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ABSTRACT

We consider the following basic inference problem: there is an un-

known high-dimensional vector𝑤 ∈ R𝑛 , and an algorithm is given

access to labeled pairs (𝑥,𝑦) where 𝑥 ∈ R𝑛 is a measurement and

𝑦 = 𝑤 · 𝑥 + noise. What is the complexity of deciding whether the

target vector𝑤 is (approximately) 𝑘-sparse? The recovery analogue

of this problem Ð given the promise that𝑤 is sparse, find or approx-

imate the vector𝑤 Ð is the famous sparse recovery problem, with

a rich body of work in signal processing, statistics, and computer

science.

We study the decision version of this problem (i.e. deciding

whether the unknown 𝑤 is 𝑘-sparse) from the vantage point of

property testing. Our focus is on answering the following high-level

question: when is it possible to efficiently test whether the unknown

target vector𝑤 is sparse versus far-from-sparse using a number of

samples which is completely independent of the dimension 𝑛? We

consider the natural setting in which 𝑥 is drawn from an i.i.d. prod-

uct distribution D over R𝑛 and the noise process is independent of

the input 𝑥 . As our main result, we give a general algorithm which

solves the above-described testing problem using a number of sam-

ples which is completely independent of the ambient dimension

𝑛, as long as D is not a Gaussian. In fact, our algorithm is fully

noise tolerant, in the sense that for an arbitrary𝑤 , it approximately

computes the distance of𝑤 to the closest 𝑘-sparse vector. To com-

plement this algorithmic result, we show that weakening any of our

conditions makes it information-theoretically impossible for any

algorithm to solve the testing problem with fewer than essentially

log𝑛 samples. Thus our conditions essentially characterize when it

is possible to test noisy linear functions for sparsity with constant

sample complexity.

Our algorithmic approach is based on relating the cumulants of

the output distribution (i.e. of 𝑦) with elementary power sum sym-

metric polynomials in𝑤 and using the latter to measure the sparsity

of𝑤 . This approach crucially relies on a theorem of Marcinkiewicz

from probability theory. In fact, to obtain effective sample com-

plexity bounds with our approach, we prove a new finitary version
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of Marcinkiewicz’s theorem. This involves extending the complex

analytic arguments used in the original proof with results about

the distribution of zeros of entire functions.
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1 INTRODUCTION

This paper addresses a basic data analysis problem from the per-

spective of property testing. To motivate our work, we begin by

considering the following simple and fundamental inference prob-

lem: For independent uniform strings 𝒙 ∼ {−1, 1}𝑛 and Gaussian

noise 𝜼 ∼ 𝑁 (0, 0.1), an algorithm gets access to labeled samples of

the form (𝒙,𝒚) where𝒚 = 𝑤 ·𝒙+𝜼 and𝑤 is some fixed but unknown

unit vector in R𝑛 . The task of recovering𝑤 from these noisy sam-

ples is an instance of the standard linear regression problem, which

is of course very well studied in computer science, econometrics,

and statistics (see e.g. [23, 28] or many other references). As is well

known, Θ(𝑛) samples are both necessary and sufficient to recover

𝑤 (to within a small constant error), and the ordinary least squares

algorithm is a computationally efficient algorithm which achieves

this sample complexity.

Now suppose that the algorithm is promised that𝑤 is 𝑘-sparse,

i.e. it has only 𝑘 non-zero entries. In this case, the influential line

of work on compressive sensing shows that much better sample

complexities and running times can be achieved. In particular, the

breakthrough work of Candes, Romberg and Tao [17] shows that

using just𝑚 = 𝑂 (𝑘 log𝑛) samples and running in time poly(𝑚,𝑛),
it is possible to (approximately) recover the 𝑘-sparse vector𝑤 . Ob-

serve that when 𝑘 is small (like a constant), this is an exponential

improvement over the sample complexity achieved by standard

linear regression. We further note that by results such as [1, 37], the

bound of 𝑂 (𝑘 log𝑛) samples is essentially tight, and that compres-

sive sensing algorithms are applicable for more general choices of

the distribution of 𝒙 and the noise𝜼 (see the survey by Candes [14]).

In this paper we consider a natural decision analogue of the

above problem: the algorithm has access to the same type of (𝒙,𝒚 =
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𝑤 · 𝒙 + 𝜼) samples as above, but it is not promised that the target

vector 𝑤 is 𝑘-sparse. Rather, the task of the algorithm now is to

distinguish between the cases that (i) the target vector𝑤 is 𝑘-sparse,

versus (ii) the target vector 𝑤 is 𝜀-far from every 𝑘-sparse vector

𝑤 ′ (for some appropriate notion of łfar"). Using algorithms from

compressive sensing, it is straightforward to obtain an algorithm

with 𝑚 = 𝑂 (𝑘 log𝑛) sample complexity and poly(𝑚,𝑛) runtime.

But can one do much better? In particular, it is a priori conceivable

that there is an algorithm for this decision problem1 with sample

complexity completely independent of the ambient dimension 𝑛. Do

such łultra-efficientž algorithms in fact exist?

As a corollary of our main algorithmic result, we give an affir-

mative answer to this question. Our result implies that in the above

setting, it is indeed possible to distinguish between𝑤 which (i) is

𝑘-sparse, versus (ii) is 𝜀-far in ℓ2 distance from all 𝑘-sparse vectors

𝑤 ′, with an𝑚 = 𝑂𝑘,𝜀 (1) sample complexity that is completely in-

dependent of 𝑛. In fact, we achieve much more: our algorithm can

handle a broad range of distributions of 𝒙 , and in essentially the

same sample complexity we can approximate the distance from𝑤

to the closest 𝑘-sparse vector. Thus we can essentially determine

the łfit" of the best 𝑘-sparse vector using only𝑚 = 𝑂𝑘,𝜀 (1) samples.

Moreover, the running time of our algorithm is poly(𝑚) if it is
allowed to skip the reading of 𝒙 in every sample.

1.1 Motivation: Property Testing

Before describing our main results in more detail, we recall a line of

work on property testing of functions which strongly motivates our

study. In the standard property testing framework, an algorithm

is given access to an unknown function 𝑓 via an oracle O. For a
property P of functions, the goal of a property testing algorithm

for P is to make as few queries to O as possible and distinguish

(with success probability, say, 9/10) between the cases that (i) the

function 𝑓 has the property P, versus (ii) the function 𝑓 is at least

𝜀-far in Hamming distance from every function 𝑔 with property P.

As a well-known example of this framework, the seminal work of

[10] showed that when P is the property of being GF(2)-linear, 𝑓
is any function from GF𝑛 (2) to GF(2), and the oracle O is a black-

box oracle for 𝑓 , then there is an algorithm with query complexity

𝑂 (1/𝜀). We refer the reader to books and surveys such as [25, 26,

38, 39] which give an overview of the nearly three decades of work

in this area.

An often-sought-after łgold standard" for property testing al-

gorithms, that can (perhaps surprisingly) be achieved for many

problems, is an algorithm with constant query complexity, i.e. a

query complexity that only depends on the error parameter 𝜀 and

is completely independent of the ambient dimension 𝑛. This, for

example, is the case with GF(2)-linearity testing [10], low-degree

testing [24], junta testing [20], and other problems. Indeed, there

are grand conjectures (and partial results towards them) which seek

to characterize all such properties P which can be tested with a

constant number of queries to a black-box oracle (see e.g. [5, 6, 30]).

In this spirit, we explore the question of whether (and when),

given noisy labeled samples of the form (𝒙,𝒚) where 𝒚 = 𝑤 · 𝒙 + 𝜼,
we can test 𝑘-sparsity of 𝑤 with a number of samples that only

1This is in contrast with the recovery problem, as shown by lower bounds such as
[1, 37] mentioned above.

depends on 𝑘 and 𝜀, and is independent of 𝑛. Before describing our

precise model, we point out an important difference between our

model and much work on property testing. In the standard model of

property testing of functions described above, it is usually assumed

that the algorithm can make black-box queries to the unknown

function; in contrast, in our model, the algorithm only has łpas-

sivež access to random samples. Obtaining dimension-independent

guarantees when given only sample access can be quite challeng-

ing; for example, the sample complexity of testing GF(2) linearity
in this model is Θ(𝑛) samples [27] whereas as stated above only

𝑂 (1/𝜀) queries are required by the [10] result. We refer the reader

to [18, 27, 31] for some property testing results in the łsample-basedž

model.

1.2 The ProblemWe Consider

In order to describe the algorithmic problem that we consider in

more detail, let us define the notion of distance to 𝑘-sparsity. Given

a nonzero vector𝑤 ∈ R
𝑛 , we define its distance to 𝑘-sparsity to be

dist(𝑤,𝑘-sparse) := min
𝑤′∈R𝑛 : 𝑤′ is 𝑘-sparse

∥𝑤 −𝑤 ′∥2
∥𝑤 ∥2

; (1)

this is equivalent to the fraction of the 2-norm of 𝑤 that comes

from the coordinates that are not among the 𝑘 largest-magnitude

ones. Note that when 𝑤 is a unit vector, then dist(𝑤,𝑘-sparse) is
the same as the ℓ2 distance between 𝑤 and the closest 𝑘-sparse

vector.

Basic model: We are now ready to describe our model. We are

given access to independent labeled examples of the form (𝒙,𝒚)
where 𝒙 ∈ R

𝑛 and 𝒚 ∈ R. In each such labeled example 𝒙 is drawn

from some distribution D over R𝑛 and the label value 𝒚 is a noise-

corrupted version of𝑤 ·𝒙 for some unknown target vector𝑤 ∈ R
𝑛 .

In particular, 𝒚 = 𝑤 · 𝒙 + 𝜼, where 𝜼 is drawn from some noise

distribution (which is independent of 𝒙). The goal is to distinguish

between the following two cases: (i)𝑤 is a 𝑘-sparse vector (meaning

that it has at most 𝑘 nonzero coordinates), versus (ii)𝑤 is 𝜀-far from

being 𝑘-sparse (meaning that dist(𝑤,𝑘-sparse) ≥ 𝜀). Thus, we are
considering a promise problem, or equivalently any output is okay

in the intermediate case in which𝑤 is not 𝑘-sparse but is 𝜀-close to

being 𝑘-sparse. We refer to this problem as (non-robust) 𝑘-sparsity

testing.

Our algorithms will in fact solve a robust version of this problem:

in the same model as above, for any given 𝜀 > 0, our algorithms will

approximate the value of dist(𝑤,𝑘-sparse) to within an additive

±𝜀. We refer to this problem as noise tolerant 𝑘-sparsity testing (see

Parnas, Ron and Rubinfeld [36]); it is immediate that any algorithm

for this noise-tolerant version immediately implies an algorithm

with the same complexity for non-robust 𝑘-sparsity testing. In fact,

while our main algorithmic result is for the noise tolerant problem,

our lower bounds (which we describe later) are for the non-robust

version (which a fortiorimakes them applicable to the noise-tolerant

version).

Our desideratum: constant-sample testability. As is the case for

similar-in-spirit property testing problems such as 𝑘-junta testing

[7, 13, 21], we view 𝑘 as a parameter which is fixed relative to 𝑛,

and our main goal is to obtain a constant-sample tester, i.e. a test-

ing algorithm for which the number of samples used is 𝑂𝑘,𝜀 (1)
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completely independent of 𝑛. As stressed earlier (unlike the junta

testing problem or many other problems studied in Boolean func-

tion property testing), our testing algorithms are not allowed to

łactivelyž make queries Ð their only source of information about𝑤

is access to the i.i.d. samples (𝒙,𝒚) that are generated as described

above.

