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ABSTRACT

Product catalogs are valuable resources for eCommerce website. In
the catalog, a product is associated with multiple attributes whose
values are short texts, such as product name, brand, functionality
and flavor. Usually individual retailers self-report these key values,
and thus the catalog information unavoidably contains noisy facts.
It is very important to validate the correctness of these values in
order to improve shopper experiences and enable more effective
product recommendation. Due to the huge volume of products, an
effective automatic validation approach is needed. In this paper, we
propose to develop an automatic validation approach that verifies
the correctness of textual attribute values for products. This can
be formulated as a task as cross-checking a textual attribute value
against product profile, which is a short textual description of the
product on eCommerce website. Although existing deep neural
network models have shown success in conducting cross-checking
between two pieces of texts, their success has to be dependent upon
a large set of quality labeled data, which are hard to obtain in this
validation task: products span a variety of categories. Due to the
category difference, annotation has to be done on all the categories,
which is impossible to achieve in real practice.

To address the aforementioned challenges, we propose a novel
meta-learning latent variable approach, called MetaBridge, which
can learn transferable knowledge from a subset of categories with
limited labeled data and capture the uncertainty of never-seen
categories with unlabeled data. More specifically, we make the fol-
lowing contributions. (1) We formalize the problem of validating
the textual attribute values of products from a variety of categories
as a natural language inference task in the few-shot learning set-
ting, and propose a meta-learning latent variable model to jointly
process the signals obtained from product profiles and textual at-
tribute values. (2) We propose to integrate meta learning and latent
variable in a unified model to effectively capture the uncertainty
of various categories. With this model, annotation costs can be
significantly reduced as we make best use of labeled data from
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limited categories. (3) We propose a novel objective function based
on latent variable model in the few-shot learning setting, which
ensures distribution consistency between unlabeled and labeled
data and prevents overfitting by sampling different records from
the learned distribution. Extensive experiments on real eCommerce
datasets from hundreds of categories demonstrate the effectiveness
of MetaBridge on textual attribute validation and its outstanding
performance compared with state-of-the-art approaches.
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1 INTRODUCTION

Product catalogs are valuable resources for eCommerce website
for the organization, standardization and publishing of product
information. Because the majority of product catalogs on eCom-
merce websites (e.g., Amazon, Ebay, and Walmart) are contributed
by individual retailers, the catalog information unavoidably con-
tains noisy facts [17, 31]. The existence of such errors results in
misleading information delivered to consumers and significantly
downgrades the performance of downstream applications, such as
product recommendation. As the magnitude of product catalogs
does not allow for manual validation, there is an urgent need for
the development of automatic yet effective validation algorithms.

In a product catalog, a product is typically associated with multi-
ple textual attributes, such as name, brand, functionality and flavor,
whose values are short texts. Therefore, in this paper, we focus
on the important task of validating the correctness of a textual
attribute value given a product. A real example is “Ben & Jerry’s
- Vermont’s Finest Ice Cream, Non-GMO - Fairtrade - Cage-Free
Eggs - Caring Dairy - Responsibly Sourced Packaging, Americone
Dream, Pint (8 Count)”, which is the product title of an icecream
on Amazon. The attribute “flavor” is a textual attribute, and for
this particular icecream, “Americone Dream” is its flavor attribute
value. The objective is to automatically output whether this value
is correct or not for this product.

One may consider to model this task as anomaly detection based
on the values of the target textual attribute, so that anomalies cor-
respond to wrong values. However, this solution is not applicable
to the validation task because: 1) As individual retailers self-report
these attribute values, the set of possible values cannot be predeter-
mined, and thus traditional anomaly detection approaches cannot
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work. 2) Textual anomaly detection has been studied and many
methods have been proposed to identify anomalies by extracting
distinguishing features from the texts. However, in the validation
task, the correctness of a value is highly dependent on the product.
For example, “Americone dream" may not be a common piece of
textual value, but it is a correct flavor name for Ben&Jerry icecream.

Motivated by this observation, we propose to verify the correct-
ness of textual attribute value against the text description of the
corresponding product. A detailed description of a product can be
found from the product webpage, which contains rich information
about many attributes of the product. For example, in our example,
the title itself already covers the values of several attributes, such
as flavor and ingredients. By cross-checking the textual attribute
value “Americone-dream" for flavor against this description, we can
easily verify that this value is correct. However, this cross-checking
cannot be completed by a simple matching of the keywords. We
found that a certain amount of errors are because the retailers often
abuse the attribute by filling a real value of another attribute. Such
errors cannot be detected by simply matching the value with prod-
uct description text as they indeed can be found there. For example,
for value “Non-GMO", it is a wrong value as of flavor, but could be
labeled as correct by a simple matching against the product title of
this icecream.

Therefore, we propose to model the validation problem as the
task of automatic correctness inference based on an input of a
textual attribute value and the description of the corresponding
product. This setting is related to the natural language inference
(NLI) task, which automatically determines if a hypothesis is true or
false based on a text statement. Recently, powerful neural network
based models, such as Transformer [24] and BERT [11] have shown
promising performance towards NLI task. However, their success
relies on sufficient high-quality labeled data, which requires the an-
notation of correctness on a large number of hypothesis-statement
pairs. This requirement cannot be satisfied in the textual attribute
validation task. There are thousands to millions product categories
on eCommerce website, and thus annotating sufficient labeled data
for all the categories is impossible. If only limited categories are
annotated, such labeled data cannot be applied to other categories.
For products in different categories, the product attributes and the
vocabularies of the attributes could vary significantly. For example,
even for the same attribute “flavor”, there is no overlapping values
when describing the flavor of seasoning, ice cream and coffee.

