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ABSTRACT

We consider the following basic inference problem: there is an un-
known high-dimensional vector w € R", and an algorithm is given
access to labeled pairs (x,y) where x € R” is a measurement and
y = w - x + noise. What is the complexity of deciding whether the
target vector w is (approximately) k-sparse? The recovery analogue
of this problem — given the promise that w is sparse, find or approx-
imate the vector w — is the famous sparse recovery problem, with
a rich body of work in signal processing, statistics, and computer
science.

We study the decision version of this problem (i.e. deciding
whether the unknown w is k-sparse) from the vantage point of
property testing. Our focus is on answering the following high-level
question: when is it possible to efficiently test whether the unknown
target vector w is sparse versus far-from-sparse using a number of
samples which is completely independent of the dimension n? We
consider the natural setting in which x is drawn from an i.i.d. prod-
uct distribution D over R” and the noise process is independent of
the input x. As our main result, we give a general algorithm which
solves the above-described testing problem using a number of sam-
ples which is completely independent of the ambient dimension
n, as long as D is not a Gaussian. In fact, our algorithm is fully
noise tolerant, in the sense that for an arbitrary w, it approximately
computes the distance of w to the closest k-sparse vector. To com-
plement this algorithmic result, we show that weakening any of our
conditions makes it information-theoretically impossible for any
algorithm to solve the testing problem with fewer than essentially
log n samples. Thus our conditions essentially characterize when it
is possible to test noisy linear functions for sparsity with constant
sample complexity.

Our algorithmic approach is based on relating the cumulants of
the output distribution (i.e. of y) with elementary power sum sym-
metric polynomials in w and using the latter to measure the sparsity
of w. This approach crucially relies on a theorem of Marcinkiewicz
from probability theory. In fact, to obtain effective sample com-
plexity bounds with our approach, we prove a new finitary version
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of Marcinkiewicz’s theorem. This involves extending the complex
analytic arguments used in the original proof with results about
the distribution of zeros of entire functions.
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1 INTRODUCTION

This paper addresses a basic data analysis problem from the per-
spective of property testing. To motivate our work, we begin by
considering the following simple and fundamental inference prob-
lem: For independent uniform strings x ~ {—1, 1}" and Gaussian
noise 11 ~ N(0,0.1), an algorithm gets access to labeled samples of
the form (x,y) where y = w-x+n and w is some fixed but unknown
unit vector in R". The task of recovering w from these noisy sam-
ples is an instance of the standard linear regression problem, which
is of course very well studied in computer science, econometrics,
and statistics (see e.g. [23, 28] or many other references). As is well
known, ©(n) samples are both necessary and sufficient to recover
w (to within a small constant error), and the ordinary least squares
algorithm is a computationally efficient algorithm which achieves
this sample complexity.

Now suppose that the algorithm is promised that w is k-sparse,
i.e. it has only k non-zero entries. In this case, the influential line
of work on compressive sensing shows that much better sample
complexities and running times can be achieved. In particular, the
breakthrough work of Candes, Romberg and Tao [17] shows that
using just m = O(k log n) samples and running in time poly(m, n),
it is possible to (approximately) recover the k-sparse vector w. Ob-
serve that when k is small (like a constant), this is an exponential
improvement over the sample complexity achieved by standard
linear regression. We further note that by results such as [1, 37], the
bound of O(k log n) samples is essentially tight, and that compres-
sive sensing algorithms are applicable for more general choices of
the distribution of x and the noise 7 (see the survey by Candes [14]).

In this paper we consider a natural decision analogue of the
above problem: the algorithm has access to the same type of (x,y =
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w - x + 1) samples as above, but it is not promised that the target
vector w is k-sparse. Rather, the task of the algorithm now is to
distinguish between the cases that (i) the target vector w is k-sparse,
versus (ii) the target vector w is e-far from every k-sparse vector
w’ (for some appropriate notion of “far"). Using algorithms from
compressive sensing, it is straightforward to obtain an algorithm
with m = O(klogn) sample complexity and poly(m, n) runtime.
But can one do much better? In particular, it is a priori conceivable
that there is an algorithm for this decision problem! with sample
complexity completely independent of the ambient dimension n. Do
such “ultra-efficient” algorithms in fact exist?

As a corollary of our main algorithmic result, we give an affir-
mative answer to this question. Our result implies that in the above
setting, it is indeed possible to distinguish between w which (i) is
k-sparse, versus (ii) is e-far in £, distance from all k-sparse vectors
w’, with an m = Oy (1) sample complexity that is completely in-
dependent of n. In fact, we achieve much more: our algorithm can
handle a broad range of distributions of x, and in essentially the
same sample complexity we can approximate the distance from w
to the closest k-sparse vector. Thus we can essentially determine
the “fit" of the best k-sparse vector using only m = Oy (1) samples.
Moreover, the running time of our algorithm is poly(m) if it is
allowed to skip the reading of x in every sample.

1.1 Motivation: Property Testing

Before describing our main results in more detail, we recall a line of
work on property testing of functions which strongly motivates our
study. In the standard property testing framework, an algorithm
is given access to an unknown function f via an oracle O. For a
property P of functions, the goal of a property testing algorithm
for P is to make as few queries to O as possible and distinguish
(with success probability, say, 9/10) between the cases that (i) the
function f has the property P, versus (ii) the function f is at least
e-far in Hamming distance from every function g with property #.
As a well-known example of this framework, the seminal work of
[10] showed that when P is the property of being GF(2)-linear, f
is any function from GF"(2) to GF(2), and the oracle O is a black-
box oracle for f, then there is an algorithm with query complexity
O(1/¢). We refer the reader to books and surveys such as [25, 26,
38, 39] which give an overview of the nearly three decades of work
in this area.

An often-sought-after “gold standard" for property testing al-
gorithms, that can (perhaps surprisingly) be achieved for many
problems, is an algorithm with constant query complexity, i.e. a
query complexity that only depends on the error parameter ¢ and
is completely independent of the ambient dimension n. This, for
example, is the case with GF(2)-linearity testing [10], low-degree
testing [24], junta testing [20], and other problems. Indeed, there
are grand conjectures (and partial results towards them) which seek
to characterize all such properties # which can be tested with a
constant number of queries to a black-box oracle (see e.g. [5, 6, 30]).

In this spirit, we explore the question of whether (and when),
given noisy labeled samples of the form (x,y) wherey = w - x + 1,
we can test k-sparsity of w with a number of samples that only

!This is in contrast with the recovery problem, as shown by lower bounds such as
[1, 37] mentioned above.
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depends on k and ¢, and is independent of n. Before describing our
precise model, we point out an important difference between our
model and much work on property testing. In the standard model of
property testing of functions described above, it is usually assumed
that the algorithm can make black-box queries to the unknown
function; in contrast, in our model, the algorithm only has “pas-
sive” access to random samples. Obtaining dimension-independent
guarantees when given only sample access can be quite challeng-
ing; for example, the sample complexity of testing GF(2) linearity
in this model is ©(n) samples [27] whereas as stated above only
O(1/¢) queries are required by the [10] result. We refer the reader
to [18, 27, 31] for some property testing results in the “sample-based”
model.

1.2 The Problem We Consider

In order to describe the algorithmic problem that we consider in
more detail, let us define the notion of distance to k-sparsity. Given
anonzero vector w € R"”, we define its distance to k-sparsity to be

(1)

lw —wlla .

dist(w, k-sparse) := T
wii2

mi
w eR™: W is k-sparse
this is equivalent to the fraction of the 2-norm of w that comes
from the coordinates that are not among the k largest-magnitude
ones. Note that when w is a unit vector, then dist(w, k-sparse) is
the same as the £ distance between w and the closest k-sparse
vector.

