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In this paper, we quantify the joint acoustic emissions (JAEs) from the knees of children

with juvenile idiopathic arthritis (JIA) and support their use as a novel biomarker of the

disease. JIA is the most common rheumatic disease of childhood; it has a highly variable

presentation, and few reliable biomarkers which makes diagnosis and personalization

of care difficult. The knee is the most commonly affected joint with hallmark synovitis

and inflammation that can extend to damage the underlying cartilage and bone.

During movement of the knee, internal friction creates JAEs that can be non-invasively

measured. We hypothesize that these JAEs contain clinically relevant information that

could be used for the diagnosis and personalization of treatment of JIA. In this study,

we record and compare the JAEs from 25 patients with JIA−10 of whom were recorded

a second time 3–6 months later—and 18 healthy age- and sex-matched controls. We

compute signal features from each of those record cycles of flexion/extension and train

a logistic regression classification model. The model classified each cycle as having

JIA or being healthy with 84.4% accuracy using leave-one-subject-out cross validation

(LOSO-CV). When assessing the full JAE recording of a subject (which contained at least

8 cycles of flexion/extension), a majority vote of the cycle labels accurately classified the

subjects as having JIA or being healthy 100% of the time. Using the output probabilities of

a JIA class as a basis for a joint health score and test it on the follow-up patient recordings.

In all 10 of our 6-week follow-up recordings, the score accurately tracked with successful

treatment of the condition. Our proposed JAE-based classification model of JIA presents

a compelling case for incorporating this novel joint health assessment technique into the

clinical work-up and monitoring of JIA.

ONE SENTENCE SUMMARY

The sounds a knee makes when it moves can be used to diagnose and track the severity

of disease in children with juvenile idiopathic arthritis.

Keywords: wearable sensors, machine learning, juvenile idiopathic arthiritis, acoustic sensing, signal processing
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INTRODUCTION

Juvenile idiopathic arthritis (JIA) describes a heterogeneous
group of arthritides that present in children. JIA encompasses

all forms of arthritis that begin before a patient is 16 years
old, lasts for at least 6 weeks, and are of an unknown

origin. It is a leading cause of disability and the most
common chronic rheumatic disease of childhood with a
prevalence of 150 cases per 100,000 (1). It is an autoimmune

disorder with a complex etiology thought to be related to a
combination of pre-disposing genetic factors and environmental
influence (2, 3).

The heterogeneity of presentation sometimes makes
diagnosing JIA difficult. This difficulty is exacerbated by
the lack of conclusive, diagnostic laboratory tests. Diagnosis
currently relies on taking a thorough history, physical exam,
and several laboratory and imaging studies (4). Once diagnosed,
to select the most suitable treatment for JIA, the disease
should be classified into its subtype. JIA is divided into
seven subtypes based on laboratory and clinically observed
features (5, 6). To determine the most appropriate subtype,
and thus the most effective therapy, an extensive workup
must be performed on each patient. This is a time and
resource intensive process. These workups include the history
and physical exam, as well as a full blood exam. Imaging
studies are also commonly used to grade the disease. After
diagnosis, the goal is to enable the child to resume normal
childhood activities with normal growth and development (4).
Managing JIA requires a combination of pharmacological
interventions, physical and occupational therapy, and
psychosocial support. The pharmacological treatment may
involve corticosteroids, non-steroidal anti-inflammatory
drugs (NSAIDS), or disease-modifying anti-rheumatic drugs
(DMARDs) including biological response modifiers (7–9).
This treatment protocol is largely reactive with decisions made
based on subjective and qualitative measures of response
to therapy.

Early diagnosis with effective treatment is necessary for
preventing the long-term sequela of JIA (4). However, JIA’s
highly variable presentation, symptomatology and course make
diagnosis and selection of the most suitable treatment difficult.
Pediatric rheumatologists are most well-suited for diagnosing
and treating JIA; however, there is currently a severe shortage
of pediatric rheumatologists. As of 2019, there are fewer than
400 board-certified and practicing pediatric rheumatologists
in the United States. This shortage contributes to only one
in four children with JIA being able to regularly see a
pediatric rheumatologist (10, 11). To address the difficulty of
diagnosis, subjectivity of treatment, and severe lack of access to
pediatric rheumatologists, more research must be performed in
to develop objective biomarkers of JIA. A suitable biomarker
could help more effectively diagnose patients, identify risk
profiles, and predict/track an individual’s response to treatment.
Additionally, the development of such a biomarker could
allow for more effective translation of the many genetic and
immunological mechanistic studies of the disease to further

improve clinical outcomes. Ideally, this biomarker would also
be readily measurable with affordable technologies, so that JIA
could be easily diagnosed and monitored by non-specialist
healthcare workers.

