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ABSTRACT
Product catalogs are valuable resources for eCommerce website. In

the catalog, a product is associated with multiple attributes whose

values are short texts, such as product name, brand, functionality

and flavor. Usually individual retailers self-report these key values,

and thus the catalog information unavoidably contains noisy facts.

It is very important to validate the correctness of these values in

order to improve shopper experiences and enable more effective

product recommendation. Due to the huge volume of products, an

effective automatic validation approach is needed. In this paper, we

propose to develop an automatic validation approach that verifies

the correctness of textual attribute values for products. This can

be formulated as a task as cross-checking a textual attribute value

against product profile, which is a short textual description of the

product on eCommerce website. Although existing deep neural

network models have shown success in conducting cross-checking

between two pieces of texts, their success has to be dependent upon

a large set of quality labeled data, which are hard to obtain in this

validation task: products span a variety of categories. Due to the

category difference, annotation has to be done on all the categories,

which is impossible to achieve in real practice.

To address the aforementioned challenges, we propose a novel

meta-learning latent variable approach, called MetaBridge, which
can learn transferable knowledge from a subset of categories with

limited labeled data and capture the uncertainty of never-seen

categories with unlabeled data. More specifically, we make the fol-

lowing contributions. (1) We formalize the problem of validating

the textual attribute values of products from a variety of categories

as a natural language inference task in the few-shot learning set-

ting, and propose a meta-learning latent variable model to jointly

process the signals obtained from product profiles and textual at-

tribute values. (2) We propose to integrate meta learning and latent

variable in a unified model to effectively capture the uncertainty

of various categories. With this model, annotation costs can be

significantly reduced as we make best use of labeled data from
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limited categories. (3) We propose a novel objective function based

on latent variable model in the few-shot learning setting, which

ensures distribution consistency between unlabeled and labeled

data and prevents overfitting by sampling different records from

the learned distribution. Extensive experiments on real eCommerce

datasets from hundreds of categories demonstrate the effectiveness

of MetaBridge on textual attribute validation and its outstanding

performance compared with state-of-the-art approaches.
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1 INTRODUCTION
Product catalogs are valuable resources for eCommerce website

for the organization, standardization and publishing of product

information. Because the majority of product catalogs on eCom-

merce websites (e.g., Amazon, Ebay, and Walmart) are contributed

by individual retailers, the catalog information unavoidably con-

tains noisy facts [17, 31]. The existence of such errors results in

misleading information delivered to consumers and significantly

downgrades the performance of downstream applications, such as

product recommendation. As the magnitude of product catalogs

does not allow for manual validation, there is an urgent need for

the development of automatic yet effective validation algorithms.

In a product catalog, a product is typically associated with multi-

ple textual attributes, such as name, brand, functionality and flavor,

whose values are short texts. Therefore, in this paper, we focus

on the important task of validating the correctness of a textual

attribute value given a product. A real example is “Ben & Jerry’s

- Vermont’s Finest Ice Cream, Non-GMO - Fairtrade - Cage-Free

Eggs - Caring Dairy - Responsibly Sourced Packaging, Americone

Dream, Pint (8 Count)”, which is the product title of an icecream

on Amazon. The attribute “flavor” is a textual attribute, and for

this particular icecream, “Americone Dream” is its flavor attribute

value. The objective is to automatically output whether this value

is correct or not for this product.

One may consider to model this task as anomaly detection based

on the values of the target textual attribute, so that anomalies cor-

respond to wrong values. However, this solution is not applicable

to the validation task because: 1) As individual retailers self-report

these attribute values, the set of possible values cannot be predeter-

mined, and thus traditional anomaly detection approaches cannot
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work. 2) Textual anomaly detection has been studied and many

methods have been proposed to identify anomalies by extracting

distinguishing features from the texts. However, in the validation

task, the correctness of a value is highly dependent on the product.

For example, “Americone dream" may not be a common piece of

textual value, but it is a correct flavor name for Ben&Jerry icecream.

Motivated by this observation, we propose to verify the correct-

ness of textual attribute value against the text description of the

corresponding product. A detailed description of a product can be

found from the product webpage, which contains rich information

about many attributes of the product. For example, in our example,

the title itself already covers the values of several attributes, such

as flavor and ingredients. By cross-checking the textual attribute

value “Americone-dream" for flavor against this description, we can

easily verify that this value is correct. However, this cross-checking

cannot be completed by a simple matching of the keywords. We

found that a certain amount of errors are because the retailers often

abuse the attribute by filling a real value of another attribute. Such

errors cannot be detected by simply matching the value with prod-

uct description text as they indeed can be found there. For example,

for value “Non-GMO", it is a wrong value as of flavor, but could be

labeled as correct by a simple matching against the product title of

this icecream.

Therefore, we propose to model the validation problem as the

task of automatic correctness inference based on an input of a

textual attribute value and the description of the corresponding

product. This setting is related to the natural language inference

(NLI) task, which automatically determines if a hypothesis is true or

false based on a text statement. Recently, powerful neural network

based models, such as Transformer [24] and BERT [11] have shown

promising performance towards NLI task. However, their success

relies on sufficient high-quality labeled data, which requires the an-

notation of correctness on a large number of hypothesis-statement

pairs. This requirement cannot be satisfied in the textual attribute

validation task. There are thousands to millions product categories

on eCommerce website, and thus annotating sufficient labeled data

for all the categories is impossible. If only limited categories are

annotated, such labeled data cannot be applied to other categories.