To tackle the aforementioned challenges, we propose a novel
meta-learning latent variable approach, namely MetaBridge, for tex-
tual attribute validation. The proposed approach effectively lever-
ages a small set of labeled data in limited categories for training
category-agnostic models, and utilizes unlabeled data to capture
category-specific information. More specifically, the proposed ob-
jective function is directly derived from the textual attribute valida-
tion task based evidence lower bound, and it seamlessly integrates
meta-learning principle and latent variable modeling. We then pro-
pose to solve this problem via a stochastic neural network which
has the sampling and parameter adaptation steps. The benefits of
the proposed approach include the following. First, the parame-
ter adaptation step allows more parameter flexibility to capture
category-specific information. Second, we enforce the distribution
consistences between unlabeled and labeled data via KL Divergence,
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which makes best use of limited labeled information while extracts
most useful information from unlabeled data. Third, the proposed
model is a stochastic neural network where sampling step is ben-
eficial to the prevention of overfitting. The insights behind our
objective function are explored in our experiments. Experimen-
tal results on two large real-world datasets show that proposed
model can effectively generalize to new product categories and
outperforms the state-of-the-art approaches.

The main contributions of this paper can be summarized as
follows:

e We formally define the important problem of textual at-
tribute validation on eCommerce website as an automatic
correctness inference task based on a model taking an in-
put pair of attribute-value and corresponding product de-
scription. We propose an effective meta-learning latent vari-
able model which can make category-specific decision even
though labeled data are only collected from limited cate-
gories.

The proposed MetaBridge method combines meta learning
and latent variable in a joint model to make best use of
limited labeled data and vast amounts of unlabeled data.
The proposed solution enhances the ability of capturing
category uncertainty and preventing overfitting via effective
sampling.

We empirically show that the proposed method MetaBridge
can effectively infer the correctness of attribute values and
significantly outperform the state-of-the-art models on two
real-world datasets collected from Amazon.com.

The rest of the paper is organized as follows: problem setting
and preliminaries are introduced in Section 2, and the details of
the proposed framework are presented in Section 3. Experimen-
tal results are presented in Section 4. Related literature survey is
summarized in Section 5, and the study is concluded in Section 6.

2 PROBLEM SETTING AND PRELIMINARY

In this section, we first introduce our problem and the few-shot
learning setting, then we present the representative algorithm of
meta-learning, its limitations and our intuitions.

2.1 Problem Setting

Given a set of product profiles presented as unstructured text data
like titles and their corresponding textual attribute values, our objec-
tive is to identify incorrect attribute values based on corresponding
product profiles. Note that we have open world assumption thus
we cannot construct a golden list to filter out never-seen attribute
values. As the the categories of product are from thousands to mil-
lions and annotation job requires corresponding knowledge, we
can only obtain a small set of annotated data about a subset of
product categories. But for each category, unlabeled data are easily
collected. We next formally define the problem we are solving.

DEFINITION. Given a set of product categories C and corresponding
products I = {I. : ¢ € C}, product profiles P = {p; : i € I}, attribute
values as V = {v; : i € I}, we aim to identify X = (P, V) pair that
are incorrect for product I.

After defining our problem, we introduce our learning setting.
Following the few-shot learning setting [26], in each category ¢ ~ C,
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we have a few unlabeled examples x7 = {xﬁ,i}f\i | to constitute the

support set D¢ and have a small set of labeled examples (xd ydy =
{xg’i, yg’i}?i}r\llfrl as the query set DJ. We need to learn from a
subset of categories a well-generalized model which can facilitate
training in a new category based on unlabeled support set D7 and
infer the correctness of attribute values for corresponding products

I in the same category c.

2.2 MAML

We give an overview of Model-Agnostic Meta-Learning method [12]
which is a representative algorithm of optimization-based meta-
learning approaches. First, we use our problem as an example to in-
troduce the general learning setting of meta-learning methods. The
learning of meta-learning are split into two stages: meta-training
and meta-testing. During the meta-training stage, the baseline
learner fy with parameter set 6 will be adapted to specific cat-
egory c as fp, with the help of meta-learner M(-) on support set
Dy, ie., 0. = M(0, D7). Such category specific learner fp, is evalu-
ated on the corresponding query set D¢. During the meta-testing
stage, the baseline learner fy will be adapted to testing category
¢ on D] using the same procedure with meta-training stage, i.e.,
6. = M(6, D?), and make predictions for the DJ.

In the MAML, it updates parameter vector § using one or more
gradient descent updates on the category c. For example, when
using one gradient update:

e = M(fo, D7) = 0~ f Vg L(f, DY),

where f is inner step size and D} is a support set for given category
c. The model parameters are trained by optimizing for the perfor-
mance of f_ with respect to 6 across categories. More concretely,
the meta-objective is as follows:

min £(fp) = Y, LUfo-pvy £(fo. 021 D)
ceC

where DY is a query set for given category c.