1.3 Our Algorithmic Results

Informally speaking, our main positive result says that for a broad

class of input distributions D, if the parameters of the noise are

provided then there is a testing algorithm with 𝑂𝑘,𝜀 (1) sample

complexity independent of 𝑛. Here is a qualitative statement of

our main result (Theorem 5.1 gives a more precise version). We

start with a description of the algorithmic guarantee for non-robust

𝑘-sparsity testing.

Theorem 1.1 (Qualitative statement of main result). Fix

any random variable 𝑿 overR which has variance 1, finite moments

of every order2, and is not Gaussian (i.e. its total variation distance

from every Gaussian is nonzero). For any 𝑛, let D be the product

distribution over R𝑛 whose marginals are each distributed according

to 𝑿 , i.e. D ≡ 𝑿𝑛 . Let 𝜼 be a random variable corresponding to a

noise distribution overR which is such that all its moments are finite.

Then there is an algorithm (depending on D and 𝜼) with the fol-

lowing property: for any𝑤 ∈ R
𝑛 with3 1/𝐶 ≤ ∥𝑤 ∥2 ≤ 𝐶 , given 𝑘, 𝜀,

and access to independent samples (𝒙,𝒚 = 𝑤 · 𝒙 + 𝜼) where each
𝒙 ∼ D,

• if𝑤 is 𝑘-sparse then with probability 9/10 the algorithm out-

puts ł𝑘-sparsež; and

• if 𝑤 is 𝜀-far from 𝑘-sparse then with probability 9/10 the

algorithm outputs łfar from 𝑘-sparse.ž

The number𝑚 of samples used by the algorithm depends only on

𝐶, 𝑘, 𝜀,𝑿 and 𝜼; in particular, it is independent of 𝑛. We will refer to

such an algorithm as an 𝜀-tester for 𝑘-sparsity under D and 𝜼 with

sample complexity𝑚.

Tolerant testing: As mentioned earlier, our algorithmic guaran-

tees are in fact, much stronger. Namely, under the same conditions

onD and 𝜼 as above, the algorithm in Theorem 1.1, with high prob-

ability, in fact computes dist(𝑤,𝑘-sparse) to an additive ±𝜀. Thus
for D and 𝜼 as above, this shows that noise tolerant 𝑘-sparsity

testing can be done with a constant number of samples.

Remark 1.2 (Explicit bounds and sharper quantitative bounds for

łbenignž distributions). Theorem 1.1 shows that for every non-

Gaussian random variable 𝑿 the corresponding testing problem

has a constant-sample algorithm, but it does not give a uniform

upper bound on sample complexity that holds for all non-Gaussian

distributions. (Indeed, no such uniform upper bound on sample

complexity can exist; see Remark 2.2 for an elaboration of this

point.) However, if the background random variable 𝑿 is supported

on a bounded set, say [−B,B], then it is in fact possible to get an

explicit uniform upper bound on the sample complexity (which

2It will be clear from our proofs that having finite moments of all orders is a stronger
condition than our algorithm actually requires; we state this stronger condition here
for simplicity of exposition.
3It may be helpful to think of𝐶 as being a large absolute constant, but we establish
our results for general𝐶 .

is a tower of height 𝑂 (𝑘)). We do this by proving a new finitary

version of a theorem due to J. Marcinkiewicz [33] from probability

theory. This involves extending the complex analytic arguments

used in the original proof; prior to this work, to the best of our

knowledge no finitary analogue of the Marcinkiewicz theorem was

known [12, 29, 35]. We give this proof in Section 6.

Going beyond Theorem 1.1, we show that for a large class of

łbenignž distributions (which includes the uniform distribution over

[0, 1], any product distribution over {−1, 1}, and many others), a

different and simpler algorithm provides a uniform upper bound

on sample complexity, which is roughly (𝑘/𝜀)𝑂 (𝑘) . (See the full

version for a detailed statement and proof of this result.)

1.4 Lower Bounds: Qualitative Optimality of
Our Algorithmic Results

1.4.1 On the Role of Noise and Its Independence of the Data Points.

We begin by addressing the role of noise in our model. Without

noise corrupting the labels, when the background random variable

𝑿 is continuous, even the recovery problem will admit a simple

algorithm which uses only 𝑘 + 1 samples (see the full version for

an elaboration on this point). Thus, all of our positive results are

for settings in which the labels are corrupted by noise. On the

other hand, some of our lower bounds are for problem variants

in which the labels are noise-free; this of course only makes the

corresponding lower bounds stronger.

Secondly, our model (described in Section 1.2) requires that the

distribution of the noise 𝜼 is independent of the distribution of

𝒙 . It is easy to see that if the noise process corrupting the label 𝒚

of a labeled example (𝒙,𝒚) is allowed to depend on 𝒙 , then it is

possible for the noise to perfectly simulate 𝑘-sparsity when the

target vector is far from 𝑘-sparse or vice versa. In this situation no

algorithm, even with infinite sample complexity, can succeed in

testing 𝑘-sparsity. Thus throughout this work we assume that the

noise 𝜼 in each labeled example is independent of the example 𝒙 .

1.4.2 Necessity of the Conditions in Our Algorithmic Result. There

are three main requirements in the conditions of Theorem 1.1 which

may give pause to the reader. First, the distribution D must be an

i.i.d. product distribution: the 𝑛 coordinate marginal distributions

are not only independent, they are identically distributed accord-

ing to some single univariate random variable 𝑿 . Second, certain

parameters (various cumulants) of the noise distribution must be

provided to the testing algorithm. And finally, the underlying ran-

dom variable 𝑿 is not allowed to be a Gaussian distribution.

While these may seem like restrictive requirements, it turns out

that each one is in fact necessary for constant-sample testability.

We give three different lower bounds which show, roughly speak-

ing, that if any of these requirements is relaxed then finite-sample

testability with no dependence on 𝑛 is information-theoretically

impossible Ð in fact, in each case the testing problem becomes

essentially as difficult as the sparse recovery problem, requiring

Ω̃(log𝑛) samples. In this work, we always use the notation łΩ̃(·)ž
to hide factors polylogarithmic in its argument. So Ω̃(log𝑛) means

Ω( log𝑛
poly(log log𝑛) ).
Our first lower bound shows that even if D is allowed to be a

product distribution in which half the coordinates are one simple
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integer-valued distribution (a Poisson distribution) and the other

half are a different simple integer-valued distribution (a Poisson

distribution with a different parameter), then at least Ω( log𝑛
log log𝑛

)
samples may be required. This lower bound holds even if no noise

is allowed. The proof is given in the full version:

Theorem 1.3 (D must be i.i.d.). LetD be the product distribution

(Poi(1))𝑛/2 × (Poi(100))𝑛/2. Then even if there is no noise (i.e. the

noise distribution 𝜼 is identically zero), any algorithm which is an

(𝜀 = 0.99)-tester for 1-sparsity underD must have sample complexity

𝑚 = Ω( log𝑛
log log𝑛

).

Our second lower bound shows that even if only two łknownž

possibilities are allowed for the noise distribution, then forD = 𝑿𝑛

where 𝑿 is a simple łknownž integer-valued underlying univariate

random variable, at leastΩ( log𝑛
log log𝑛

)many samplesmay be required.

The proof is given in the full version:

Theorem 1.4 (The noise distribution 𝜼 must be known).

Let D be the i.i.d. product distribution D = (Poi(1))𝑛 . Suppose
that the noise distribution 𝜼 is unknown to the testing algorithm but

is promised to be either Poi(1) or Poi(100). Then any (𝜀 = 0.99)-
tester for 1-sparsity under D and the unknown noise distribution 𝜼 ∈
{Poi(1), Poi(100)} must have sample complexity𝑚 = Ω( log𝑛

log log𝑛
).

Finally, our third (and most technically involved) lower bound

says that if the underlying univariate random variable 𝑿 is allowed

to be a Gaussian, then even if the noise is Gaussian at least Ω(log𝑛)
samples are required. The proof is given in the full version:

Theorem 1.5 (D cannot be a Gaussian). LetD be the standard

𝑁 (0, 1)𝑛 𝑛-dimensional Gaussian distribution and let 𝜼 be distributed

as 𝑁 (0, 𝑐2) where 𝑐 > 0 is any constant. Then the sample complexity

of any (𝜀 = 0.99)-tester for 1-sparsity under D and 𝜼 is Ω(log𝑛) .

1.5 Related Work

We view this paper as lying at the confluence of several strands

of research in theoretical computer science. As mentioned earlier,

a strong motivation for our algorithmic desiderata comes from

property testing. In particular, our 𝑘-sparsity testing question is in

some sense akin to the well-studied problem of junta testing, i.e.,

distinguishing between functions 𝑓 : {±1}𝑛 → {±1} which depend

on at most 𝑘 coordinates versus those which are 𝜀-far from every

such function. There is a very rich line of work on junta testing,

see e.g. [7ś9, 13, 19, 22] and other works. However, we note that all

these papers (and other junta testing papers of which we are aware)

assume query access to the unknown function 𝑓 , whereas in our

work we only assume a much weaker form of access, namely noisy

labeled random samples. Some other relevant works in the property

testing literature are the aforementioned works [18, 27, 31] (see also

[2]), which give algorithmc property testing results in the łsample-

basedž model, and [4], which like our work considers testing with

respect to various 𝐿𝑝 distances, including the 𝐿2 distance (similar

to our work).

A second strand of work is from compressive sensing. Here

the results of [17] and related works such as [15, 16] (as well as

many other papers) give computationally efficient algorithms to

(approximately) recover a sparse vector 𝑤 given labeled samples

of the form {(𝒙 (𝑖) ,𝑤 · 𝒙 (𝑖) + 𝜼)}𝑇𝑖=1 with sample complexity 𝑇 =

𝑂 (𝑘 log𝑛). On one hand, such a sample complexity does not meet

our core algorithmic desideratum of being independent of 𝑛. On

the other hand, the algorithmic guarantee in [17] holds as long as

the matrix formed by 𝒙 (1) , . . . , 𝒙 (𝑇 ) satisfies the so-called restricted
isometry property (see [14] for more details), which is a significantly

more general condition than ours. It is natural to wonder if an

analogue of Theorem 1.1 can be obtained if D satisfies the weaker

condition of being such that randomly drawn samples from D
satisfy the restricted isometry property with high probability. The

answer to this question is negative; in particular, Theorem 1.3 gives

an example of a distribution D for which Ω̃(log𝑛) samples are

necessary for testing 𝑘-sparsity, but it is easy to show that randomly

drawn samples from this distribution satisfy the restricted isometry

property with high probability.

Finally, another related line of work is given by Kong and

Valiant [32], who considered a setting in which an algorithm gets

labeled samples of the form (𝒙,𝒚 = 𝑤 · 𝒙 + 𝜼), where 𝜼 is an un-

known distribution independent of 𝒙 and𝑤 is a general (non-sparse)

𝑛-dimensional vector. The task of the algorithm is to estimate the

variance of 𝜼 or equivalently, ∥𝑤 ∥2; they view such a result as esti-

mating how much of the data, i.e., 𝒚, is explained by the linear part

𝑤 · 𝒙 . While learning 𝑤 itself requires Θ(𝑛) samples (essentially

the same as linear regression), their main result is that ∥𝑤 ∥2 can be

estimated with a sublinear number of samples. In particular, if the

distribution of 𝒙 is isotropic, then the sample complexity required

for this is only 𝑂 (
√
𝑛). In light of Theorem 1.1 and the results of

[32], it is natural to ask whether there is a non-trivial estimator

for noise in our setting when the target vector𝑤 is assumed to be

𝑘-sparse. However, Theorem 1.4 essentially answers this in the neg-

ative, showing that if the magnitude of the noise is unknown, then

any estimator must require Ω̃(log𝑛) samples even for 1-linearity

testing. On the other hand, 𝑂 (log𝑛) samples suffice for recovering

the target 𝑤 (and hence the magnitude of the noise) when 𝑘 is a

constant.

