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Abstract

Predicting diseases for patients is an important and practi-

cal task in healthcare informatics. Existing disease predic-

tion models focus on common diseases, i.e., there are enough

available EHR data and prior medical knowledge for analyz-

ing them. However, those models may not work for rare

disease prediction as it is extremely hard to collect enough

EHR data with such diseases. To tackle these issues, in

this paper, we design a novel rare disease prediction system,

which not only generates EHR data but also automatically

selects high-quality generated data to further improve the

predictive performance. Three components are designed in

the system: data generation, data selection, and prediction.

In particular, we propose MaskEHR to generate diverse EHR

data based on the data from patients suffering from the given

diseases. To remove noise information in the generated EHR

data, we further design a reinforcement learning-based data

selector, called RL-Selector, which can automatically choose

the high-quality generated EHR data. Finally, the predic-

tion component is used to identify patients who will poten-

tially suffer the given diseases. These three components work

together and enhance each other. Experiments on three real

healthcare datasets show that the proposed system outper-

forms existing approaches on rare disease prediction task.

1 Introduction

The advent of massive Electronic Health Records (EHR)
makes it possible to predict patients’ health status, and
thus motivates studies on the predictions of diagno-
sis [7, 8, 16, 19], risk and disease [3, 5, 17]. Especially,
the disease prediction task aims to predict whether a
patient will suffer a certain disease based on the histor-
ical EHR data. Recently, deep learning based models
have shown improved performance on disease and risk
prediction tasks. In [5], the authors propose a simple
convolutional neural network (CNN) based prediction
model. To incorporate medical knowledge into the pre-
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diction models, the authors in [17] design a framework
PRIME to improve the prediction performance. It is
well-known that training these models needs abundant
disease-specific EHR data. However, for those rare dis-
eases1 that affect only a small percentage of the pop-
ulation, it is extremely hard to collect enough patients’
EHR data. Moreover, the prior medical knowledge on
rare diseases is usually too little to make accurate di-
agnosis for the patients. Therefore, directly applying
existing approaches on such data is impractical.

The key problem of rare disease prediction is how
to obtain enough training data from patients with the
target disease (i.e., case patients’ data). An intuitive
idea is to directly generate EHR data only based on
case patients. Since the number of control patients, i.e.,
the patients who do not suffer the given rare disease,
is far greater than that of case ones in the database,
the generative models should focus on generating more
case patients rather than control patient data. Though
traditional data generation models [3,9] can be used to
generate EHR data, the generated data may have very
low quality because EHR data generation has its unique
challenges discussed as follows.

When generating fake EHR data, existing mod-
els [3,9] only use the current visit information but ignore
all the previous visits. Though they still can gener-
ate EHR data, those generated data all lose the tempo-
ral characteristics among visits. Besides, the generated
data should be task-specific. The goal of data genera-
tion is not only to increase the number of case patients,
but also to improve the final prediction, i.e., guarantee-
ing the quality of the generated data. However, current
EHR data generation approaches [3, 9] cannot assure
the quality of the generations. The low-quality data
may further hurt the performance of the target task.
Therefore, how to generate high-quality EHR data by
considering the temporal characteristics among visits is
the challenge.

To tackle the aforementioned challenge, in this pa-
per, we introduce a novel rare disease prediction system,
which consists of three components: data generation,
data selection and prediction. In the data generation

1https://en.wikipedia.org/wiki/Rare_disease
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component, we propose a new case patient generation
approach in Section 4, called MaskEHR, which employs
a recurrent neural network (RNN) as the generator to
model the temporal characteristics among visits. How-
ever, there still exist many low-quality patient visits
among the generated samples with MaskEHR. To further
automatically choose high-quality samples, we design a
reinforcement learning-based data selector (named RL-
Selector) in the data selection component (Section 5).
The reward calculated by RL-Selector guides MaskEHR
to generate diverse and high-quality case patient data.
It is clear that the designed three components mutually
enhance each other. Experimental results on three rare
disease datasets show that the proposed system can sig-
nificantly improve the prediction performance and gen-
erate high-quality data. It is worthwhile to highlight
the contributions of our work:
• To the best of our knowledge, this is the first

end-to-end deep learning-based system for rare disease
prediction task, which utilizes both deep generative
model and reinforcement learning techniques together
to improve the performance.
•We recognize the uniqueness of generating sequen-

tial EHR data, transform the difficult generation prob-
lem into the problem of filling in masked visits, and
propose a novel model MaskEHR to generate the visits
of patients with rare diseases.
•We introduce reinforcement learning technique to

the disease prediction task and design a reinforcement
learning-based data selector (i.e., RL-Selector) to assure
the quality of the generated “fake” data.
• We conduct extensive experiments on three

datasets to demonstrate the effectiveness of the designed
system for rare disease prediction task. In addition,
analyses are conducted to illustrate the importance of
each component respectively.