Limitations: MAML captures category uncertainty with the
help of a few labeled data. Such mechanism brings expensive and
continuous annotation costs. Although we can change the super-
vised loss on support set to unsupervised loss like entropy minimiza-
tion, the adaptation on unlabeled data will undoubtedly increase
the difficulty of capturing category uncertainty and further degrade
the performance. Moreover, meta-learning methods suffer from
overfitting problem especially when only a small set of labeled data
is available.

Key ideas of our solution: To avoid continuous annotation
cost, we expect our model to capture the category-uncertainty via
unlabeled data. Thus, how we take advantage of unlabeled data
to benefit our method is a key problem. A simple intuition is that
we need to bridge unlabeled data and labeled data together to
stabilize adaptation step. To achieve such goal, we propose a new
approach which can integrate latent variable model with meta-
learning framework. The latent variable model can capture the
category distribution via a latent variable which can construct
a connection between unlabeled and labeled data and prevents
overfitting with the inherent sampling procedure.
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3 METHODOLOGY

In this section, we first introduce how we derive our meta-learning
latent variable objective function, then we present our model archi-
tecture and the algorithm flow.

3.1 Overview

As shown in Figure 1, the proposed MetaBridge mainly includes
two stages: adaptation and validation. During the adaptation stage,
the model parameter is updated on unlabeled support data from
given product category; during the validation stage, the category-
specific model is used to make textual validation for products from
same product category. To capture uncertainty on unlabeled data
and prevent overfitting, we propose a meta learning latent vari-
able objective function which includes two terms: inference loss
and bridging regularizer. By jointly minimizing both objectives,
we enforce the model i) to learn direct signal from labeled data,
and ii) internally harmonizes the latent structures of the new cate-
gory and existing category from unlabeled data. More specifically,
the proposed approach is a stochastic neural network which in-
cludes sampling and parameter adaptation steps. Furthermore, the
proposed model can enforce the distribution consistency between
unlabeled and labeled data via KL Divergence. Thus, we are able to
train a complicated meta learning Transformer-based model which
can jointly processes signals from textual product description and
attribute values to conduct effective inference.

3.2 Latent Variable Model

The goal of the proposed algorithm is to learn to infer on various
categories even unseen category with a handful unlabeled training
instances. More specifically, for the c-th category, the corresponding
support set x3 is given, we aim to infer yJ based on x. Here We
denote x, = {x5,x2},y. = {y?} for simplicity and hence our
objective function can be represented as follows:

log pe(ylx) = " log pe(yelxc),
ceC

(1)

where © represents the parameter set of the proposed model. For
each category c, we only have a very limited number of labeled
data points. To capture category uncertainty, we include a latent
variable z that captures category distribution. This latent variable is
of particular interest because it can capture the category uncertainty
and allows us to sample data for the learned category to prevent
overfitting.

To be clear, we take c-th category as an example. Let p(z, yc|x¢)
be a joint distribution over a set of latent variables z ~ Z and
observed variables y. € Y and x. € X for category c. An infer-
ence query involves computing posterior beliefs after incorporat-
ing evidence into the prior: p(z|yc, xc) = p(z, ye|xc)/p(ye|xe). This
quantity is often intractable to compute as the marginal likelihood
p(yelxe) = /Zp(z, Ye|xc)dz requires integrating or summing over
a potentially exponential number of configurations for z. As with
variational autoencoders [19], we approximate the objective func-
tion using the evidence lower bound (ELBO) on the log likelihood.
For the purpose of calculating ELBO, let us introduce an encoder
model g4 (2|xc, yc): an approximation to the intractable true pos-
terior p(z|xc, y.) with a parameter set ¢. In a similar vein, we use
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Figure 1: The proposed approach MetaBridge. The proposed approach mainly includes two stages: adaptation and Validation.
During the adaptation stage, the model parameter © is updated to ©. accordingly to capture the uncertainty of category c.
During the validation stage, the adapted model ©. is used to validate textual attributes for products on the category c.

a decoder model pg(yc|xc, z) to approximate the intractable true
posterior p(yc|x¢, z) with a parameter set 6. Thus, the parameter
set © includes {¢, 8}. After introducing the encoder and decoder,
we present how to derive our objective function based on ELBO.

Evidence Lower Bound (ELBO) The ELBO can be shown to de-
compose into

log pe(yclxc)

2
>Eq e1e g0 108 Po (el x0)] = D (ag zlxe vo) 1| p2). P

To better reflect the desired model behavior at test time, i.e.,
we have a handful training instances as a support set x7 for each
category, we explicitly split x. into support and query sets. Our
goal is to model the conditional of the query set given the support
set. Thus, instead of using prior p(z) in Eq. 2, we propose to use a
more informative conditional prior distribution p(z|x$) as with [13]
and further rewrite our objective function as follows:

log pe (yclxc)

=log pe(yd|x5, xI) "
3

ZEq¢(2|xg,xg,yg)[lOgPG(ycq|Z’ xﬁ,xg)]

- Dir(qg(zlxd. x5 yd) 1| p(zlxg))

For the encoder q¢,(z|x§,xg ,yd), since xJ is given and yI is

implicitly encoded into parameter set ¢, we assume z is conditional
independent with yZ given xJ and ¢. Thus, our objective function
can be simplified as follows:

log pe(y¢ ¢, x¢)

ZE%(ZMLS;,XZ?)[IOEPG@?|Z, Xf:»xé])] (4)

~ Dxr(qg(zlxg, xd) |l plelxd)

The support set x? is used to help the proposed model to quickly
adapt to new category. Thus, how we take advantage of this set
to benefit our framework is a key problem. To tackle this problem,
we propose to encode the information from support set into our
parameter inspired by MAML [12] and further we can obtain a
category-specific model to accelerate unseen category adaptation.
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We will introduce how to incorporate information from support set
into our framework via parameter adaptation in the next subsection.