Basic model: We are now ready to describe our model. We are
given access to independent labeled examples of the form (x,y)
where x € R" and y € R. In each such labeled example x is drawn
from some distribution D over R" and the label value y is a noise-
corrupted version of w - x for some unknown target vector w € R"™.
In particular, y = w - x + 1, where n is drawn from some noise
distribution (which is independent of x). The goal is to distinguish
between the following two cases: (i) w is a k-sparse vector (meaning
that it has at most k nonzero coordinates), versus (ii) w is e-far from
being k-sparse (meaning that dist(w, k-sparse) > ¢). Thus, we are
considering a promise problem, or equivalently any output is okay
in the intermediate case in which w is not k-sparse but is -close to
being k-sparse. We refer to this problem as (non-robust) k-sparsity
testing.

Our algorithms will in fact solve a robust version of this problem:
in the same model as above, for any given ¢ > 0, our algorithms will
approximate the value of dist(w, k-sparse) to within an additive
+¢. We refer to this problem as noise tolerant k-sparsity testing (see
Parnas, Ron and Rubinfeld [36]); it is immediate that any algorithm
for this noise-tolerant version immediately implies an algorithm
with the same complexity for non-robust k-sparsity testing. In fact,
while our main algorithmic result is for the noise tolerant problem,
our lower bounds (which we describe later) are for the non-robust
version (which a fortiori makes them applicable to the noise-tolerant
version).

Our desideratum: constant-sample testability. As is the case for
similar-in-spirit property testing problems such as k-junta testing
[7, 13, 21], we view k as a parameter which is fixed relative to n,
and our main goal is to obtain a constant-sample tester, i.e. a test-
ing algorithm for which the number of samples used is O (1)
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completely independent of n. As stressed earlier (unlike the junta
testing problem or many other problems studied in Boolean func-
tion property testing), our testing algorithms are not allowed to
“actively” make queries — their only source of information about w
is access to the i.i.d. samples (x,y) that are generated as described
above.

1.3 Our Algorithmic Results

Informally speaking, our main positive result says that for a broad
class of input distributions D, if the parameters of the noise are
provided then there is a testing algorithm with Oy (1) sample
complexity independent of n. Here is a qualitative statement of
our main result (Theorem 5.1 gives a more precise version). We
start with a description of the algorithmic guarantee for non-robust
k-sparsity testing.

THEOREM 1.1 (QUALITATIVE STATEMENT OF MAIN RESULT). Fix
any random variable X over R which has variance 1, finite moments
of every order’, and is not Gaussian (i.e. its total variation distance
from every Gaussian is nonzero). For any n, let D be the product
distribution over R™ whose marginals are each distributed according
to X, i.e. D = X". Let n be a random variable corresponding to a
noise distribution over R which is such that all its moments are finite.

Then there is an algorithm (depending on D and n) with the fol-
lowing property: for any w € R"™ with® 1/C < ||wlls < C, givenk, ¢,
and access to independent samples (x,y = w - x + ) where each
x~D,

o if'w is k-sparse then with probability 9/10 the algorithm out-
puts ‘k-sparse”; and

o if w is e-far from k-sparse then with probability 9/10 the
algorithm outputs “far from k-sparse.”

The number m of samples used by the algorithm depends only on
C, k,&,X and n; in particular, it is independent of n. We will refer to
such an algorithm as an e-tester for k-sparsity under O and n with
sample complexity m.

Tolerant testing: As mentioned earlier, our algorithmic guaran-
tees are in fact, much stronger. Namely, under the same conditions
on P and n as above, the algorithm in Theorem 1.1, with high prob-
ability, in fact computes dist(w, k-sparse) to an additive +¢. Thus
for D and n as above, this shows that noise tolerant k-sparsity
testing can be done with a constant number of samples.

Remark 1.2 (Explicit bounds and sharper quantitative bounds for
“benign” distributions). Theorem 1.1 shows that for every non-
Gaussian random variable X the corresponding testing problem
has a constant-sample algorithm, but it does not give a uniform
upper bound on sample complexity that holds for all non-Gaussian
distributions. (Indeed, no such uniform upper bound on sample
complexity can exist; see Remark 2.2 for an elaboration of this
point.) However, if the background random variable X is supported
on a bounded set, say [—B, B], then it is in fact possible to get an
explicit uniform upper bound on the sample complexity (which

21t will be clear from our proofs that having finite moments of all orders is a stronger
condition than our algorithm actually requires; we state this stronger condition here
for simplicity of exposition.

3Tt may be helpful to think of C as being a large absolute constant, but we establish
our results for general C.
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is a tower of height O(k)). We do this by proving a new finitary
version of a theorem due to J. Marcinkiewicz [33] from probability
theory. This involves extending the complex analytic arguments
used in the original proof; prior to this work, to the best of our
knowledge no finitary analogue of the Marcinkiewicz theorem was
known [12, 29, 35]. We give this proof in Section 6.

Going beyond Theorem 1.1, we show that for a large class of
“benign” distributions (which includes the uniform distribution over
[0, 1], any product distribution over {—1, 1}, and many others), a
different and simpler algorithm provides a uniform upper bound
on sample complexity, which is roughly (k/ )0 _(See the full
version for a detailed statement and proof of this result.)

1.4 Lower Bounds: Qualitative Optimality of
Our Algorithmic Results

1.4.1  On the Role of Noise and Its Independence of the Data Points.
We begin by addressing the role of noise in our model. Without
noise corrupting the labels, when the background random variable
X is continuous, even the recovery problem will admit a simple
algorithm which uses only k + 1 samples (see the full version for
an elaboration on this point). Thus, all of our positive results are
for settings in which the labels are corrupted by noise. On the
other hand, some of our lower bounds are for problem variants
in which the labels are noise-free; this of course only makes the
corresponding lower bounds stronger.

Secondly, our model (described in Section 1.2) requires that the
distribution of the noise 7 is independent of the distribution of
x. It is easy to see that if the noise process corrupting the label y
of a labeled example (x,y) is allowed to depend on x, then it is
possible for the noise to perfectly simulate k-sparsity when the
target vector is far from k-sparse or vice versa. In this situation no
algorithm, even with infinite sample complexity, can succeed in
testing k-sparsity. Thus throughout this work we assume that the
noise 7 in each labeled example is independent of the example x.

1.4.2  Necessity of the Conditions in Our Algorithmic Result. There
are three main requirements in the conditions of Theorem 1.1 which
may give pause to the reader. First, the distribution D must be an
ii.d. product distribution: the n coordinate marginal distributions
are not only independent, they are identically distributed accord-
ing to some single univariate random variable X. Second, certain
parameters (various cumulants) of the noise distribution must be
provided to the testing algorithm. And finally, the underlying ran-
dom variable X is not allowed to be a Gaussian distribution.
While these may seem like restrictive requirements, it turns out
that each one is in fact necessary for constant-sample testability.
We give three different lower bounds which show, roughly speak-
ing, that if any of these requirements is relaxed then finite-sample
testability with no dependence on n is information-theoretically
impossible — in fact, in each case the testing problem becomes
essentially as difficult as the sparse recovery problem, requiring
Q(log n) samples. In this work, we always use the notation “Q(-)”
to hide factors polylogarithmic in its argument. So Q(log n) means
( logn ).

poly (log log n)
Our first lower bound shows that even if D is allowed to be a

product distribution in which half the coordinates are one simple
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integer-valued distribution (a Poisson distribution) and the other
half are a different simple integer-valued distribution (a Poisson

logn
loglogn )
samples may be required. This lower bound holds even if no noise
is allowed. The proof is given in the full version:

distribution with a different parameter), then at least Q(

THEOREM 1.3 (D MUST BE L.L.D.). Let D be the product distribution
(Poi(l))”/2 X (Poi(lOO))"/z. Then even if there is no noise (i.e. the
noise distribution n is identically zero), any algorithm which is an
(¢ = 0.99)-tester for 1-sparsity under D must have sample complexity

_ logn
m= Q(loglogn)‘

Our second lower bound shows that even if only two “known”
possibilities are allowed for the noise distribution, then for D = X"
where X is a simple “known” integer-valued underlying univariate

logn
loglogn
The proof is given in the full version:

random variable, at least Q( ) many samples may be required.