The use of acoustics—recording the sounds that the joints
make during movement—could provide a basis for developing
such a biomarker (12). These sounds, or joint acoustic emissions
(JAEs), can be readily measured on the surface of the skin and
have shown promise in diagnosing joint pathologies and injuries.
Most existing research into JAEs has focused on developing
diagnostic techniques to differentiate “healthy” vs. “unhealthy”
joints (13, 14). In one study, osteoarthritic knees were found
to produce more frequent, louder, and longer duration acoustic
emissions when compared against healthy knees (15). In the
case of a chronic condition—such as JIA—JAEs could serve
as a means of not only diagnosing but also longitudinally
monitoring the conditioning. If JAEs show a correlation with
disease status in JIA, they could regularly be measured to help
personalize the management of JIA. Until recently, longitudinal
assessment using JAEs in healthcare was not feasible due
to a lack of technologies for recording JAEs outside of a
laboratory or clinical setting. However, the development and
application of piezoelectric accelerometers to JAE assessment has
substantially advanced the field. This type of sensor is sensitive to
physical vibrations (such as those seen on the skin during joint
articulation), but does not substantially record external noises
(16). JAE assessment technologies if properly applied to JIA,
could lead to earlier diagnosis, improved and personalized care,
and could serve as an objective measure in the next generation of
clinical trials.

In this paper, we explore the potential of using JAE analysis
to diagnose and longitudinally track JIA. In this work, JAEs
were recorded from the knees - one of the most commonly
affected joints in JIA (17, 18). Our team recently showed
that by damaging the meniscus in a cadaver model of the
knee, the resulting JAEs were substantially altered (19). In
the case of JIA, affected joints are characterized by persistent
joint swelling caused by an accumulation of synovial fluid
and thickening of the synovial lining (3) (Figure 1A). We
hypothesize that these pathologic changes in the knee will
similarly alter JAE profile of the knee. If that hypothesis is
supported, the JAEs of the knee could then be correlated with
disease status.

To test this hypothesis, first, we built a custom hardware
and software setup for recording JAEs and designed a novel
signal analysis algorithm that windows the JAE recording based
on the cycles of flexion/extension (Figures 1B–D). We placed
two piezoelectric accelerometers medial and lateral to the distal
patellar tendon, and an inertial measurement unit (IMU) around
the ankle. With the hardware in place, the subject performs 10
flexion/extension cycles. The JAEs from the knees of two groups
of children are recorded: one group had active JIA and the
other was an age- and sex-matched healthy control group. To
assess the effectiveness of JAEs for tracking therapeutic efficacy
and changes in disease status, we also recorded the JAEs from
the children with JIA 6 weeks after successful treatment. Our

Frontiers in Digital Health | www.frontiersin.org 2 November 2020 | Volume 2 | Article 571839

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

Whittingslow et al. Knee Sounds Diagnose Juvenile Arthritis

FIGURE 1 | Joint acoustic emission overview. (A) A healthy knee articulates smoothly due to its smooth cartilage and appropriate amount/constituency of synovial

fluid. This smooth articulation creates a noise-like JAE (blue). In JIA, thickened/inflamed synovium with excessive joint effusions, cartilage loss and/or bone erosions

may be observed. These changes are hypothesized to create a JAE with several large spikes (red). (B) To record the knee JAEs, two contact accelerometers were

placed on each child’s knees. They viewed and replicated the movements in an instructional cartoon during JAE recording such that their movement speed and range

of motion was controlled. (C) The resulting JAEs were split into their approximately ten component cycles. Forty-nine features were calculated to describe these

cycles. The features, subject numbers, and clinically determined disease status were fit to a feature matrix. (D) Using logistic regression and LOSO-CV, the probability

of each cycle belonging to JIA were calculated. The average of those cycle probabilities is used as a “joint health score” to indicate the severity of JIA. If the majority of

cycles for a given subject had a probability of JIA ≥ 0.5, that subject was classified as having JIA.

proposed algorithm, powered by logistic regression, analyses 49
signal features (summarized in Supplementary Table 1) of each
individual cycle of flexion/extension and outputs the probability
that a cycle belongs to a patient with JIA. This output probability
forms the basis for our proposed JIA digital biomarker. Finally,
we assess the importance of each signal feature in the algorithm
as well as the accuracy and generalizability of the model using
leave-one-subject-out cross-validation (LOSO-CV).

RESULTS

Qualitative Comparison of Knee JAEs
The JAEs were recorded from the knees of two groups of
children. One group had actively inflamed knees with either

newly diagnosed or poorly controlled JIA as diagnosed by
their treating pediatric rheumatologist; the other group was
composed of age- and sex-matched health controls with no
JIA or known injuries to the knee. There are several notable
differences in the time-domain patterns of the JAEs between these
groups. The 18 healthy controls had no noticeable peaks in their
audio signals and upon listening the recorded JAEs resembled
white noise (Figure 2A). The 25 subjects with JIA consistently
exhibited periodic, high-energy clicks in each flexion-extension
cycle. These “clicks” have a spike-like appearance in the time-
domain plot which correspond to the high power content in
the higher frequency components in spectrogram (Figure 2B).

Ten of these patients with JIA had a second recording after
6 weeks of treatment as prescribed by their treating pediatric
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FIGURE 2 | Representative time-domain and spectrogram plots of JAEs from a sample healthy control (A), a subject with active JIA (B), and that same subject after

6-weeks of successful treatment (C). The 12 s of the JAEs represent approximately 4 flexion/extension cycles. Spectrogram of the subject with JIA contains more high

power and high frequency components compared to that of healthy and post-treatment subjects.

rheumatologist. The JAEs of this follow-up group showed a
large reduction in the amplitude and frequency of the clicks
noted during their actively inflamed stage (Figure 2C). The post-
treatment JAEs more closely resembled the healthy controls both
in the time-domain and spectrogram plots of the JAEs as well as
in audibly listening to the recordings. A representative subject’s
JAE recording from each of these groups is presented in Figure 2.