3.3 Parameter Adaptation
As introduced in the subsection 2.2, MAML obtains a category spe-
cific parameter set using one or more gradient descent updates
based on loss from support set x;. Considering the support set
in our problem is unlabeled, we redefine the loss function on un-
labeled support set by entropy minimization. Entropy minimiza-
tion encourages the confidence of predictions and is commonly
used in the semi-supervised learning [4, 15, 20] and domain adap-
tation [16, 22, 27]. More concretely, the loss function L on the
support set x; is defined by entropy as follows:

L5(0, ¢, x2) = =Eq (z1xs) [Po(2) log po (2)] ()
and the parameter adaptation step via one step of gradient descent
is defined accordingly as follows:

{6c.¢c} = {69} — B Vo,p L5(6.6.x0). (6)

Here we assume the information of support set is encoded into
parameter via gradient descent and then exclude the x{ from condi-
tionals. Moreover, for the decoder pg(yd |z, x5, x7), y? is conditional
independent with xZ given z since z is the feature representation
of xJ. Thus, we can have simpler equations as follows:

(7)

Encoder: q¢(z|x§,x3) - g, (zx])

Decoder: py(y¢|z, x5, x{) — po, (yd|2)

®)

3.4 Objective Function

To optimize our objective function, we still need to approximate
conditional prior pg(z|x{) which is intractable. As the parameter
adaptation step can encode support set into the model and captures
category specific information, hence we propose to use g4, (z]x¢)
as a approximation to p(z|x}) and then we have our final objective
function as follows:
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log po(yd xS, xI)
2B, (z]x9llog Po, (y12)]

= Dici(g, (zxd) 1| plzlxe) ©)
=By, (oxt)[logpo, (v 12)]

- Dr(gg, (Ix9) 1] g, (21x2)

The objective function includes two terms: the first term is our
supervised inference loss on query samples and the second term is to
enforce conditional category distribution g, (2]x7) consistent with
conditional distribution gg_(z]x?), i.e., distributions of unlabeled
and labeled data from same category. The second term can be
treated as a explicit bridge between support set and query set. A is
a hyper-parameter that needs to be set. We explore the impact of 1
in the experiment section 4.6.

LG =By (108 p0. (5 12)] 4+ Dici (0 (215) 1] g (21x)

Inference Loss Bridging Regularizer

(10)
In this paper, we assume g, (zlxg ) and g (z|x?) follow multi-
variate normal distributions N (y(xc ), o (xg D and N (u(xg), a2 (x3)D)
respectively. The KL Divergence Dkr(q4, (zlxdy || q4(zlx3)) in
Eq. 10 can be analytically integrated:

DKL(qz;SC(le ) 1 a4 (z1x2)

—Z oj(xe) | P (xd) + (i (xd) = py(x2))? 1 (11)

a](xc ZGZ(XC) 2|’

where d is the dimension of z. Thus, we only need to calculate
category loss term. To enable distribution g, (z]x?) differentiable,
we follow previous work [2, 3, 19] to use reparameterization trick
to parameterize z.
Reparameterization Trick Instead of directly sampling from a
complex distribution, we can reparametrize the random variable as a
deterministic transformation of an auxiliary noise variable €. In our
case, to sample from g (z|xc ). since g, (z|xc )= N(p(xg) O'Z(xg)l)
one can draw samples by computing z = u(xJ) + o(x) © €, where
€ ~ N(0,I) and © signify an element-wise product. By passing in
auxiliary noise, our proposed model is stochastic and if we do not
pass in any auxiliary noise, then the model is deterministic.

After introducing our final objective function, we will present
the detailed architecture and algorithm flow in the next subsections.

3.5 Model Architecture

Our model mainly includes two components: encoder and decoder.

Encoder The encoder in use is Transformer [24], which is a
context-aware model and has been proven powerful in textual clas-
sification. The transformer takes a sequence of word tokens as input.
In our problem, the input includes two parts: unstructured product
profiles and the corresponding product textual attribute values. As
the length of two parts are usually very different, we use two Trans-
formers to take two parts separately to obtain fixed-dimensional
features. Following [11], the first token of every sequence is always
a special classification token ([CLS]). Accordingly, the final hidden
state corresponding to this token is used as the aggregate sequence
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representation. We concatenate the two final hidden states from
Transformers and then feed them into two fully connected layers
with weight matrix leldXd and W24% to output mean p and log(c)
as suggested in [19].

Decoder The decoder is a fully connected layer with weight
matrix ngz to take samples from inferred normal distribution
and output the probability of given attribute values being incorrect.

