.6), so the set of measures with marginals i and 7 is nonempty, so one
can proceed with the Kantorovich problem as in standard optimal transport theory.
Therefore, the above argument extends to the case of v with infinite mass, and we
conclude that spt(y) UT x I' is é-cyclically monotone in all cases.

Conversely, assume that « is supported in K and that spt(y) UI' x I' is a ¢
cyclically monotone set. Then Proposition A.11 says that there is a function ¢
which is c-concave, such that ¢ and ¢° both vanish on I', and

spt(y) C 9.



40 NESTOR GUILLEN, CHENCHEN MOU, AND ANDRZEJ SWIECH

In particular, this means that ¢(z) + ¢°(y) = c¢(x,y) on spt(y), so

| _cwmy i = [ _jola) + 6w dy(o.).
Q

Qx Q

QxQ

_ /ﬁ | 6(z) dola,y) + / 9°(y) dy(a, ),
(Q\)xQ

Qx(Q\I)
= [ ) dula) + [ 6°(y) du(y).
o\ O\

This suffices to guarantee the optimality of v. Indeed, take any 4 € Admr(u,v);
then

| e din = [ o)+ o) diten

Qx

— [ b@ du(e)+ [ ) diy) = /ﬁ clay) dy(a.9),

O\r O\r
and we conclude that v achieves the minimum value. O

Just as in the usual optimal transport problem, a solution to Problem A.4 cor-
responds to a solution to Problem A.12, and the corresponding values coincide.

Lemma A.14. The problems (A.4) and (A.12) are dual, meaning that

inf J(y) = su J (P, ).
ead () (¢7w)£dmc (¢,9)

Proof. Tf (¢,1) € Adm®, then ¢(z) + ¢ (y) < ¢(x,y) for all z and y, and p = =0
on I'. Therefore, for any v € Admyr(u, ) we have

[ ey i)z [ o)+ o) drtay)
Q QxQ

Qx

= o(x) dp(x) + Y(y) dv(y)

a\r O\r
= [ o) duta) + [ w00) o).
a Q

Since (¢, 1) € Adm® and v € Admr(p, v) were arbitrary, it follows that

an it | ceparenz sw [ oduw)+ [va).
yEAdmr (1,v) JOxQ (¢,1p)EAdm® Q Q

The reverse inequality follows from Theorem A.13. To see why, let 7 € Admp(u, v)
be the minimizer. Then the theorem says that spt(vy)UT x I is é-cyclically mono-
tone, and its support is contained in K, in which case Proposition A.11 says that
there are functions ¢ and ¢ which are c-conjugate, vanish on I', and are such that
o(z) +Y(y) = e(x,y) for y-a.e. (z,y). The functions ¢, have a couple of extra
properties. First, since ¢(y) = 0 for y € ', we have ¢(z) < ¢(z,y) for every y € T,
and taking the infimum in y, it follows that

o(x) < c(z,T) Ve el
Likewise, it follows that 1(y) < ¢(y,I") for every y € I". This implies that
(1.8) max{¢p,0} € L*(u), max{1,0} € L*(v).
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In particular, the integrals [ ¢(x)du(x) and [5v(y)dv(y) are well defined. Second,
using that ¢(z) + ¥ (y) = c(z, y) for 7 a.e. (x,y), that ¢ =19 =0onT, and that
~v € Admr(p, v), it follows that

/¢ ) du(x (/w ) = [ @) du@)+ [ ) doiy)

Q\r a\r

:/Lgmw+w@nmwﬂ>

Qx
=Lfmmmmw
QxO

Since this last integral is finite, it follows that [5¢(2z)du(z) and [5v(y)dv(y) are
finite, and in light of (1.8) it follows that ¢ € L'(u) and ¢ € L'(v). ThlS shows
that (¢,%) € Adm®, and this yields the reverse inequality of (1.7), proving the
lemma. ]

The following lemma is a minor modification of [13, Lemma 2.1], and we omit
its proof. The lemma itself is a variant of a standard lemma in optimal transport
theory [5, Lemma 5.3.2]. We recall that, below, M,(Q) := M_.(Q) for c(z,y) =
|z —ylP.

Lemma A.15. Let p > 1, and consider measures p1, ji2, 3 € M,(Q), 72

¥2 e
Admr(py, po), and v** € Admr(us, u3). Then there is a Borel measure in QxQx(Q,

denoted v*23, whose 2-marginals satisfy
(1.9) 7r127123 — 12 02 72y 2 o2
where o' and 0?3 are measures concentrated on the set {(xz,z) | * € T'}, and

12(

m'2(21, 0, 23) = (x17$2)>772’3(x17x27$3) = (z2,23).

We can now prove that dp, (p, v) is a metric in M, ().

Theorem A.16. The quantity

P
d A, V) = inf / xr — pd X )
]L"( ) yeEAdmr (p,v) ( aOxQ | l fy y)

defines a metric in M,(Q).