2 OUR TECHNIQUES AND A DETAILED
OVERVIEW OF OUR RESULTS

2.1 Our Algorithmic Techniques: Analysis
Based on Cumulants

Both of our algorithms for testing sparsity make essential use of

the cumulants of the one-dimensional coordinate marginal random

variable 𝑿 . For any integer ℓ ≥ 0 and any real random variable

𝑿 , the ℓ-th cumulant of 𝑿 , denoted 𝜅ℓ (𝑿 ), is defined in terms of

the first ℓ moments of 𝑿 , and, like the moments of 𝑿 , it can be

estimated using independent draws from 𝑿 (see Definition 3.1 for

a formal definition of cumulants.) However, cumulants enjoy a

number of attractive properties which are not shared by moments

and which are crucial for our analysis.

There are two key properties, both very simple. First, cumulants

are additive for independent random variables:

If 𝑿 , 𝒀 are independent, then 𝜅ℓ (𝑿 + 𝒀 ) = 𝜅ℓ (𝑿 ) + 𝜅ℓ (𝒀 ).

Second, cumulants are homogeneous:

For all 𝑐 ∈ R, it holds that 𝜅ℓ (𝑐𝑿 ) = 𝑐ℓ · 𝜅ℓ (𝑿 ) .
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We now explain the key idea of why additivity and homogeneity

of cumulants are useful for the algorithmic problem we consider.

These properties directly imply that if a distributionD overR𝑛 has

coordinate marginals that are i.i.d. according to a random variable

𝑿 , then for 𝒙 ∼ D and 𝒚 = 𝑤 · 𝒙 + 𝜼, we have that

𝜅ℓ (𝒚) = 𝜅ℓ (𝜼) + 𝜅ℓ (𝑿 ) ·
𝑛∑
𝑖=1

𝑤 ℓ𝑖 .

It follows that if the ℓ-th cumulants of𝜼 and of𝑿 are known and the

ℓ-th cumulant 𝜅ℓ (𝑿 ) of 𝑿 is not too small, then from an estimate of

𝜅ℓ (𝒚) (which can be obtained from samples) it is possible to obtain

an estimate of the power sum
∑𝑛
𝑖=1𝑤

ℓ
𝑖 . By doing this for 𝑘 suitable

different (even) values of ℓ , provided that the cumulants 𝜅ℓ (𝑿 ) are
not too small, it is possible to estimate the magnitudes of the 𝑘

largest-magnitude coordinates of𝑤 . These estimates can be shown

to yield the desired information about whether or not𝑤 is (close

to) 𝑘-sparse.

The argument sketched in the previous paragraph explains, at

least at an intuitive level, why it is possible to test for 𝑘-sparsity if

the random variable 𝑿 has 𝑘 nonzero cumulants. But why will every

non-Gaussian random variable 𝑿 (as described in Theorem 1.1)

satisfy this property, and why does Theorem 1.1 exclude Gaussian

distributions? The second of these questions has a very simple

answer so we address it first: it is well known that for any normal

distribution 𝑿 ∼ 𝑁 (𝜇, 𝜎2), the first two cumulants are 𝜅1 (𝑿 ) =

𝜇, 𝜅2 (𝑿 ) = 𝜎2, and all other cumulants are zero. It follows that

indeed our algorithmic approach cannot be carried out for normal

distributions.4 The answer to the first question comes from a deep

result in probability theory due to J. Marcinkiewicz:

Theorem 2.1 (Marcinkiewicz’s theorem [11, 33, 34]). If 𝑿 is

a random variable that has a finite number of nonzero cumulants,

then 𝑿 must be a normal random variable (and 𝑿 has at most two

nonzero cumulants).

It follows that if 𝑿 is not a normal distribution, then it must

have infinitely many nonzero cumulants, and hence the algorithmic

approach sketched above can be made to work for testing 𝑘-sparsity

under𝑿𝑛 . Details of the estimation procedure and of the analysis of

the overall general algorithm are provided in Section 4 and Section 5

respectively.

2.2 A Structural Result on Cumulants: Nonzero
Cumulants Cannot Be łSpaced Far Apartž

As described above, our main positive result on testing for spar-

sity under a product distribution 𝑿𝑛 uses a sequence of orders

𝑖1, 𝑖2, . . . , 𝑖𝑘 such that the corresponding cumulants 𝜅𝑖 𝑗 (𝑿 ) are all
nonzero. Since the running time of our algorithm depends di-

rectly on 𝑖𝑘 , it is natural to ask how large is this value. Recall

that Marcinkiewicz’s theorem ensures that for any non-Gaussian

distribution there indeed must exist nonzero cumulants of infin-

itely many orders 𝑖1, 𝑖2, . . . , but it gives no information about how

far apart these orders may need to be. Thus we are motivated to

investigate the following question: given a real random variable 𝑿 ,

4Recall that by our lower bound Theorem 1.5, this is not a failing of our particular
algorithm sketched above but an inherent difficulty in the testing problem. Theorem 1.5
shows that no algorithm can test 𝑘-sparsity with a sample complexity that is 𝑜 (log𝑛)
when the underlying distribution is normal.

how large can the gap in orders be between consecutive nonzero

cumulants? This is a natural question which, prior to our work,

seems to have been completely unexplored.

In Section 6 we give the first result along these lines, by giving

an explicit upper bound on the gap between nonzero cumulants

for random variables with bounded support (see Theorem 6.1). This

theorem establishes that for any real random variable 𝑿 with unit

variance and support bounded in [−B,B], given any positive integer
ℓ there must be a value 𝑗 ∈ [ℓ + 1, (4B)𝑂 (ℓ) ] such that the 𝑗-th

cumulant 𝜅 𝑗 (𝑿 ) has magnitude at least
��𝜅 𝑗 (𝑿 )

�� ≥ 2−(4B)
𝑂 (ℓ )

. Like

the proof of Marcinkiewicz’s theorem, the proof of our Theorem 6.1

uses complex analytic arguments, specifically results about the

distribution of zeros of entire functions, the Hadamard factorization

of entire functions and the Hadamard Three-Circle Theorem.

2.3 A More Efficient Algorithm for łNicež
Distributions

In addition to the general positive result described above, we also

give a refined result, showing that a significantly better sample

complexity can be achieved for distributions which are łnicež in the

sense that they have𝑘+1 consecutive even cumulants𝜅2, 𝜅4, . . . , 𝜅2𝑘+2
that are all (noticeably) nonzero. This is achieved via a different

algorithm; like the previously described general algorithm, it uses

(estimates of) the power sums
∑𝑛
𝑖=1𝑤

ℓ
𝑖 , but it uses these power sums

in a different way, by exploiting some basic properties of symmetric

polynomials. The first 𝑘 + 1 power sums
∑𝑛
𝑖=1𝑤

2
𝑖 ,

∑𝑛
𝑖=1𝑤

4
𝑖 , . . . are

used to estimate the (𝑘 + 1)-st elementary symmetric polynomial∑
1≤𝑖1<𝑖2< · · ·<𝑖𝑘+1≤𝑛𝑤𝑖1𝑤𝑖2 · · ·𝑤𝑖𝑘+1 . The value of this polynomial

will clearly be zero if𝑤 is 𝑘-sparse, and it can be shown that it will

be łnoticeably far from nonzerož if 𝑤 is far from 𝑘-sparse. These

ideas can be converted into a testing algorithm; see the full version

for details.

2.4 Our Lower Bounds and Lower Bound
Techniques

The lower bounds of Theorem 1.3 and Theorem 1.4 both crucially

exploit the well known additivity property of the Poisson distribu-

tion: for 𝑎, 𝑏 > 0, we have that Poi(𝑎) + Poi(𝑏) = Poi(𝑎 + 𝑏). To see

why this is useful for lower bounds, let us explain the high-level

idea that underlies Theorem 1.3. For intuition, first imagine that

rather than receiving pairs (𝒙,𝒚) ∈ R
𝑛 × R, instead the testing

algorithm is only given the output value 𝒚 from each pair. Then by

the additivity of the Poisson distribution, it would be information-

theoretically impossible to distinguish between (i) the case in which

𝒚 is a sum of 100 coordinates each of which is distributed as Poi(1)
(and hence the target vector 𝑤 is 0.99-far from being 1-sparse),

versus (ii) the case in which 𝒚 is a single coordinate distributed as

Poi(100) (and hence the target vector𝑤 is 1-sparse). Of course, in

our actual testing scenario things are not so simple because the

testing algorithm does receive the coordinates 𝒙1, . . . , 𝒙𝑛 of each ex-

ample (𝒙,𝒚) along with the value of 𝒚, and this provides additional

useful information. Our proof establishes that this additional infor-

mation is essentially useless unless Ω̃(log𝑛) samples are provided.

Roughly speaking, this is because with 𝑛/2 coordinates distributed
as Poi(1) and 𝑛/2 coordinates distributed as Poi(100), there are

łtoo many possibilitiesž of each sort ((i) and (ii) above) for the 𝒙’s to
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provide useful distinguishing information until this many samples

have been received.

The lower bound of Theorem 1.4 is based on similar ideas. Now

all 𝑛 coordinates are identically distributed as Poi(1), but the noise
may be distributed either as Poi(1) or as Poi(100). As above, if only
the output values𝒚 = 𝑤 ·𝒙+𝜼were available to the tester, it would be

impossible to distinguish between (i′) the target vector𝑤 is 1-sparse

and the noise is Poi(100), versus (ii′) the target vector is 100-sparse
and the noise is Poi(1), since in both cases the distribution of 𝒚 is

Poi(101). The formal proof is by a reduction to Theorem 1.3.

Finally, we turn to the lower bound of Theorem 1.5, which states

that Ω(log𝑛) samples are required for the testing problem if the

distribution D is 𝑁 (0, 1)𝑛 and the noise distribution 𝜼 is normally

distributed as 𝑁 (0, 𝑐2). The high level idea is that it is difficult

to distinguish between the following two distributions over pairs

(𝒙,𝒚):

• First distribution (no-distribution): in each draw of (𝒙,𝒚)
from the no-distribution, each 𝒙 𝑗 is an independent 𝑁 (0, 1)
random variable, and 𝒚 is an 𝑁 (0, 1 + 𝑐2) normal random

variable which is completely independent of all of the 𝒙 𝑗 ’s;

• Second distribution (yes-distribution): there is a fixed but un-

known uniform random coordinate 𝒊 ∈ [𝑛], and in each draw
of (𝒙,𝒚) from the yes-distribution, each 𝒙 𝑗 is an independent

𝑁 (0, 1) random variable and 𝒚 = 𝒙 𝒊 + 𝑁 (0, 𝑐2).

Similar to the first paragraph of this subsection, since the sum

of a draw from 𝑁 (0, 1) plus an independent draw from 𝑁 (0, 𝑐2) is
a draw from 𝑁 (0, 1 + 𝑐2), if only the output value 𝒚 from each pair

were given to a tester then it would be information-theoretically

impossible to distinguish between the two distributions described

above. And similar to the discussion in that paragraph, the idea that

animates our lower bound proof here is that the additional infor-

mation (the 𝒙1, . . . , 𝒙𝑛-coordinates of each sample) available to the

testing algorithm is essentially useless unless Ω(log𝑛) samples are

provided. As before, roughly speaking, this is because there are łtoo

many possibilitiesž (for which coordinate might be the unknown

hidden 𝒊 ∼ [𝑛] in the second distribution) for the 𝒙-components

of the samples to provide useful distinguishing information until

Ω(log𝑛) many samples have been received. The formal argument

uses Bayes’ rule to analyze the optimal distinguishing algorithm

(corresponding to a maximum likelihood approach) and employs

the Berry-Esseen theorem to make these intuitions precise.