2 Related Work

2.1 Disease Prediction Disease prediction can be
regarded as a classification task, and many traditional
classification approaches have been applied to solve this
task. Recently, deep learning-based approaches are
proposed to mine knowledge from EHR data [10, 21].
Among these approaches, RNNs are used to classify
diagnoses [1, 7, 8, 15, 16, 18, 23, 27], identify patient
subtyping [2], and model disease progression [22]. There
are a few deep learning-based approaches proposed for
disease prediction task [5,17,30]. Though these models
are effective for disease prediction task, training both
models requires a large amount of EHR data. However,
for rare diseases, the number of patients is extremely
small, so directly applying existing approaches may
result in unsatisfactory performance.

Some generative models, such as [3] and [9], are pro-
posed to generate EHR data, in order to enhance the
training set and improve prediction performance. How-
ever, these generative approaches are not designed for
rare disease prediction and may not perform well when
there are insufficient cases to start from. Additionally,
the generated EHR data are not diverse as the data
generation is only based on the current visit without
considering the temporal characteristics of EHR data.
Moreover, it is inevitable that some of the generated
data are of low quality, which may cause the degrading
of the prediction performance.

2.2 Deep Generative Networks with Reinforce-
ment Learning The adversarial learning framework,
especially generative adversarial networks (GAN) [13],
has been successfully used in several tasks, such as im-
age generation [4, 31] and domain adaption [12, 14, 25].
The core idea of adversarial learning framework is to
design a set of competing components which learn to-
gether. Existing GAN models mostly focus on contin-
uous data, but recently the extension of GAN to dis-
crete space attracts considerable attention. Since dis-
crete elements break the differentiability, reinforcement
learning has usually been incorporated to tackle this
problem. SeqGAN [28] trains a language model to fool
the discriminator by policy gradients and uses Monte
Carlo rollouts to get a loss signal on each word. In or-
der to precisely evaluate the reward of every token in
a sequence, MaskGAN [11] trains the generator to fill
in missing text conditioned on the surrounding context
and uses an actor-critic method to obtain reward signals
for the generated sequence.

3 Terminologies & Overview

Definition 1. (Diagnosis Code Set) The diagno-
sis code set is C = {c1, c2, · · · , c|C|, cmask}, where |C|
is the number of unique diagnosis codes from the EHR
data, and cmask is named mask code to indicate whether
a visit is masked or not.

Definition 2. (Visit) The visit of the p-th patient at

time t is denoted as a binary vector x
(p)
t ∈ {0, 1}|C|+1.

If the visit contains the diagnosis code ci ∈ C, then the

i-th element of x
(p)
t is 1. n

(p)
t denotes the number of

diagnosis codes in the t-th visit of patient p.

Definition 3. (Visit Records) The visit records of
the p-the patient are represented as a matrix X(p) =

[x
(p)
1 ,x

(p)
2 , · · · ,x(p)

T ] ∈ RT×(|C|+1), where T is the num-
ber of visit records for the p-th patient. Note that for
different patients, T may be different.

Definition 4. (Disease Prediction) Given the p-th
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Figure1: OverviewoftheProposedSystemforRare
DiseasePredictionTask.

patient’svisitrecordsX(p)=[x
(p)
1 ,x

(p)
2 ,···,x

(p)
T ],dis-

easepredictiontaskaimstoidentifywhethertheinput
patientsuffersthegivendisease,i.e.,y(p)∈{0,1}.

Toavoidclutterednotation,wedescribethealgo-
rithmforasinglepatientanddropthesuperscript(p)
whereitisunambiguous.
Figure1showsanoverviewoftheproposedend-to-

endsystemforrarediseaseprediction,whichconsists
ofthreecomponents:datageneration,dataselection
andprediction. Thedatagenerationcomponentaims
togenerate“fake”patients’visitsbasedontheinput
casepatientdata. Towardthisend,weproposeda
newEHRdatagenerationapproach,calledMaskEHR.
Thedataproducedbythedatagenerationcomponent
maycontainnoisyrecords. Toselectthehigh-quality
generatedsamplesfromsuchnoisydata,wedesigna
reinforcementlearning-baseddataselector,calledRL-
Selector,whichcanbeusedtotrainagoodpredictor.
Inthepredictioncomponent,theinputsarethecaseand
controlpatientdataandtheselecteddata. Wedevelop
aneuralnetworkbasedapproachtomakepredictions.
Next,wewillprovidethedetailsofeachcomponentin
thefollowingsections.