THEOREM 1.4 (THE NOISE DISTRIBUTION 7] MUST BE KNOWN).
Let D be the i.i.d. product distribution D = (Poi(1))". Suppose
that the noise distribution n is unknown to the testing algorithm but
is promised to be either Poi(1) or Poi(100). Then any (¢ = 0.99)-
tester for 1-sparsity under D and the unknown noise distribution n €

logn

{Poi(1), Poi(100)} must have sample complexity m = Q(W)'

Finally, our third (and most technically involved) lower bound
says that if the underlying univariate random variable X is allowed
to be a Gaussian, then even if the noise is Gaussian at least Q(log n)
samples are required. The proof is given in the full version:

THEOREM 1.5 (9 CANNOT BE A GAUSSIAN). Let D be the standard
N(0,1)™ n-dimensional Gaussian distribution and let n be distributed
as N(0,c?) where c > 0 is any constant. Then the sample complexity
of any (e = 0.99)-tester for 1-sparsity under D and n is Q(logn).

1.5 Related Work

We view this paper as lying at the confluence of several strands
of research in theoretical computer science. As mentioned earlier,
a strong motivation for our algorithmic desiderata comes from
property testing. In particular, our k-sparsity testing question is in
some sense akin to the well-studied problem of junta testing, i.e.,
distinguishing between functions f : {+1}" — {+1} which depend
on at most k coordinates versus those which are e-far from every
such function. There is a very rich line of work on junta testing,
see e.g. [7-9, 13, 19, 22] and other works. However, we note that all
these papers (and other junta testing papers of which we are aware)
assume query access to the unknown function f, whereas in our
work we only assume a much weaker form of access, namely noisy
labeled random samples. Some other relevant works in the property
testing literature are the aforementioned works [18, 27, 31] (see also
[2]), which give algorithmc property testing results in the “sample-
based” model, and [4], which like our work considers testing with
respect to various L, distances, including the L, distance (similar
to our work).

A second strand of work is from compressive sensing. Here
the results of [17] and related works such as [15, 16] (as well as
many other papers) give computationally efficient algorithms to
(approximately) recover a sparse vector w given labeled samples
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of the form {(x(),w - x() + r})}l.T:1 with sample complexity T =
O(klogn). On one hand, such a sample complexity does not meet
our core algorithmic desideratum of being independent of n. On
the other hand, the algorithmic guarantee in [17] holds as long as
the matrix formed by x(l), el x(D) satisfies the so-called restricted
isometry property (see [14] for more details), which is a significantly
more general condition than ours. It is natural to wonder if an
analogue of Theorem 1.1 can be obtained if D satisfies the weaker
condition of being such that randomly drawn samples from D
satisfy the restricted isometry property with high probability. The
answer to this question is negative; in particular, Theorem 1.3 gives
an example of a distribution D for which Q(logn) samples are
necessary for testing k-sparsity, but it is easy to show that randomly
drawn samples from this distribution satisfy the restricted isometry
property with high probability.

Finally, another related line of work is given by Kong and
Valiant [32], who considered a setting in which an algorithm gets
labeled samples of the form (x,y = w - x + n7), where n is an un-
known distribution independent of x and w is a general (non-sparse)
n-dimensional vector. The task of the algorithm is to estimate the
variance of n or equivalently, ||w]||z; they view such a result as esti-
mating how much of the data, i.e., y, is explained by the linear part
w - x. While learning w itself requires ®(n) samples (essentially
the same as linear regression), their main result is that ||w||2 can be
estimated with a sublinear number of samples. In particular, if the
distribution of x is isotropic, then the sample complexity required
for this is only O(+/n). In light of Theorem 1.1 and the results of
[32], it is natural to ask whether there is a non-trivial estimator
for noise in our setting when the target vector w is assumed to be
k-sparse. However, Theorem 1.4 essentially answers this in the neg-
ative, showing that if the magnitude of the noise is unknown, then
any estimator must require Q(log n) samples even for 1-linearity
testing. On the other hand, O(log n) samples suffice for recovering
the target w (and hence the magnitude of the noise) when k is a
constant.

2 OUR TECHNIQUES AND A DETAILED
OVERVIEW OF OUR RESULTS

2.1 Our Algorithmic Techniques: Analysis
Based on Cumulants

Both of our algorithms for testing sparsity make essential use of
the cumulants of the one-dimensional coordinate marginal random
variable X. For any integer £ > 0 and any real random variable
X, the ¢-th cumulant of X, denoted k¢ (X), is defined in terms of
the first £ moments of X, and, like the moments of X, it can be
estimated using independent draws from X (see Definition 3.1 for
a formal definition of cumulants.) However, cumulants enjoy a
number of attractive properties which are not shared by moments
and which are crucial for our analysis.

There are two key properties, both very simple. First, cumulants
are additive for independent random variables:

If X,Y are independent, then k¢ (X +Y) = k¢ (X) + k¢ (Y).
Second, cumulants are homogeneous:

For all ¢ € IR, it holds that x¢(cX) = ¢’ - k¢ (X).
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We now explain the key idea of why additivity and homogeneity
of cumulants are useful for the algorithmic problem we consider.
These properties directly imply that if a distribution D over R" has
coordinate marginals that are i.i.d. according to a random variable
X, then for x ~ D and y = w - x + 1), we have that

ke(y) = ke(n) +xe(X) - D wi
i=1

It follows that if the £-th cumulants of 17 and of X are known and the
£-th cumulant k7 (X) of X is not too small, then from an estimate of
k¢(y) (which can be obtained from samples) it is possible to obtain
an estimate of the power sum »7| wl.[. By doing this for k suitable
different (even) values of ¢, provided that the cumulants x;(X) are
not too small, it is possible to estimate the magnitudes of the k
largest-magnitude coordinates of w. These estimates can be shown
to yield the desired information about whether or not w is (close
to) k-sparse.

The argument sketched in the previous paragraph explains, at
least at an intuitive level, why it is possible to test for k-sparsity if
the random variable X has k nonzero cumulants. But why will every
non-Gaussian random variable X (as described in Theorem 1.1)
satisfy this property, and why does Theorem 1.1 exclude Gaussian
distributions? The second of these questions has a very simple
answer so we address it first: it is well known that for any normal
distribution X ~ N(u, ¢2), the first two cumulants are x1(X) =
i, k2(X) = o2, and all other cumulants are zero. It follows that
indeed our algorithmic approach cannot be carried out for normal
distributions.* The answer to the first question comes from a deep
result in probability theory due to J. Marcinkiewicz:

THEOREM 2.1 (MARCINKIEWICZ'S THEOREM [11, 33, 34]). If X is
a random variable that has a finite number of nonzero cumulants,
then X must be a normal random variable (and X has at most two
nonzero cumulants).

It follows that if X is not a normal distribution, then it must
have infinitely many nonzero cumulants, and hence the algorithmic
approach sketched above can be made to work for testing k-sparsity
under X". Details of the estimation procedure and of the analysis of
the overall general algorithm are provided in Section 4 and Section 5
respectively.

2.2 A Structural Result on Cumulants: Nonzero
Cumulants Cannot Be “Spaced Far Apart”

As described above, our main positive result on testing for spar-
sity under a product distribution X" uses a sequence of orders
i1, 12, ..., ix such that the corresponding cumulants k;; (X) are all
nonzero. Since the running time of our algorithm depends di-
rectly on ig, it is natural to ask how large is this value. Recall
that Marcinkiewicz’s theorem ensures that for any non-Gaussian
distribution there indeed must exist nonzero cumulants of infin-
itely many orders iy, iy, ..., but it gives no information about how
far apart these orders may need to be. Thus we are motivated to
investigate the following question: given a real random variable X,
4Recall that by our lower bound Theorem 1.5, this is not a failing of our particular
algorithm sketched above but an inherent difficulty in the testing problem. Theorem 1.5

shows that no algorithm can test k-sparsity with a sample complexity that is o (log n)
when the underlying distribution is normal.
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how large can the gap in orders be between consecutive nonzero
cumulants? This is a natural question which, prior to our work,
seems to have been completely unexplored.