Remark 2.2. We note here that we also give a quantitative re-

finement of Theorem 1.5. Since for a Gaussian random variable

𝑿 all cumulants 𝜅ℓ (𝑿 ), ℓ > 2, are zero, we may informally view

Theorem 1.5 as saying that if the cumulants of 𝑿 are zero then

the number of samples required to test for sparsity under 𝑿𝑛 may

be arbitrarily large (going to infinity as 𝑛 does). This intuitively

suggests that if the cumulants of𝑿 are łsmallž then łmanyž samples

should be required to test for sparsity under 𝑿𝑛 . In the full version

we make this intuition precise: building on Theorem 1.5, we show

(roughly speaking) that if the cumulants of a random variable 𝑿

are at most 𝛾 , then at least 1/𝛾 samples are required for testing

sparsity under 𝑿𝑛 and Gaussian noise. See the full version for a

precise statement and proof.

2.5 Directions for Future Work

Our results suggest a number of directions for future work; we

touch on a few of these below.

Within the sparsity testing framework that this paper consid-

ers, it would be interesting to gain a more quantitatively precise

understanding of the sample complexity required to test sparsity.

A natural specific question here is the following: let 𝑿 be a simple

random variable such as 𝑿 = uniform on {−1, 1} or 𝑿 = uniform

on [0, 1]. For these specific distributions, what is the optimal de-

pendence on 𝑘 for the 𝑘-sparsity testing question that we have

considered? It would be interesting to determine whether or not

an exponential dependence on 𝑘 is required.

Another natural quantitative question arises from our results

in Section 6. Theorem 6.1 implies an explicit łtower-typež upper

bound on the minimum value 𝑖𝑘 such that a random variable 𝑿

as above must have at least 𝑘 nonzero cumulants in {1, . . . , 𝑖𝑘 }.
It would be interesting to obtain sharper quantitative bounds or

bounds that hold under relaxed conditions on the random variable

𝑿 .

Finally, another intriguing potential direction is to look beyond

sparsity and attempt to identify other contexts in which sparsity

is testable with a constant sample complexity independent of 𝑛. A

concrete first goal along these lines is to investigate the sparsity

testing question when (𝒙,𝒚) is distributed as 𝒚 = 𝜙 (𝑤 · 𝒙) + noise

for various natural transfer functions 𝜙 such as the probit function

or the logistic function.

2.6 Notational Conventions

Given a vector 𝑤 ∈ R
𝑛 we write ∥𝑤 ∥ℓ to denote the ℓ-norm of

𝑤 , i.e. ∥𝑤 ∥ℓ =
(∑𝑛

𝑖=1𝑤
ℓ
𝑖

)1/ℓ
. For a nonzero vector𝑤 ∈ R

𝑛 where

𝑛 > 𝑘 , the vector𝑤 ’s distance from being 𝑘-sparse is

dist(𝑤,𝑘-sparse) := min
𝑤′∈R𝑛 : 𝑤′ is 𝑘-sparse

∥𝑤 −𝑤 ′∥2
∥𝑤 ∥2

.

Equivalently, if the entries of 𝑤 are sorted by magnitude so that

|𝑤𝑖1 | ≥ · · · ≥ |𝑤𝑖𝑛 |, the distance of𝑤 from being 𝑘-sparse is√
𝑤2
𝑖𝑘+1

+ · · · +𝑤2
𝑖𝑛

∥𝑤 ∥2
.

For a random variable 𝒁 , we write𝑚ℓ (𝒁 ) to denote its ℓth raw

moment, i.e., E[𝒁 ℓ ].

3 PRELIMINARIES: FACTS ABOUT
CUMULANTS

In this section we recall some basic facts about cumulants which

we will use extensively.

Definition 3.1. The cumulants of 𝑿 are defined by the cumulant

generating function 𝐾 (𝑡), which is the natural logarithm of the

moment generating function𝑀 (𝑡) = E[𝑒𝑡𝑿 ]:

𝐾 (𝑡) = lnE[𝑒𝑡𝑿 ] .

Equivalently, 𝑒𝐾 (𝑡 )
= E[𝑒𝑡𝑿 ]. For ℓ > 0 the cumulants of 𝑿 , which

are denoted 𝜅ℓ (𝑿 ), are the coefficients in the Taylor expansion of
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the cumulant generating function about the origin:

𝐾 (𝑡) =
∞∑
ℓ=1

𝜅ℓ (𝑿 ) 𝑡
ℓ

ℓ!
.

Equivalently, 𝜅ℓ (𝑿 ) = 𝐾 (ℓ) (0).

One useful property of cumulants is additivity for independent

random variables, which follows as an easy consequence of the

definition:

Fact 3.2. If 𝑿 and 𝒀 are independent random variables then

𝜅ℓ (𝑿 + 𝒀 ) = 𝜅ℓ (𝑿 ) + 𝜅ℓ (𝒀 ).

Corollary 3.3. For any random variable 𝑿 , the value of 𝜅ℓ (𝑿 −
𝑿 ) is zero when ℓ is odd and is 2 · 𝜅ℓ (𝑿 ) when ℓ is even.

Another useful property is ℓ-th order homogeneity of the ℓ-th

cumulant:

Fact 3.4. For any 𝑐 ∈ R and any ℓ ∈ N, we have 𝜅ℓ (𝑐𝑿 ) =

𝑐ℓ𝜅ℓ (𝑿 ) .

Looking ahead, all of our algorithms will work by estimating

cumulants of the real random variable 𝒚 which is distributed as

𝒚 = 𝑤 · 𝒙 + 𝜼 where 𝒙 ∼ 𝑿𝑛 and 𝜼 is independently drawn from a

noise distribution. By Fact 3.2 and Corollary 3.3, we can (and do)

assume throughout the analysis of our algorithms that 𝑿 and 𝜼 are

both symmetric distributions. This is because we can combine two

independent draws (𝒙1,𝒚1) and (𝒙2,𝒚2) with 𝒚𝑖 = 𝑤 · 𝒙𝑖 + 𝜼 into

one draw ((𝒙1−𝒙2)/
√
2, (𝒚1−𝒚2)/

√
2), such that the newmarginal

distribution 𝑿−𝑿√
2

and noise distribution
𝜼−𝜼√

2
are both symmetric

and have the same variances as before combining.

Let𝑚ℓ (𝑿 ) denote the ℓth moment E[𝑿 ℓ ] of a random variable𝑿 .

There is a one-to-one mapping between the first 𝑛 moments and the

first𝑛 cumulants which can be derived by relating coefficients in the

Taylor series expansions of the cumulant and moment generating

functions [3]:

Fact 3.5. Let 𝑿 be a random variable with mean zero. Then

𝜅ℓ (𝑿 ) =𝑚ℓ (𝑿 ) −
ℓ−1∑
𝑗=1

(
ℓ − 1

𝑗 − 1

)
𝜅 𝑗 (𝑿 ) ·𝑚ℓ−𝑗 (𝑿 ). (2)

Cumulants can be expressed in terms of moments and vice-versa:

𝑚ℓ (𝑿 ) =
ℓ∑
𝑘=1

𝐵ℓ,𝑘

(
𝜅1 (𝑿 ), . . . , 𝜅ℓ−𝑘+1 (𝑿 )

)
(3)

and

𝜅ℓ (𝑿 ) =
ℓ∑
𝑘=1

(−1)𝑘−1 (𝑘 − 1)!𝐵ℓ,𝑘
(
𝑚1 (𝑿 ), . . . ,𝑚ℓ−𝑘+1 (𝑿 )

)
, (4)

where 𝐵ℓ,𝑘 are incomplete Bell polynomials,

𝐵ℓ,𝑘 (𝑥1, . . . , 𝑥ℓ−𝑘+1)

=

∑ ℓ!

𝑗1! · · · 𝑗ℓ−𝑘+1!
(𝑥1
1

) 𝑗1
· · ·

(
𝑥ℓ−𝑘+1

(ℓ − 𝑘 + 1)!

) 𝑗ℓ−𝑘+1
,

whose summation is over all non-negative sequences ( 𝑗1, . . . , 𝑗ℓ−𝑘+1)
that satisfy

𝑗1 + · · · + 𝑗ℓ−𝑘+1 = 𝑘 and 𝑗1 + 2 𝑗2 + · · · + (ℓ − 𝑘 + 1) 𝑗ℓ−𝑘+1 = ℓ .

Equation (2) can be used to give a upper bound on 𝜅ℓ (𝑿 ) in
terms of the moments of 𝑿 :

Claim 3.6. For any random variable 𝑿 with mean zero and any

even ℓ , we have |𝜅ℓ (𝑿 ) | ≤ 𝑚ℓ (𝑿 ) · 𝑒ℓ · ℓ!.

Remark 3.7. When 𝑿 is the random variable that is uniform over

{0, 1, . . . ,𝐶}, the ℓ-th cumulant is 𝜅ℓ (𝑿 ) = Bern(ℓ)
ℓ · (𝐶ℓ − 1) where

Bern(ℓ) is the Bernoulli number of order ℓ which has an asymptotic

growth as ( ℓ/2𝜋𝑒 )ℓ [41]. This simple example shows that the dominant

ℓ! term in Claim 3.6 is essentially best possible.

We defer the proof of Claim 3.6 to the full version.

4 ESTIMATING MOMENTS OF THE WEIGHT
VECTOR𝑤 USING MOMENTS AND
CUMULANTS

Throughout this section 𝑿 will denote a real random variable with

mean zero, unit variance, and finite moments of all orders, and

𝑤 ∈ R
𝑛 will be a vector that is promised to have ∥𝑤 ∥2 ∈ [1/𝐶,𝐶].

The main result of this section is the following theorem, which

shows that it is possible to estimate norms of the vector 𝑤 given

access to noisy samples of the form (𝒙,𝒚 = 𝑤 ·𝒙 +𝜼) where 𝒙 ∼ 𝑿𝑛 :

Theorem 4.1. Let 𝑿 be a symmetric real-valued random vari-

able with variance 1 and finite moments of all orders, and let 𝜼

be a symmetric real-valued random variable with finite moments

of all orders. There is an algorithm (depending on 𝑿 and 𝜼)5 with

the following property: Let 𝑤 ∈ R
𝑛 be any (unknown) vector with

∥𝑤 ∥2 ∈ [1/𝐶,𝐶]. Given any 𝜀, 𝛿 > 0 and any even integer ℓ such that

|𝜅ℓ (𝑿 ) | ≥ 𝜏 , the algorithm takes as input 𝑚 = poly(ℓ!,𝑚2ℓ (𝑿 ) +
𝑚2ℓ (𝜼), 1/(𝛿𝜀), 1/𝜏,𝐶ℓ ) many independent random samples where

each 𝒙 (𝑖) ∼ 𝑿𝑛 and each 𝒛 (𝑖) = 𝑤 · 𝒙 (𝑖) + 𝜼. It outputs an estimate

𝑀ℓ of
∑𝑛
𝑖=1𝑤

ℓ
𝑖 , the ℓ-th power of the ℓ-norm of the vector𝑤 , which

with probability at least 1 − 𝛿 satisfies��𝑀ℓ − ∥𝑤 ∥ℓℓ
�� ≤ 𝜀.

We will also use the following result on estimating the moments

of𝑤 · 𝑿 + 𝜼:

Lemma 4.2. Let 𝑿 be a symmetric real-valued random variable

with mean zero, variance 1, and finite moments of all orders, and let

𝜼 be a symmetric real-valued random variable with finite moments

of all orders.

There is an algorithm (depending on 𝑿 and 𝜼) with the following

property: Let𝑤 ∈ R
𝑛 be any (unknown) vector with ∥𝑤 ∥2 ∈ [1/𝐶,𝐶].