3.6 Training and inference procedures

The training procedure is summarized in Algorithm 1. We first
sample a batch of categories and get corresponding support set and
query set for each category. Given the support set , we first update
the parameter of encoder and decoder to get category-specific pa-
rameter set 6., ¢, according to Eq. 5 and Eq. 6. The category-specific
encoder takes query set xJ and support set x7 to output the pa-
rameters for the distribution p(z|xC ) and p(z|x?) respectively. Then
we can calculate the Bridging Regularlzer in the Eq. 10. We then
sample z’s from the posterior p(z|x ;) and the category-specific
decoder takes z’s as input to infer the correctness of attribute val-
ues. Thus, our model is stochastic during the training stage. During
the testing stage, the inference procedure is similar with it in the
training procedure, the only difference is that for any data query

data xg o its inferred latent code is set to be the conditional mean
ll(xg, i) =

u(xcq ;) as input. In other words, we use the deterministic model in
the testing stage to obtain stable inference results without sampling
step.

q¢(2| 1 )[ z] and the category-specific decoder takes

Algorithm 1 Training Procedure.

Require: Task data, learning rate and inner step size f;
1: for epoch [ < 1to L do
2: Sample a batch of categories C;

3 forallc € C do

4 Get support set D and query set DY

5 Compute loss .L§ according to Eq. 5

6: Parameter fast adaptation with gradient descent:
7 (Oc. dc} = (0. ¢} — B Vo5 LE(O. $,x2).
8: end for

9: Update {0, ¢} = {0, ¢} -/ Xcec Vio,01 LG
10: end for

4 EXPERIMENTS

In this section, we introduce the dataset used in the experiments,
present the compared state-of-the-art baseline models, validate the
effectiveness and explore insights of the proposed approach.

4.1 Datasets

To fairly evaluate the performance of the proposed approach, we use
two internal Amazon datasets on attributes Flavor and Ingredient
respectively. The products in the two datatset are from thousands
of product categories across different domains. When preprocess-
ing the datasets, we first exclude the products which do not have
the attribute of interest. Then we randomly select 100 products as
support set and randomly select 10 products from the rest as query
set in each category. We send query set to ask Amazon Mturkers to
identify the correctness of attribute values based on corresponding
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product profiles. Each data point is annotated by 3 Amazon Mturk-
ers and the final label is decided by majority voting. To evaluate the
performance of attribute validation models for never-seen product
categories, we split the datasets into the training, validation, testing
sets according to their product categories. Thus, we ensure that
they do not contain any common product category. To evaluate the
performance of models under a small data setting, we only use a
small portion of product categories for training purpose and the
number of product category in training, validation and testing are
in a 3:1:6 ratio. The detailed statistics are shown in Table 1.

Table 1: The Statistics of the Amazon Datasets.

Dataset | # of Product Categories | # of unlabeled Data | # of labeled Data
Flavor 321 32,100 3,210
Ingredient 658 65,800 6,580

4.2 Experimental Setup

Metric. We use Precision-Recall AUC (PR AUC) and Recall@Precision
(R@P) to evaluate the performance of the models. PR AUC is de-
fined as the area under the precision-recall curve. Such a metric
is a useful measurement of prediction when the classes are imbal-
anced. R@P is defined as the recall value at a given precision. Such
a measure is widely used to evaluate the model performance when
a specific precision requirement need to be satisfied.
Baselines. To validate the effectiveness of the proposed model, we
choose baselines from the following three categories: supervised
learning, fine-tune and meta-learning settings.

eSupervised Learning We use Logistic Regression (LR), Sup-
port Vector Machine (SVM) and Random Forest (RF) as baselines.
The supervised learning models are only trained with labeled query
data and are not updated when testing. The feature vectors are
formed by concatenation of counting the frequencies of specific at-
tribute value in the product textual description, the position of first
appearance of attribute value in the description and the average of
attribute value word embeddings.

oFine-tune Attribute validation is related to natural language
inference (NLI) problem. We select three state-of-the-art models
ESIM [10], Transformer [24], BERT [11] as baselines. All sublayers
of ESIM produce the output with dimension d = 16 except the last
output layer. For the BERT model, we use the output from BERT-
base’s last second layer and feed the output into a fully connected
layer with weight matrix W7%8%16 with ReLU activation function.
The Transformer architecture is described in detail in subsection 4.3.
Then the output goes through a fully connected layer to output
inference results. In the fine-tune setting, the training data include
unlabeled support data and labeled query data. We use the entropy
minimization to define the loss on unlabeled data as [15] and use
the cross-entropy to define the loss on labeled data. The ratio of
labeled loss and unlabeled loss is set as 10:1. In the testing stage,
the pre-trained model is first fine-funed on the unlabeled support
data of given task with entropy minimization, and then conduct
inference on testing query data.

eMeta-Learning We select two state-of-the-art meta learning
models MAML [12] and Meta-SGD [21] as baselines. The model
architectures of two baselines are identical with Transformers in
fine-tune setting. The meta learning setting is that we use entropy
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minimization loss on unlabeled support data to adapt the parameter
of models to given tasks, the task-specific parameters will be eval-
uated on the query data from same task during training stage. In
the testing stage, the baselines is first fine-funed on the unlabeled
support data with fixed steps of gradient updates and then conduct
inference on the testing query data.