For products in different categories, the product attributes and the

vocabularies of the attributes could vary significantly. For example,

even for the same attribute “flavor”, there is no overlapping values

when describing the flavor of seasoning, ice cream and coffee.
To tackle the aforementioned challenges, we propose a novel

meta-learning latent variable approach, namely MetaBridge, for tex-

tual attribute validation. The proposed approach effectively lever-

ages a small set of labeled data in limited categories for training

category-agnostic models, and utilizes unlabeled data to capture

category-specific information. More specifically, the proposed ob-

jective function is directly derived from the textual attribute valida-

tion task based evidence lower bound, and it seamlessly integrates

meta-learning principle and latent variable modeling. We then pro-

pose to solve this problem via a stochastic neural network which

has the sampling and parameter adaptation steps. The benefits of

the proposed approach include the following. First, the parame-

ter adaptation step allows more parameter flexibility to capture

category-specific information. Second, we enforce the distribution

consistences between unlabeled and labeled data via KL Divergence,

which makes best use of limited labeled information while extracts

most useful information from unlabeled data. Third, the proposed

model is a stochastic neural network where sampling step is ben-

eficial to the prevention of overfitting. The insights behind our

objective function are explored in our experiments. Experimen-

tal results on two large real-world datasets show that proposed

model can effectively generalize to new product categories and

outperforms the state-of-the-art approaches.

The main contributions of this paper can be summarized as

follows:

• We formally define the important problem of textual at-

tribute validation on eCommerce website as an automatic

correctness inference task based on a model taking an in-

put pair of attribute-value and corresponding product de-

scription. We propose an effective meta-learning latent vari-

able model which can make category-specific decision even

though labeled data are only collected from limited cate-

gories.

• The proposed MetaBridge method combines meta learning

and latent variable in a joint model to make best use of

limited labeled data and vast amounts of unlabeled data.

The proposed solution enhances the ability of capturing

category uncertainty and preventing overfitting via effective

sampling.

• We empirically show that the proposed method MetaBridge

can effectively infer the correctness of attribute values and

significantly outperform the state-of-the-art models on two

real-world datasets collected from Amazon.com.

The rest of the paper is organized as follows: problem setting

and preliminaries are introduced in Section 2, and the details of

the proposed framework are presented in Section 3. Experimen-

tal results are presented in Section 4. Related literature survey is

summarized in Section 5, and the study is concluded in Section 6.

2 PROBLEM SETTING AND PRELIMINARY
In this section, we first introduce our problem and the few-shot

learning setting, then we present the representative algorithm of

meta-learning, its limitations and our intuitions.

2.1 Problem Setting
Given a set of product profiles presented as unstructured text data

like titles and their corresponding textual attribute values, our objec-

tive is to identify incorrect attribute values based on corresponding

product profiles. Note that we have open world assumption thus

we cannot construct a golden list to filter out never-seen attribute

values. As the the categories of product are from thousands to mil-

lions and annotation job requires corresponding knowledge, we

can only obtain a small set of annotated data about a subset of

product categories. But for each category, unlabeled data are easily

collected. We next formally define the problem we are solving.

Definition. Given a set of product categoriesC and corresponding
products I = {Ic : c ∈ C}, product profiles P = {pi : i ∈ I }, attribute
values as V = {vi : i ∈ I }, we aim to identify X = (P,V ) pair that
are incorrect for product I .

After defining our problem, we introduce our learning setting.

Following the few-shot learning setting [26], in each category c ∼ C ,
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we have a few unlabeled examples xsc = {x
s
c ,i }

N
i=1 to constitute the

support setDs
c and have a small set of labeled examples {x

q
c ,y

q
c } =

{x
q
c ,i ,y

q
c ,i }

N+K
i=N+1 as the query set D

q
c . We need to learn from a

subset of categories a well-generalized model which can facilitate

training in a new category based on unlabeled support set Ds
c and

infer the correctness of attribute values for corresponding products

Ic in the same category c .

2.2 MAML
We give an overview ofModel-AgnosticMeta-Learningmethod [12]

which is a representative algorithm of optimization-based meta-

learning approaches. First, we use our problem as an example to in-

troduce the general learning setting of meta-learning methods. The

learning of meta-learning are split into two stages: meta-training

and meta-testing. During the meta-training stage, the baseline

learner fθ with parameter set θ will be adapted to specific cat-

egory c as fθc with the help of meta-learner M(·) on support set

Ds
c , i.e., θc = M(θ,Ds

c ). Such category specific learner fθc is evalu-

ated on the corresponding query set D
q
c . During the meta-testing

stage, the baseline learner fθ will be adapted to testing category

c on Ds
c using the same procedure with meta-training stage, i.e.,

θc = M(θ,Ds
c ), and make predictions for the D

q
c .

In the MAML, it updates parameter vector θ using one or more

gradient descent updates on the category c . For example, when

using one gradient update:

θc = M(fθ ,D
s
c ) = θ − β ▽θ L(fθ ,D

s
c ),

where β is inner step size andDs
c is a support set for given category

c . The model parameters are trained by optimizing for the perfor-

mance of fθc with respect to θ across categories. More concretely,

the meta-objective is as follows:

min

θ
L(fθ ) =

∑
c ∈C
L(fθ−β▽θ L(fθ ,Ds

c )
,D

q
c ),

where D
q
c is a query set for given category c .