Given any 𝜀 and 𝛿 and any even integer ℓ , the algorithm takes as

input𝑚 = poly(ℓ!,𝑚2ℓ (𝑿 ) +𝑚2ℓ (𝜼), 1/(𝛿𝜀),𝐶ℓ ) many independent

random samples where each 𝒙 (𝑖) ∼ 𝑿𝑛 and each 𝒛 (𝑖) = 𝑤 · 𝒙 (𝑖) + 𝜼.
It outputs an estimate𝑚ℓ (𝒁 ), which with probability at least 1 − 𝛿
satisfies ���𝑚ℓ (𝒁 ) − E[|𝑤 · 𝒙 (𝑖) + 𝜼 |ℓ ]

��� ≤ 𝜀.
We defer the proof of Theorem 4.1 and Lemma 4.2 to the full

version.

5As will be clear from the proof, the algorithm only needs to łknowž 𝑿 and 𝜼 in the
sense of having sufficiently accurate estimates of certain cumulants.
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5 GENERAL TESTING ALGORITHM: PROOF
OF THEOREM 1.1

The main result of this section is Theorem 5.1, which is a more

precise version of Theorem 1.1. Roughly speaking, it says that

there is a constant-sample tolerant tester for 𝑘-sparsity for any

non-Gaussian distribution.

Theorem 5.1 (Detailed statement of main result: tolerant

tester for non-Gaussian distributions). Fix any real random

variable 𝑿 which has variance one and finite moments of every order,

and is not a Gaussian distribution (i.e. its total variation distance from

every Gaussian distribution is nonzero). Let 𝜼 be any real random

variable with finite moments of every order.

There is a tolerant testing algorithm with the following proper-

ties: Let 0 ≤ 𝑐 < 𝑠 ≤ 1 be any given completeness and soundness

parameters, and let𝑤 be any vector (unknown to the algorithm) with

1/𝐶 ≤ ∥𝑤 ∥2 ≤ 𝐶. The algorithm is given 𝑐, 𝑠, 𝜀, 𝑘,𝐶 and access to

independent samples (𝒙,𝒚 = 𝑤 ·𝒙 +𝜼) where each 𝒙 ∼ 𝑿𝑛 . Its sample

complexity is

𝑚 = poly
(
ℓ1!,𝑚2ℓ1 (𝑿 ) +𝑚2ℓ1 (𝜼), 1/𝛿

ℓ1
1 , 1/𝜏,𝐶

ℓ1
)
,

where 𝜏 = min𝑖∈[𝑘 ] {|𝜅ℓ𝑖 (𝑿 ) |} and {ℓ𝑖 }𝑖∈[𝑘 ] , {𝛿𝑖 }𝑖∈[𝑘 ] are as defined
below. The algorithm satisfies the following:

• if dist(𝑤,𝑘-sparse) ≤ 𝑐 then with probability at least 9/10 the
algorithm outputs łyes;ž and

• if dist(𝑤,𝑘-sparse) ≥ 𝑠 then with probability at least 9/10 the
algorithm outputs łno.ž

Furthermore, if the random variable 𝑿 is supported in [−B,B] for
some constant B, then the sample complexity of the tolerant tester (as

a function of 𝑘) is bounded by a tower function of height 𝑂 (𝑘).

Remark 5.2. The running time of our algorithm is poly(𝑚) (inde-
pendent of 𝑛) if our algorithm is allowed to obtain 𝒚 directly and

skip the reading of 𝒙 . The same remark holds for the more efficient

tester for łnicež distributions given in the full version.

We begin by stating the algorithm:

(1) First, recall that as stated earlier, we may assume that 𝑿 and

𝜼 are both symmetric. We rescale all samples by a factor of

𝐶 so that ∥𝑤 ∥2 ∈ [1/𝐶2, 1] in our subsequent analysis.

We fix 𝜀 = 𝑠2−𝑐2
2𝐶4 and apply Lemma 4.2 with ℓ = 2 to obtain an

estimate 𝑠2 of
∑𝑛
𝑖=1𝑤

2
𝑖 = ∥𝑤 ∥22 = E[|𝑤 ·𝑿𝑛 +𝜼 |2] − E[|𝜼 |2]

that is accurate to within additive error 𝜀/4 (with probability

0.99).

(2) Set a sequence of error parameters 𝛿1 < 𝛿2 < . . . < 𝛿𝑘 and

natural numbers (orders of cumulants) ℓ1 > ℓ2 > · · · > ℓ𝑘
with the following properties:

(a) 𝛿𝑘 = 𝜀/(12𝑘) and ℓ𝑘 ≥ 100/𝛿3
𝑘
is even ;

(b) For 𝑖 = 𝑘 − 1, 𝑘 − 2, . . . , 1, 𝛿𝑖 = (𝛿𝑖+1/5ℓ𝑖+1)ℓ𝑖+1/(2𝑘) and
ℓ𝑖 ≥ 100/𝛿3𝑖 is even;

(c) For each 𝑖 ∈ [1, 𝑘] the ℓ𝑖 -th cumulant 𝜅ℓ𝑖 (𝑿 ) of 𝑿 is

nonzero.

(3) For 𝑗 = 1, . . . , 𝑘 : run the algorithm of Theorem 4.1 to obtain

an estimate𝑀ℓ𝑗 which satisfies
��𝑀ℓ𝑗−∥𝑤 ∥ℓ𝑗ℓ𝑗

�� ≤ (𝛿 𝑗/5ℓ𝑗 )ℓ𝑗 /(2𝑘)

with failure probability at most 1/(20𝑘). Set

𝑤 𝑗 = min



1,

�����𝑀ℓ𝑗 −
𝑗−1∑
𝑖=1

𝑤
ℓ𝑗
𝑖

�����
1/ℓ𝑗 


.

(The intuition is that at the 𝑗-th iteration of this step, the

algorithm computes an estimate𝑤 𝑗 of the magnitude of the

𝑗-th largest magnitude coordinate in the weight vector𝑤 .)

(4) If
∑𝑘
𝑖=1𝑤

2
𝑖 < (1 − 𝑠2−𝑐2

2 ) · 𝑠2, output łNo,ž and otherwise

output łYes.ž

A remark is in order regarding condition 2(c) above. Recall that

by Marcinkiewicz’s theorem [11, 34], since 𝑿 is not a Gaussian

distribution it must have infinitely many nonzero cumulants. (This

is where we use the assumption that 𝑿 is not Gaussian; indeed

if 𝑿 were Gaussian then 𝜏 as defined in the theorem statement

would be zero.) Hence a sequence of orders ℓ1 > · · · > ℓ𝑘 satisfying

conditions 2(a), 2(b) and 2(c) must indeed always exist.

To analyze the algorithmwewill use the following lemma, which

shows that a good estimate of ∥𝑤 ∥ℓℓ yields a good estimate of ∥𝑤 ∥∞:

Lemma 5.3. Given any vector 𝑤 with ∥𝑤 ∥22 ≤ 1 and 𝛿 > 0, let

ℓ ≥ 100/𝛿3 be even and let𝑀ℓ satisfy
��𝑀ℓ − ∥𝑤 ∥ℓℓ

�� ≤ ( 𝛿5 )ℓ/2. Then��𝑀1/ℓ
ℓ − ∥𝑤 ∥∞

�� ≤ 𝛿 .
We defer the proof of Lemma 5.3 to Section 5.1 and use it to

prove Theorem 5.1.

Proof of Theorem 5.1. Without loss of generality we assume that

the coordinates of 𝑤 satisfy 𝑤1 ≥ 𝑤2 ≥ · · · ≥ 𝑤𝑛 ≥ 0. We use

induction to prove that |𝑤 𝑗 −𝑤 𝑗 | ≤ 𝛿 𝑗/ℓ𝑗 for all 𝑗 = 1, . . . , 𝑘 .

For the base case 𝑗 = 1, we have that the difference between

𝑀ℓ1 and ∥𝑤 ∥ℓ1ℓ1 has magnitude at most (𝛿1/5ℓ1)ℓ1/2𝑘 , so we can

apply Lemma 5.3. The value of 𝑤̃1 as defined in Step 3 is𝑀
1/ℓ1
ℓ1

, so

Lemma 5.3 gives that |𝑤1 −𝑤1 | ≤ 𝛿1/ℓ1.
For the inductive step, we assume that the claimed bound holds

for all 𝑤1, . . . ,𝑤 𝑗−1, and we will apply Lemma 5.3 to bound the

distance between 𝑤 𝑗 and 𝑤 𝑗 . We bound the error between 𝑀ℓ𝑗 −∑𝑗−1
𝑖=1 𝑤

ℓ𝑗
𝑖 and ∥𝑤 ∥ℓ𝑗ℓ𝑗 −

∑𝑗−1
𝑖=1 𝑤

ℓ𝑗
𝑖 by

|𝑀ℓ𝑗 − ∥𝑤 ∥ℓ𝑗ℓ𝑗 | +
𝑗−1∑
𝑖=1

|𝑤 ℓ𝑗𝑖 −𝑤 ℓ𝑗𝑖 |

≤(𝛿 𝑗/5ℓ𝑗 )ℓ𝑗 /2𝑘 +
𝑗−1∑
𝑖=1

|𝑤𝑖 −𝑤𝑖 | · ℓ𝑗 (using 0 ≤ 𝑤𝑖 ,𝑤𝑖 ≤ 1)

≤(𝛿 𝑗/5ℓ𝑗 )ℓ𝑗 /2𝑘 +
𝑗−1∑
𝑖=1

(𝛿𝑖/ℓ𝑖 ) · ℓ𝑗

≤(𝛿 𝑗/5ℓ𝑗 )ℓ𝑗 /2𝑘 +
𝑗−1∑
𝑖=1

𝛿𝑖 ≤ (𝛿 𝑗/5ℓ𝑗 )ℓ𝑗 /2.

In the third step of our algorithm, we use𝑀ℓ𝑗 −
∑𝑗−1
𝑖=1 𝑤

ℓ𝑗
𝑖 as an esti-

mation of ∥(𝑤 𝑗 ,𝑤 𝑗+1, . . . ,𝑤𝑛)∥
ℓ𝑗
ℓ𝑗
. The above calculation shows the

error of this estimation is (𝛿 𝑗/5ℓ𝑗 )ℓ𝑗 /2. Thus applying Lemma 5.3

to
���𝑀ℓ𝑗 − ∑𝑗−1

𝑖=1 𝑤
ℓ𝑗
𝑖

���1/ℓ𝑗 and the vector (𝑤 𝑗 ,𝑤 𝑗+1, . . . ,𝑤𝑛) with its
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ł𝛿ž parameter being 𝛿 𝑗/ℓ𝑗 , we get that |𝑤 𝑗 − 𝑤 𝑗 | ≤ 𝛿 𝑗/ℓ𝑗 . This
concludes the inductive proof.

With this upper bound on each |𝑤 𝑗 −𝑤 𝑗 | in hand, we can infer

that

𝑘∑
𝑖=1

|𝑤2
𝑖 −𝑤

2
𝑖 | =

𝑘∑
𝑖=1

|𝑤𝑖 −𝑤𝑖 | · |𝑤𝑖 +𝑤𝑖 | ≤
𝑘∑
𝑖=1

(𝛿𝑖/ℓ𝑖 ) · 3 ≤ 𝜀/4, (5)

where the first inequality uses ∥𝑤 ∥2 ≤ 1 and the closeness of each

𝑤𝑖 to𝑤𝑖 to upper bound |𝑤𝑖 +𝑤𝑖 | ≤ 3.