In Section 6 we give the first result along these lines, by giving
an explicit upper bound on the gap between nonzero cumulants
for random variables with bounded support (see Theorem 6.1). This
theorem establishes that for any real random variable X with unit
variance and support bounded in [—-B, B], given any positive integer
¢ there must be a value j € [£+ 1, (4B)°()] such that the j-th
cumulant «;(X) has magnitude at least \Kj (X)| > 2~ (4B Like
the proof of Marcinkiewicz’s theorem, the proof of our Theorem 6.1
uses complex analytic arguments, specifically results about the
distribution of zeros of entire functions, the Hadamard factorization
of entire functions and the Hadamard Three-Circle Theorem.

2.3 A More Efficient Algorithm for “Nice”
Distributions

In addition to the general positive result described above, we also
give a refined result, showing that a significantly better sample
complexity can be achieved for distributions which are “nice” in the
sense that they have k+1 consecutive even cumulants kg, k4, . . ., Koky2
that are all (noticeably) nonzero. This is achieved via a different
algorithm; like the previously described general algorithm, it uses
(estimates of) the power sums Y7, wf, but it uses these power sums
in a different way, by exploiting some basic properties of symmetric
polynomials. The first k + 1 power sums 7", wl.z, Srowh ... are
used to estimate the (k + 1)-st elementary symmetric polynomial
2 <iy<ip<---<ips; <n Wiy Wiy * * - Wiy, - The value of this polynomial
will clearly be zero if w is k-sparse, and it can be shown that it will
be “noticeably far from nonzero” if w is far from k-sparse. These
ideas can be converted into a testing algorithm; see the full version
for details.

2.4 Our Lower Bounds and Lower Bound
Techniques

The lower bounds of Theorem 1.3 and Theorem 1.4 both crucially
exploit the well known additivity property of the Poisson distribu-
tion: for a, b > 0, we have that Poi(a) + Poi(b) = Poi(a + b). To see
why this is useful for lower bounds, let us explain the high-level
idea that underlies Theorem 1.3. For intuition, first imagine that
rather than receiving pairs (x,y) € R"” X R, instead the testing
algorithm is only given the output value y from each pair. Then by
the additivity of the Poisson distribution, it would be information-
theoretically impossible to distinguish between (i) the case in which
y is a sum of 100 coordinates each of which is distributed as Poi(1)
(and hence the target vector w is 0.99-far from being 1-sparse),
versus (ii) the case in which y is a single coordinate distributed as
Poi(100) (and hence the target vector w is 1-sparse). Of course, in
our actual testing scenario things are not so simple because the
testing algorithm does receive the coordinates x1, . . ., x5 of each ex-
ample (x,y) along with the value of y, and this provides additional
useful information. Our proof establishes that this additional infor-
mation is essentially useless unless Q(log n) samples are provided.
Roughly speaking, this is because with n/2 coordinates distributed
as Poi(1) and n/2 coordinates distributed as Poi(100), there are
“too many possibilities” of each sort ((i) and (ii) above) for the x’s to
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provide useful distinguishing information until this many samples
have been received.

The lower bound of Theorem 1.4 is based on similar ideas. Now
all n coordinates are identically distributed as Poi(1), but the noise
may be distributed either as Poi(1) or as Poi(100). As above, if only
the output values y = w-x+n were available to the tester, it would be
impossible to distinguish between (i’) the target vector w is 1-sparse
and the noise is Poi(100), versus (ii’) the target vector is 100-sparse
and the noise is Poi(1), since in both cases the distribution of y is
Poi(101). The formal proof is by a reduction to Theorem 1.3.

Finally, we turn to the lower bound of Theorem 1.5, which states
that Q(log n) samples are required for the testing problem if the
distribution O is N (0, 1)" and the noise distribution 7 is normally
distributed as N(0,c?). The high level idea is that it is difficult
to distinguish between the following two distributions over pairs

(x,y):

e First distribution (no-distribution): in each draw of (x,y)
from the no-distribution, each x; is an independent N (0, 1)
random variable, and y is an N(0, 1 + ¢?) normal random
variable which is completely independent of all of the x;’s;

e Second distribution (yes-distribution): there is a fixed but un-
known uniform random coordinate i € [n], and in each draw
of (x,y) from the yes-distribution, each x is an independent
N(0,1) random variable and y = x; + N (0, ¢?).

Similar to the first paragraph of this subsection, since the sum
of a draw from N (0, 1) plus an independent draw from N (0, ¢?) is
a draw from N(0, 1 + ¢), if only the output value y from each pair
were given to a tester then it would be information-theoretically
impossible to distinguish between the two distributions described
above. And similar to the discussion in that paragraph, the idea that
animates our lower bound proof here is that the additional infor-
mation (the x1, ..., xp-coordinates of each sample) available to the
testing algorithm is essentially useless unless Q(log n) samples are
provided. As before, roughly speaking, this is because there are “too
many possibilities” (for which coordinate might be the unknown
hidden i ~ [n] in the second distribution) for the x-components
of the samples to provide useful distinguishing information until
Q(log n) many samples have been received. The formal argument
uses Bayes’ rule to analyze the optimal distinguishing algorithm
(corresponding to a maximum likelihood approach) and employs
the Berry-Esseen theorem to make these intuitions precise.

Remark 2.2. We note here that we also give a quantitative re-
finement of Theorem 1.5. Since for a Gaussian random variable
X all cumulants k¢ (X), £ > 2, are zero, we may informally view
Theorem 1.5 as saying that if the cumulants of X are zero then
the number of samples required to test for sparsity under X" may
be arbitrarily large (going to infinity as n does). This intuitively
suggests that if the cumulants of X are “small” then “many” samples
should be required to test for sparsity under X™. In the full version
we make this intuition precise: building on Theorem 1.5, we show
(roughly speaking) that if the cumulants of a random variable X
are at most y, then at least 1/y samples are required for testing
sparsity under X" and Gaussian noise. See the full version for a
precise statement and proof.
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2.5 Directions for Future Work

Our results suggest a number of directions for future work; we
touch on a few of these below.

Within the sparsity testing framework that this paper consid-
ers, it would be interesting to gain a more quantitatively precise
understanding of the sample complexity required to test sparsity.
A natural specific question here is the following: let X be a simple
random variable such as X = uniform on {-1,1} or X = uniform

n [0, 1]. For these specific distributions, what is the optimal de-
pendence on k for the k-sparsity testing question that we have
considered? It would be interesting to determine whether or not
an exponential dependence on k is required.

Another natural quantitative question arises from our results
in Section 6. Theorem 6.1 implies an explicit “tower-type” upper
bound on the minimum value i, such that a random variable X
as above must have at least k nonzero cumulants in {1,...,i}.
It would be interesting to obtain sharper quantitative bounds or
bounds that hold under relaxed conditions on the random variable
X.

Finally, another intriguing potential direction is to look beyond
sparsity and attempt to identify other contexts in which sparsity
is testable with a constant sample complexity independent of n. A
concrete first goal along these lines is to investigate the sparsity
testing question when (x, y) is distributed as y = ¢(w - x) + noise
for various natural transfer functions ¢ such as the probit function
or the logistic function.

2.6 Notational Conventions

Given a vector w € R" we write ||w]||; to denote the £-norm of

¢
i
n > k, the vector w’s distance from being k-sparse is

1/¢
w, ie. |[|[wl]l¢ = ( W ) . For a nonzero vector w € R"™ where

llw —w’llz

dist(w, k-sparse) = T
wil2

mi
w eR"”: w is k-sparse
Equivalently, if the entries of w are sorted by magnitude so that

|wi | > -+ > |wj, |, the distance of w from being k-sparse is

2

2 ppw?
Lk+1

In
lwll2

For a random variable Z, we write my(Z) to denote its £th raw
moment, i.e., E[Zg].

3 PRELIMINARIES: FACTS ABOUT
CUMULANTS
In this section we recall some basic facts about cumulants which

we will use extensively.

Definition 3.1. The cumulants of X are defined by the cumulant
generating function K(t), which is the natural logarithm of the
moment generating function M(t) = E[e!X]:

K(t) = InE[eX].