4.3 Implementation Details

The 300 dimensional FastText pre-trained word-embedding weights [5]
are used to initialize the parameters of the word embedding layer
for deep learning models except for BERT. The encoder of our model
is based on Transformer. For our encoder design, we first remove
the decoder of original Transformer and only keep Transformer’s
encoder part. Then we change 6 identical layers of original Trans-
former’s encoder to one instead. The multi-head number is set to 2.
All sub-layers of our encoder produce outputs of dimension d = 16
and the dropout rate is selected as 0.3 based on validation set. The
identical architecture with our proposed model is employed for the
baselines Transformer, MAML and Meta-SGD. The main difference
between baselines and our model in architecture is that out model
have sampling step and baselines are deterministic. We implement
all the deep learning baselines and the proposed approach with
PyTorch 1.2. For training models, we use Adam [18] optimizer in
the default setting. The learning rate « is 0.0001. We use mini-batch
size of 64 and training epochs of 400. The parameter gradient up-
date step is set to 1 and inner learning rate f is set to 0.3 for all
fine-tune and meta-learning models. The traditional models (LR,
SVM, RF) are implemented by scikit-learn package [23]. The best
parameters are selected based on the validation set.

4.4 Performance Comparison

Table 2 shows the performance of different approaches on the Flavor
and Ingredient datasets. We use 100 unlabeled data as support set
and 5 labeled data as query set per product category. We can observe
that that the proposed framework achieves the best results in terms
of all the evaluation metrics on both datasets.

On the Flavor dataset, the LR, SVM and RF achieves the similar
performance compared with RNN. The results show that the tra-
ditional models can achieve comparable performance with deep
learning models when a small set of labeled data is given. Among
the fine-tune models, we can observe that BERT achieves the bet-
ter performance compared with RNN, ESIM and Transformer. The
main difference between BERT and other baselines lies in the em-
bedding. The improvement suggests the pre-trained embedding
of BERT is informative. The RNN, ESIM and Transformer use the
same pre-trained fasttext word embedding layer. The comparison
between the three baselines indicate that Transformer architecture
can take advantage of training data effectively compared with other
two baselines. For the meta-learning setting, we can observe that
MAML achieves more than 2% improvement in terms of PR AUC
compared with Transformer with identical structure. The reason is
that MAML can achieve a base parameter which can easily adapt to
new task compared with semi-supervised loss learning. Besides a
good base parameter, Meta-SGD also learns update directions and
learning rates during training procedure. Thus, Meta-SGD achieves
better performance compared with vanilla MAML. It is worth not-
ing that the Meta-SGD achieves comparable performance with the
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Table 2: The performance comparison of different methods in the Flavor and Ingredient data.

. Flavor Ingredient
Setting Method

PR AUC R@P=0.7 R@P=0.8 R@P=0.9 R@P=0.95 PR AUC R@P=0.7 R@P=0.8 R@P=0.9 R@P=0.95

LR 0.6830 + 0.0000 48.67 + 0.00 23.24 £ 0.00 0.00 + 0.00 0.00 + 0.00 0.4520 £ 0.0000 18.71 £ 0.00 14.08 + 0.00 11.67 + 0.00 11.47 + 0.00

Supervised Learning SVM 0.6408 £ 0.0000 | 42.37 £0.00 | 13.56 £ 0.00 0.00 + 0.00 0.00 + 0.00 0.3863 + 0.0000 19.72 + 0.00 3.22 = 0.00 3.22 £ 0.00 3.22 +0.00
RF 0.6986 + 0.0095 43.78 + 1.53 15.81 + 5.88 4.43 + 2.81 2.45 + 2.18 0.4683 + 0.0137 20.72 £ 1.33 16.15 + 1.49 14.69 + 1.06 11.07 + 1.28

RNN 0.7092 £ 0.0155 | 51.09 £5.68 | 34.14+2.85 | 1593 +4.09 8.35 + 2.36 0.4388 £ 0.0134 | 25.88 £2.29 | 20.68 +£2.49 | 14.69 +2.98 7.69 + 4.61

ESIM 0.7160 £ 0.0192 | 54.90 +£5.26 | 38.32+£5.09 | 22.22 +5.92 7.69 + 6.62 0.4412 £ 0.0199 | 23.30 £6.42 | 16.46 + 6.95 8.89 + 5.45 5.07 + 3.88

Fine-tune Transformer | 0.7210 + 0.0434 | 54.19 + 10.97 | 34.21 + 10.27 | 19.39 +6.72 12.86 + 3.91 0.4890 + 0.0203 31.47 £2.46 | 28.05+2.94 | 22.90 +2.94 11.31 + 8.77
BERT 0.7599 £ 0.0054 | 63.72 +1.27 | 45.56 +3.86 | 27.76 +2.34 | 18.52 + 2.76 0.5292 £ 0.0111 | 34.00 £ 1.21 | 28.17 £ 1.61 | 17.00 £3.92 | 13.08 + 6.04

MAML 0.7486 + 0.0128 61.07 £ 2.55 39.66 + 3.48 22.62 +4.19 15.57 £ 3.71 0.5289 + 0.0247 34.46 £ 243 | 29.73 £3.44 | 2248 +6.41 16.05 + 6.16