4 EHRDataGeneration

DifferentfromtextgenerationwithMaskGAN[11],gen-
eratingtime-orderedEHRdataismorechallengingdue
totheirowncharacteristics. Ononehand,thediagno-
siscodeswithineachvisitarewithoutanyorder,which
leadstothefailureoftraditionalapproachesfortext
generation.Ontheotherhand,evenifeachvisitcanbe
seenasawordandthewholevisitscanbeconsidered
asasentence,textgenerationmodelsstillcannotwork.
Thereasonisthatwhengeneratingamissingvisit,we
havetoestimatethenumberofdiagnosiscodesinthis
visit.However,intextgeneration,theysimplyselectthe
termwiththehighestprobabilityasthefilled-inmissing
word.ToaddresstheseuniquechallengesofEHRdata,
MaskEHR isproposed,whichconsistsofthefollowing
fourparts: masker,encoder,generatoranddiscrimina-
tor,asshowninFigure2.MaskEHRtasksapatient’s
visitrecordsX∈D+
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Figure2:OverviewoftheProposedMaskEHRModel.

tientvisitsX̂basedontheinputX,whereD+denotes
thesetofcasepatientsinthetrainingdataset.

4.1 Masker and EncoderThe masker aimsto
randomlydeletesomevisitsfromX accordingtoa
randomvectorm ∈{0,1}T.mt=0meansthatthe
t-thvisithasbeenremovedfromX. Weassumethat
thefirstvisitcannotbemasked,i.e.,m1isalwaysequal
to1. Notethatweintroduceaparameterη∈[0,1]to
controlthemaskedpercentageoftheinputvisits.This
parameterisveryimportantsinceitdirectlyaffectsthe
finalpredictionperformance.Ifηissmall,thenthe
proposedmodelmayrepeattheinputdata.Ifηislarge,
thenthequalityofthegenerateddatamaybelow.Even
withthesamemaskedpercentage,themaskvectormay
havemultiplevalues.Itenablesustogeneratedifferent
EHRdata,whichmeetstherequirementofdiversity.
Giventheinputcasepatient X ∈ D+ andthe

maskvectorm,wecanobtainthemaskedvisitmatrix
m(X)∈RT×(|C|+1).Eachvisitxt∈Xisthenmapped
toav-dimensionalvectorviatheencoderasfollows:

(4.1) vt=fENC(xt;Φv)=Wvxt+bv,

where Φv = {Wv ∈ R
v×(|C|+1),bv ∈ R

v}isthe
parameterset. Theembeddingsfromtheencoderare
takenastheinputdataofthegenerator.

4.2 GeneratorThegoaloftheproposedgeneratoris
tofillinthemaskedvisitsinm(X).Inordertogenerate
usefulEHRdata,wefillinonemissingvisitpertime
givenallthepreviousrealvisitrecords. Assumethat
thek-thvisitismasked,thenwewillusetherealvisits
fromx1andxk−1togeneratethediscretecodesinxk
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(i.e., x̂k).
• Recurrent Neural Networks. The generator

employs a recurrent neural network (RNN) which con-
sists of Gated Recurrent Units (GRU) [6] to adaptively
capture dependencies among patient visits. Let Φg de-
note the set of all the parameters in RNN, and the GRU
can be simplified as follows:

(4.2) ht = fGRU(vt; Φg).

Based on the hidden states {h1, · · · ,hi, · · · ,ht} (hi ∈
Rg) of GRU, we can not only learn the distribution of
x̂k, but also the number of diagnosis codes in x̂k.
• Distribution Calculation. Like language mod-

eling [20], to predict the k-th visit’s diagnosis codes, we
need to obtain the distribution of x̂k. Towards this goal,
a softmax layer with a fully connected layer is utilized,
i.e., dt = softmax(fDIS(ht; Φd)), where fDIS(ht; Φd) =
Wdht + bd, Wd ∈ R(|C|+1)×g and bd ∈ R|C|+1 are pa-
rameters. Since the learned distribution dt is a contin-
uous numerical vector, it is impossible and impractical
to use all the codes with non-zero probabilities as the
final generation. Thus, to obtain a reasonable number
for the discrete diagnosis codes, we design an attention-
based approach to estimate the length of the t-th visit
based on all the previous visits.
• Attention-based Length Estimation. Actu-

ally, the number of diagnosis codes in different patient
visits is very random, and thus it is hard to estimate
the length. A naive way is to use the average number
of all the previous visits’ lengths. However, we aim to
generate high-quality EHR data, and this simple ap-
proach may introduce a lot of noise. To address this
problem, we propose an attention-based length estima-
tion method. The intuition behind this approach is that
if the vector representations of two visits are similar to
each other, then they may have the same length with a
high probability.