Equivalently, K@) = E[etX ]. For ¢ > 0 the cumulants of X, which
are denoted k¢ (X), are the coefficients in the Taylor expansion of
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the cumulant generating function about the origin:

(o]

K(t) = Z

=1

Equivalently, x,(X) = K9 (0).

t{’
K[(X)F

One useful property of cumulants is additivity for independent
random variables, which follows as an easy consequence of the
definition:

Fact 3.2. If X and Y are independent random variables then
K[(X + Y) = K[(X) + K[(Y).

COROLLARY 3.3. For any random variable X, the value of k¢ (X —
X) is zero when ¢ is odd and is 2 - kg (X) when { is even.

Another useful property is £-th order homogeneity of the ¢-th
cumulant:

FacT 3.4. Foranyc € R and any ¢ € IN, we have k¢(cX) =
cfxe(X).

Looking ahead, all of our algorithms will work by estimating
cumulants of the real random variable y which is distributed as
Yy =w - x+n where x ~ X" and 5 is independently drawn from a
noise distribution. By Fact 3.2 and Corollary 3.3, we can (and do)
assume throughout the analysis of our algorithms that X and n are
both symmetric distributions. This is because we can combine two
independent draws (x1,y,;) and (x2,y,) withy; = w - x; + n into
one draw ((x1—x2)/V2, (y, - yz)/\/i), such that the new marginal
171 are both symmetric

V2

and have the same variances as before combining.

distribution % and noise distribution

Let my(X) denote the £th moment E[X] of a random variable X.

There is a one-to-one mapping between the first n moments and the
first n cumulants which can be derived by relating coefficients in the
Taylor series expansions of the cumulant and moment generating
functions [3]:

Fact 3.5. Let X be a random variable with mean zero. Then

-1
-1
a0 =mex)- 3, (1700 mes0. @
=R
Cumulants can be expressed in terms of moments and vice-versa:
¢
000 = 3" B 1100, ks () o)
k=1

and
¢
ke(X) = Z(—l)k_l(k - 1)!Br,k(m1(X), . -~,mz—k+1(X)), (4)
k=1

where By . are incomplete Bell polynomials,

B (X1, s Xp_41)
Xp—k+1

_ Z £ (X1 )jl ( )jik“
Jile Jemgr! V1 (t—k+1)! |

whose summation is over all non-negative sequences (Ji, . . .
that satisfy

> j[—k+1)

jl+...+j[_k+1:kandjl+2j2+"'+(f—k+l)j[_k+12[.

616

STOC 20, June 22-26, 2020, Chicago, IL, USA

Equation (2) can be used to give a upper bound on k/(X) in
terms of the moments of X:

Cramm 3.6. For any random variable X with mean zero and any
even £, we have |icp(X)| < me(X) - e - £1.

Remark 3.7. When X is the random variable that is uniform over
{0,1,...,C}, the £-th cumulant is k¢ (X) = BerTr}(f) - (Ct - 1) where
Bern(?) is the Bernoulli number of order £ which has an asymptotic
growth as (tZ_ez)( [41]. This simple example shows that the dominant
¢! term in Claim 3.6 is essentially best possible.

We defer the proof of Claim 3.6 to the full version.

4 ESTIMATING MOMENTS OF THE WEIGHT
VECTOR w USING MOMENTS AND
CUMULANTS

Throughout this section X will denote a real random variable with
mean zero, unit variance, and finite moments of all orders, and
w € R" will be a vector that is promised to have ||wl|; € [1/C,C].
The main result of this section is the following theorem, which
shows that it is possible to estimate norms of the vector w given
access to noisy samples of the form (x,y = w-x+n) where x ~ X™:

THEOREM 4.1. Let X be a symmetric real-valued random vari-
able with variance 1 and finite moments of all orders, and let n
be a symmetric real-valued random variable with finite moments
of all orders. There is an algorithm (depending on X and n)° with
the following property: Let w € R be any (unknown) vector with
[lwll2 € [1/C, C]. Given anye, § > 0 and any even integer { such that
|ke(X)| = 7, the algorithm takes as input m = poly (¢!, mae(X) +
map (1), 1/(8¢),1/7, C*) many independent random samples where
each x) ~ X" and each z() = w - x() + n. It outputs an estimate
Mg of X7, wf, the £-th power of the £-norm of the vector w, which
with probability at least 1 — § satisfies

|Me = [[w]lf] < e.

We will also use the following result on estimating the moments
ofw-X+n:

LEMMA 4.2. Let X be a symmetric real-valued random variable
with mean zero, variance 1, and finite moments of all orders, and let
1 be a symmetric real-valued random variable with finite moments
of all orders.

There is an algorithm (depending on X and n) with the following
property: Letw € R be any (unknown) vector with |[w|| € [1/C,C].
Given any ¢ and § and any even integer {, the algorithm takes as
input m = poly(£!, mz¢(X) + mae (1), 1/ (8¢), CY) many independent
random samples where each xD ~ X" and each z() = w - x(D + 7.
It outputs an estimate mp(Z), which with probability at least 1 — §
satisfies

me(Z) —E[lw-xD + /]| < e.

We defer the proof of Theorem 4.1 and Lemma 4.2 to the full
version.

5 As will be clear from the proof, the algorithm only needs to “know” X and 7 in the
sense of having sufficiently accurate estimates of certain cumulants.
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5 GENERAL TESTING ALGORITHM: PROOF
OF THEOREM 1.1

The main result of this section is Theorem 5.1, which is a more
precise version of Theorem 1.1. Roughly speaking, it says that
there is a constant-sample tolerant tester for k-sparsity for any
non-Gaussian distribution.

THEOREM 5.1 (DETAILED STATEMENT OF MAIN RESULT: TOLERANT
TESTER FOR NON-GAUSSIAN DISTRIBUTIONS). Fix any real random
variable X which has variance one and finite moments of every order,
and is not a Gaussian distribution (i.e. its total variation distance from
every Gaussian distribution is nonzero). Let n be any real random
variable with finite moments of every order.

There is a tolerant testing algorithm with the following proper-
ties: Let 0 < ¢ < s < 1 be any given completeness and soundness
parameters, and let w be any vector (unknown to the algorithm) with
1/C < ||wl|lz £ C. The algorithm is given c,s, & k,C and access to
independent samples (x,y = w-x+n) where eachx ~ X". Its sample
complexity is

m = poly (11, mar, (X) + mar, (m), 1/87',1/7,C1),

where T = min; e x1{|xe, (X)|} and {€i }ic[k], {0i }ic[k] are as defined
below. The algorithm satisfies the following:

o ifdist(w, k-sparse) < c then with probability at least 9/10 the
algorithm outputs “yes;” and

o ifdist(w, k-sparse) > s then with probability at least 9/10 the
algorithm outputs “no.”

Furthermore, if the random variable X is supported in [-B, B] for
some constant B, then the sample complexity of the tolerant tester (as
a function of k) is bounded by a tower function of height O(k).

Remark 5.2. The running time of our algorithm is poly(m) (inde-
pendent of n) if our algorithm is allowed to obtain y directly and
skip the reading of x. The same remark holds for the more efficient
tester for “nice” distributions given in the full version.