Knee Audio Score Classification
The knee audio score for each subject was defined as the
probability of a cycle belonging to a subject with JIA. In this
manner, a knee score of 0 indicates 0 probability of having JIA,
and a score of 1 indicates an actively inflamed joint with JIA. A
threshold was set at a score of 0.5 to delineate the classification of
the two groups. A threshold cutoff of 0.5 was chosen heuristically
but could theoretically be changed to place an emphasis on
sensitivity vs. specificity as desired. Subjects’ joint scores were
calculated by averaging all the computed cycle probabilities of
each individual subject’s flexion/extension cycles. The subject-
level joint scores are presented as a histogram in Figure 3A.
Notice the heavy overlap between the healthy (blue) and post-
treatment, follow-up subjects (purple). This was expected based
on the success of the treatment as reported by the treating
pediatric rheumatologist. The JIA distribution is centered around
a score of 0.82 with clean separation from the other two
distributions. The overall cycle-based logistic regression analysis
had an accuracy of 82.7% for classifying individual cycles. The
receiver operating characteristic (ROC) curve and confusion
matrix are presented in Figures 3B,C. The ROC curve had an
area under the curve (AUC) of 0.899. The cycle classification
had a specificity of 80.4%, a sensitivity of 84.5%, an error rate of

20.1%, a positive predictive value (PPV) of 84.7%, and a negative
predictive value (NPV) of 90.2%.

Feature Importance Ranking and Model
Performance
Logistic regression is a binary classification algorithm that finds
the best hyperplane in the feature space which separates the
two classes: healthy and JIA (20). The absolute values of the
individual feature weights describing that hyperplane are used to
quantify the impact that each feature has on the model and thus
its importance. Figure 4A shows the relative importance of the
top 20 features used in computing the knee health score. Of note,
the majority of these features for classifying the two classes are in
the spectral domain which agrees with the results from our earlier
pilot work on the topic (12).

Next, the number of features and cycles were varied to
quantify the change in accuracy that the inclusion of each
consecutively less important feature and each recorded cycle had
on the classification accuracy of each subject. The output of
this testing is visualized as an accuracy heatmap in Figure 4B

where the color represents the average accuracy from testing on
each subject in the dataset using LOSO-CV using the depicted
number of features and cycles of movement. At the bottom left
of this plot is the accuracy of the model when only trained
on the most important feature—the mean spectral spread—and
tested on just one randomly selected cycle of flexion/extension
from the subject. All permutations of possible cycle selection
were performed and averaged to yield the accuracy under these
conditions. In the case of just one cycle and one feature, the
average cycle classification accuracy was only 11.1%. Ascending
along the y-axis, one feature is consecutively added based on
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FIGURE 3 | Assessing the performance of the logistic regression classifier on subjects (A) and cycles (B,C). (A) There was little overlap in the computed joint health

score of the healthy control group and the group with JIA. A sub-group from the JIA group after effective treatment had JIA scores heavily overlapping with the healthy

control group at follow-up. (B,C) The logistic regression model overall classified the individual cycles accurately 82.7% of the time. The model achieved adequately

high sensitivity (84.5%) and specificity (80.4%). HC, healthy control.

its relative importance, such that at the top left corner of
the heatmap the model has been trained on the top 20 most
important features. Still, when tested with only one cycle from a
subject, the accuracy remains low at 25.0%. From left to right, the
algorithm is tested on an increasing number of cycles recorded
from a subject. Themodel has an accuracy of 42.8% in the bottom
right corner, where it was trained on just the mean spectral
spread and tested using all recorded cycles of a subject from all
four microphones. The algorithm had the highest accuracy of
80.6% when trained on the top 20 most important features and
tested using all recorded cycles. This is slightly <82.7% observed
in Figure 3. This discrepancy is because the model in Figure 3

had the added benefit to the classification of all 49 features
(Supplementary Table 1), not only the top 20 most important.

Knee Audio Score’s Longitudinal Health
Tracking Capability
The knee audio scores were calculated for 10 of the subjects
with JIA before and after 3–6 months of treatment. At first visit,
these subjects were either newly diagnosed with JIA, or having

a resurgent flare of arthritis. Their treatments were prescribed
according to the current clinical standards by their treating
pediatric rheumatologist and were recorded but not controlled
for in this study. Every subject at follow-up reported a reduction
in symptoms and the treating physician reported an overall
improvement of the arthritis. In Figure 5, the calculated joint
health scores are shown before and after treatment for this
cohort. The average joint health score at initial visit was 0.84 ±

0.08. At follow-up, the scores dropped to an average of 0.19 ±

0.09. This drop in joint health scores is statistically significant
with a p-value = 5.3 × 10−8 (tstat = 16.4, 9◦ of freedom), when
tested with a one-tailed t-test. The scores from individual subjects
are represented with dashed lines in Figure 5 and in all cases
mirror the clinical assessment of their improvement.