Since the hidden state hk−1 can be used to predict
the latent representation of the visit xk, we first cal-
culate the attention score or similarity between each
previous hidden state hi (1 ≤ i ≤ k − 1) and the
current hk−1, which is αi = fATT(hk−1,hi; Φα) =
v>α tanh(Wα[hk−1; hi]), where Φα represents the pa-
rameter set, including Wα ∈ Rq×2g and vα ∈ Rq.
We can obtain an attention score vector [α1, · · · , αk−1],
then a softmax layer is used to normalize this vector:
α = softmax([α1, · · · , αk−1]). Since we assume that the
first visit cannot be masked, the length of the k-th visit
can be estimated according to n̂k =

∑k−1
i=1 αini(k ≥ 2),

where ni denotes the number of diagnosis codes in the
i-the visit. Based on the estimated length n̂k and the
distribution dt, the diagnosis codes with the highest
top-dn̂ke probabilities can be selected to represent the

generated visit x̂k. After filling in all the missing visits,
we can obtain the generated data X̂.
• Rare Disease Predictor. To assure the quality

of the generated data as much as possible, we design a
quality control mechanism with the proposed predictor,
which aims to identify the label of the generated data.
Given the generated data X̂, each visit x̂t ∈ X̂ is
first embedded into a v-dimensional vector v̂t using
Eq. (4.1). Then v̂t is fed into GRU to produce the

hidden state ĥt with Eq. (4.2). We consider the final

hidden state ĥT as the representation of X̂. Finally, we
can obtain the probability of X̂ belonging to the case
group as follows:
(4.3)

P (ŷ = 1) = σ(ĥT ; Φp) = {exp(−w>p ĥT + bp)}−1,

where σ() is the sigmoid function, and Φp = {wp ∈
Rg, bp ∈ R} is the parameter set.
• Loss of Generator. The goal of the generator is

to automatically produce high quality but “fake” EHR
data. In particular, it can fill in missing visits, estimate
the length of the generated visits, and assign labels for
them. Thus, the loss function of the generator includes
three parts:

LG = LVISIT + λLLENGTH + LCONTROLLER,

where

LVISIT =
1

|D′|

|D′|∑
p=1

1

Mp

Mp∑
i=1

‖x(p)
i − d

(p)
i ‖

2
2,

LLENGTH =
1

|D′|

|D′|∑
p=1

1

Mp

Mp∑
i=1

(n
(p)
i − n̂

(p)
i )2,

LCONTROLLER = − 1

|D′|

|D′|∑
p=1

log(P (ŷ(p))),

|D′| denotes the number of generated data, Mp repre-
sents the number of masked visits in the p-th generated
patient’s data, and λ is a predefined parameter to main-
tain the three losses in the same value scale, which is
set as 0.1 in the experiments.

4.3 Discriminator The proposed discriminator
aims to correctly identify whether the input X̃ is real
or fake. If the input is the generated X̂ that contains
Mp filled-in visits, instead of directly learning the

probability on X̂, we calculate the average probability

on a set of constructed data {X̂′i}
Mp

i=1. Each constructed
data consists of one filled-in visit and T − 1 real visits.
We believe that considering the quality on each filled-in
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visitseparatelyisbetterthancalculatinganoverall
probabilityontheoriginalgenerateddataX̂.
Next,wewillintroducehowtocalculatetheprob-

abilityp(̃X=X).Similartotherarediseasepredictor,
wecanobtainthevectorrepresentationofX̃ (i.e.,̃s),
andasigmoidfunctionisusedtopredicttherealness
oftheinputX̃ asfollows:P(̃X =X)=σ(̃s;Φs)=
{1+exp(−wss̃+bs)}

−1,whereΦs={ws∈R
g,bs∈R}

denotestheparameterset.ForthegenerateddataX̂,
theprobabilitycanbeobtainedby:P(̂X = X) =
1
Mp

Mp
i=1P(̂Xi=X).