Limitations: MAML captures category uncertainty with the

help of a few labeled data. Such mechanism brings expensive and

continuous annotation costs. Although we can change the super-

vised loss on support set to unsupervised loss like entropyminimiza-

tion, the adaptation on unlabeled data will undoubtedly increase

the difficulty of capturing category uncertainty and further degrade

the performance. Moreover, meta-learning methods suffer from

overfitting problem especially when only a small set of labeled data

is available.

Key ideas of our solution: To avoid continuous annotation

cost, we expect our model to capture the category-uncertainty via

unlabeled data. Thus, how we take advantage of unlabeled data

to benefit our method is a key problem. A simple intuition is that

we need to bridge unlabeled data and labeled data together to

stabilize adaptation step. To achieve such goal, we propose a new

approach which can integrate latent variable model with meta-

learning framework. The latent variable model can capture the

category distribution via a latent variable which can construct

a connection between unlabeled and labeled data and prevents

overfitting with the inherent sampling procedure.

3 METHODOLOGY
In this section, we first introduce how we derive our meta-learning

latent variable objective function, then we present our model archi-

tecture and the algorithm flow.

3.1 Overview
As shown in Figure 1, the proposed MetaBridge mainly includes

two stages: adaptation and validation. During the adaptation stage,

the model parameter is updated on unlabeled support data from

given product category; during the validation stage, the category-

specific model is used to make textual validation for products from

same product category. To capture uncertainty on unlabeled data

and prevent overfitting, we propose a meta learning latent vari-

able objective function which includes two terms: inference loss

and bridging regularizer. By jointly minimizing both objectives,

we enforce the model i) to learn direct signal from labeled data,

and ii) internally harmonizes the latent structures of the new cate-

gory and existing category from unlabeled data. More specifically,

the proposed approach is a stochastic neural network which in-

cludes sampling and parameter adaptation steps. Furthermore, the

proposed model can enforce the distribution consistency between

unlabeled and labeled data via KL Divergence. Thus, we are able to

train a complicated meta learning Transformer-based model which

can jointly processes signals from textual product description and

attribute values to conduct effective inference.

3.2 Latent Variable Model
The goal of the proposed algorithm is to learn to infer on various

categories even unseen category with a handful unlabeled training

instances. More specifically, for the c-th category, the corresponding
support set xsc is given, we aim to infer y

q
c based on x

q
c . Here We

denote xc = {x
s
c , x

q
c },yc = {y

q
c } for simplicity and hence our

objective function can be represented as follows:

logpΘ(y |x) =
∑
c ∈C

logpΘ(yc |xc ), (1)

where Θ represents the parameter set of the proposed model. For

each category c , we only have a very limited number of labeled

data points. To capture category uncertainty, we include a latent

variable z that captures category distribution. This latent variable is
of particular interest because it can capture the category uncertainty

and allows us to sample data for the learned category to prevent

overfitting.

To be clear, we take c-th category as an example. Let p(z,yc |xc )
be a joint distribution over a set of latent variables z ∼ Z and

observed variables yc ∈ Y and xc ∈ X for category c . An infer-

ence query involves computing posterior beliefs after incorporat-

ing evidence into the prior: p(z |yc , xc ) = p(z,yc |xc )/p(yc |xc ). This
quantity is often intractable to compute as the marginal likelihood

p(yc |xc ) =
∫
z p(z,yc |xc )dz requires integrating or summing over

a potentially exponential number of configurations for z. As with
variational autoencoders [19], we approximate the objective func-

tion using the evidence lower bound (ELBO) on the log likelihood.

For the purpose of calculating ELBO, let us introduce an encoder

model qϕ (z |xc ,yc ): an approximation to the intractable true pos-

terior p(z |xc ,yc ) with a parameter set ϕ. In a similar vein, we use
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Figure 1: The proposed approach MetaBridge. The proposed approach mainly includes two stages: adaptation and Validation.
During the adaptation stage, the model parameter Θ is updated to Θc accordingly to capture the uncertainty of category c.
During the validation stage, the adapted model Θc is used to validate textual attributes for products on the category c.

a decoder model pθ (yc |xc , z) to approximate the intractable true

posterior p(yc |xc , z) with a parameter set θ . Thus, the parameter

set Θ includes {ϕ, θ }. After introducing the encoder and decoder,

we present how to derive our objective function based on ELBO.

Evidence Lower Bound (ELBO) The ELBO can be shown to de-

compose into

logpΘ(yc |xc )

≥Eqϕ (z |xc ,yc )[logpθ (yc |z, xc )] − DKL(qϕ (z |xc ,yc ) | | p(z)).
(2)

To better reflect the desired model behavior at test time, i.e.,

we have a handful training instances as a support set xsc for each

category, we explicitly split xc into support and query sets. Our

goal is to model the conditional of the query set given the support

set. Thus, instead of using prior p(z) in Eq. 2, we propose to use a

more informative conditional prior distribution p(z |xsc ) as with [13]

and further rewrite our objective function as follows:

logpΘ(yc |xc )

= logpΘ(y
q
c |x

s
c , x

q
c )

≥Eqϕ (z |x sc ,x
q
c ,y

q
c )
[logpθ (y

q
c |z, x

s
c , x

q
c )]

− DKL(qϕ (z |x
q
c , x

s
c ,y

q
c ) | | p(z |x

s
c ))

(3)

For the encoder qϕ (z |x
s
c , x

q
c ,y

q
c ), since x

q
c is given and y

q
c is

implicitly encoded into parameter set ϕ, we assume z is conditional

independent with y
q
c given x

q
c and ϕ. Thus, our objective function

can be simplified as follows:

logpΘ(y
q
c |x

s
c , x

q
c )

≥Eqϕ (z |x sc ,x
q
c )
[logpθ (y

q
c |z, x

s
c , x

q
c )]

− DKL(qϕ (z |x
s
c , x

q
c ) | | p(z |x

s
c ))

(4)

The support set xsc is used to help the proposed model to quickly

adapt to new category. Thus, how we take advantage of this set

to benefit our framework is a key problem. To tackle this problem,

we propose to encode the information from support set into our

parameter inspired by MAML [12] and further we can obtain a

category-specific model to accelerate unseen category adaptation.