DISCUSSION

There is a compelling need for the development of a non-
invasively measurable biomarker that can both diagnose and
track the status of affected joints in JIA. JIA is a chronic,
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FIGURE 4 | Feature importance and model performance based on number of features and cycles. (A) Features are ranked based on their weighted coefficients as

output by the trained logistic regression model. The most important feature was the mean spectral spread. (B) The model was trained on a feature set containing just

one and up to 20 of the top features and the accuracy was assessed based on including those features and number of cycles recorded from a subject. The colors

represent the average accuracy across all subjects for all permutations of cycle selection for a given set of testing parameters. The maximum accuracy of 80.6% is

seen in the top right corner when trained on the 20 most important features and tested on all cycles of a given subject.

autoimmune disease of childhood with a highly variable
presentation, an etiology linked to genetics and environment, and
a complex treatment strategy (9). Assuming a child is properly
diagnosed, determining which treatment regimen will work best
for them is largely reactive. A certain course of treatment is
prescribed and adjusted based on patient-reported feedback
and infrequent clinical assessments. In this work, we explore
the impact that JAE monitoring could have on the diagnosis
and treatment of JIA. If JAEs were found to contain clinically
relevant information, they could potentially be used as an initial
screening tool by primary care medical professionals – reducing
the burden on the healthcare system of unnecessary referrals
to specialists. Furthermore, this could help diagnose patients
earlier, which may prevent the long-term sequelae of JIA (17).
After diagnosis, if joint sounds were found to closely track with
treatment efficacy and joint health longitudinally, they could
be used as an objective biomarker to decide or even predict
the most effective course of treatment. This would reduce the
burden of frequent JIA flare-ups on patients and allow for a
tightening of the treatment feedback loop leading to overall better
management of the condition.

In this study, the effects of JIA on the JAEs produced by
articulation of the knee were explored. The study population
was made up of 43 subjects, 25 of whom had JIA, and 10 of
these 25 subjects had repeat recordings 6 weeks after the initial
visit. The JAEs from a pediatric population with JIA of this size
have never before been compiled and analyzed. These JAEs were

first compared qualitatively to better visualize the differences in
the recordings as seen in Supplementary Table 1. It was noted
that there are characteristic high frequency clicks in the JAEs
of subjects with JIA, that fade away with successful treatment
and are not present in matched healthy controls’ JAEs. More
work is needed to determine the precise mechanistic origin
of these high frequency clicks, but we hypothesized that they
occur due to increased internal friction in the joint, caused
by the characteristic inflammation of the synovial membrane,
breakdown of cartilage, and reduced joint space in JIA (3,
21). Of note, similar clicks are apparent in the case of acute
injury as was recently discovered by our work in a cadaver
model of knee injury (19) and a similar study in an injured
athlete model (22). Rather than relying strictly on one or even
a few characteristics of these JAEs as was done in previous
work, in this study we attempt to more thoroughly quantify
the differences between the recorded JAEs. We do this by
splitting the joint sound recordings from each subject into
their component flexion/extension cycles. On each cycle, 49
features (from the spectral and time-domain) were calculated
to describe the observed JAEs. These features and cycles were
organized into a feature matrix which was used to train a
machine learning, classification model using logistic regression.
This technique should provide a more exhaustive analysis of
the features of the JAEs, and overall be more generalizable than
past efforts to interpret JAEs. The results of this model are
described below.
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FIGURE 5 | Longitudinal joint health score tracking. The average joint health

score, which describes the probability of having JIA, dropped from 0.84 ±

0.08 to 0.19 ± 0.09 after successful treatment of the condition in 10 subjects.

The individual subject scores are denoted by the black squares and dashed

lines. The mean and standard deviation of the actively inflamed subjects with

JIA is shown in red, and the purple marker indicates the mean and standard

deviation at follow-up. This drop in joint health score was statistically significant

(p < 0.001).

Knee Audio Score Classification
Logistic Regression and linear discriminant analysis are two of
the most widely used statistical methods for analyzing categorical
outcome variables. Because logistic regression is more flexible
and robust than linear discriminant analysis when considering
the assumptions made about underlying data, it is commonly
used in medical data binary classification tasks (23). When
compared against more complex machine learning models,
the modeling parameters in logistic regression are generally
easier to interpret rather than a “black-box” approach. This
flexibility, robustness, and interpretability should encourage
more widespread acceptance of the conclusions provided in
this work by the medical research community (20). Logistic
regression is a binary classification algorithm that attempts to
find the best hyperplane in k-dimensional space for separating
the two classes (e.g., healthy and JIA), while minimizing logistic
loss (20).