Finally,thelossoftheproposeddiscriminatoris
definedasfollows:
(4.4)

LD=−
1

|D|+|D+|




|D|

i=1

log(1−P(̂X(i)))+

|D+|

j=1

logP(X(j))



.

4.4 LossofMaskEHR IntheproposedMaskEHR
model,thegeneratorintendstoproduce“fake”EHR
datatofoolthediscriminator,whilethediscriminator
triestoidentifywhichinputdataarefake.Itmeans
thatthegeneratorhopestominimizeLGandmaximize
thelossofthediscriminatorLDsimultaneously,butthe
discriminatoronlytriestorecognizethegenerateddata
by minimizingthelossLD. Sincethediscriminator
isonlyinchargeofidentifyingtheinputdata,itis
notrelatedtothe“fake”datageneration.Thus,when
optimizingtheparametersofthediscriminator,wecan
onlyuseEq.(4.4). Let∆ddenotetheparameterset
ofthediscriminator,andweaimtoseektheoptimal
parameters∆̂dtominimizethelossLD,i.e.,

(4.5) ∆̂d=argmin
∆d

LD.

Inthedatagenerationprocedure,thegenerator
notonlygenerates“fake”EHRdata,butalsofools
thediscriminator.Itisaminimaxgamebetweenthe
generatorandthediscriminator. Therefore, wecan
definethefinallossofMaskEHRastheminimaxgame,
i.e.,LMaskEHR =LG−LD.Fortheminimaxgame,the
parametersetweseekisthesaddlepointofthefinal
lossfunction. Let ∆g representalltheparameters

ofthegenerator. Byfixingtheparameterset∆̂dof
thediscriminator,wecanminimizethegeneratorloss
functionLGbyseekingtheoptimalparameters∆̂g,and
thisprocesscanberepresentedas:

(4.6) ∆̂g=argmin
∆g

LMaskEHR(∆g,̂∆d).

5 Quality-AssuredDataSelection

UtilizingtheproposedMaskEHR,wecansuccessfully
generateEHRdatabasedonthevisitsfromcasepa-

tients,whichisdenotedasD.Thoughtheyaresimilar
totherealdata,wecannottotallymakesurethatsuch
dataindeedrepresentthecasepatients.Inotherwords,
thelabelsofsuchgenerateddataareunsure.Therefore,
directlyassigningpositivelabels(i.e.,casepatients)to
themwhentrainingthepredictoras[3,9]isnotrea-
sonable.Toaddressthisissue,weproposeareinforce-
mentlearning-baseddataselectorasshowninFigure3.
RL-Selectoraimstochoosehigh-qualitygeneratedEHR
datatoimprovetheperformanceofthedesignedpre-
dictor. Next,wegivethedetailsofthedesignedRL-
Selector

!"($) !"(&) !"(') !"(|)
*|)…

…

Encoder

Recurrent	Neural	Networks

GeneratedData(State)

Action

+(,-
.)

,/ ,0,-
.

+(,/) +(,0)

Policy	
Function

Reward
Function

Update
Parameters

Selected Case Control

DataSelectionComponent PredictionComponent

.

Figure3:OverviewoftheProposedRL-SelectorModel.

InthedesignedRL-Selector,wedefinetheaction
aschoosingthecurrentdataornotandthestate
includingthecurrentdataandallthechosendata.
Moreover,itisobviousthatthedesigned RL-Selector
canobtainadelayedrewardfromthepredictorwhen
thedataselectorfinishesalltheselection.However,the
proposedgeneratorcancontinuouslygenerateunlimited
“fake”EHRdata,which makesitimpossibleforRL-
Selectortoupdatethepolicyfunction. Totacklethis
problem,weforcethedataselectortoterminatewhen
collectingacertainnumber(referredtoas|Ds|)ofthe
generateddata.Thechosendatasetisthenaddedinto
thetrainingset. Thepredictorcomputesprobabilities
forthechosendataandsendsfeedbacktothedata
selectorforupdatingthepolicystrategy.Insuchaway,
theRL-Selectorcanobtainmorefeedbackandfrequently
updatethepolicyfunction. Beforeintroducingthe
detailimplementationofeachunitofreinforcement
learninginourproblem,wefirstdescribethelossof
thepredictor.
•LossofPredictor.Foragivenpatient̄X(p)∈

{D+,D−,Ds},whereD
− representsallthedataofthe

controlpatients,theencoderfirstembedseachvisit
fromEq.(4.1). Theembeddedvectorsaretheinputs
oftheRNNlayer. BasedonEq.(4.2),wecanobtain

thevectorrepresentationofeachpatientas̄s(p)=h̄
(p)
T ,

whichisusedtocalculatetheprobabilityP(̄y(p))with
Eq.(4.3).Let|̄D|denotethenumberoftrainingdata,
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and the loss function is defined as follows:

(5.7) LP = − 1

|D̄|

|D̄|∑
p=1

log(P (ȳ(p))).