We will introduce how to incorporate information from support set

into our framework via parameter adaptation in the next subsection.

3.3 Parameter Adaptation
As introduced in the subsection 2.2, MAML obtains a category spe-

cific parameter set using one or more gradient descent updates

based on loss from support set xsc . Considering the support set

in our problem is unlabeled, we redefine the loss function on un-

labeled support set by entropy minimization. Entropy minimiza-

tion encourages the confidence of predictions and is commonly

used in the semi-supervised learning [4, 15, 20] and domain adap-

tation [16, 22, 27]. More concretely, the loss function Lcs on the

support set xsc is defined by entropy as follows:

Lcs (θ ,ϕ, x
s
c ) = −Eqϕ (z |x sc )[pθ (z) logpθ (z)] (5)

and the parameter adaptation step via one step of gradient descent

is defined accordingly as follows:

{θc ,ϕc } = {θ ,ϕ} − β ▽θ ,ϕ L
c
s (θ ,ϕ, x

s
c ). (6)

Here we assume the information of support set is encoded into

parameter via gradient descent and then exclude the xsc from condi-

tionals. Moreover, for the decoderpθ (y
q
c |z, x

s
c , x

q
c ),y

q
c is conditional

independent with x
q
c given z since z is the feature representation

of x
q
c . Thus, we can have simpler equations as follows:

Encoder: qϕ (z |x
s
c , x

q
c ) → qϕc (z |x

q
c ) (7)

Decoder: pθ (y
q
c |z, x

s
c , x

q
c ) → pθc (y

q
c |z) (8)

3.4 Objective Function
To optimize our objective function, we still need to approximate

conditional prior pθ (z |x
s
c ) which is intractable. As the parameter

adaptation step can encode support set into the model and captures

category specific information, hence we propose to use qϕc (z |x
s
c )

as a approximation to p(z |xsc ) and then we have our final objective

function as follows:
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logpΘ(y
q
c |x

s
c , x

q
c )

≥Eqϕc (z |x
q
c )
[logpθc (y

q
c |z)]

− DKL(qϕc (z |x
q
c ) | | p(z |x

s
c ))

≃Eqϕc (z |x
q
c )
[logpθc (y

q
c |z)]

− DKL(qϕc (z |x
q
c ) | | qϕc (z |x

s
c ))

(9)

The objective function includes two terms: the first term is our

supervised inference loss on query samples and the second term is to

enforce conditional category distribution qϕc (z |x
q
c ) consistent with

conditional distribution qϕc (z |x
s
c ), i.e., distributions of unlabeled

and labeled data from same category. The second term can be

treated as a explicit bridge between support set and query set. λ is

a hyper-parameter that needs to be set. We explore the impact of λ
in the experiment section 4.6.

Lcq = −Eqϕc (z |x
q
c )
[logpθc (y

q
c |z)]︸                               ︷︷                               ︸

Inference Loss

+λ DKL (qϕc (z |x
q
c ) | | qϕc (z |x

s
c ))︸                                    ︷︷                                    ︸

Bridging Regularizer

(10)

In this paper, we assume qϕc (z |x
q
c ) and qϕc (z |x

s
c ) follow multi-

variate normal distributionsN(µ(x
q
c ),σ

2(x
q
c )I) andN(µ(xsc ),σ 2(xsc )I)

respectively. The KL Divergence DKL(qϕc (z |x
q
c ) | | qϕ (z |x

s
c )) in

Eq. 10 can be analytically integrated:

DKL (qϕc (z |x
q
c ) | | qϕc (z |x

s
c ))

=

d∑
j=1

(
log

σj (x sc )

σj (x
q
c )
+
σ 2

j (x
q
c ) + (µ j (x

q
c ) − µ j (x sc ))

2

2σ 2

j (x
s
c )

−
1

2

)
,

(11)

where d is the dimension of z. Thus, we only need to calculate

category loss term. To enable distribution qϕc (z |x
q
c ) differentiable,

we follow previous work [2, 3, 19] to use reparameterization trick

to parameterize z.
Reparameterization Trick Instead of directly sampling from a

complex distribution, we can reparametrize the random variable as a

deterministic transformation of an auxiliary noise variable ϵ . In our

case, to sample fromqϕc (z |x
q
c ), sinceqϕc (z |x

q
c ) = N(µ(x

q
c ),σ

2(x
q
c )I),

one can draw samples by computing z = µ(x
q
c ) + σ (x

q
c ) ⊙ ϵ , where

ϵ ∼ N(0, I) and ⊙ signify an element-wise product. By passing in

auxiliary noise, our proposed model is stochastic and if we do not

pass in any auxiliary noise, then the model is deterministic.

After introducing our final objective function, we will present

the detailed architecture and algorithm flow in the next subsections.

3.5 Model Architecture
Our model mainly includes two components: encoder and decoder.

Encoder The encoder in use is Transformer [24], which is a

context-aware model and has been proven powerful in textual clas-

sification. The transformer takes a sequence of word tokens as input.