Meta-Learning Meta-SGD 0.7575 £ 0.0126 | 64.19 +3.51 | 42.10 £4.62 | 25.06 +2.83 | 15.01 + 4.64 0.5312 £ 0.0141 | 32.80 +3.43 | 24.95+ 1.18 | 2240 +1.19 | 20.59 + 1.34
MetaBridge | 0.7852 + 0.0027 | 69.49 + 0.99 | 50.00 + 1.86 | 30.77 + 1.52 | 22.64 + 2.37 0.5658 + 0.0077 | 39.24 + 1.60 | 34.57 + 2.22 | 27.00 + 0.82 | 21.97 + 3.52

best baseline BERT but uses much less parameters. The proposed
approach MetaBridge achieves 3.66% improvement over Meta-SGD
and 3.33% compared with BERT respectively in terms of PR AUC.
The improvement can also be observed from recall at given pre-
cision. Since R@P=0.8 is similar with annotators’ precision, we
also compare the approaches in terms of this metric. The proposed
framework achieves more than 10% improvement compared with
best baseline BERT in terms of R@P=0.8.

On the Ingredient dataset, the RF achieves better performance
compared with deep learning models RNN and ESIM. This fur-
ther reveals the challenges of deep learning model in the small
data learning setting. Among fine-tuned models, similar results
can be observed as those in the Flavor dataset. BERT achieves the
best performance compared with other fine-tuned models. This
result confirms the effectiveness of pre-trained procedure in the
small data learning setting. However, a contradict result with Fla-
vor dataset can be observed from comparison between BERT and
Meta-learning models. The MAML and Meta-SGD achieves the
comparable and even better performance with BERT. The reason is
that the vocabularies of ingredients are rarely used in other contexts
hence the information is difficult to be captured without training
on the given task dataset. This improvement shows the potentials
of meta-learning models for the downstream tasks, which needs
models to rapidly learn with a small set of data. Accordingly, the
proposed framework achieves 6.98% improvement in terms of PR
AUC compared with BERT. Compared with best baseline Meta-SGD,
the proposed framework achieves 6.51% in terms of PR AUC. The
similar improvement can be also observed from performance com-
parison on R@P=0.8, the proposed framework improves more than
16% compared with the second best result. Furthermore, we can ob-
serve that the proposed MetaBridge achieves the best performance
compared with all the baselines.

4.5 Ablation Study

Compared with MAML, our derived objective function has two
main differences: stochastic characteristic and KL Divergence be-
tween support and query data. Thus, we are interested in their
roles in the performance improvements. As introduced in the Sec-
tion 3.4, we cannot simply remove one of them considering the
KL Divergence and sampling are tightly coupled with each other.
Instead, we propose two variants of MAML as baselines to explore
the role of stochastic and KL Divergence respectively. To explore
the role of stochastic characteristic, we add random noise into the
input to last layer of MAML and denote it as stochastic variant. To
explore the role of KL Divergence, we reduce sampling step and
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assume that the posterior distributions of support and query data
are from normal distributions with fixed variances N (u(x}), 1) and
N (y(x?), 1). The proposed variant is denotes as KL variant.

0.8
0.75
o 0.7
=}
«
o 0.65
[
0.6 — -Stochastic variant
- -KL variant
0.55 —Ours

10 40 70 100 130 160 190 220 250 280
Epoch Number

Figure 2: The changes of PR AUC for the models in term of
the number of Epochs.

We use Flavor dataset as an example. As can be seen from Fig. 2,
the highest PR AUC score of stochastic variant is similar with that
of MAML. However, unlike MAML, the stochastic variant remains
highest value without dropping. This shows that the stochastic
characteristic can help prevent overfitting issue. By the comparison
between KL variant and MAML, we can observe the KL variant can
achieve a better PR AUC during the all training epochs. This shows
the KL Divergence can construct an effective information flow be-
tween support and query data to further improve the performance.
However, the KL variant simply assumes that posterior distribu-
tions are from normal distribution with fixed variances, and the
over-simplistic assumption limits the potential of KL Divergence.
By incorporating variances estimation, our proposed framework
avoids the over-simplistic distribution assumption and can achieve
better performance compared with KL variant. In overall, our pro-
posed framework enjoys the benefits of stochastic characteristic
and KL Divergence simultaneously.

4.6 Hyperparameter Analysis

In our objective function, we use hyperparameter A to control the
strength between Inference loss and KL Divergence. In this study,
we aim to explore the impact of A in the proposed framework. We
train the proposed framework using different hyperparameter A
on the Flavor Dataset. Fig. 3 shows the PR AUC changes of the
proposed model with respect to different A’s. When A is set to 0,
the sampling procedure is removed and the model is equivalent to
MAML. We can observe that such a variant cannot effectively take
advantage of unlabelled support data and the best PR AUC score
is lower than that of other approach variants. And, such a variant
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Figure 3: The changes of PR AUC with different 1’s.

suffers from the overfitting issue and converges to worst PR AUC
value compared with other models. After changing the A from 0 to
0.1, we can observe that the PR AUC values are stably higher than
that of the variant with A = 0. As the A value further increases from
0.1 to 1, the proposed framework achieves significant improvement
around 4% in terms of PR AUC compared with the variant A =
0. This illustrates that our objective function can take advantage
of unlabeled and small labeled data effectively and improves the
generalize ability of the model. When we change value of A to 3, the
PR AUC of model increases slowly in the first 220 epochs compared
with other models. But after 220 epochs, the model can archive a
high PR AUC value. This further confirms the effectiveness of KL
Divergence.