• State. We define the state si as the current data
X̂(i) and all the selected data. Assume that there are
m selected data, where m ≥ 0. According to Eq. (4.1)
and Eq. (4.2), we obtain the vector representations of

X̂(i) (i.e., ŝ(i)) and the selected data. We then average
all the representations learned for the selected data,
and the average representation is denoted as ŝm. If
m = 0, then ŝm = [0, · · · , 0] ∈ Rg. Let e(si) ∈ R2g

represent the vector representation of the state si, and
then e(si) = [ŝm; ŝ(i)].
• Action. An action ai ∈ {0, 1} is to indicate

whether the i-th generated data X̂(i) will be added into
the dataset D′s. Let π(si, ai) denote the policy function,
and we make use of the logistic function as the policy
strategy. To sample the value of ai, we have π(si, ai) =
P (ai|si) = aiσ(e(si); Φπ) + (1 − ai)(1 − σ(e(si); Φπ)),
where Φπ is the parameter.
• Reward. The reward function is used to measure

the utility of the selected data. Let s|D′| denote the
terminal state, where |D′| is the number of all the input
generated data. When si is at the terminal state, it
means that RL-Selector finishes all the selection. RL-
Selector only receives a delayed reward at the terminal
state. For other intermediate states, the rewards are 0.
Therefore, the reward function is formulated as follows:

(5.8) r(si|D′) =

 0, if i < |D′|+ 1;
β, if i = |D′|+ 1 and |D′s| > 0;
γ, if i = |D′|+ 1 and |D′s| = 0;

where

β =
1

|D′
s|

∑
X̂

(j)
s ∈D′

s

log(P (ŷ(j))), γ =
1

|D̄|
∑

X̄(j)∈D̄

log(P (ȳ(j))).

Note that when si is at the terminal state, but there
is no selection in D′s (i.e., |D′s| = 0), we use the average
likelihood of all the training data in D̄ (i.e., γ) as the
final reward.

In the designed RL-Selector, all the actions con-
tribute to the final reward, and thus the reward is de-
layed, which can be handled by reinforcement learning
approaches. In the following, we will introduce how to
optimize the proposed RL-Selector.
• Optimization. The goal of the proposed RL-

Selector is to maximize the expected total reward. Thus,
we define the following loss function:

LRL = V (s1|D′) = Es1,a1,s2,··· ,a|D′|,s|D′|+1

|D′|+1∑
i=0

r(si|D′),

where ai ∼ π(si, ai) and si+1 ∼ P (si+1|si, ai). Since
the state si+1 is fully determined by the current state
si and the action ai, P (si+1|si, ai) is alway equal to
1. V (·) is the value function, and V (s1|D′) repre-
sents the expected total reward. In the proposed RL-
Selector, there is only one non-zero terminal reward,
and thus all the states have the same value function,
i.e., vi = V (si|D′) = r(s|D′|+1|D′). According to the
policy gradient theorem [24] and the REINFORCE al-
gorithm [26], we update the current policy with the fol-
lowing gradient:

(5.9) Φπ ← Φπ + η′
|D′|∑
i=1

vi∇Φπ log π(si, ai).

6 Experiments

6.1 Experimental Setup The datasets used in
our experiments are extracted from a real health-
care database, and we identify three rare diseases:
Quadriplegia (QUAD), Spastic Quadriplegia Cerebral
Palsy (SCP) and Diplegic Cerebral Palsy (DCP). For
each rare disease, according to the medical diagnosis
guidelines, we first identify a set of optional case pa-
tients, and then domain experts help us confirm whether
the patients suffer these rare diseases. Finally, we select
a set of matched control patients according to patient
demographical information, such as age, gender, and
location. For each patient in the case group, the diag-
nosed date is recorded, and then we use at most 150
visits before the recorded date as the input data. For
each patient in the control group, we use at most the
recent 150 visits as its input. The ICD-9 codes which
appear less than 5 times are removed in the datasets,
and we exclude patients who made less than 5 visits.
The statistics of these three datasets are shown in Ta-
ble 1.