In our problem, the input includes two parts: unstructured product

profiles and the corresponding product textual attribute values. As

the length of two parts are usually very different, we use two Trans-

formers to take two parts separately to obtain fixed-dimensional

features. Following [11], the first token of every sequence is always

a special classification token ([CLS]). Accordingly, the final hidden

state corresponding to this token is used as the aggregate sequence

representation. We concatenate the two final hidden states from

Transformers and then feed them into two fully connected layers

with weight matrixW2d×d
µ andW2d×d

σ to output mean µ and log(σ )
as suggested in [19].

Decoder The decoder is a fully connected layer with weight

matrix Wd×2
o to take samples from inferred normal distribution

and output the probability of given attribute values being incorrect.

3.6 Training and inference procedures
The training procedure is summarized in Algorithm 1. We first

sample a batch of categories and get corresponding support set and

query set for each category. Given the support set , we first update

the parameter of encoder and decoder to get category-specific pa-

rameter set θc ,ϕc according to Eq. 5 and Eq. 6. The category-specific
encoder takes query set x

q
c and support set xsc to output the pa-

rameters for the distribution p(z |x
q
c ) and p(z |x

s
c ) respectively. Then

we can calculate the Bridging Regularizer in the Eq. 10. We then

sample z′s from the posterior p(z |x
q
t ,i ) and the category-specific

decoder takes z′s as input to infer the correctness of attribute val-

ues. Thus, our model is stochastic during the training stage. During

the testing stage, the inference procedure is similar with it in the

training procedure, the only difference is that for any data query

data x
q
c ,i , its inferred latent code is set to be the conditional mean

µ(x
q
c ,i ) = Eqϕ (z |x

q
c ,i )
[z] and the category-specific decoder takes

u(x
q
c ,i ) as input. In other words, we use the deterministic model in

the testing stage to obtain stable inference results without sampling

step.

Algorithm 1 Training Procedure.
Require: Task data, learning rate α and inner step size β ;
1: for epoch l ← 1 to L do
2: Sample a batch of categories C ;

3: for all c ∈ C do
4: Get support set Ds

c and query set Dq
c

5: Compute loss Lcs according to Eq. 5

6: Parameter fast adaptation with gradient descent:

7: {θc , ϕc } = {θ , ϕ } − β ▽θ ,ϕ Lcs (θ , ϕ, x
s
c ).

8: end for
9: Update {θ , ϕ } = {θ , ϕ } − α

∑
c∈C ▽{θ ,ϕ}L

c
q

10: end for

4 EXPERIMENTS
In this section, we introduce the dataset used in the experiments,

present the compared state-of-the-art baseline models, validate the

effectiveness and explore insights of the proposed approach.

4.1 Datasets
To fairly evaluate the performance of the proposed approach, we use

two internal Amazon datasets on attributes Flavor and Ingredient
respectively. The products in the two datatset are from thousands

of product categories across different domains. When preprocess-

ing the datasets, we first exclude the products which do not have

the attribute of interest. Then we randomly select 100 products as

support set and randomly select 10 products from the rest as query

set in each category. We send query set to ask Amazon Mturkers to

identify the correctness of attribute values based on corresponding
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product profiles. Each data point is annotated by 3 Amazon Mturk-

ers and the final label is decided by majority voting. To evaluate the

performance of attribute validation models for never-seen product

categories, we split the datasets into the training, validation, testing

sets according to their product categories. Thus, we ensure that

they do not contain any common product category. To evaluate the

performance of models under a small data setting, we only use a

small portion of product categories for training purpose and the

number of product category in training, validation and testing are

in a 3:1:6 ratio. The detailed statistics are shown in Table 1.

Table 1: The Statistics of the Amazon Datasets.

Dataset # of Product Categories # of unlabeled Data # of labeled Data

Flavor 321 32,100 3,210

Ingredient 658 65,800 6,580

4.2 Experimental Setup
Metric.Weuse Precision-Recall AUC (PRAUC) and Recall@Precision

(R@P) to evaluate the performance of the models. PR AUC is de-

fined as the area under the precision-recall curve. Such a metric

is a useful measurement of prediction when the classes are imbal-

anced. R@P is defined as the recall value at a given precision. Such

a measure is widely used to evaluate the model performance when

a specific precision requirement need to be satisfied.

Baselines. To validate the effectiveness of the proposed model, we

choose baselines from the following three categories: supervised

learning, fine-tune and meta-learning settings.

•Supervised Learning We use Logistic Regression (LR), Sup-

port Vector Machine (SVM) and Random Forest (RF) as baselines.

The supervised learning models are only trained with labeled query

data and are not updated when testing. The feature vectors are

formed by concatenation of counting the frequencies of specific at-

tribute value in the product textual description, the position of first

appearance of attribute value in the description and the average of

attribute value word embeddings.

•Fine-tune Attribute validation is related to natural language

inference (NLI) problem. We select three state-of-the-art models

ESIM [10], Transformer [24], BERT [11] as baselines. All sublayers

of ESIM produce the output with dimension d = 16 except the last

output layer. For the BERT model, we use the output from BERT-

base’s last second layer and feed the output into a fully connected

layer with weight matrixW768×16
with ReLU activation function.

The Transformer architecture is described in detail in subsection 4.3.