We begin by stating the algorithm:

(1) First, recall that as stated earlier, we may assume that X and
n are both symmetric. We rescale all samples by a factor of
C so that ||w||z € [1/C?,1] in our subsequent analysis.
We fix ¢ = s;éﬁz and apply Lemma 4.2 with £ = 2 to obtain an
estimate s of X7 wi2 = ||w||§ =E[|w- X" +7/?] —E[|n/?]
that is accurate to within additive error ¢/4 (with probability

0.99).
(2) Set a sequence of error parameters §; < J2 < ... < 8 and
natural numbers (orders of cumulants) £ > £, > --- > £

with the following properties:
(a) Ok =¢/(12k) and & > 100/52 is even ;
(b) Fori=k—-1,k—2,...,1, 8 = (8iy1/56+1)5*/(2k) and
> 100/5? is even;
(c) For each i € [1,k] the #-th cumulant ks, (X) of X is
nonzero.
(3) For j =1,...,k: run the algorithm of Theorem 4.1 to obtain

an estimate My, which satisfies |ij—||w||2| < (51-/5{’]-)[1'/(2/:)
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with failure probability at most 1/(20k). Set

j-1 1/¢;
s
M[j - Z Wl.j
i=1

(The intuition is that at the j-th iteration of this step, the
algorithm computes an estimate w; of the magnitude of the
Jj-th largest magnitude coordinate in the weight vector w.)
~ 2_p2 « » .
(4) If Zf:l wl.2 < (1-%5%) 53, output “No,” and otherwise
output “Yes”

wj =min{ 1,

A remark is in order regarding condition 2(c) above. Recall that
by Marcinkiewicz’s theorem [11, 34], since X is not a Gaussian
distribution it must have infinitely many nonzero cumulants. (This
is where we use the assumption that X is not Gaussian; indeed
if X were Gaussian then 7 as defined in the theorem statement
would be zero.) Hence a sequence of orders #; > --- > ¢ satisfying
conditions 2(a), 2(b) and 2(c) must indeed always exist.

To analyze the algorithm we will use the following lemma, which
shows that a good estimate of ||w||f,7 yields a good estimate of ||w|oo:

LEMMA 5.3. Given any vector w with ||w||§ <1landd > 0, let
£ > 100/8% be even and let My satisfy |M[ - ||w||g| < (g)[/Z. Then
1/¢
M = Jwlloo| < 6.

We defer the proof of Lemma 5.3 to Section 5.1 and use it to
prove Theorem 5.1.

Proof of Theorem 5.1. Without loss of generality we assume that
the coordinates of w satisfy w; > wy > -+ > w, > 0. We use
induction to prove that [w; —w;| < §;/¢; forall j=1,... k.

For the base case j = 1, we have that the difference between
My, and ||w||511 has magnitude at most (8;/5¢1)% /2k, so we can

apply Lemma 5.3. The value of w; as defined in Step 3 is M /4

b 280

Lemma 5.3 gives that |{wq — wq| < 81/6;.

For the inductive step, we assume that the claimed bound holds
for all wy,...,w;j—1, and we will apply Lemma 5.3 to bound the
distance between w; and wj. We bound the error between Mg, —

-1 ~t; ¢ -1 ¢
21w and il - 21w by
j-1
€ ~t; £
M, = lIwll 1+ D 1 = wi'|
i=1
j-1

<(8;/56/) |2k + Z Wi —wil - &

i=1

(using 0 < wj, w; < 1)

j-1
<(83/56)" [2k + Y (8:/6:) - €
i=1

j-1
<(8j/5)% 2k + Z 8; < (8;/56)Y /2.

i=1
. . i—1 ~{j .
In the third step of our algorithm, we use My, — Z{le w;” as an esti-
. £ .
mation of || (wj, Wj41, ..., wn)|l,/. The above calculation shows the
J

error of this estimation is (§7/5¢;)% /2. Thus applying Lemma 5.3
-1 =[G

to My, — Zimg W and the vector (wj, wjt1,. .., wp) with its
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“0” parameter being §;/¢;, we get that |[w; — w;| < §;/¢;. This
concludes the inductive proof.

With this upper bound on each |w; — wj| in hand, we can infer
that

k k k
Z Wi —wil = Z [wi —wil - [wi +wi| < Z(5i/fi)-3 <e/4, (5

i=1 i=1 i=1

where the first inequality uses ||w||2 < 1 and the closeness of each
w; to w; to upper bound |w; + w;| < 3.

We now use Equation (5) to establish correctness of our al-
gorithm. To do this, we first consider the “yes” case in which
dist(w, k-sparse) < c.In this case, we have that Zle Wiz > Z{;l wl.z—
e/a> (1-c?)- ||w||§ — ¢/4. Since sy = ||w||§ + ¢£/4, we have

k
Z |Wi|2 > (1 —Cz)(sz —e/4)—¢/4> (1 —cz) -5y —¢/2

i=1

Furthermore, since ||w|lz € [1/C? 1] shows ||w||§ e [1/C4 1],
s2—c?

S We have

given ¢ =
s2 > lwll2 —e/4 > 1/C* - 1/(8C*) = 2/(3C*) > ¢/(s* - ¢%)

and we can simplify our lower bound on Zle Wiz to

SZ—CZ SZ—C2
5 2= 1- .52,

from which we see that the algorithm is correct in the “yes”-case.

(1=c®)sy—¢/2> (1=c?)sy —

2 s2—c?
2

Similarly, in the “NO" case, we have Z{F:l ‘;i < (1 - - 82

This proves the assertions made in the two bulleted statements of
the theorem.

Finally, when X is supported in [—B, B], we apply Theorem 6.1 to
upper bound ¢;: given any ¢;.1 and 8;41, for t = 1003 /(8141 /56:41) 36,
there always exists 4 € [t, (48)0(”] with kg, (X) > 2~ (4B)71),
Thus 7 is also lower bounded by 2= (4B)71)

]

5.1 Proof of Lemma 5.3

For convenience we assume throughout this subsection that wy >
wy > -+ > wp > 0 in the vector w.

Fact5.4. If||wll2 < 1, then ||w||f,’ is always between wf and wf_z
forany ¢ > 3.

Proor. wi < |lwll} = X7, wh < wi2 31w < wi™2 o

Proof of Lemma 5.3. Recall that by assumption we have w1 = ||w]|eo <
1. Let 0 denote Mt}/{ and A < (8/5)%/2 denote the error such that
My = ||w||f + A. We consider two cases based on the size of wy:
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(1) The first case is that wi < §/5. In this case we upper bound
0 by

(Ilwllf + )"
S(wf_z + A)l/g (using the upper bound from Fact 5.4 on ||w||f,7)
<((8/5) 7+ (8/5) /2)/*
<2Vt (§/5)t-D)/e

<2/t (51821t . §/5
<28/5.

(using the fact £ = 100/53)

So we have that |9 - w1| < 28/5 + wq, which is at most 35/5
by the assumption of w; and the Lemma.

(2) The second case is that wy > §/5. In this case we first bound
wi — 0 by

wi = (Iwllf = )Y < wi = (w] = )M
(using the lower bound from Fact 5.4 on ||w||f)

A
=wi —wi(1- )
1

<w;—wi(1-2
1 1( 7. f)
(using (1 - )Yt > 1-2x/¢ whenx < 1/2)

=2wq - .
t’~wf

Then we bound 6 — w; by

(lwllf + M)~y

< (wf2 + A)l/[ - wq
(using the upper bound from Fact 5.4 on ||w||f)

< (Wi Y= (i + MY+ (wh e Y-y

/= 1/t 1/t

< (wh+ A wi T+ A A

= W1+ ) . m —1|+w 1+W — W1
1 1

=201 _ w2 \*
S(wf+A)l/€- (1+M) -1

wf+A
A
+wi|1+ 7 - (using 1+x) < 1+x/e)
f-w)
wf_z A

13 1/¢
< (wj+A . +w .
(wi +4) t’(wf+A) 1f-wf

(using (1 + x)l/f

< 1+ x/¢ again)

We combine the above two bounds to get that

2
16— wi] < (wl+ AL

wf_
7 + 3wy
L(wy + A7) t-w

—_s
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Plugging in our bounds on w; and A < (§/5)¢/2 into this
inequality, this is at most

¢ e 1 A
w; + A -—— +3
( ! ) l- wf l- wf_l
A
< (wp+AYE). +3——
(w1 ) w% t’wf_l
(using (x + y)l/[ <xlty yl/f)
L 5/5 3-(8/5)/2
Te-8/5 ¢-(8/5)2  £-(8/5)1!
(since in this case wy > §/5)
1)
<5 (using £ > 100/5%)

]

6 BOUNDING THE GAP BETWEEN
NON-ZERO CUMULANTS

The result of Marcinkiewicz (Theorem 2.1) shows that any non-
Gaussian random variable X has an infinite number of non-zero
cumulants. However, this result is not constructive and leaves open
two obvious questions:

(1) Suppose k¢(X) # 0. What can we say about the quantity
arg min kp (X) # 0?7
>t

In other words, how many consecutive zero cumulants can
X have following the non-zero cumulant k¢ (X)?