Table 1: Statistics of Datasets.
Dataset Quadriplegia SCP DCP

# of cases 514 424 273
# of controls 19,440 17,703 11,833
# of visits 534,663 375,927 243,066
Avg. # of visits per patient 26.85 20.74 20.08
# of unique ICD-9 codes 9,178 8,357 7,461
Avg. # of codes per visit 2.41 2.16 2.13

Baselines. For comparing with the proposed
system, we select several baselines: basic, weighted
sampling-based, weighted loss-based approaches, the
state-of-the-art EHR data augmentation approaches,
and the proposed MaskEHR.
• Basic approaches. We use Logistic Regression (LR),

SVM, Random Forest (RF) and RNN (GRU) as baselines.
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For LR, we apply l2 regularization. In SVM, we use
linear support vector machine with l2 regularization.
For RF, we use early stopping with at most 50 trees. The
architecture of RNN is the same as that of the predictor
in the proposed system.
• Weighted sampling-based approaches (WS). We

use weighted sampling technique to force the datasets
balanced, i.e., the number of case patients is equal to
that of control patients. We test all the four basic
approaches with the repeated datasets.
• Weighted loss-based approaches (WL). A coeffi-

cient is multiplied with the loss of case patients, and
the coefficient is equal to the value of the number of
control patients over the number of case patients. Also,
we test all the four basic baselines with the weighted
loss technique.
• Data Augmentation approaches (MedGAN [9]).

We first run MedGAN2 to generate fake data (whose
labels are all 1) according to the real case patient
data. We then combine the fake data and the real
training data to train the four basic baselines, and
finally validate them on the testing dataset.
• In addition, we use the proposed MaskEHR as

a baseline. MaskEHR is first to generate EHR data,
and the labels of all the generated data are 1, i.e., case
patients. An RNN is used to train the model based on
the generate EHR data D′ and the input data (D+ and
D−). In the testing procedure, only the RNN is used to
make prediction on the testing dataset.
• MaskEHR+RL denotes the proposed system. In

the testing procedure, only the rare disease predictor is
used to predict the label of each input test data.

Implementation Details. We implement all the
deep learning baselines and the proposed model with
PyTorch 1.2.0. In the experiments, we set v = g =
q = 128, and the dropout rate is 0.5. We also use
l2 norm regularization with the coefficient 0.001. For
training models, we use Adadelta [29] with a mini-batch
size of 50. We use 5-fold cross validation technique
to randomly divide the datasets into the training and
testing set in a 0.8:0.2 ratio. The training epochs is
set as 20. We report the average F1 values obtained
with the trained parameters from the last epoch on the
5 testing sets.

6.2 Performance Table 2 shows the experimental
results for different approaches on the three datasets.
We can observe that the proposed MaskEHR+RL
achieves the best performance. On the Quadriplegia
dataset, the basic RNN obtains the lowest F1 value be-
cause without sufficient case patient data, it is hard

2https://github.com/mp2893/medgan

Table 2: Performance on the Three Datasets.

Model
Dataset

QUAD SCP DCP

Basic
Classifier

LR 0.4620 0.6230 0.4621
SVM 0.4411 0.6379 0.4524
RF 0.4032 0.6591 0.3433
RNN 0.2815 0.5494 0.4197

Weighted
Sampling

WS+LR 0.4870 0.6632 0.4623
WS+SVM 0.4171 0.6263 0.4117
WS+RF 0.4651 0.6844 0.4122
WS+RNN 0.4800 0.6589 0.4597

Weighted
Loss

WL+LR 0.4823 0.6734 0.4593
WL+SVM 0.4487 0.6419 0.4551
WL+RF 0.2961 0.5498 0.2967
WL+RNN 0.4774 0.6738 0.4877

Data
Augmentation

MedGAN+LR 0.4482 0.6095 0.4620
MedGAN+SVM 0.4440 0.6354 0.4485
MedGAN+RF 0.2113 0.5456 0.3541
MedGAN+RNN 0.3983 0.6258 0.4671

The
Proposed

MaskEHR 0.4383 0.6871 0.4654
MaskEHR+RL 0.5019 0.7054 0.5047

for RNN to learn optimal parameters, and thus it can-
not make correct predictions. However, its performance
dramatically increases when we use weighted sampling,
weighted loss and data augmentation techniques. These
approaches either increase the number of case patients
or assign large weights to the case patient data, which
makes RNN achieve comparable performance as other
baselines.