Then the output goes through a fully connected layer to output

inference results. In the fine-tune setting, the training data include

unlabeled support data and labeled query data. We use the entropy

minimization to define the loss on unlabeled data as [15] and use

the cross-entropy to define the loss on labeled data. The ratio of

labeled loss and unlabeled loss is set as 10:1. In the testing stage,

the pre-trained model is first fine-funed on the unlabeled support

data of given task with entropy minimization, and then conduct

inference on testing query data.

•Meta-LearningWe select two state-of-the-art meta learning

models MAML [12] and Meta-SGD [21] as baselines. The model

architectures of two baselines are identical with Transformers in

fine-tune setting. The meta learning setting is that we use entropy

minimization loss on unlabeled support data to adapt the parameter

of models to given tasks, the task-specific parameters will be eval-

uated on the query data from same task during training stage. In

the testing stage, the baselines is first fine-funed on the unlabeled

support data with fixed steps of gradient updates and then conduct

inference on the testing query data.

4.3 Implementation Details
The 300 dimensional FastText pre-trainedword-embeddingweights [5]

are used to initialize the parameters of the word embedding layer

for deep learningmodels except for BERT. The encoder of our model

is based on Transformer. For our encoder design, we first remove

the decoder of original Transformer and only keep Transformer’s

encoder part. Then we change 6 identical layers of original Trans-

former’s encoder to one instead. The multi-head number is set to 2.

All sub-layers of our encoder produce outputs of dimension d = 16

and the dropout rate is selected as 0.3 based on validation set. The

identical architecture with our proposed model is employed for the

baselines Transformer, MAML and Meta-SGD. The main difference

between baselines and our model in architecture is that out model

have sampling step and baselines are deterministic. We implement

all the deep learning baselines and the proposed approach with

PyTorch 1.2. For training models, we use Adam [18] optimizer in

the default setting. The learning rate α is 0.0001. We use mini-batch

size of 64 and training epochs of 400. The parameter gradient up-

date step is set to 1 and inner learning rate β is set to 0.3 for all

fine-tune and meta-learning models. The traditional models (LR,

SVM, RF) are implemented by scikit-learn package [23]. The best

parameters are selected based on the validation set.

4.4 Performance Comparison
Table 2 shows the performance of different approaches on the Flavor
and Ingredient datasets. We use 100 unlabeled data as support set

and 5 labeled data as query set per product category.We can observe

that that the proposed framework achieves the best results in terms

of all the evaluation metrics on both datasets.

On the Flavor dataset, the LR, SVM and RF achieves the similar

performance compared with RNN. The results show that the tra-

ditional models can achieve comparable performance with deep

learning models when a small set of labeled data is given. Among

the fine-tune models, we can observe that BERT achieves the bet-

ter performance compared with RNN, ESIM and Transformer. The

main difference between BERT and other baselines lies in the em-

bedding. The improvement suggests the pre-trained embedding

of BERT is informative. The RNN, ESIM and Transformer use the

same pre-trained fasttext word embedding layer. The comparison

between the three baselines indicate that Transformer architecture

can take advantage of training data effectively compared with other

two baselines. For the meta-learning setting, we can observe that

MAML achieves more than 2% improvement in terms of PR AUC

compared with Transformer with identical structure. The reason is

that MAML can achieve a base parameter which can easily adapt to

new task compared with semi-supervised loss learning. Besides a

good base parameter, Meta-SGD also learns update directions and

learning rates during training procedure. Thus, Meta-SGD achieves

better performance compared with vanilla MAML. It is worth not-

ing that the Meta-SGD achieves comparable performance with the
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Table 2: The performance comparison of different methods in the Flavor and Ingredient data.

Setting Method

Flavor Ingredient

PR AUC R@P=0.7 R@P=0.8 R@P=0.9 R@P=0.95 PR AUC R@P=0.7 R@P=0.8 R@P=0.9 R@P=0.95

Supervised Learning

LR 0.6830 ± 0.0000 48.67 ± 0.00 23.24 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.4520 ± 0.0000 18.71 ± 0.00 14.08 ± 0.00 11.67 ± 0.00 11.47 ± 0.00

SVM 0.6408 ± 0.0000 42.37 ± 0.00 13.56 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.3863 ± 0.0000 19.72 ± 0.00 3.22 ± 0.00 3.22 ± 0.00 3.22 ± 0.00

RF 0.6986 ± 0.0095 43.78 ± 1.53 15.81 ± 5.88 4.43 ± 2.81 2.45 ± 2.18 0.4683 ± 0.0137 20.72 ± 1.33 16.15 ± 1.49 14.69 ± 1.06 11.07 ± 1.28

Fine-tune

RNN 0.7092 ± 0.0155 51.09 ± 5.68 34.14 ± 2.85 15.93 ± 4.09 8.35 ± 2.36 0.4388 ± 0.0134 25.88 ± 2.29 20.68 ± 2.49 14.69 ± 2.98 7.69 ± 4.61

ESIM 0.7160 ± 0.0192 54.90 ± 5.26 38.32 ± 5.09 22.22 ± 5.92 7.69 ± 6.62 0.4412 ± 0.0199 23.30 ± 6.42 16.46 ± 6.95 8.89 ± 5.45 5.07 ± 3.88

Transformer 0.7210 ± 0.0434 54.19 ± 10.97 34.21 ± 10.27 19.39 ± 6.72 12.86 ± 3.91 0.4890 ± 0.0203 31.47 ± 2.46 28.05 ± 2.94 22.90 ± 2.94 11.31 ± 8.77

BERT 0.7599 ± 0.0054 63.72 ± 1.27 45.56 ± 3.86 27.76 ± 2.34 18.52 ± 2.76 0.5292 ± 0.0111 34.00 ± 1.21 28.17 ± 1.61 17.00 ± 3.92 13.08 ± 6.04