In our application, the logistic regression outputs the
probability that a given test cycle belongs to the healthy or JIA
class. We have also proposed that the output JIA probability
could be used as a basis for quantifying knee joint health. In
this paradigm, a probability of 0 indicates a healthy knee with no
signs of JIA, whereas a score of 1 indicates a knee clearly affected

with JIA. The classification accuracy of the model is presented
in B. First, the subject-level classification histogram showed clear
separation of the joint health scores when the 0.5 classification
threshold was applied to the output probabilities (Figure 3A).
This finding helps support the idea that knee JAEs could be
used as part of the screening and diagnosis of JIA. The accuracy
of labeling each cycle is then quantified to better understand
the performance of the logistic regression model (Figures 3B,C).
The overall accuracy of the cycle labeling was 82.7%, which
corresponds to a sensitivity of 84.5% and a specificity of 80.4%.
As discussed, JIA is challenging to diagnose not only due to the
highly variable nature of the condition and presentation, but also
because of the shortage of pediatric rheumatologists who are
specially trained to identify the disease. One potential use of JAE-
based assessment in JIA is to allow for better screening of the
condition by healthcare providers that are less trained to identify
it. JAE based assessment is entirely non-invasive and achievable
with affordable hardware. The high sensitivity of this technique
means that few false positive test results will occur. The technique
may be slow to be adopted for final diagnosis, but in the near-
future JAEs could at least be used as a preliminary screening tool
that gates whether a patient should pursue a specialist consult for
further diagnostic workup (i.e., point-of-care screening).

Feature Importance Ranking and Model
Performance
To understand the effects of feature selection and length of
recording on JIA JAE assessment, we presented our findings
on which signal features are most important for the algorithm,
and how it performs with less cycles to classify using a subset
of features. In our model, there were 49 features describing
each cycle of movement from each subject. A feature weights
vector of length 49 was output from the model describing the
hyperplane that best separates the JIA from healthy labeled cycles.
The absolute values of the individual feature weights were used
to quantify the importance of a given feature for the model.
The relative importance of the top 20 features in the algorithm
are presented Figure 4A. Each subject had two microphones
on each of their knees recording the JAEs during 10 cycles
of flexion/extension at a rate of 1 cycle every 4 s. These four
audio files are subdivided into the individual cycles of movement
based on the simultaneously recorded motion data captured by
the inertial measurement unit (IMU) attached to the subjects’
ankles. The resulting data structure thus had approximately 40
segments of data describing one subject’s movement. Figure 4
graphically depicts the results of varying the number of those
segments included in the testing dataset. Each square in Figure 4

describes the average accuracy when each subject was tested
with the described parameters as a part of LOSO-CV on the
trained model. Along the y-axis, features were sequentially added
in order of descending importance, such that at the bottom of
the plot, only the most important feature—the mean spectral
spread—was used to classify the cycles. Upon ascending the
y-axis, each of the 20 features as described in Figure 4A are
consecutively included in training the logistic regression model.
This figure thus depicts the impact that feature selection has on
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the accuracy of the classification. There is a clear benefit on the
accuracy of themodel by includingmore features, and this should
help with the generalization of the model to novel data. In the
past, attempts have been made to describe knee JAEs using only
one or a few different signal features (14, 24, 25). These attempts
generally have success on a small data set, but when applied to
a data set of this size were suboptimal when compared to the
accuracy of the model proposed in this work.

The impact of the length of the JAE recording is also
demonstrated in Figure 4B from left to right. Each step to the
right includes an additional, and randomly selected, flexion-
extension cycle, and the color of the square indicates the accuracy
of classifying a subject with that many cycles. On the left, we test
the model with only one cycle recorded from one microphone
on each subject. On the far right, every cycle recorded for every
microphone is used to test any given subject. The impact is
similar to increasing the number of features in the trained model
– as the number of cycles increases the classification accuracy
similarly increases. Note that there is some possible redundancy
in having two microphones recording the JAEs from each knee.
In this case, the impact of having similar recordings in two of
the microphones can be noted by the relative plateau of the
accuracies around the 18th recorded cycle (accuracy is no longer
substantially increasing with each added cycle). Overall, this
analysis demonstrates the impact that the feature selection and
length of JAE recording has on the accuracy of the model. In
our case, the accuracy was at its lowest with one feature and one
cycle at 11.1% and achieved a high of 80.6% with the top 20 most
important features and every recorded cycle from a subject. This
analysis also demonstrates why past approaches have had only
limited success in generalizing their findings. If only a subset of
these features were used to describe JAEs, the accuracy would
significantly diminish. Many features are needed to fully describe
the nature of these sounds and separate the differences between
populations. Later work comparing a different clinical scenario,
or a larger dataset may find that a different feature is more
important for delineating two study groups, but the approach
applied in this paper should hopefully provide guiding influence
on future assessments of JAEs.

Longitudinal Joint Health Tracking
To discover if knee JAEs had the potential for quantifying
joint health longitudinally, 10 subjects with JIA had their JAEs
recorded during an active flare-up of the condition and 3–6
months later at their follow-up visit. In this particular cohort,
every subject showed clinical improvement and reported a
lessening of symptoms. To calculate these subjects’ knee scores,
the logistic regression model was trained on all subjects not in
this cohort. The recordings before and after treatment were tested
on the trained model and the knee audio scores computed as
described in section Knee audio score classification using logistic
regression. The hypothesis was that as a child’s knees healed from
effective treatment, their knee scores would decrease from the
JIA range (0.5–1.0) toward the healthy range (0.0–0.5). In all
subjects, this hypothesis was shown to be valid. There was a
statistically significant drop in the average scores of 0.65, or a
77.4% improvement in the joint health score. This closely tracked

with the reported clinical workup of the subjects indicating that
joint health scores based on JAEs may be clinically applicable for
not only diagnosing JIA (as discussed in section Knee audio score
classification), but also monitoring the condition over time.