(2) Merely having a non-zero cumulant xy (X) is not sufficient
for us; since our results depend on the magnitude of the
non-zero cumulants, we would also like a lower bound on
the magnitude of kp (X) (where ¢’ is as defined above). Can
we get such a lower bound on xp (X)?

The main result of this section is to give an effective answer to both
these questions when the random variable X has bounded support.
To the best of our knowledge (and based on conversations with
experts [12, 29, 35]), previously no such effective bound was known
for gaps between non-zero cumulants.

Before stating our result, we note that for any real random vari-
able X the random variable Y = X — X’ (where X’ is an independent
copy of X) is (i) symmetric and (i) has k,(Y) = (1 + (=1)")x(X).
Thus for the purposes of this section, it suffices to restrict our atten-
tion to symmetric random variables and even-numbered cumulants.

THEOREM 6.1. Given any { and any symmetric random variable
X with unit variance and support [—B, B], where B > 1, there exists
¢’ = (©(1) - B*log B)? such that |1<j(X)| > 2! for some j € (¢,¢'].

Before delving into the formal proof of this theorem, we give a
high-level overview. Recall that the cumulant generating function
and moment generating function of X are defined respectively as

Ki(X) .
k(= 3 S0 M) = B,
!
7=
The first main ingredient (Claim 6.2) is that the function Mx (z) has
aroot in the complex disc of radius O(B?) centered at the origin. The
proof of this is somewhat involved and uses a range of ingredients
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such as bounding the number of zeros of entire functions and the
Hadamard factorization theorem.

Now, suppose it were the case that |k;(X)| < 277 for all j €
(¢, ¢’] for a sufficiently large ¢’. We consider the “truncated" func-
tion Py(z)

z/.

[ .
Pe(z) = Z 5 (X)

=

Observe that while Kx(z) is not necessarily well defined every-
where, (i) it is easy to show that it is well defined in the open disc
of radius 1/(eB) (call this set B); (ii) the function P/(z) is an en-
tire function. Further, since k;(X) is assumed to have very small
magnitude for all j € (£,¢], it is not difficult to show that P;(z)
and Kx (z) are close to each other in 8. Using eKx (@) = Mx(z)
in B (since both are well-defined), we infer that e’ (2) and Mx (2)
are also close to each other in B. In other words, the function
h(z) = ePe(D)=Mx(2) i5 close to zero in B.

Finally, we observe that ¢P1(#) has no zeros in C and in fact, we
can show that it has relatively large magnitude within a ball of
radius O(B?). Using the first ingredient that My (z) has a zero in
this disc, we derive that the maximum of |A(z)| is large in a disc
of radius O(B3). However, since h is an entire function, once ¢’ is
sufficiently large, this contradicts the fact that h(z) is close to zero
in B (this uses Hadamard’s three circle theorem). This finishes the
proof.

Proof of Theorem 6.1. Towards a contradiction, fix { = 27! and
let us assume that |k;(X)| < { for j € (£, ¢’]. Let us consider the
moment generating function My : C — C defined by Mx(z) =
E[e?X]. From the fact that the random variable X is bounded in
[-B, B], it follows that the function My is an entire function (i.e.,
holomorphic over all of C). Next, consider the cumulant generating
function Kx : C — C defined as

Kx(2)= )

j=1

Kj(X)
!

z/.

From Claim 3.6, we know that | ; (X)| < B/ -/ - j!. Define the open
disc B = {z : |z| < 1/(eB)} and observe that the right hand side
series is absolutely convergent in 8 and hence Kx is holomorphic
in B. We recall from the definition of cumulants that for z € B,
eKx(2) = Mx (z).

We will need the following claim about the roots of Mx:

CraM 6.2. For any symmetric random variable X with unit vari-
ance and support [-B, B] where B > 1, there exists zo with |zo| <
200B3 such that Mx (zo) = E[e%X] = 0.

We defer the proof of Claim 6.2 to Section 6.1. Let us define
P¢(z) to be the polynomial obtained by truncating the cumulant
generating function Taylor series expansion to degree ¢, so Pr(z) =
K (X)

Yi<j<t sz. We now define the functiong : C — C as

g(2) = e*d —E[e*X]. (6)

Observe that g is an entire function. The following claim lower
bounds the magnitude of g on the point zy defined above:
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CLAIM 6.3. Let zg be the complex number satisfying E[e%0X] = 0
in Claim 6.2. Then we have

|g(20)| > e—2~(2006)[-B“.

Proor. We have

1
le; (X,
Pe(z0)] < D =1zl
; J!
Jj=1
[ . . .
< > el Bl |zl < 2(eB)’ - (2008%)".

J=1

The first inequality is just a triangle inequality whereas the second
inequality uses Claim 3.6. Since E[¢%X] = 0, we get that |g(zo)| >
e~ IPe(20)] > o=2:(200e)"-B* o

We now recall the Hadamard three-circle theorem.

THEOREM 6.4 (HADAMARD THREE-CIRCLE THEOREM). Let 0 <
ri < ry < r3 and let h be an analytic function on the annulus
{z € R:|z| € [r1,r3]}. Let My(r) denote the maximum of h(z) on
the circle |z| = r. Then,

n2 In My (r2) <In £} In My (r1) +1n 2 In My, (r3).
" r2 "

We are now ready to finish the proof of Theorem 6.1. The proof
uses the following claim:

CrLamM 6.5. There is a point z, satisfying

—12((400e)"-B“-1n(400eB))_

1
ool < oo andlg(z)] 2 ¢ ™
ProoF. Recall from Claim 6.2 that the point zj satisfies |z9| <
200B3 and Mx (z9) = E[e%X] = 0. There are two cases:

(1) If |zo] < ﬁ: In this case, we set z, = z¢. By definition,
it satisfies the first condition in (7) and using Claim 6.3, it
satisfies the second condition.

(2) If |zo| > ﬁ: Setr; = ﬁ, r2 = |zo| and r3 = ery. For g as
defined in (6), from Claim 6.3, we have

Mg(rZ) > |g(20)| — |ePt'(ZO> _ E[eZOX]l > e—2~(2003)[.B4(.

®)

On the other hand, consider any point z3 such that |z3| = r3.
We have that

l9(23)] < [eP*(3)| + | E[e*X]]

. . B
Zioi(eB) lzl /

< Pr[X = x] - e/ *dx
-B
¢ (eB))r] b : 2(eB)’ry
< et 3+/ Pr[X = x| - " ¥dx < e'¢®) 73,
-B
and hence

©)

Now observe that the function g defined in (6) is an entire
function. Consequently, using r3/rz = e, we can apply the

IMy(r3)| < 2B 75
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Hadamard Three Circle Theorem to g to obtain
In My (r1)

>In> In My(rz) = In T2 In My(r3)
r ri

> —(2 - (200¢)" - B‘“") In2 - (z(eB)" (erp)’|In 2
r r
(applying (8), (9))

> —(3(400e)" - B ln(4OOeB4)).

The last inequality uses that ry < 200B° (from Claim 6.2).
This implies the existence of a point z, satisfying (7) and
concludes the proof of Claim 6.5. O

Continuing with the proof of Theorem 6.1, observe that the
Taylor expansion for Kx(z) (at z = 0) converges absolutely in
B. Thus Kx(z) is holomorphic in B and is given by its Taylor
expansion. Since z, € 8, recalling our initial assumption that the
(£ + 1)-th through ¢£’-th cumulants all have magnitude at most ¢,
we have that

[I . .
{-lzel lxcj (X)] - |zl
|Kx(Z*) - P[(Z*)| < Z j!* + Z j!
Jj=t+1 j>t

- i l . Z B/ - el - !