Meta-Learning

MAML 0.7486 ± 0.0128 61.07 ± 2.55 39.66 ± 3.48 22.62 ± 4.19 15.57 ± 3.71 0.5289 ± 0.0247 34.46 ± 2.43 29.73 ± 3.44 22.48 ± 6.41 16.05 ± 6.16

Meta-SGD 0.7575 ± 0.0126 64.19 ± 3.51 42.10 ± 4.62 25.06 ± 2.83 15.01 ± 4.64 0.5312 ± 0.0141 32.80 ± 3.43 24.95 ± 1.18 22.40 ± 1.19 20.59 ± 1.34

MetaBridge 0.7852 ± 0.0027 69.49 ± 0.99 50.00 ± 1.86 30.77 ± 1.52 22.64 ± 2.37 0.5658 ± 0.0077 39.24 ± 1.60 34.57 ± 2.22 27.00 ± 0.82 21.97 ± 3.52

best baseline BERT but uses much less parameters. The proposed

approach MetaBridge achieves 3.66% improvement over Meta-SGD

and 3.33% compared with BERT respectively in terms of PR AUC.

The improvement can also be observed from recall at given pre-

cision. Since R@P=0.8 is similar with annotators’ precision, we

also compare the approaches in terms of this metric. The proposed

framework achieves more than 10% improvement compared with

best baseline BERT in terms of R@P=0.8.

On the Ingredient dataset, the RF achieves better performance

compared with deep learning models RNN and ESIM. This fur-

ther reveals the challenges of deep learning model in the small

data learning setting. Among fine-tuned models, similar results

can be observed as those in the Flavor dataset. BERT achieves the

best performance compared with other fine-tuned models. This

result confirms the effectiveness of pre-trained procedure in the

small data learning setting. However, a contradict result with Fla-

vor dataset can be observed from comparison between BERT and

Meta-learning models. The MAML and Meta-SGD achieves the

comparable and even better performance with BERT. The reason is

that the vocabularies of ingredients are rarely used in other contexts

hence the information is difficult to be captured without training

on the given task dataset. This improvement shows the potentials

of meta-learning models for the downstream tasks, which needs

models to rapidly learn with a small set of data. Accordingly, the

proposed framework achieves 6.98% improvement in terms of PR

AUC compared with BERT. Compared with best baseline Meta-SGD,

the proposed framework achieves 6.51% in terms of PR AUC. The

similar improvement can be also observed from performance com-

parison on R@P=0.8, the proposed framework improves more than

16% compared with the second best result. Furthermore, we can ob-

serve that the proposed MetaBridge achieves the best performance

compared with all the baselines.

4.5 Ablation Study
Compared with MAML, our derived objective function has two

main differences: stochastic characteristic and KL Divergence be-

tween support and query data. Thus, we are interested in their

roles in the performance improvements. As introduced in the Sec-

tion 3.4, we cannot simply remove one of them considering the

KL Divergence and sampling are tightly coupled with each other.

Instead, we propose two variants of MAML as baselines to explore

the role of stochastic and KL Divergence respectively. To explore

the role of stochastic characteristic, we add random noise into the

input to last layer of MAML and denote it as stochastic variant. To

explore the role of KL Divergence, we reduce sampling step and

assume that the posterior distributions of support and query data

are from normal distributions with fixed variances N(µ(xst ), 1) and

N(µ(x
q
t ), 1). The proposed variant is denotes as KL variant.
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Figure 2: The changes of PR AUC for the models in term of
the number of Epochs.

We use Flavor dataset as an example. As can be seen from Fig. 2,

the highest PR AUC score of stochastic variant is similar with that

of MAML. However, unlike MAML, the stochastic variant remains

highest value without dropping. This shows that the stochastic

characteristic can help prevent overfitting issue. By the comparison

between KL variant and MAML, we can observe the KL variant can

achieve a better PR AUC during the all training epochs. This shows

the KL Divergence can construct an effective information flow be-

tween support and query data to further improve the performance.

However, the KL variant simply assumes that posterior distribu-

tions are from normal distribution with fixed variances, and the

over-simplistic assumption limits the potential of KL Divergence.

By incorporating variances estimation, our proposed framework

avoids the over-simplistic distribution assumption and can achieve

better performance compared with KL variant. In overall, our pro-

posed framework enjoys the benefits of stochastic characteristic

and KL Divergence simultaneously.

4.6 Hyperparameter Analysis
In our objective function, we use hyperparameter λ to control the

strength between Inference loss and KL Divergence. In this study,

we aim to explore the impact of λ in the proposed framework. We

train the proposed framework using different hyperparameter λ
on the Flavor Dataset. Fig. 3 shows the PR AUC changes of the

proposed model with respect to different λ’s. When λ is set to 0,

the sampling procedure is removed and the model is equivalent to

MAML. We can observe that such a variant cannot effectively take

advantage of unlabelled support data and the best PR AUC score

is lower than that of other approach variants. And, such a variant
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Figure 3: The changes of PR AUC with different λ’s.

suffers from the overfitting issue and converges to worst PR AUC

value compared with other models. After changing the λ from 0 to

0.1, we can observe that the PR AUC values are stably higher than

that of the variant with λ = 0. As the λ value further increases from

0.1 to 1, the proposed framework achieves significant improvement

around 4% in terms of PR AUC compared with the variant λ =
0. This illustrates that our objective function can take advantage

of unlabeled and small labeled data effectively and improves the

generalize ability of the model. When we change value of λ to 3, the
PR AUC of model increases slowly in the first 220 epochs compared

with other models. But after 220 epochs, the model can archive a

high PR AUC value. This further confirms the effectiveness of KL

Divergence.