We now use Equation (5) to establish correctness of our al-

gorithm. To do this, we first consider the łyesž case in which

dist(𝑤,𝑘-sparse) ≤ 𝑐 . In this case, we have that ∑𝑘
𝑖=1𝑤

2
𝑖 ≥ ∑𝑘

𝑖=1𝑤
2
𝑖 −

𝜀/4 ≥ (1 − 𝑐2) · ∥𝑤 ∥22 − 𝜀/4. Since 𝑠2 = ∥𝑤 ∥22 ± 𝜀/4, we have

𝑘∑
𝑖=1

|𝑤𝑖 |2 ≥ (1 − 𝑐2) (𝑠2 − 𝜀/4) − 𝜀/4 ≥ (1 − 𝑐2) · 𝑠2 − 𝜀/2

Furthermore, since ∥𝑤 ∥2 ∈ [1/𝐶2, 1] shows ∥𝑤 ∥22 ∈ [1/𝐶4, 1],
given 𝜀 = 𝑠2−𝑐2

2𝐶4 , we have

𝑠2 ≥ ∥𝑤 ∥22 − 𝜀/4 ≥ 1/𝐶4 − 1/(8𝐶4) ≥ 2/(3𝐶4) > 𝜀/(𝑠2 − 𝑐2)

and we can simplify our lower bound on
∑𝑘
𝑖=1𝑤

2
𝑖 to

(1 − 𝑐2)𝑠2 − 𝜀/2 > (1 − 𝑐2)𝑠2 −
𝑠2 − 𝑐2

2
· 𝑠2 =

(
1 − 𝑠2 − 𝑐2

2

)
· 𝑠2,

from which we see that the algorithm is correct in the łyesž-case.

Similarly, in the łNO" case, we have
∑𝑘
𝑖=1𝑤

2
𝑖 <

(
1 − 𝑠2−𝑐2

2

)
· 𝑠2.

This proves the assertions made in the two bulleted statements of

the theorem.

Finally, when𝑿 is supported in [−B,B], we apply Theorem 6.1 to

upper bound ℓ𝑖 : given any ℓ𝑖+1 and𝛿𝑖+1, for 𝑡 = 100𝑘3/(𝛿𝑖+1/5ℓ𝑖+1)3ℓ𝑖+1 ,
there always exists ℓ𝑖 ∈ [𝑡, (4B)𝑂 (𝑡 ) ] with 𝜅ℓ𝑖 (𝑋 ) ≥ 2−(4B)

𝑂 (𝑡 )
.

Thus 𝜏 is also lower bounded by 2−(4B)
𝑂 (ℓ1 )

.

□

5.1 Proof of Lemma 5.3

For convenience we assume throughout this subsection that𝑤1 ≥
𝑤2 ≥ · · · ≥ 𝑤𝑛 ≥ 0 in the vector𝑤 .

Fact 5.4. If ∥𝑤 ∥2 ≤ 1, then ∥𝑤 ∥ℓℓ is always between𝑤
ℓ
1 and𝑤

ℓ−2
1

for any ℓ ≥ 3.

Proof. 𝑤 ℓ1 ≤ ∥𝑤 ∥ℓℓ =
∑𝑛
𝑖=1𝑤

ℓ
𝑖 ≤ 𝑤 ℓ−21

∑𝑛
𝑖=1𝑤

2
𝑖 ≤ 𝑤 ℓ−21 . □

Proof of Lemma 5.3. Recall that by assumptionwe have𝑤1 = ∥𝑤 ∥∞ ≤
1. Let 𝜃 denote𝑀

1/ℓ
ℓ and Δ ≤ (𝛿/5)ℓ/2 denote the error such that

𝑀ℓ = ∥𝑤 ∥ℓℓ ± Δ. We consider two cases based on the size of𝑤1:

(1) The first case is that𝑤1 ≤ 𝛿/5. In this case we upper bound

𝜃 by

(∥𝑤 ∥ℓℓ + Δ)1/ℓ

≤(𝑤 ℓ−21 + Δ)1/ℓ (using the upper bound from Fact 5.4 on ∥𝑤 ∥ℓℓ )

≤((𝛿/5)ℓ−2 + (𝛿/5)ℓ/2)1/ℓ

≤21/ℓ · (𝛿/5) (ℓ−2)/ℓ

≤21/ℓ · (5/𝛿)2/ℓ · 𝛿/5 (using the fact ℓ = 100/𝛿3)
≤2𝛿/5.

So we have that
��𝜃 −𝑤1

�� ≤ 2𝛿/5 +𝑤1, which is at most 3𝛿/5
by the assumption of𝑤1 and the Lemma.

(2) The second case is that𝑤1 > 𝛿/5. In this case we first bound

𝑤1 − 𝜃 by

𝑤1 − (∥𝑤 ∥ℓℓ − Δ)1/ℓ ≤ 𝑤1 − (𝑤 ℓ1 − Δ)1/ℓ

(using the lower bound from Fact 5.4 on ∥𝑤 ∥ℓℓ )

= 𝑤1 −𝑤1 (1 −
Δ

𝑤 ℓ1
)1/ℓ

≤ 𝑤1 −𝑤1 (1 − 2
Δ

ℓ ·𝑤 ℓ1
)

(using (1 − 𝑥)1/ℓ ≥ 1 − 2𝑥/ℓ when 𝑥 ≤ 1/2)

= 2𝑤1 ·
Δ

ℓ ·𝑤 ℓ1
.

Then we bound 𝜃 −𝑤1 by

(∥𝑤 ∥ℓℓ + Δ)1/ℓ −𝑤1

≤ (𝑤 ℓ−21 + Δ)1/ℓ −𝑤1

(using the upper bound from Fact 5.4 on ∥𝑤 ∥ℓℓ )

≤ (𝑤 ℓ−21 + Δ)1/ℓ − (𝑤 ℓ1 + Δ)1/ℓ + (𝑤 ℓ1 + Δ)1/ℓ −𝑤1

≤ (𝑤 ℓ1 + Δ)1/ℓ · ©­«
(
𝑤 ℓ−21 + Δ

𝑤 ℓ1 + Δ

)1/ℓ
− 1

ª®¬
+𝑤1

(
1 + Δ

𝑤 ℓ1

)1/ℓ
−𝑤1

≤ (𝑤 ℓ1 + Δ)1/ℓ · ©­«
(
1 +

𝑤 ℓ−21 (1 −𝑤2
1)

𝑤 ℓ1 + Δ

)1/ℓ
− 1

ª®¬
+𝑤1

(
1 + Δ

ℓ ·𝑤 ℓ1

)
−𝑤1 (using (1 + 𝑥)1/ℓ ≤ 1 + 𝑥/ℓ)

≤ (𝑤 ℓ1 + Δ)1/ℓ ·
𝑤 ℓ−21

ℓ (𝑤 ℓ1 + Δ)
+𝑤1

Δ

ℓ ·𝑤 ℓ1
.

(using (1 + 𝑥)1/ℓ ≤ 1 + 𝑥/ℓ again)

We combine the above two bounds to get that

|𝜃 −𝑤1 | ≤ (𝑤 ℓ1 + Δ)1/ℓ ·
𝑤 ℓ−21

ℓ (𝑤 ℓ1 + Δ)
+ 3𝑤1

Δ

ℓ ·𝑤 ℓ1
.
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Plugging in our bounds on 𝑤1 and Δ ≤ (𝛿/5)ℓ/2 into this

inequality, this is at most

(𝑤 ℓ1 + Δ)1/ℓ · 1

ℓ ·𝑤2
1

+ 3
Δ

ℓ ·𝑤 ℓ−11

≤ (𝑤1 + Δ
1/ℓ ) · 1

ℓ ·𝑤2
1

+ 3
Δ

ℓ𝑤 ℓ−11

(using (𝑥 + 𝑦)1/ℓ ≤ 𝑥1/ℓ + 𝑦1/ℓ )

≤ 1

ℓ · 𝛿/5 + 𝛿/5
ℓ · (𝛿/5)2

+ 3 · (𝛿/5)ℓ/2
ℓ · (𝛿/5)ℓ−1

(since in this case𝑤1 ≥ 𝛿/5)

≤ 𝛿

2
. (using ℓ ≥ 100/𝛿3)

□

6 BOUNDING THE GAP BETWEEN
NON-ZERO CUMULANTS

The result of Marcinkiewicz (Theorem 2.1) shows that any non-

Gaussian random variable 𝑿 has an infinite number of non-zero

cumulants. However, this result is not constructive and leaves open

two obvious questions:

(1) Suppose 𝜅ℓ (𝑿 ) ≠ 0. What can we say about the quantity

argmin
ℓ′>ℓ

𝜅ℓ′ (𝑿 ) ≠ 0?

In other words, how many consecutive zero cumulants can

𝑿 have following the non-zero cumulant 𝜅ℓ (𝑿 )?
(2) Merely having a non-zero cumulant 𝜅ℓ′ (𝑿 ) is not sufficient

for us; since our results depend on the magnitude of the

non-zero cumulants, we would also like a lower bound on

the magnitude of 𝜅ℓ′ (𝑿 ) (where ℓ ′ is as defined above). Can

we get such a lower bound on 𝜅ℓ′ (𝑿 )?
The main result of this section is to give an effective answer to both

these questions when the random variable 𝑿 has bounded support.

To the best of our knowledge (and based on conversations with

experts [12, 29, 35]), previously no such effective bound was known

for gaps between non-zero cumulants.

Before stating our result, we note that for any real random vari-

able𝑿 the random variable 𝒀 = 𝑿−𝑿 ′ (where𝑿 ′ is an independent
copy of 𝑿 ) is (i) symmetric and (ii) has 𝜅ℓ (𝒀 ) = (1 + (−1)ℓ )𝜅ℓ (𝑿 ).
Thus for the purposes of this section, it suffices to restrict our atten-

tion to symmetric random variables and even-numbered cumulants.

Theorem 6.1. Given any ℓ and any symmetric random variable

𝑿 with unit variance and support [−B,B], where B ≥ 1, there exists

ℓ ′ = (Θ(1) · B4 logB)ℓ such that
��𝜅 𝑗 (𝑿 )

�� ≥ 2−ℓ
′
for some 𝑗 ∈ (ℓ, ℓ ′].

Before delving into the formal proof of this theorem, we give a

high-level overview. Recall that the cumulant generating function

and moment generating function of 𝑿 are defined respectively as

𝐾𝑿 (𝑧) =
∑
𝑗≥1

𝜅 𝑗 (𝑿 )
𝑗 !

𝑧 𝑗 ; 𝑀𝑿 (𝑧) = E[𝑒𝑧𝑿 ] .

The first main ingredient (Claim 6.2) is that the function𝑀𝑿 (𝑧) has
a root in the complex disc of radius𝑂 (B3) centered at the origin. The
proof of this is somewhat involved and uses a range of ingredients

such as bounding the number of zeros of entire functions and the

Hadamard factorization theorem.

Now, suppose it were the case that |𝜅 𝑗 (𝑿 ) | ≤ 2−ℓ
′
for all 𝑗 ∈

(ℓ, ℓ ′] for a sufficiently large ℓ ′. We consider the łtruncated" func-

tion 𝑃ℓ (𝑧)

𝑃ℓ (𝑧) =
ℓ∑
𝑗=1

𝜅 𝑗 (𝑿 )
𝑗 !

𝑧 𝑗 .

Observe that while 𝐾𝑿 (𝑧) is not necessarily well defined every-

where, (i) it is easy to show that it is well defined in the open disc

of radius 1/(𝑒B) (call this set B); (ii) the function 𝑃ℓ (𝑧) is an en-

tire function. Further, since 𝜅 𝑗 (𝑿 ) is assumed to have very small

magnitude for all 𝑗 ∈ (ℓ, ℓ ′], it is not difficult to show that 𝑃ℓ (𝑧)
and 𝐾𝑿 (𝑧) are close to each other in B. Using 𝑒𝐾𝑿 (𝑧)

= 𝑀𝑿 (𝑧)
in B (since both are well-defined), we infer that 𝑒𝑃ℓ (𝑧) and𝑀𝑿 (𝑧)
are also close to each other in B. In other words, the function

ℎ(𝑧) := 𝑒𝑃ℓ (𝑧)−𝑀𝑿 (𝑧) is close to zero in B.