- e j!- (2eB)J 5 (2eB)J - j!
(using Claim 3.6 and (7))

2 , ,
< ﬁ +270 <27t (10)
- (2e

Since Kx (z) is holomorphic in 8, so is Mx(z) = eKx (@) and we
have that

|Mx(z*) — eP((Z*) — |€KX(Z*) _ ep{,(z*)
= |eP!(Z*) . |er(z*)—P,(z*) 3 1|
< |ePi(Z*) ,2—£’+2) (11)

where the last inequality is by Equation (10). However, applying
Claim 3.6 and recalling that |z.| < 1/(2eB), we also have

¢ ¢ i
|z« 1 (X) |z«|/ - B - el - j!
Pe(z)| < > s > . <
Jj=1 j=1
Plugging this back into (11), we get
[Mx(z:) — €| < g 27C

However, recalling that g(z) = Mx (z) — e’* (2), this contradicts (7)
with room to spare provided that, say,

¢’ > 50 ((400e)f -B. ln(400eB)) .
This finishes the proof of Theorem 6.1

6.1 Proof of Claim 6.2

We start by showing that the function Mx(z) must necessarily
decay along the line {z : Re(z) = 0} close to the origin.
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CrLAM 6.6. For the symmetric random variable X, which has unit
variance and is supported on [—B, B] whereB > 1, there exists ar €R
such that |a.| < 3, Mx(iax) € R and |[Mx (iax)| <1 - 252

Proor. First of all, note that by symmetry of X, Mx(ia) =
E[e’*X] is necessarily real-valued for any a € R. Next, choose
F > 1 (we will fix its exact value soon). We have

F
Mx (2ria)da

a=—F
B .
/ Pr[X = x] - e dxda
B

F

L:—F x=—

B F _

/ x] / XTI g dyx
x=—-B =—F

< / 2Pr[X = x] - Fdx+
lx|<1/2

/ Pr[X =x] -
Ix|>1/2

Now, observe that

Pr(X

sin(27Fx)
———dx
X

(12)

= E[|X]?] < Pr[|X| > 1/2] - B+ (1 - Pr[|X]| > 1/2]) - 41_1

Thus, we obtain
3 3

1 > YR
4(B2-3) 4B

Likewise, observe that sin(27Fx)/(nx) always has magnitude at

most 2/ for |x| > 1/2. Plugging (13) and this back into (12), and
using F > 1, we have that

F

Pr|X] > 1/2] > (13)

3 32
Mx(2ria)da < [1- — |- 2F+ — - —
a=—F 4B2 4B2
This implies that there is a point ax € [—F, F] such that
3 3
Mx (2rmiay) < 1- — .
x(2mice) 4B2 " 4BZrF

Plugging in F = 3, we get the claim.
m]

Observe that Mx (z) is an entire function and thus is well defined
on all of C. The next lemma bounds the number of zeros of Mx (z)
in a ball of radius R. This is essentially the same as the first part of
Theorem 2.1 in [40], though the bound given there is asymptotic
whereas we need a precise quantitative bound.

CLAM 6.7. For Mx (z) as defined above andr > 0, let n(R) denote
the number of zeros of Mx (z) contained in the ball {|z| : |z| < R}
(counting multiplicities). Then n(R) < eBR.

Before proceeding with the proof of Claim 6.7, we recall a useful
ingredient, namely, Jensen’s formula (see Theorem 1.1, Section 5 in

[40]):

THEOREM 6.8 (JENSEN’S FORMULA). Let h be an analytic function
in a region of C which contains the closed disc D = {z : |z| < R}.
Suppose h(0) # 0 and h does not have zeros on the boundary oD =
{z : |z| =R}. Then
2,

z:|z|<R, h(z)=0

R
In —,

1
/ In|h(Re*™ )| dt = In|h(0)| +
0 |z|
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where the summation on the right hand side counts the roots of h with
multiplicity.

Proof of Claim 6.7. First since Mx (z) is an entire function, its zeros
are isolated. Thus, by perturbing R infinitesimally, we can assume
that Mx (z) has no zeros on dD. Further, an immediate consequence
of the Jensen’s formula is that the number of zeros of an analytic
function in D must be finite. To see this, let R > R and apply
Jensen’s formula on the cicle of radius R’. By Jensen’s formula, it
follows that ¥ .2 | <R/, n(z)=0 ln T is finite which implies that the
number of zeros in D has to be finite. For any radius Ry, let us now
enumerate the zeros of Mx(z) that lie within the disc {z € R :
|z| < Ri}aszi,...,zu(R,) suchthat |z1] < |z2]... < |z, (g, |- Then,

n(R*) R*
In —
oz
n(R.)-1
R,
Z PRS2 (Ry) -In ——
— |zi 1Zn(r,) |

(14)

/OvR* n(r)%.

The last equality simply follows by observing that since n(r) is
finite in [0, R.], hence we can split the integral on the right hand
side at the points of discontinuity of n(r). Next, we have

eR
n(R) < n(R)/ dr ‘/R n(r)g
- eR dr _n(ER)l eR 15
<[ 0= Y (15)

In the above, the first three inequalities follow by definition while
the last equality is an application of (14) with R, = eR. Finally, by
definition, Mx (0) = 1 and In [Mx (z)| < B|z|. Using these two facts
with (15) and Theorem 6.8, we get

n(eR) eR
In — =

"R ) I

This finishes the proof of Claim 6.7.

1 .
/ In |MX(eRez’”t)|dt < eBR.
0

o
COROLLARY 6.9. Let Mx(z) = E[e?X] as defined earlier, and let
a > 1, R, > 0 be such that Mx (z) has no roots in the ball {z : |z| <
R.}. Then,

1

a((x —-1)-eB

a—1
z:Mx (z)=0 R

Proor. It follows from Claim 6.7 that the number of roots of

Mx (z) is countable. Let us enumerate these roots as z1, z2, . . .. We
have that
1 (e8]
— = =>a r
|2|* Z |zi|* Z /|ZA\ rita
z:Mx (z)=0 i i
Tl
=a 1+zx
0
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From the assumption n(r) = 0 for all r < R, we can use Claim 6.7
to upper bound the right hand side as

a/ e’dr:a.eB/ Lgr g @a—1eB
R, rl+a R, T R*a—l

The last ingredient we will need to prove Claim 6.2 is the Hadamard
factorization theorem (see Theorem 5.1, Section 5 in [40]):

THEOREM 6.10. Let h be an entire function that is of order 1 (i.e.,
log |h(z)| = O(|z])). If h(0) # O, then there exist A, A’ € R such that

h(z) = eA#tA l—[ (1 - i)ei,
Zn

n>1

where z1, 22, . . . are the roots of h(z).

Proof of Claim 6.2. As Mx(z) is an entire function of order one, we
can use Theorem 6.10 to express it as

Mx(z) = 474 l_[ (1 - i)ei,
n>1 Zn

where z1, z, . . . are the roots of Mx (z). We first recall that Mx (0) =
1, and hence A’ = 0. We next observe that since Mx(z) is a sym-
metric function, if z, is a root then so is —z; (and with the same
multiplicity). Together with the symmetry of My (z), this implies
that the coefficient A of z appearing in the exponent is also zero.
Next, we observe that Mx (z) cannot have any root on the real line.
Thus, if we define Q; = {z : Re(z) > 0}, then the right hand side
of the above equation simplifies to

Mx(z) = [

1 z
— 2_2 .
z;€Q1:Mx (z;)=0 i

Now, suppose that Mx(z) does not have any zeros in a ball of
radius R, around the origin. Then, for any z such that |z| < R,, the

above gives that
|2[? )
1—- ——
| ( |zi|?

z; €Q1:Mx (z;)=0

|Mx (2)] 2

|2|®
>1- —.
|zi]?
z; €Q1:Mx (z;)=0
Applying Corollary 6.9 (with & = 2), we have that

2eB|z|?

Re
Choosing R. = 72eB3, we get that |Mx (z)| > 1 — |z|?/36B? for all
|z| < 72eB>. In particular, for all |z| < 3, Mx(z) > 1 — 1/(4B?).
This contradicts Claim 6.6. Thus, Mx (z) has a root of magnitude at
most 72¢B3 < 200B. o

[Mx(2)| 21—
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