4.7 Varying Size of Labels
To analyze the impact of the query data size per product category,

we train the proposed approach with different number of query data

as 3, 5, 10 per category. The procedure is repeated five times and we

report average performance with corresponding standard deviation.

To be simple, we denote model variant by its name and number of

query data. For example, the MAML which is trained with 3 query

data per category is denoted as MAML3. Figure 4 shows the perfor-

mance comparison of the models with different number of query

data in terms of PR AUC (Fig. 4a) and R@P=0.8 (Fig. 4b). When

query data number is 3, our proposed framework achieves around

5.5% improvement compared with MAML3 in terms of PR AUC.

This demonstrates the effectiveness of our model with a smaller set

of labeled data available. The reason is that our proposed framework

can caputre category uncertainty via unlabeled data and enforce

distribution consistence between unlabeled support and labeled

query data. Thus, the improvement of our proposed framework

over MAML is larger when the number of query data is smaller.

As the number of query data increases, the performance values of

MAML and our proposed framework improve significantly. This

shows that meta-learning models can effectively take advantage of

labeled data. For all three settings, our proposed framework shows

significant improvement compared with MAML. The improvement

further confirms the superiority of our proposed framework.

The similar results can be observed from Fig. 4b. The R@P is an

important metric when we evaluate our model in the real setting.

Our model achieves around 40% and 30% improvement respectively

over MAML in terms of R@P=0.8 when the number of query data

is set to 3 and 5. When the number of query data is set to 10,

the R@P of our model is 53.6% which is higher than that of our

proposed framework with 5 query data more than 6%. This reveals

the potential of our model if more labeled data is available.
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Figure 4: The performance comparison of models with dif-
ferent numbers of query data per product category.

5 RELATED WORK
Attribute validation task is related to anomaly detection which aims

to find patterns in data that do not conform to expected behavior [9].

In the anomaly detection, the most related line of research is log

anomaly detection which aims to find text, which can indicate the

reasons and the nature of the failure of a system [8]. The tradi-

tional methods typically extract features from unstructured texts

and then detect anomalies based on hand-craft features. Compared

with traditional learning, deep learning models have achieved an

improvement in the performance of anomaly detection due to their

powerful abilities [8]. The deep learning anomaly detection (DAD)

approaches [7, 30] model the log data as a natural language se-

quence and apply RNN and CNN to detect anomalies. Different

with log anomaly detection, our problem needs to infer the correct-

ness of attribute values based on product profile information.

Attribute validation task is also related to natural language in-

ference (NLI). NLI is a classification task where a system is asked

to classify the relationship between a pair of premise and hypothe-

sis as either entailment, contradiction or neutral. Large annotated

datasets such as the Stanford Natural Language Inference [6] (SNLI)

and Multi-Genre Natural Language Inference [28] (MultiNLI) cor-

pus have promoted the development of many different neural NLI

models [10, 11, 14, 24] that achieve promising performance. How-

ever, NLI task usually requires large annotated datasets for training

purpose. While pre-training is beneficial, it is not optimized to al-

low fine-tuning with limited supervision and such models can still

require large amounts of task-specific data for fine-tuning [1, 29].

Thus, how to train a NLI model with a small set of dataset for a

specific domain is still a very challenging problem.

Another related and complementary line of research is meta-

learning. Meta-learning has long been proposed as a form of learn-

ing that would allow systems to systematically build up and re-use

knowledge across different but related tasks [25]. More specifically,

meta-Learning approaches can be broadly classified into three cate-

gories: optimization-based, model-based and metric-learning based

models. Optimization-based methods aim to modify the gradient

descent based learning procedure for new task quick adaptation. In

the optimization-based methods, MAML [12] is a recent promising

model which learns a set of model parameters that are used to

rapidly learn novel task with a small set of labeled data. Following

this direction, Meta-SGD [21] learns step sizes and updates direc-

tions besides initialization parameters in the training procedure.

In our problem, we propose to use unlabeled data to capture task

uncertainty to avoid constant labeling efforts. Towards this end,
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our objective function has two terms: inference loss and bridging

regularizer. The proposed objective function constructs an effective

information flow between unlabeled support data and labeled query

data via the bridging regularizer and the sampling procedure can

further prevent overfitting. Thus, we can train a Transformer-like

models to capture rich feature representations for specific task with

limited labeled data and the proposed framework can quickly adapt

to new task with unlabeled data only.

6 CONCLUSIONS
In this paper, we proposed to solve an important but challenging

problem faced by many eCommerce websites, which is the auto-

matic validation of textual attribute value associated with a product.

Due to the large number of product categories and the huge variety

among products in different categories, we cannot obtain sufficient

training data for all the categories, which are needed for training

deep learningmodels. In light of this challenge, we proposed a novel

meta-learning latent variable approach, MetaBridge, that can lever-

age labeled data for limited categories and utilize unlabeled data

for effective correctness inference. The proposed model captures

category-uncertainty via unlabeled data and trains a Transformer-

based model with limited labeled data. The proposed framework has

shown significantly improved performance in textual attribute vali-

dation. This was demonstrated in a series of experiments conducted

on two real-world datasets from hundreds of product categories

across domains on Amazon.com.
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