Finally, we observe that 𝑒𝑃ℓ (𝑧) has no zeros in C and in fact, we

can show that it has relatively large magnitude within a ball of

radius 𝑂 (B3). Using the first ingredient that 𝑀𝑿 (𝑧) has a zero in

this disc, we derive that the maximum of |ℎ(𝑧) | is large in a disc

of radius 𝑂 (B3). However, since ℎ is an entire function, once ℓ ′ is
sufficiently large, this contradicts the fact that ℎ(𝑧) is close to zero

in B (this uses Hadamard’s three circle theorem). This finishes the

proof.

Proof of Theorem 6.1. Towards a contradiction, fix 𝜁 = 2−ℓ
′
and

let us assume that |𝜅 𝑗 (𝑿 ) | < 𝜁 for 𝑗 ∈ (ℓ, ℓ ′]. Let us consider the
moment generating function 𝑀𝑿 : C → C defined by 𝑀𝑿 (𝑧) =

E[𝑒𝑧𝑿 ] . From the fact that the random variable 𝑿 is bounded in

[−B,B], it follows that the function𝑀𝑿 is an entire function (i.e.,

holomorphic over all of C). Next, consider the cumulant generating

function 𝐾𝑿 : C→ C defined as

𝐾𝑿 (𝑧) =
∑
𝑗≥1

𝜅 𝑗 (𝑿 )
𝑗 !

𝑧 𝑗 .

From Claim 3.6, we know that |𝜅 𝑗 (𝑿 ) | ≤ B𝑗 ·𝑒 𝑗 · 𝑗 !. Define the open
disc B = {𝑧 : |𝑧 | < 1/(𝑒B)} and observe that the right hand side

series is absolutely convergent in B and hence 𝐾𝑿 is holomorphic

in B. We recall from the definition of cumulants that for 𝑧 ∈ B,

𝑒𝐾𝑿 (𝑧)
= 𝑀𝑿 (𝑧) .

We will need the following claim about the roots of𝑀𝑿 :

Claim 6.2. For any symmetric random variable 𝑿 with unit vari-

ance and support [−B,B] where B ≥ 1, there exists 𝑧0 with |𝑧0 | ≤
200B3 such that𝑀𝑿 (𝑧0) = E[𝑒𝑧0𝑋 ] = 0.

We defer the proof of Claim 6.2 to Section 6.1. Let us define

𝑃ℓ (𝑧) to be the polynomial obtained by truncating the cumulant

generating function Taylor series expansion to degree ℓ , so 𝑃ℓ (𝑧) =∑
1≤ 𝑗≤ℓ

𝜅 𝑗 (𝑿 )
𝑗 ! 𝑧 𝑗 .We now define the function 𝑔 : C→ C as

𝑔(𝑧) = 𝑒𝑃ℓ (𝑧) − E[𝑒𝑧𝑿 ] . (6)

Observe that 𝑔 is an entire function. The following claim lower

bounds the magnitude of 𝑔 on the point 𝑧0 defined above:
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Claim 6.3. Let 𝑧0 be the complex number satisfying E[𝑒𝑧0𝑿 ] = 0

in Claim 6.2. Then we have

|𝑔(𝑧0) | ≥ 𝑒−2· (200𝑒)
ℓ ·B4ℓ

.

Proof. We have

|𝑃ℓ (𝑧0) | ≤
ℓ∑
𝑗=1

|𝜅 𝑗 (𝑿 ) |
𝑗 !

|𝑧0 | 𝑗

≤
ℓ∑
𝑗=1

𝑒 𝑗 · B𝑗 · |𝑧0 | 𝑗 ≤ 2(𝑒B)ℓ · (200B3)ℓ .

The first inequality is just a triangle inequality whereas the second

inequality uses Claim 3.6. Since E[𝑒𝑧0𝑋 ] = 0, we get that |𝑔(𝑧0) | ≥
𝑒−|𝑃ℓ (𝑧0) | ≥ 𝑒−2· (200𝑒)ℓ ·B4ℓ

. □

We now recall the Hadamard three-circle theorem.

Theorem 6.4 (Hadamard three-circle theorem). Let 0 <

𝑟1 < 𝑟2 < 𝑟3 and let ℎ be an analytic function on the annulus

{𝑧 ∈ R : |𝑧 | ∈ [𝑟1, 𝑟3]}. Let 𝑀ℎ (𝑟 ) denote the maximum of ℎ(𝑧) on
the circle |𝑧 | = 𝑟 . Then,

ln
𝑟3

𝑟1
ln𝑀ℎ (𝑟2) ≤ ln

𝑟3

𝑟2
ln𝑀ℎ (𝑟1) + ln

𝑟2

𝑟1
ln𝑀ℎ (𝑟3) .

We are now ready to finish the proof of Theorem 6.1. The proof

uses the following claim:

Claim 6.5. There is a point 𝑧∗ satisfying

|𝑧∗ | ≤
1

2𝑒B
and |𝑔(𝑧∗) | ≥ 𝑒−12( (400𝑒)

ℓ ·B4ℓ ·ln(400𝑒B)) . (7)

Proof. Recall from Claim 6.2 that the point 𝑧0 satisfies |𝑧0 | ≤
200B3 and𝑀𝑿 (𝑧0) = E[𝑒𝑧0𝑋 ] = 0. There are two cases:

(1) If |𝑧0 | ≤ 1
2𝑒B : In this case, we set 𝑧∗ = 𝑧0. By definition,

it satisfies the first condition in (7) and using Claim 6.3, it

satisfies the second condition.

(2) If |𝑧0 | > 1
2𝑒B : Set 𝑟1 =

1
2𝑒B , 𝑟2 = |𝑧0 | and 𝑟3 = 𝑒𝑟2. For 𝑔 as

defined in (6), from Claim 6.3, we have

𝑀𝑔 (𝑟2) ≥ |𝑔(𝑧0) | = |𝑒𝑃ℓ (𝑧0) − E[𝑒𝑧0𝑿 ] | ≥ 𝑒−2· (200𝑒)ℓ ·B4ℓ
. (8)

On the other hand, consider any point 𝑧3 such that |𝑧3 | = 𝑟3.
We have that

|𝑔(𝑧3) | ≤ |𝑒𝑃ℓ (𝑧3) | + | E[𝑒𝑧3𝑿 ] |

≤ 𝑒
∑ℓ

𝑗=1 (𝑒B) 𝑗 · |𝑧3 | 𝑗 +
∫ B

−B
Pr[𝑿 = 𝑥] · 𝑒 |𝑧3 | ·𝑥d𝑥

≤ 𝑒
∑ℓ

𝑗=1 (𝑒B) 𝑗 ·𝑟
𝑗
3 +

∫ B

−B
Pr[𝑿 = 𝑥] · 𝑒𝑟3 ·𝑥d𝑥 ≤ 𝑒2(𝑒B)ℓ ·𝑟 ℓ3 ,

and hence

|𝑀𝑔 (𝑟3) | ≤ 𝑒2(𝑒B)
ℓ ·𝑟 ℓ3 . (9)

Now observe that the function 𝑔 defined in (6) is an entire

function. Consequently, using 𝑟3/𝑟2 = 𝑒 , we can apply the

Hadamard Three Circle Theorem to 𝑔 to obtain

ln𝑀𝑔 (𝑟1)

≥ ln
𝑟3

𝑟1
ln𝑀𝑔 (𝑟2) − ln

𝑟2

𝑟1
ln𝑀𝑔 (𝑟3)

≥ −
(
2 · (200𝑒)ℓ · B4ℓ

)
ln
𝑟3

𝑟1
−

(
2(𝑒B)ℓ · (𝑒𝑟2)ℓ

)
ln
𝑟2

𝑟1
(applying (8), (9))

≥ −
(
3(400𝑒)ℓ · B4ℓ ln(400𝑒B4)

)
.

The last inequality uses that 𝑟2 ≤ 200B3 (from Claim 6.2).

This implies the existence of a point 𝑧∗ satisfying (7) and

concludes the proof of Claim 6.5. □

Continuing with the proof of Theorem 6.1, observe that the

Taylor expansion for 𝐾𝑿 (𝑧) (at 𝑧 = 0) converges absolutely in

B. Thus 𝐾𝑿 (𝑧) is holomorphic in B and is given by its Taylor

expansion. Since 𝑧∗ ∈ B, recalling our initial assumption that the

(ℓ + 1)-th through ℓ ′-th cumulants all have magnitude at most 𝜁 ,

we have that

|𝐾𝑿 (𝑧∗) − 𝑃ℓ (𝑧∗) | ≤
ℓ′∑

𝑗=ℓ+1

𝜁 · |𝑧∗ | 𝑗
𝑗 !

+
∑
𝑗>ℓ′

|𝜅 𝑗 (𝑿 ) | · |𝑧∗ | 𝑗

𝑗 !

≤
ℓ′∑

𝑗=ℓ+1

𝜁

𝑗 ! · (2𝑒B) 𝑗
+

∑
𝑗>ℓ′

B𝑗 · 𝑒 𝑗 · 𝑗 !
(2𝑒B) 𝑗 · 𝑗 !

(using Claim 3.6 and (7))

≤ 2𝜁

ℓ! · (2𝑒B)ℓ
+ 2−ℓ

′ ≤ 2−ℓ
′+1 . (10)

Since 𝐾𝑿 (𝑧) is holomorphic in B, so is 𝑀𝑿 (𝑧) = 𝑒𝐾𝑿 (𝑧) , and we

have that��𝑀𝑿 (𝑧∗) − 𝑒𝑃ℓ (𝑧∗)
�� = ��𝑒𝐾𝑿 (𝑧∗) − 𝑒𝑃ℓ (𝑧∗)

��
=

��𝑒𝑃ℓ (𝑧∗) �� · ��𝑒𝐾𝑿 (𝑧∗)−𝑃ℓ (𝑧∗) − 1
��

≤ |𝑒𝑃ℓ (𝑧∗)
�� · 2−ℓ′+2, (11)

where the last inequality is by Equation (10). However, applying

Claim 3.6 and recalling that |𝑧∗ | ≤ 1/(2𝑒B), we also have

��𝑃ℓ (𝑧∗)�� ≤ ℓ∑
𝑗=1

|𝑧∗ | 𝑗𝜅 𝑗 (𝑿 )
𝑗 !

≤
ℓ∑
𝑗=1

|𝑧∗ | 𝑗 · B𝑗 · 𝑒 𝑗 · 𝑗 !
𝑗 !

≤ 1.

Plugging this back into (11), we get��𝑀𝑿 (𝑧∗) − 𝑒𝑃ℓ (𝑧∗)
�� ≤ 4𝑒 · 2−ℓ′ .

However, recalling that 𝑔(𝑧) = 𝑀𝑿 (𝑧) − 𝑒𝑃ℓ (𝑧) , this contradicts (7)
with room to spare provided that, say,

ℓ ′ > 50
(
(400𝑒)ℓ · B4ℓ · ln(400𝑒B)

)
.

This finishes the proof of Theorem 6.1 □

6.1 Proof of Claim 6.2

We start by showing that the function 𝑀𝑿 (𝑧) must necessarily

decay along the line {𝑧 : Re(𝑧) = 0} close to the origin.
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Claim 6.6. For the symmetric random variable 𝑿 , which has unit

variance and is supported on [−B,B] where B ≥ 1, there exists 𝛼∗ ∈ R
such that |𝛼∗ | ≤ 3,𝑀𝑿 (𝑖𝛼∗) ∈ R and |𝑀𝑿 (𝑖𝛼∗) | ≤ 1 − 1

2B2 .