Compared with basic methods, the performance of
weighted sampling-based approaches increases, except
SVM. This is because repeating training samples of
the case group may make SVM hard to identify the
classification boundary. When weighted loss technique
is used, only Random Forest drops its performance.
The reason is that with such a technique, Random
Forest will only focus on those patients with very clear
characteristics. In this case, Random Forest can obtain
a very high precision, but an extremely low recall.
Thus, the overall performance, i.e., F1 value, is not
satisfactory. For data augmentation approaches, using
MedGAN to generate fake data can only improve the
performance of RNN. However, they are still much lower
than the performance of the proposed MaskEHR+RL.

The performance of the proposed MaskEHR is not
better than that of most baselines, which is reasonable
because the generated EHR data contains a lot of noise.
This is the common drawback of existing EHR data gen-
eration approaches [3, 9]. However, the performance of
the proposed MaskEHR is higher or comparable com-
pared with MedGAN+RNN. This observation confirms
that the quality of generations produced by the pro-
posed MaskEHR is greater than that of MedGAN, due to
considering the temporal characteristic of EHR data. To
remove the noisy data and further improve the perfor-
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mance, we designed the RL-Selector. From the result of
the proposed MaskEHR+RL, we can observe that the F1

value of MaskEHR+RL is significantly greater than that
of MaskEHR. Moreover, using reinforcement learning
makes the proposed MaskEHR+RL achieves the great-
est F1 value compared with all the baselines. Similar
results can be observed on both Spastic Cerebral Palsy
(SCP) and Diplegic Cerebral Palsy (DCP) datasets.

6.3 MaskEHR Analysis The benefit of the proposed
rare disease prediction system is that it can auto-
matically generate EHR data based on the designed
MaskEHR model. To validate the difference between
the generated data and the real data, we conduct the
following experiment. We first gather all the diagnosis
codes in both the generated data and real data, then
separately count the frequency for each diagnosis code
in both data and rank the codes according to the fre-
quency of codes in the real patient data, and finally
plot Figure 4. X-axis represents the log frequency rank
of each diagnosis code from the real patient data, and
Y-axis is the corresponding log frequency. Each dot in
Figure 4 denotes a diagnosis code.
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Figure 4: Rank v.s. Frequency on the Three Datasets
for Analyzing MaskEHR.

From Figure 4, we can observe that for all the
datasets, the proposed MaskEHR model can generate
“new” diagnosis codes, i.e., the dots on the Y-axis
when Rank = 0. At the same time, the proposed
MaskEHR can discard a part of diagnosis codes when
generating EHR data. Those codes are on the X-
axis in blue color. Finally, MaskEHR can change the
frequency or distribution of diagnosis codes. Some codes
increase their frequency, but some reduce the number of
occurrences.

Though these analysis cannot directly demonstrate
that the generated data are meaningful in healthcare,
we at least provide a feasible solution to produce more
EHR data for those rare diseases. From Table 2, we
also can observe that with the generated EHR data,
the performance of MaskEHR is better than that of
the basic RNN. This illustrates that the generated data
are useful for the prediction. However, there exists
noisy information among these data, and we need to
remove the “bad” generated data to further improve
the prediction performance. Next, we will show the

importance of the proposed RL-Selector.

6.4 RL-Selector Analysis RL-Selector aims at re-
moving the noisy generated EHR data and keeping
the high-quality data to train a satisfactory prediction
model. To analyze the selected EHR data, we conduct
similar experiments as in MaskEHR analysis.
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Figure 5: Rank v.s. Frequency on the Three Datasets
for Analyzing RL-Selector.

We compare diagnosis code frequency from the
selected data with the real data in Figure 5. We can
observe that the frequency of diagnosis codes on these
two kinds of data is different. Compared Figures 4
and 5, there is an interesting phenomenon, that is, the
diagnosis codes with high frequency in the generated
EHR data may have great probabilities to be selected
by the proposed RL-Selector. This phenomenon shows
that the generated data indeed contain a lot of useful
information for the final prediction, but it needs a
selector to pick important data out. Thus, the proposed
RL-Selector is essential for rare disease prediction task.

7 Conclusions

In this paper, we design an effective, novel and end-to-
end system that can assist doctors in the diagnosis of
patients with rare diseases. The proposed system con-
sists of three important components: data generation,
data selection and prediction. These components are
tightly coupled to achieve superior performance for rare
disease prediction. Specifically, MaskEHR automatically
generates “fake” EHR data based on the visits from
case patients that simulate real data as much as possi-
ble. RL-Selector helps to guarantee the quality of data
that enters the training set, which in turn leads to an
accurate predictor. We conduct experiments on three
real medical datasets to validate the effectiveness and
reasonableness of the proposed system.
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