In this study, these 10 patients represent a subset of the
overall JIA population and before claiming how consistently joint
sounds track with knee health status in an individual the sample
size of those studied should be further increased. However, these
findings represent the first time that a population large enough to
adequately power a study of children with JIA has been assessed
longitudinally. The close correlation between the change in joint
sounds and the observed clinical status supports further research
into this relationship. Overall, this study represents an early, but
important step toward understanding the nature of JAEs. The
strong separation of the classes alongside the close tracking of
disease activity make it clear that JAEs contain clinically relevant
information. This information if properly leveraged could 1 day
enable better more personalized treatment of JIA.

Limitations and Steps to Clinical Adoption
JIA is a chronic condition that affects multiple joints in the
body. The knee is one of the most commonly affected joints
and made for a viable target for this attempt at analyzing
JAEs. To better understand the clinical utility of this sensing
modality, JAEs should be studied in other commonly affected
joints in JIA. Additionally, the sensitivity of this method should
be compared against the performance of the current clinical
standard procedure for diagnosing and staging the condition,
as well as against other modalities such as magnetic resonance
imaging or ultrasound, which typically are time consuming and
expensive. Treatment of JIA seeks to reduce the frequency of
acute, symptomatic flare-ups, and to ultimately achieve clinical
remission. In this study, the treatments our subjects underwent
were not controlled for due to the small sample size. In the
future, the effectiveness of therapy should be quantified using a
prospective study design. Additionally, in this cohort all subjects
improved with treatment and we observed a corresponding
drop in the joint health score. Since no patients got worse at
follow-up, we were unable to discover if JAE assessment could
track worsening of the condition. The sensitivity of joint sounds
for detecting not only different severities of the condition but
also the course of the condition should also be assessed. JAEs
would be significant clinically if they were able to determine
the difference between an acutely inflamed joint and a more
chronic, undiagnosed state. Determining that duration of disease
activity would help with selecting the ideal treatment for a
patient. Classifying subjects into the different subtypes of JIA and
delineating joint sounds caused by JIA vs. all other causes would
also offer clinical merit. This study was performed on a fairly
large sample size of subjects to date, and enrollment is ongoing
to support future work. Increasing the number of subjects would
better support the generalizability as well as mitigate possible
overfitting of the discussed results. Overall, in this paper we
present JAEs as a novel technique for analyzing the health of
a joint in JIA. The findings in this paper present significant
clinical merit to this type of analysis, but there is still much to
be discovered.
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MATERIALS AND METHODS

Human Subject Protocol and Subject
Demographics
The study was conducted under a protocol approved by
the Georgia Institute of Technology and Emory University
Institutional Review Boards. Forty-three subjects participated in
this study after completing a written informed consent. Twenty-
five of the subjects were diagnosed with JIA by a pediatric
rheumatologist and 18 of the subjects were healthy controls with
no history of JIA or acute knee injuries. The group with JIA
consisted of 20 females and five males (12.2 ± 3.1 years old,
BMI 20.1 ± 4.1 kg/m2). The healthy control group consisted of
15 females and three males (12.9 ± 2.7 years old, BMI 22.3 ±

2.8 kg/m2) with no history of joint disease, surgery or significant
joint injury. To capture longitudinal changes in the knee JAEs
during the course of treatment, data were acquired from 10
of the subjects (1 male, 9 female, 12.5 ± 3.3 years old, BMI
20.8 ± 3.5 kg/m2) with JIA a second time, 3–6 months after
initial measurements (follow-up group). Note, that JIA is more
prevalent in females with estimates ranging from 65–78% of all
cases occurring in females, thus the demographics of this study
were selected accordingly to match this distribution as closely as
possible (26, 27).

The data acquisition set up for each subject is shown in
Figure 1B. To record the sounds produced by the joints, two
uniaxial analog accelerometers (3225F7, Dytran Instruments
Inc. Chatsworth, CA) were attached 2 cm medial and lateral
to the distal patellar tendon using double-sided adhesive pads
(Rycote Microphone Windshields Ltd, Stroud, Gloucestershire,
GL5 1RN, United Kingdom) on both knees. These professional-
grade pads tightly coupled the accelerometer to the subject’s knee.
This accelerometer has a broad bandwidth (2 Hz−10 kHz), high
sensitivity (100 mV/g), low noise floor (700 µgrms), miniature
size and low weight (1 gram). This accelerometer placement
location has been shown to allow for the of capture high-fidelity
signals capable of differentiating meniscus injury status in an JAE
cadaver model (19).