Proof. First of all, note that by symmetry of 𝑿 , 𝑀𝑿 (𝑖𝛼) =

E[𝑒𝑖𝛼𝑿 ] is necessarily real-valued for any 𝛼 ∈ R. Next, choose
𝐹 > 1 (we will fix its exact value soon). We have∫ 𝐹

𝛼=−𝐹
𝑀𝑿 (2𝜋𝑖𝛼)𝑑𝛼

=

∫ 𝐹

𝛼=−𝐹

∫ B

𝑥=−B
Pr[𝑿 = 𝑥] · 𝑒2𝜋𝑖𝛼𝑥𝑑𝑥𝑑𝛼

=

∫ B

𝑥=−B
Pr[𝑿 = 𝑥]

∫ 𝐹

𝛼=−𝐹
𝑒2𝜋𝑖𝛼𝑥𝑑𝛼𝑑𝑥

≤
∫
|𝑥 | ≤1/2

2 Pr[𝑿 = 𝑥] · 𝐹𝑑𝑥+
∫
|𝑥 |>1/2

Pr[𝑿 = 𝑥] · sin(2𝜋𝐹𝑥)
𝜋𝑥

𝑑𝑥. (12)

Now, observe that

1 = E[|𝑿 |2] ≤ Pr[|𝑿 | > 1/2] · B2 + (1 − Pr[|𝑿 | > 1/2]) · 1
4
.

Thus, we obtain

Pr[|𝑿 | > 1/2] ≥ 3

4
(
B2 − 1

4

) ≥ 3

4B2
. (13)

Likewise, observe that sin(2𝜋𝐹𝑥)/(𝜋𝑥) always has magnitude at

most 2/𝜋 for |𝑥 | > 1/2. Plugging (13) and this back into (12), and

using 𝐹 > 1, we have that∫ 𝐹

𝛼=−𝐹
𝑀𝑿 (2𝜋𝑖𝛼)𝑑𝛼 ≤

(
1 − 3

4B2

)
· 2𝐹 + 3

4B2
· 2
𝜋
.

This implies that there is a point 𝛼∗ ∈ [−𝐹, 𝐹 ] such that

𝑀𝑿 (2𝜋𝑖𝛼∗) ≤ 1 − 3

4B2
+ 3

4B2𝜋𝐹
.

Plugging in 𝐹 = 3, we get the claim.

□

Observe that𝑀𝑿 (𝑧) is an entire function and thus is well defined
on all of C. The next lemma bounds the number of zeros of𝑀𝑿 (𝑧)
in a ball of radius 𝑅. This is essentially the same as the first part of

Theorem 2.1 in [40], though the bound given there is asymptotic

whereas we need a precise quantitative bound.

Claim 6.7. For𝑀𝑿 (𝑧) as defined above and 𝑟 > 0, let 𝑛(𝑅) denote
the number of zeros of 𝑀𝑿 (𝑧) contained in the ball {|𝑧 | : |𝑧 | ≤ 𝑅}
(counting multiplicities). Then 𝑛(𝑅) ≤ 𝑒B𝑅.

Before proceeding with the proof of Claim 6.7, we recall a useful

ingredient, namely, Jensen’s formula (see Theorem 1.1, Section 5 in

[40]):

Theorem 6.8 (Jensen’s formula). Let ℎ be an analytic function

in a region of C which contains the closed disc D = {𝑧 : |𝑧 | ≤ 𝑅}.
Suppose ℎ(0) ≠ 0 and ℎ does not have zeros on the boundary 𝜕D =

{𝑧 : |𝑧 | = 𝑅}. Then∫ 1

0
ln

��ℎ(𝑅𝑒2𝜋 𝒊𝑡 )�� d𝑡 = ln |ℎ(0) | +
∑

𝑧: |𝑧 |<𝑅, ℎ (𝑧)=0
ln

𝑅

|𝑧 | ,

where the summation on the right hand side counts the roots of ℎ with

multiplicity.

Proof of Claim 6.7. First since𝑀𝑿 (𝑧) is an entire function, its zeros
are isolated. Thus, by perturbing 𝑅 infinitesimally, we can assume

that𝑀𝑿 (𝑧) has no zeros on 𝜕D. Further, an immediate consequence

of the Jensen’s formula is that the number of zeros of an analytic

function in D must be finite. To see this, let 𝑅′ > 𝑅 and apply

Jensen’s formula on the cicle of radius 𝑅′. By Jensen’s formula, it

follows that
∑
𝑧: |𝑧 |<𝑅′, ℎ (𝑧)=0 ln

𝑅′
|𝑧 | is finite which implies that the

number of zeros in D has to be finite. For any radius 𝑅∗, let us now
enumerate the zeros of 𝑀𝑿 (𝑧) that lie within the disc {𝑧 ∈ R :

|𝑧 | ≤ 𝑅∗} as 𝑧1, . . . , 𝑧𝑛 (𝑅∗) such that |𝑧1 | ≤ |𝑧2 | . . . ≤ |𝑧𝑛 (𝑅∗) |. Then,

𝑛 (𝑅∗)∑
𝑖=1

ln
𝑅∗
|𝑧𝑖 |

=

𝑛 (𝑅∗)−1∑
𝑖=1

𝑖 · ln |𝑧𝑖+1 |
|𝑧𝑖 |

+ 𝑛(𝑅∗) · ln
𝑅∗

|𝑧𝑛 (𝑅∗) |

=

∫ 𝑅∗

0
𝑛(𝑟 ) d𝑟

𝑟
. (14)

The last equality simply follows by observing that since 𝑛(𝑟 ) is
finite in [0, 𝑅∗], hence we can split the integral on the right hand

side at the points of discontinuity of 𝑛(𝑟 ). Next, we have

𝑛(𝑅) ≤ 𝑛(𝑅)
∫ 𝑒𝑅

𝑅

d𝑟

𝑟
≤

∫ 𝑒𝑅

𝑅
𝑛(𝑟 ) d𝑟

𝑟

≤
∫ 𝑒𝑅

0
𝑛(𝑟 ) d𝑟

𝑟
=

𝑛 (𝑒𝑅)∑
𝑖=1

ln
𝑒𝑅

|𝑧𝑖 |
. (15)

In the above, the first three inequalities follow by definition while

the last equality is an application of (14) with 𝑅∗ = 𝑒𝑅. Finally, by
definition,𝑀𝑿 (0) = 1 and ln |𝑀𝑿 (𝑧) | ≤ B|𝑧 |. Using these two facts
with (15) and Theorem 6.8, we get

𝑛(𝑅) ≤
𝑛 (𝑒𝑅)∑
𝑖=1

ln
𝑒𝑅

|𝑧𝑖 |
=

∫ 1

0
ln

��𝑀𝑿 (𝑒𝑅𝑒2𝜋 𝒊𝑡 )
�� d𝑡 ≤ 𝑒B𝑅.

This finishes the proof of Claim 6.7. □

Corollary 6.9. Let 𝑀𝑿 (𝑧) = E[𝑒𝑧𝑿 ] as defined earlier, and let
𝛼 > 1, 𝑅∗ > 0 be such that𝑀𝑿 (𝑧) has no roots in the ball {𝑧 : |𝑧 | ≤
𝑅∗}. Then, ∑

𝑧:𝑀𝑿 (𝑧)=0

1

|𝑧 |𝛼 ≤ 𝛼 (𝛼 − 1) · 𝑒B
𝑅𝛼−1∗

.

Proof. It follows from Claim 6.7 that the number of roots of

𝑀𝑿 (𝑧) is countable. Let us enumerate these roots as 𝑧1, 𝑧2, . . .. We

have that ∑
𝑧:𝑀𝑿 (𝑧)=0

1

|𝑧 |𝛼 =

∑
𝑖

1

|𝑧𝑖 |𝛼
=

∑
𝑖

𝛼

∫ ∞

|𝑧𝑖 |

1

𝑟1+𝛼
d𝑟

= 𝛼

∫ ∞

0

𝑛(𝑟 )
𝑟1+𝛼

d𝑟 .
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From the assumption 𝑛(𝑟 ) = 0 for all 𝑟 ≤ 𝑅∗, we can use Claim 6.7

to upper bound the right hand side as

𝛼

∫ ∞

𝑅∗

𝑒B𝑟

𝑟1+𝛼
d𝑟 = 𝛼 · 𝑒B

∫ ∞

𝑅∗

1

𝑟𝛼
d𝑟 ≤ 𝛼 (𝛼 − 1)𝑒B

𝑅𝛼−1∗
. □

The last ingredientwewill need to prove Claim 6.2 is theHadamard

factorization theorem (see Theorem 5.1, Section 5 in [40]):

Theorem 6.10. Let ℎ be an entire function that is of order 1 (i.e.,

log |ℎ(𝑧) | = 𝑂 ( |𝑧 |)). If ℎ(0) ≠ 0, then there exist 𝐴,𝐴′ ∈ R such that

ℎ(𝑧) = 𝑒𝐴𝑧+𝐴′ ∏
𝑛≥1

(
1 − 𝑧

𝑧𝑛

)
𝑒

𝑧
𝑧𝑛 ,

where 𝑧1, 𝑧2, . . . are the roots of ℎ(𝑧).

Proof of Claim 6.2. As𝑀𝑿 (𝑧) is an entire function of order one, we
can use Theorem 6.10 to express it as

𝑀𝑿 (𝑧) = 𝑒𝐴𝑧+𝐴′ ∏
𝑛≥1

(
1 − 𝑧

𝑧𝑛

)
𝑒

𝑧
𝑧𝑛 ,

where 𝑧1, 𝑧2, . . . are the roots of𝑀𝑿 (𝑧). We first recall that𝑀𝑿 (0) =
1, and hence 𝐴′

= 0. We next observe that since 𝑀𝑿 (𝑧) is a sym-

metric function, if 𝑧𝑛 is a root then so is −𝑧𝑛 (and with the same

multiplicity). Together with the symmetry of 𝑀𝒙 (𝑧), this implies

that the coefficient 𝐴 of 𝑧 appearing in the exponent is also zero.

Next, we observe that𝑀𝑿 (𝑧) cannot have any root on the real line.

Thus, if we define Ω1 = {𝑧 : Re(𝑧) > 0}, then the right hand side

of the above equation simplifies to

𝑀𝑿 (𝑧) =
∏

𝑧𝑖 ∈Ω1:𝑀𝑿 (𝑧𝑖 )=0

(
1 − 𝑧2

𝑧2𝑖

)
.

Now, suppose that 𝑀𝑿 (𝑧) does not have any zeros in a ball of

radius 𝑅∗ around the origin. Then, for any 𝑧 such that |𝑧 | ≤ 𝑅∗, the
above gives that

|𝑀𝑿 (𝑧) | ≥
∏

𝑧𝑖 ∈Ω1:𝑀𝑿 (𝑧𝑖 )=0

(
1 − |𝑧 |2

|𝑧𝑖 |2

)

≥ 1 −
∑

𝑧𝑖 ∈Ω1:𝑀𝑿 (𝑧𝑖 )=0

|𝑧 |2
|𝑧𝑖 |2

.

Applying Corollary 6.9 (with 𝛼 = 2), we have that

|𝑀𝑿 (𝑧) | ≥ 1 − 2𝑒B|𝑧 |2
𝑅∗

.

Choosing 𝑅∗ = 72𝑒B3, we get that |𝑀𝑿 (𝑧) | ≥ 1 − |𝑧 |2/36B2 for all
|𝑧 | ≤ 72𝑒B3. In particular, for all |𝑧 | ≤ 3, 𝑀𝑿 (𝑧) ≥ 1 − 1/(4B2).
This contradicts Claim 6.6. Thus,𝑀𝑿 (𝑧) has a root of magnitude at

most 72𝑒B3 ≤ 200B3. □
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