4.7 Varying Size of Labels

To analyze the impact of the query data size per product category,
we train the proposed approach with different number of query data
as 3, 5, 10 per category. The procedure is repeated five times and we
report average performance with corresponding standard deviation.
To be simple, we denote model variant by its name and number of
query data. For example, the MAML which is trained with 3 query
data per category is denoted as MAML3. Figure 4 shows the perfor-
mance comparison of the models with different number of query
data in terms of PR AUC (Fig. 4a) and R@P=0.8 (Fig. 4b). When
query data number is 3, our proposed framework achieves around
5.5% improvement compared with MAML3 in terms of PR AUC.
This demonstrates the effectiveness of our model with a smaller set
of labeled data available. The reason is that our proposed framework
can caputre category uncertainty via unlabeled data and enforce
distribution consistence between unlabeled support and labeled
query data. Thus, the improvement of our proposed framework
over MAML is larger when the number of query data is smaller.
As the number of query data increases, the performance values of
MAML and our proposed framework improve significantly. This
shows that meta-learning models can effectively take advantage of
labeled data. For all three settings, our proposed framework shows
significant improvement compared with MAML. The improvement
further confirms the superiority of our proposed framework.

The similar results can be observed from Fig. 4b. The R@P is an
important metric when we evaluate our model in the real setting.
Our model achieves around 40% and 30% improvement respectively
over MAML in terms of R@P=0.8 when the number of query data
is set to 3 and 5. When the number of query data is set to 10,
the R@P of our model is 53.6% which is higher than that of our
proposed framework with 5 query data more than 6%. This reveals
the potential of our model if more labeled data is available.
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Figure 4: The performance comparison of models with dif-
ferent numbers of query data per product category.

5 RELATED WORK

Attribute validation task is related to anomaly detection which aims
to find patterns in data that do not conform to expected behavior [9].
In the anomaly detection, the most related line of research is log
anomaly detection which aims to find text, which can indicate the
reasons and the nature of the failure of a system [8]. The tradi-
tional methods typically extract features from unstructured texts
and then detect anomalies based on hand-craft features. Compared
with traditional learning, deep learning models have achieved an
improvement in the performance of anomaly detection due to their
powerful abilities [8]. The deep learning anomaly detection (DAD)
approaches [7, 30] model the log data as a natural language se-
quence and apply RNN and CNN to detect anomalies. Different
with log anomaly detection, our problem needs to infer the correct-
ness of attribute values based on product profile information.

Attribute validation task is also related to natural language in-
ference (NLI). NLI is a classification task where a system is asked
to classify the relationship between a pair of premise and hypothe-
sis as either entailment, contradiction or neutral. Large annotated
datasets such as the Stanford Natural Language Inference [6] (SNLI)
and Multi-Genre Natural Language Inference [28] (MultiNLI) cor-
pus have promoted the development of many different neural NLI
models [10, 11, 14, 24] that achieve promising performance. How-
ever, NLI task usually requires large annotated datasets for training
purpose. While pre-training is beneficial, it is not optimized to al-
low fine-tuning with limited supervision and such models can still
require large amounts of task-specific data for fine-tuning [1, 29].
Thus, how to train a NLI model with a small set of dataset for a
specific domain is still a very challenging problem.

Another related and complementary line of research is meta-
learning. Meta-learning has long been proposed as a form of learn-
ing that would allow systems to systematically build up and re-use
knowledge across different but related tasks [25]. More specifically,
meta-Learning approaches can be broadly classified into three cate-
gories: optimization-based, model-based and metric-learning based
models. Optimization-based methods aim to modify the gradient
descent based learning procedure for new task quick adaptation. In
the optimization-based methods, MAML [12] is a recent promising
model which learns a set of model parameters that are used to
rapidly learn novel task with a small set of labeled data. Following
this direction, Meta-SGD [21] learns step sizes and updates direc-
tions besides initialization parameters in the training procedure.
In our problem, we propose to use unlabeled data to capture task
uncertainty to avoid constant labeling efforts. Towards this end,
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our objective function has two terms: inference loss and bridging
regularizer. The proposed objective function constructs an effective
information flow between unlabeled support data and labeled query
data via the bridging regularizer and the sampling procedure can
further prevent overfitting. Thus, we can train a Transformer-like
models to capture rich feature representations for specific task with
limited labeled data and the proposed framework can quickly adapt
to new task with unlabeled data only.

6 CONCLUSIONS

In this paper, we proposed to solve an important but challenging
problem faced by many eCommerce websites, which is the auto-
matic validation of textual attribute value associated with a product.
Due to the large number of product categories and the huge variety
among products in different categories, we cannot obtain sufficient
training data for all the categories, which are needed for training
deep learning models. In light of this challenge, we proposed a novel
meta-learning latent variable approach, MetaBridge, that can lever-
age labeled data for limited categories and utilize unlabeled data
for effective correctness inference. The proposed model captures
category-uncertainty via unlabeled data and trains a Transformer-
based model with limited labeled data. The proposed framework has
shown significantly improved performance in textual attribute vali-
dation. This was demonstrated in a series of experiments conducted
on two real-world datasets from hundreds of product categories
across domains on Amazon.com.
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