To record the knee JAEs, each subject performed 10 unloaded
knee flexion/extension exercises, while seated on a height-
adjustable stool to prevent foot contact with the ground. The
subjects repeated the movement as seen on an instructional
cartoon that encouraged a cycle to be completed every 4 s
through the full range of motion (RoM) of each subject. The
signals from the accelerometer were sampled at 100 kHz and
recorded using a data acquisition module (USB-4432, National
Instruments Corporation, Austin, TX). An inertial measurement
unit (IMU) attached around the ankle of the subject recorded
synchronous positional data during JAE recording at 50Hz to
allow for analysis on a cycle-by-cycle basis, as well as to ensure
the subject maintained an appropriate speed and RoM. The
ideal speed and angles to move through have previously been
explored using a cadaver model of JAEs (19). The exercise and
recording protocol were repeated for both knees for all subjects.
The recorded signals were analyzed using Matlab (MathWorks,
Natick, MA).

Signal Processing and Feature Extraction
The JAEs were analyzed in the time and frequency domains.
Figure 2 shows a representative plot of the time domain signal
after bandpass filtering from one subject with JIA, that subject’s
JAEs at their 3-months follow-up visit, and a healthy, matched
control’s JAE recording. It is notable that the number of spikes
in the time domain of the patient with JIA went down with
effective treatment as seen at follow-up to more closely resemble
the JAE recording from the healthy control. The JAEs from these
subjects have high bandwidth frequency content as expected
from earlier pilot work (24, 28, 29). Figure 1C graphically depicts
the signal analysis workflow for knee JAEs. The signals are pre-
processed using a digital finite impulse response (FIR) band-pass
filter with 250 Hz−10 kHz bandwidth. The bandwidth employed
in this filtering is based on prior work: at the low end, the
cutoff of 250Hz is selected to reduce low frequency artifacts and
muscle sounds (<100Hz) while preserving the sub kHz friction-
generated components of the sounds; at the high end, the cutoff
of 10 kHz is selected to remove high frequency artifacts while
still preserving the kHz range of frequencies responsible for the
acoustic emissions that are observed from the joint. To segment
the JAE data into individual flexion/extension cycles, an FIR low-
pass filter (5Hz) is applied to the raw JAE signals to visualize
the movement of the knee through its RoM. This motion data
is compared against the synchronized IMU data and the proper
indices for the beginning and end of each flexion/extension
cycle were selected. These individual cycles were separated and
subdivided into 400ms long frames. This frame (or window)
length was selected to provide sufficient width to capture lower
frequency information while still providing multiple frames
per flexion/extension cycle. A total of 49 signal features are
extracted from each frame for each microphone, comprising
features that—in our group’s prior work, and in audio processing
and classification work in other domains—have been found to
contain salient information. Feature descriptions are available
in Supplementary Table 1. The 10 frames corresponding to
one cycle are averaged to give 49 descriptors of each cycle
of flexion/extension. This process was repeated for all four
microphones – two on each knee. These feature sets were stored
in the row-matrix, X. The rows of X each represent a single
cycle of movement as recorded from each microphone, and the
columns represent each of the 49 features extracted. The matrix
X was standardized to zeromean and unit variance by subtracting
the mean of each column and dividing by its standard deviation
(see Feature Matrix in Figure 1C).

The features extracted can be categorized into two groups:
either time domain or spectral features. The time domain features
include the zero-crossing rate (ZCR), energy, root-mean-square
(RMS) amplitude, and entropy. The frequency characteristics of
the joint sounds are described by the spectral features including
the spectral centroid, spectral flux, spectral density, spectral
roll-off, spectral spread, and spectral entropy (A full list of
the features is available in Supplementary Table 1.)The mean,
standard deviation, and coefficient of variance are all computed
for the set of 400ms windows on each cycle to better classify these
features. This approach using these particular features to classify
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joint JAEs is based on the appearance and sound of the signals,
and their selection was supported by previous pilot work on this
topic (12, 30).

Knee Audio Score Classification Using
Logistic Regression
With the data appropriately organized, we trained a logistic
regression classification model. Logistic regression is a common
statistical machine learning technique for binary classification
problems (e.g., healthy vs. JIA). At the core of this algorithm is
the logistic function, which was originally developed by ecologists
to describe population growth – it is a sigmoidal curve that rises
quickly and levels off at a given environment’s carrying capacity
(31, 32). The algorithm uses this function tomap any real number
input to a value between 0 and 1.

1

(1+ e−1)
(1)

Logistic Function
In logistic regression, the input values (x1 . . . xn) are combined
linearly to predict an output value (y) using weighted coefficients
(b0 . . . bn). However, unlike linear regression, in logistic
regression the output values being predicted are binary (0 or 1,
or in our case healthy or JIA). The logistic regression equation
thus takes on the following format:

y =
eb0+b1x1+...+bnxn

1+ e(b0+b1x1+...+bnxn)
(2)

Logistic Regression Mapping Function
Where y is the predicted output, b0 is the intercept, b1 –
bn are the coefficients for the input feature values (x1 – xn).
In our use case, x corresponds to a row of matrix X, which
contains the values of each of the 49 computed signal features
for an individual cycle from one accelerometer. Once trained,
each column of the input matrix X (i.e., each feature) has an
associated coefficient learned through training (b1 – bn). The
vector of b1 – bn is stored in the coefficient vector (β). β is found
using a maximum-likelihood estimation (MLE), specifically the
quasi-Newton method, that minimizes the error of the predicted
probabilities (20, 33, 34).