Proof. 1t is clear that dy,, (u,v) = di, (v, ) and that dp, (@, v) > 0 for all 4 and v.
Moreover, if dp, (¢, v) = 0, it means that there is some v € Admr(u, ) such that

0= [ o=l dy(eag) = spt(a) € (@) € X T o =),
X
This implies that for any ¢ € CO(Q\ ') we have

() du(z) = [ o(x) dy(z,y)= | _o(y) dy(z,y) = 5\Fszﬁ(y) dv(y);

O\r axQ axQ
in other words, u = v. It remains to prove the triangle inequality. Consider
measures fi1, fo, 13 in M,(Q), and let the measures v'2 € Admp(ug,pu2) and
7?3 € Admr (9, pu3) be optimizers for the respective problems. Then Lemma A.15
guarantees that there is a measure v'?3 satisfying (1.9).

It will be convenient to denote an element Q x Q x Q as (21,29, 73). At the
same time, the “coordinates” x1, s, z3 define three functions Q x Q x Q — Q c R4
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With this in mind, we note that the function |z; — 2:5|P is independent of zo, so
(denoting 7'3(z1, z2, x3) = (1, 23))

dp, (p1, p3)? < /7 oy —asl? dﬁgl&,é37123($1,3?3)
(1.10) a6

:/, _ 7|991*$3|p d7123($1,$2,$3)
(9239539

On the other hand, applying Minkowski’s inequality to LP(Q x Q x Q, dv'?3) for
the functions 1 — x5 and x5 — x3, we have

1
P
(/ |z1 — z3|P d’yl23($1,$27$3)>
axQ
< (/ |z — aof? d7123($17$27$3)>
QxQ

123 ’
+ </ |wo — as|P dy (:cl,xQ,x3)) .
QxQ

Then, using the optimality of y'2 as well as (1.9),

/7 _|m = xof? d’7123(f1,$2,$3) :/7 |z = @f? d(’712+012)(9€17$2)
Qx QxQ

1
3

= L o = @oP(zr, @0) dy'? = du, (pa, p2)?,
QxQ

where the second to last inequality used the fact that o'? is supported on the
diagonal so that o'2-a.e. we have |z1 — x| = 0. Just the same, we can see that

‘/7 o |£L’2 - x3|p d’yl23(1’1,m2a CC3) = d]Lp(;U'QHUG)p'
QxQ

Then, recalling (1.10), we conclude that

du, (1, p3) < duy, (p1, p2) + d, (2, 13),
which finishes the proof that dy, (i, v) is a metric. O

Proof of Proposition 3.8. For any v € Adm(u, v) (recall that now I' = {0}) we have

Blwdu(w)— Blde(y) =/Spt(w)xkdw(w) dw(w,y)—/ Y(y) dy(z,y)

R xspt(e))
- /A W) — ()] dy(ay),

where Ay := (spt(¥) x R?) U (R? x spt(¢)). Then

¥ du(e) - deu@)\s [ 1@~ vl )< [ sk~ ol drte. ).

Aw

B,

Since spt(¢) is a positive distance away from T', for any admissible v we have
v(Ay) < p(spt(y)) + v(spt(y)) < +oo. Thus, by Holder’s inequality,

P

wdu—/&wv

By

< WLy (Ay) T (/A |z —yl” dv(w;))
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Taking infimum over all v € Adm(pu, v), we thus obtain

for
for

—1

< (u(spt(v)) + v(spt(®) T Wluipde, (1,v). O

Bl@/}du/}glwdy
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Q1: The complete article title is too long to serve as a running head in TRAN.
As a default, “Coupling Lévy measures and comparison principles” was chosen as a suitable-length
version of the title for the running head. Should you wish to use another truncated version of the
title for your running, please submit one that consists of fewer than 50 characters. (Please include
spaces in your character count.)

Q2: The acronym “PDE” was replaced by its definition, in accordance with
TRAN style guidelines, as the acronym appeared only once in the text. Please ensure that the
acronym was properly defined as “partial differential equation”.

Q3: 2010 Mathematics Subject Classification numbers must be identified as
“Primary” or “Secondary” ones. As a default, all of your 2010 MSC numbers have been designated
as Primary ones. Please advise if any of these numbers should be designated as Secondary ones.

Q4: There was an unmatched right parentheses on the first line of the unnum-
bered display equation in the sentence beginning “Using the special form”. Please ensure that the
removal of this right parentheses conveys your intended meaning.

Q5: Please note that AMS style allows only one use of quotation marks or italics
for the emphasis of a given term per paper. When quotation marks or italics were used multiple
times for the same term in this paper, only the first mention was set in quotation marks or italics.

Q6: The abbreviation “cf.” is taken to mean “compare to” in TRAN papers.
Please review your use of this abbreviation in the sentence beginning “The proof is essentially”,
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