The predicted output (y in Equation 2) is the probability that a
given input belongs to the default class, selected in our case as JIA.
These probability predictions are transformed into binary values
(0 or 1) in order to create the final probability-based predicted
label for each feature using the threshold in Equation 3.

If mean(p(x)) ≤ 0.5, y = Healthy

If mean(p(x)) > 0.5, y = JIA (3)

Threshold for Healthy Control vs. JIA Classification
As mentioned, each cycle of flexing/extension (each row of X) is
classified on as a 0 or 1, with 0 representing a healthy, unaffected
knee and 1 representing a knee with active JIA. To calculate
this score, we train a logistic regression classification model. All
rows for a subject can be removed from X to leave behind X’

and Xsubject . Each row in these matrices corresponded to one
accelerometer’s output for one cycle of movement. Each subject
had two accelerometers on each leg and was asked to perform
10 cycles of flexion/extension. The average number of rows in
these submatrices was 36 ± 3 rows, with the average number
of rows per accelerometer being 8 ± 1 rows. If the majority of
the predicted labels for an individual row were classified as 0,
the cycle was labeled as healthy. If the majority of the predicted
labels were predicted as 1, the cycle was considered to be JIA.
In this way, the median of the predicted labels of each row
determines the classification of that cycle of that microphone.
The median of the rows in any given Xsubjectis taken to be the
subject classification. If the majority of the rows was predicted
to be 1’s, the subject was labeled as having JIA. Inversely, if the
majority of rows was predicted as 0’s, the subject was labeled
as healthy.

The logistic regression model’s performance was assessed
using LOSO-CV (35). In each fold of this validation, the logistic
regression classifier was trained using the data in X’ with one
subject omitted - Xsubject . The trained model then classified the
signal of the excluded subject’s knee JAEs. During LOSO-CV,
the matrix X’ was standardized after the removal of Xsubject .
The mean and standard deviation of X’ were then subtracted
and divided, respectively, from the columns in Xsubject . By doing
this, the calculated features for Xsubject were not prematurely
included in the standardization of X. The model estimates
the probability of JIA for each row (cycle) in Xsubject . These
probabilities were stored in the vector, ppredicted. The overall
subject’s audio scores were calculated by averaging the contents
of ppredicted (Figure 1D). The 0.5 threshold was applied to this
average probability to assign the predicted label of healthy (0)
or JIA (1). The cross-validation was completed by calculating
knee audio scores for all 43 subjects, excluding one subject per
fold. The follow-up recordings were not included in this model
accuracy calculation because the treating physician stated they
were along a spectrum of convalescence, and thus their ground
truth label was unknown. The generalizability of the model is
assessed by calculating the accuracy of our algorithm in labeling
each cycle, as well as in labeling each.

The average probabilities were used not only for predicting
labels, but also as an indicator of knee health. In this way, as
the average probability of a subject trends toward 0, the signal
more greatly resembles a healthy knee. For subjects with JIA that
have follow-up recordings, this process was repeated to calculate
the change in the probability of JIA between the first recording
and second. Importantly, the follow-up recordings are never used
as part of the training set, since at the time of recording those
subjects the ground-truth of their disease status is unknown.

Feature Importance Ranking
The relative weighting of each of the features in the model
needs to be explored to understand which features most
relate to differentiating JAEs from patients with JIA compared
to healthy controls. To quantify the importance of each
feature, the standardized data from every subject with JIA
(excluding the follow-up data due to it lacking a ground
truth classification) is used to train the classifier. The resulting
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model is used to generate relative feature importance scores.
In this case, no testing set is required to quantify feature
importance since we are not assessing the generalizability
of the model. In the case of logistic regression, the model
computes a coefficient for each input feature that describes the k-
dimensional hyperplane that best separates the two input classes.
When the input matrix X is standardized to zero mean and
unity variance, the absolute value of each of the coefficients
output from the model can be directly compared to assess
relative importance to the model. In this way, a coefficient
with a large absolute value has a larger effect on the model
than one with a smaller absolute value. All 49 features are
ranked in order from most to least important as seen in
Figure 4A.

Effect of Number of Features and Cycles of
Movement on Model Performance
After ranking the 49 features, we further assessed the impact on
the accuracy of the model’s predictive capabilities by training the
model on one to forty-nine features in order of their relative
importance. We first trained a model on only the most important
feature, and assessed the accuracy of the model as detailed above
using LOSO-CV. Next, we iteratively added each new feature
in order of descending relative importance to observe how
that accuracy improved with the addition of each new feature.
We simultaneously assessed the importance of the number of
flexion/extension cycles by testing each iteration of the model
on a subset of all of the cycles. For example, we first trained
the model on the most important feature, and tested the model
using one cycle from the subject left out, next two cycles, then
three cycles, all the way up to the full number of recorded
cycles. In doing so, we calculated how the model responded for
each feature input and for each additional cycle of movement
input. Of note, when choosing the subsets of cycles to test we
iteratively tested up to 1,000 unique permutations on any given
sized subset of cycles and the average of those cycles was reported.
A heatmap of these results was generated and can be seen in
Figure 4B.
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